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Abstract—In this era of climate change, there is a growing
need to offer adaptive learning algorithms in the optimisation
of natural resources. These resources are typically optimised
by evolutionary algorithms. However, evolutionary algorithms
(EAs) are no longer adequate due to the ‘drift’ component
introduced by environmental factors such as flash flooding.
We therefore propose a novel constrained Least Mean Squares
(LMS) algorithm for the optimisation of flow networks. For
rigor, we provide a stability analysis of our adaptive algorithm,
which enables us to interpret the physical meaning of the
network at equilibrium. We evaluate our proposed method
against genetic algorithm (GA), the most common evolutionary
algorithm. The results are promising: not only the proposed
constrained LMS has a performance advantage over GA, but
its computational cost is significantly lower making it more
suitable for real-time applications.

1. Introduction

The need for smart systems for the management of our
natural resources has become essential for the sustainability
of the environment. Moreover, unpredictable weather events
can create significant problems and planning ahead is essen-
tial for the minimisation of the impact. The nonstationarity
of environmental data means that any machine learning so-
lution should be able to cater for the ‘drift’ and therefore be
adaptive in nature. In this paper, we propose a smart system
for the optimisation of flow networks in the management of
water resources.

In the past decade, there has been a strong emphasis in
the computational intelligence community to address smart
grid applications, yet other network-based problems such
as those in flow networks (e.g. water networks) have not
received as much attention [1]. As a result, algorithmic
solutions for water and gas networks are still at an early
stage compared to their smart grid counterpart. One of
challenges encountered in flow networks lies in the limited
level of actuation to automate such networks. However,
with advent of Internet of Things, the increasing ubiquity
of sensors and actuators in smart city applications first
highlights that smart automation of flow networks is not
fiction, and second smart systems are becoming increasingly

important, especially in this era of climate change [2][3]. To
cater for such nonstationary conditions, we will focus on the
adaptive optimisation of flow networks.

Flow networks are defined as directed graphs with
specific edge capacity and can model accurately gas and
water networks. Previous works have focused mainly on
the exploitation of evolutionary algorithms (EAs) for the
long-term planning and management of natural resources.
In this context, EAs (e.g. genetic algorithm) were optimal
in the design and rehabilitation of gas and water networks
[4]–[7]. However, EAs are non-adaptive. As such, non-
stationary conditions cannot be naturally accounted for,
especially in the context of dynamic environmental changes
[8]. Our work addresses this shortcoming in the literature to
propose an adaptive solution, which can cope with real-time
applications. We are focusing on the resource management
problem on a dynamic environment which is essential for
an optimised smart network.

Specifically, we propose a constrained least mean
squares (LMS) based algorithm that can simulate and op-
timise accurately the operation of a smart network. Each
node of the network has a specific target in terms of
volume and the algorithm control the flows in order the
target to be met. The targets are set based on various
factors, such as consumption demand, weather forecasting
and environmental aspects. The adaptive properties of the
method ensures that even when the targets are dynamically
changing the algorithm always iterates to find the optimum
solution. Especially, in extreme conditions (for example, a
flash flood), the responsiveness of such an algorithm is a
high priority. In Section 2, we introduce the constrained
LMS for flow networks and illuminate the optimal condi-
tions of our constrained LMS algorithm at convergence.
In Section 3, we evaluate our proposed method against
genetic algorithm (GA), which is the established method
in optimising flow networks [4][9]. Finally, we conclude by
assessing the results and highlight the advantages of our
method.

In this paper, we use normal font for scalars. To denote
matrices we use bold capital letters while for vectors, we
use bold lower-case letters. All vectors are column vectors.
The transpose of a matrix or a vector is denoted by the
superscript (·)T and ‖ · ‖ represents the `2-norm.
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Figure 1: A fully connected flow network with N = 6 nodes.

2. Constrained LMS for flow networks

Consider a network of N nodes as in Fig. 1. Each node
has a value uk(t) which represents the capacity of each
node. Moreover, there is a target value dk(t) that represents
the desired amount to be stored within the kth node. If we
write the same values in vector form {dt,ut} collecting all
the values from the network, we can introduce an N × N
matrix A that represents the flows between the nodes. The
amount of material that flows from node j to node i is
expressed as a percentage of uj(t) in terms of αij of the
matrix A. Due to the non-negative nature of the quantity
‘percentage’, the first constraint is to enforce non-negativity
on the matrix A. The ‘flow’ of the network can now be
modelled as

ut+1 = Aut (1)

The main objective is to estimate the optimal value of
A such that E ‖d−Au‖2 is minimised (where E denotes
the expectation operator). Thus, the cost function of the
optimisation problem can be formulated as:

J(A) = E ‖d−Au‖2 (2)

Moreover, we need to enforce the second constraint, which
is the conservation of mass for the whole system. Therefore,
each column of the matrix A should sum to 1. This can be
written in a compact form as:

1
T
NA = 1

T
N (3)

where 1N is a N × 1 vector of ones. Thus, the Lagrangian
can be written as:

L(A,λ) = E ‖d−Au‖2 + (1TNA− 1
T
N )λ (4)

where λ denotes the vector of the Lagrange multipliers.
The Karush-Kuhn-Tucker conditions must be satisfied at the
optimum solution {Ao,λo}, meaning that

∇AL(A
o,λo) = 0 (5)

where ∇A is the gradient with respect to A. Substituting the
Lagrangian of Eq. (4) into Eq. (5) we obtain the following
equation:

2(d−Au)uT + 1λT = 0 (6)

1λT = −2(d−Au)uT (7)

In order to replace the Lagrange multipliers in Eq. (4), we
need to estimate the terms 1TNλ and 1

T
NAλ. Using Eq. (7)

and replacing the terms uuT and duT with the covariance
Ru and cross covariance Rdu matrices respectively, we can
express the terms of Eq. (4) as:

1
T
Nλ = Tr(1NλT )

= 2Tr(ARu)− 2Tr(Rdu) (8)

1
T
NAλ = Tr(1NλTA)

= 2Tr(ARuA)− 2Tr(RduA) (9)

where Tr(·) denotes the trace operator. Substituting the
above expressions into Eq. (4), the Lagrangian function can
conveniently be expressed as:

L(A) =E ‖d−Au‖2 + 2Tr(ARuA)

− 2Tr(RduA)− 2Tr(ARu) + 2Tr(Rdu) (10)

The condition of Eq. (5) needs to be satisfied in this new
form of the Lagrangian, that is,

∇AL(A
o) = 0. (11)

By calculating the gradient of the Lagrangian expression
in Eq. (10) with respect to A, we reach the following
conditions:

2(d−Au)uT − 2RT
du + 2ATRT

u + 2RT
uA

T − 2RT
u = 0

(Rdu −RT
du︸ ︷︷ ︸

Term I

) + (AT −A︸ ︷︷ ︸
Term II

)Ru +Ru(A
T − IN︸ ︷︷ ︸
Term III

) = 0 (12)

where IN denotes the N ×N identity matrix.
If we analyse Equation (12), which reflects the con-

vergence of the proposed constrained LMS, the terms (I)-
(III) can be interpreted as the conditions for stability at
convergence:

I. Rdu −RT
du = 0 (13)

II. AT −A = 0 (14)
III. AT − I = 0. (15)

Condition (I) implies that the cross-covariance between
the target d and the current u volume of each node must
be symmetric, however cross-covariance is generally non-
symmetric. The symmetricity of the cross covariance is due
to the approximation d ≈ Au from (2) at convergence. In
other words, the current volume of each node has reached
the target volume at convergence. This is further confirmed
by Condition (III), which implies that A = I.

Condition (II) means the flow matrix A needs to be
symmetric. In fact, Condition (II) conforms with Condition
(III) that A = I, as Condition (III) means that there is no
flow between the nodes (αij=αji = 0). Moreover, Condition
(III) verifies the mass conservation constraint of Eq. (3)
still holds at convergence. Now that we have analysed the
constrained LMS algorithm, we proceed on the simulation
section to evaluate our proposed algorithm.



Option Method
Creation Uniform Distribution
Selection Stochastic Uniform Function
Mutation Gaussian Function
Crossover Scatter Function

TABLE 1: Genetic algorithm options

Experiment Constr. LMS GA
Single Target 139.1 344.5
Triple Target 315.8 606.4

TABLE 2: Method Comparison based on total error

3. Simulations

This section provides two sets of experiments simulating
a water supply network. The first experiment simulated a
non-drift environment, whereas the second one simulated
a drift environment. In these two sets of simulations, we
evaluated the performance of constrained LMS against the
performance of a genetic algorithm [9].

Consider a water network of N = 6 nodes as shown in
Fig. 1. Each node had a specific target volume value dk and
a initial volume value uk(0) assigned to it. The initial and
target values were taken from a random number generator
with a uniform distribution and a range from 0 to 100 m3.
For these two sets of simulation, the constrained LMS
algorithm was updated as follows:

At+1 = At + µ(dt −Atut)u
T
t (16)

After each update step, a set of constraints were enforced to
the estimate A in order to keep the solution conformed with
the physical properties of the system. Specifically, as the
elements αij of the flow matrix A represent volume percent-
ages, these quantities needed to be nonnegative. Therefore,
the first constraint was expressed as:

αij ≥ 0, ∀i, j (17)

The second constraint was based on the flow limits we
have on physical water networks between the nodes. In order
to achieve a realistic simulation of a water network, we
set a maximum flow value between the nodes. As such,
we used a 5% upper limit for every connection within the
network. The only matrix elements that did not follow this
constraint were the diagonal elements of A. Its diagonal
elements reflected the amount of water that was kept at a
specific node after each iteration. The second constraint can
therefore be expressed as:

αij ≤ 0.05, ∀i, j with i 6= j (18)

Hence, the values of αij were bounded by the lower (17)
and then upper (18) limit. Finally, the third constraint (3) on
the mass conservation was also enforced at each iteration of
(16). The diagonal values were estimated in such a way
that each column of A summed to unity. This way, we
circumvented any normalisation step that would violate the
first two constraints.
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Figure 2: Learning curves for constrained LMS and GA.
Constrained LMS performance is significantly better that
the GA.

As for the genetic algorithm (GA), the same cost func-
tion (2) and set of constraints (3), (17)-(18) were used. Fur-
thermore, we considered the GA options as shown in Table
1. At each iteration, GA found an estimation of Ao, which
was used a starting point for the next iteration. Therefore,
there was a continuity in the search of the optimum solution.

On the first experiment the same targets and initial
volumes were used for both methods. For constrained LMS,
the learning rate µ was set at 4.5 × 10−4 in (16), a value
that offered a good balance between convergence speed
and stability. The performance metric used was the root
mean squared error (RMSE) between the target and actual
volumes. Mathematically, this metric can be computed as:

RMSE(t) =
√
E((d− ut)2) (19)

The results of the first experiment are shown in Fig. 2. It
is clear from the figure that constrained LMS converged after
21 iterations while the GA converged after 26 iterations.
In other words, the rate of convergence of the constrained
LMS was greater than that of GA rate. This can be crucial
for critical applications where the system needs to be highly
reactive to rapid changes of the environment.

In the second experiment, the target volumes of each
node were dynamically changed. In particular, we employed
the same mechanism to set three different random sets of tar-
gets and assign them to three equal intervals (1-50, 51-100,
101-150). As shown in Fig. 3, constrained LMS performed
better. In particular, the difference between the error for the
two methods was significant. The adaptive properties of the
LMS has proven to be valuable in applications where the
data are dynamic.

In order to quantify the results, the sum of errors were
computed and presented in Table 2 for both methods and
experiments. Constrained LMS achieved nearly twice as



better results than the GA method. On comparing the two
methods, we can make the following remarks:

• Constrained LMS converged not only faster, but its
convergence was smoother than the GA equivalent.
In particular, GA’s performance on the transient state
was not as smooth as that of the LMS algorithm,
which was reflected by the small peaks at Iteration
5 and 11 in Fig. 2. This is not surprising due to the
meta-heuristic nature of EAs.

• At the steady state, the constrained LMS performed
better than GA. The error values that were achieved
from GA were of the order of 10−4 whereas for the
LMS, the errors were of the order of 10−10 after 50
iterations.

• Consequently, the constrained LMS outperformed
the GA equivalent not only at the transient state but
also at the steady state. Table 2 confirms the overall
performance superiority of our proposed method
over GA.

• The computational cost of GA is significantly larger
than the cost of the constrained LMS. Indeed, a
simplified approximation of the time complexity of
GA is of the order of O(gmN2) per iteration where
g is the number of generations, m is the size of the
population and N the number of nodes. On the other
hand, the time complexity of LMS is of the order of
O(N2) per iteration. As the size of the population
and the number of generations is not fixed, it is
difficult to make an exact estimation of the time
complexity difference. However, it is clear from the
above figures that LMS is much cheaper than the
GA algorithm. On the actual running time of the
experiment two, it took approximately 100 minutes
for the GA to complete all the 150 iterations while
the constrained LMS completed 150 iterations in less
than 1 second.

• GA is not, by design, an adaptive algorithm, whereas
constrained LMS is inherently adaptive. As such,
we had to adapt GA by feeding in the estimate of
the previous iteration as a starting point for the next
iteration.

• The optimisation problem considered for both exper-
iments were based on a single objective (2), however,
if the optimisation problem considered was set as
multi-objective one, it is envisaged that the genetic
algorithm would outperform the constrained LMS.
For such multi-objective problems [5], the genetic
algorithm would converge but would not be able to
cope with real-time applications, whereas the con-
strained LMS would not converge at all. To this end,
we require a hybrid algorithm that exploits the global
convergence property of an evolutionary algorithm
and the lower computational cost and adaptive oper-
ation of the constrained LMS, which is the subject
of future research.
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Figure 3: Learning curves for three changing targets.

4. Conclusion

We have proposed a constrained LMS algorithm to op-
timise flow networks. In particular, we have shown how the
adaptive nature of the constrained LMS algorithm caters for
the ‘drift’ based on varying targets. For rigour, we have also
provided a stability analysis, which enabled us to interpret
mathematically that at convergence, there is no flow between
nodes and that each node has reached the desired target
volume, as expected. As an example of a real-world appli-
cation, we have considered a water supply network taking
into consideration the physical constraints of the system
and showed that our proposed LMS algorithm outperformed
the genetic algorithm in simulations that accounted for
both stationary and non-stationary environment. For single
objective optimisations, our results indicate the suitability of
our proposed LMS algorithm for real-time operation, which
can be beneficial in this era of flash flooding.
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