
A Performant, Misuse-Resistant API for Primality Testing
Jake Massimo

jake.massimo.2015@rhul.ac.uk

Royal Holloway, University of London

Kenneth G. Paterson

kenny.paterson@inf.ethz.ch

Department of Computer Science, ETH Zurich

ABSTRACT
Primality testing is a basic cryptographic task. But developers today

are faced with complex APIs for primality testing, along with docu-

mentation that fails to clearly state the reliability of the tests being

performed. This leads to the APIs being incorrectly used in practice,

with potentially disastrous consequences. In an effort to overcome

this, we present a primality test having a simplest-possible API: the

test accepts a number to be tested and returns a Boolean indicat-

ing whether the input was composite or probably prime. For all

inputs, the output is guaranteed to be correct with probability at

least 1 − 2−128. The test is performant: on random, odd, 1024-bit

inputs, it is faster than the default test used in OpenSSL by 17%.

We investigate the impact of our new test on the cost of random

prime generation, a key use case for primality testing. The OpenSSL

developers have adopted our suggestions in full; our new API and

primality test are scheduled for release in OpenSSL 3.0.

CCS CONCEPTS
•Mathematics of computing→Randomnumber generation;
• Security and privacy→Mathematical foundations of cryp-
tography; • Software and its engineering→ Software libraries
and repositories.

KEYWORDS
Primality testing; Prime generation; Miller-Rabin test; Lucas test;

Baillie-PSW test; API design

ACM Reference Format:
JakeMassimo andKennethG. Paterson. 2020. A Performant,Misuse-Resistant

API for Primality Testing. In Proceedings of the 2020 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS ’20), November 9–
13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 16 pages. https:

//doi.org/10.1145/3372297.3417264

1 INTRODUCTION
Primality testing, and closely related tasks like random prime gen-

eration and testing of Diffie-Hellman parameters, are core cryp-

tographic tasks. Primality testing is by now very well understood

mathematically; there is a clear distinction between accuracy and

running time of different tests in settings that are malicious (i.e.

where the input may be adversarially-selected) and non-malicious

(e.g. where the input is random, as is common in prime generation).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00

https://doi.org/10.1145/3372297.3417264

Yet recent research by Albrecht et al. [3] on how primality test-

ing is actually done in practice has highlighted the failure of popu-

lar cryptographic libraries to provide primality testing APIs that

are “misuse-resistant”, that is, which provide reliable results in all

use cases even when the developer is crypto-naive. Extending [3],

Galbraith et. al. [18] showed how failure to perform robust pri-

mality testing in the popular OpenSSL library has serious security

consequences in the face of maliciously generated Diffie-Hellman

parameter sets (see also Bleichenbacher [9] for an earlier example

involving the GNU Crypto library).

The main underlying issue identified in [3] is that, while all li-

braries examined performed well on random inputs, some failed

miserably on maliciously crafted ones in their default settings.

Meanwhile code documentation was generally poor and did not

distinguish clearly between the different use cases. And developers

were faced with complex APIs requiring them to understand the

distinctions between use cases and choose parameters to the APIs

accordingly. An illustrative example is provided by the OpenSSL

primality testing code that existed prior to our work. This required

the developer using the function BN_is_prime_fasttest_ex1 to
pass multiple parameters, including checks, the number of rounds

of Miller-Rabin testing to be carried out; and do_trial_division,
a flag indicating whether or not trial division should be performed.

Setting checks to 0 makes the test default to using a number of

rounds that depends only on the size of the number being tested;
2

then the number of rounds decreases as the size increases, this being
motivated by average-case error estimates for the Miller-Rabin pri-

mality test operating on random numbers [14, 29]. This makes the

default setting performant for random prime generation, but dan-

gerous in potentially hostile settings, e.g. Diffie-Hellman parameter

testing.

As an illustration of how this can go wrong in practice, Galbraith

et. al. [18] pointed out that OpenSSL (pre-1.1.1c May 2019) itself

makes the wrong choice in using the default setting when testing

finite field Diffie-Hellman parameters. Galbraith et. al. exploited
this choice to construct Diffie-Hellman parameter sets (p,q,д) of
cryptographic size that fool OpenSSL’s parameter validation with

a non-trivial success rate. OpenSSL’s Diffie-Hellman parameter

validation was subsequently changed to remedy this issue (though

without changing the underlying primality test).
3
This example

provides prima facie evidence that even very experienced devel-

opers can misunderstand how to correctly use complex primality

testing APIs.

One may argue that developers who are not cryptography ex-

perts should not be using such security-sensitive APIs. However,

1
See

https://github.com/openssl/openssl/blob/3e3dcf9ab8a2fc0214502dad56d94fd95bcbbfd5/

crypto/bn/bn_prime.c#L186.

2
Strictly, the default is invoked by setting checks to BN_prime_checks, an environ-

mental variable that is set to 0.

3
See https://github.com/openssl/openssl/pull/8593.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/342378431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3372297.3417264
https://doi.org/10.1145/3372297.3417264
https://doi.org/10.1145/3372297.3417264
https://github.com/openssl/openssl/blob/3e3dcf9ab8a2fc0214502dad56d94fd95bcbbfd5/crypto/bn/bn_prime.c#L186
https://github.com/openssl/openssl/blob/3e3dcf9ab8a2fc0214502dad56d94fd95bcbbfd5/crypto/bn/bn_prime.c#L186
https://github.com/openssl/openssl/pull/8593

they inevitably will, and, as our OpenSSL example shows, even

expert developers can get it wrong. This motivates the search for

APIs that are “misuse-resistant” or “robust”, and that do not sacri-

fice too much performance. This search accords with a long line

of work that identifies the problem of API design as being critical

for making it possible for developers to write secure cryptographic

software (see [20, 22, 43] amongst others).

1.1 Our Contributions
Given this background, we set out to design a performant primality

test that provides strong security guarantees across all use cases

and that has the simplest possible API: it takes just one input, the

number being tested for primality, and returns just one integer (or

Boolean) indicating that the tested number is highly likely to be

prime (1) or is definitely composite (0). We note that none of the

many crypto libraries examined in [3] provide such an API.

We examine different options for the core of our test – whether

to use many rounds of Miller-Rabin (MR) testing (up to 64 or 128,

to achieve false positive rates of 2
−128

or 2
−256

, respectively), or

to rely on a more complex primality test, such as the Baillie-PSW

test [37] which combines MR testing with a Lucas test. Based on

a combination of code simplicity, performance and guaranteed

security, we opt for 64 rounds of MR as the core of our test.

We also study the performance impact of doing trial division

prior to more expensive testing. This is common practice in pri-

mality testing code, with the idea being that one can trade fast but

inaccurate trial division for much slower but more accurate number

theoretic tests such as Miller-Rabin. For example, OpenSSL tests

for divisibility using a fixed list of the first 2047 odd primes. We

show that this is a sub-optimal choice when testing random inputs

of common cryptographic sizes, and that the running time can be

reduced substantially by doing trial division with fewer primes. The

optimal amount of trial division to use depends on the size of the

input being tested, though is not a new observation – see for exam-

ple [23, 28, 29]. What is more surprising is that OpenSSL chooses

so conservatively and with a fixed list of primes (independent of

the input size). For example, with 1024-bit random, odd inputs, trial

division using the first 128 odd primes already removes about 83%

of candidates, while extending the list to 2047 primes, as OpenSSL

does, only removes a further 5.5%. On average, it turns out to be

faster to incur the cost of an MR test on that additional 5.5% than it

is to do the full set of trial divisions.

The outcome of our analysis is a primality test whose perfor-

mance on random, odd, 1024-bit inputs is on average 17% faster
than the current OpenSSL test, but which guarantees that com-

posites are identified with overwhelming probability (1 − 2−128),

no matter the input distribution. The downside is that, for inputs

that are actually prime rather than random, our test is significantly

slower than with OpenSSL’s default settings (since we do 64 MR

tests compared to the handful of tests used by OpenSSL). This is

the price to be paid for a misuse-resistant API.

We then examine how our choice of primality test affects the

performance of a crucial use case for primality testing, namely

generation of random k-bit primes. OpenSSL already includes code

for this. It makes use of a sieving step to perform trial division

at reduced cost across many candidates, obviating the need to

perform per-candidate trial division internally to the primality test.

OpenSSL avoids the internal trial division via the above-mentioned

do_trial_division input to the primality test in OpenSSL. Since

we do not allow such an input in our simplified primality testing

API, a developer using our API would be (implicitly) forced to do

trial division on a per candidate basis, potentially increasing the

cost of prime generation. Moreover, our primality test may use

many more rounds of MR testing than OpenSSL selects in this case,

since our API does not permit the user to vary the number of rounds

according to the use case. However, for random prime generation,

most candidates are rejected after just one MR test, and so the full

cost of our test (trial division plus 64 rounds of MR testing) is only

incurred once, when a prime is actually encountered. So we seek

to understand the performance impact of plugging our new API

and primality test into the existing OpenSSL prime generation code.

We find that, for generation of random 1024-bit primes OpenSSL’s

prime generation code is 35-45% slower when using our primality

test internally. For this cost, we gain an API for primality testing

that is as simple as possible and where the test has strong security

guarantees across all use cases.
We communicated our findings to the OpenSSL developers,

and they have adopted our suggestions with only minor modi-

fications: the forthcoming OpenSSL 3.0 (scheduled for release in

Q4 of 2020) will include our simplified API for primality testing,

and the OpenSSL codebase has been updated to use it almost every-

where (the exception is prime generation, which uses the old API

in order to avoid redundant trial division). Moreover, OpenSSL will

now always use our suggested primality test (64 rounds of MR) on

all inputs up to 2048 bits, and 128 rounds of MR on larger inputs.

This represents the first major reform of the primality testing code

in OpenSSL for more than 20 years.

1.2 Related Work
The topic of API design for cryptography has a long history and

connections to related fields such as usable security and API design

for security more generally.

As early as 2002, Gutmann [22] identified the need to carefully

define cryptographic APIs, recommending to “[p]rovide crypto

functionality at the highest level possible in order to prevent users

from injuring themselves and others through misuse of low-level

crypto functions with properties they aren’t aware of.” This is pre-

cisely what we aim to do for primality testing in this paper.

Later, Wurster and van Oorschot [43] (in the broader context of

security) argued that attention should be focussed on those devel-

opers who produce core functionality used by other developers, e.g.

producers of APIs. They identified the need to design APIs which

can be easily used in a secure fashion.

Green and Smith [20] extensively discuss the need for usable

security APIs, and focus on cryptographic ones. They give an ex-

tensive list of requirements for good APIs, including: APIs should

be easy to learn, even without cryptographic expertise; defaults

should be safe and never ambiguous; APIs should be easy to use,

even without documentation; APIs should be hard to misuse and

incorrect use should lead to visible errors. These precepts have

influenced our API design for primality testing.

Acar et al. [2] advocate for a research agenda for usable security

and privacy research that focusses on developers rather than end

users. This encompasses cryptography. Recent research related to

this agenda and having a cryptographic focus includes [1, 15, 16,

19, 25, 33, 34].

Nonce-based Authenticated Encryption (AE), a primitive intro-

duced by Rogaway [39], can be seen as an attempt to simplify the

symmetric encryption API for developers, replacing the need to

understand various requirements on IVs with the arguably simpler

need to be able to supply unique (per key) inputs to an encryption

algorithm. It has become the standard target for algorithm design-

ers. However, as [10] showed, developers can accidentally misuse

even this simplified API, with disastrous results for nonce-sensitive

modes like AES-GCM. This motivated the development of misuse-

resistant AE schemes, which attempt to preserve as much security

as possible even when nonces are repeated. Prominent examples

include SIV [40], Deoxys-II (part of the CAESAR competition fi-

nal portfolio), and AES-GCM-SIV [21] (see also RFC 8452). Later

authors identified the fact that developers may want an even higher-

level API, for example a secure streaming channel like that provided

by TLS [17, 35] or channels that tolerate some forms of reordering

and repetition [11]; the mismatch between what developers want

and what nonce-based AE can provide can lead to attacks, cf. [8].

Bernstein’s design for DH key exchange on Curve25519 [6] de-

liberately presents a simple API for developers: public and private

keys are represented by 32-byte strings, and the need for public

key validation is avoided.

The NaCl crypto library [7] has provision of a simple API to de-

velopers as one of its primary aims. It gives the user a crypto_box
function that encrypts and authenticates messages, with a simple

API of the form: c = crypto_box(m,n,pk,sk), where m is a mes-

sage, n is a nonce, pk is the public key of the recipient and sk is

the private key of the sender. Its security does rely on developers

correctly handling nonces; we are unaware of reports of any misuse

of this type. Some criticism of NaCl’s approach, especially the way

in which it breaks the developer’s expected paradigm, can be found

in [20].

There is an extensive literature on primality testing and genera-

tion, nicely summarised in [29, Chapter 4]. The state-of-the-art has

not changed significantly since the publication of that book in 1996.

On the other hand, as Albrecht et al. [3] showed, primality testing

and generation as it is done in practice has many shortcomings.

Our work can be seen as an effort to narrow the gap between the

literature and its practical application.

1.3 Paper Organisation
The remainder of this paper is organised as follows. In Section 2

we give further background on primality testing and detail the

approach used in OpenSSL. In Section 3 we describe four different

candidate primality tests and analyse them theoretically and ex-

perimentally. Our chosen primality test (64 rounds of Miller-Rabin

with trial division on the first 128 odd primes) emerges from this

analysis as our preferred test. We then evaluate the performance of

this chosen test in the use case of prime generation in Section 4. Sec-

tion 5 briefly discusses how our test is being adopted in OpenSSL,

while Section 6 contains our conclusions and avenues for future

work.

2 FURTHER BACKGROUND
2.1 Primality Testing
We begin by giving further details on the core primality tests that

we will consider in this work.

2.1.1 Miller-Rabin. The Miller-Rabin (MR) [31, 38] primality test

is a widely-used and efficient algorithm.

A single round of the test proceeds as follows. Suppose n > 1 is

an odd integer to be tested for primality. We first write n = 2
ed + 1

where d is odd. If n is prime, we know that there are are no non-

trivial roots of unitymodulon, thus for any integerawith 1 ≤ a < n,
we have:

ad ≡ 1 mod n or a2
id ≡ −1 mod n for some 0 ≤ i < e .

The test then consists of choosing a value a (often referred to as a

base), and then checking the above conditions on n. We declare a

number to be (probably) prime if either of the two conditions hold

and to be composite if both conditions fail. If n is composite and at

least one condition holds, then we say n is a pseudoprime to base a,
or that a is a non-witness to the compositeness of n (since n may be

composite, but a does not demonstrate this fact). It is evident that

computational cost of the test is that of a full-size exponentiation

modulo n.
In practice, the test is iterated t times, using a different, random

choice of base a in each round (though as observed in [3], fixed

bases are often used in crypto libraries, which makes it possible to

construct composites that are always declared prime by the test).

The test is probabilistic, in that a t-round MR test using uniformly

random bases declares any composite number to be composite with

probability at least 1 − 4−t . Moreover, this bound is tight: there are

composites which are not identified as being such over t rounds of
testing with probability 4

−t
. Such numbers, then, are worst-case

adversarial inputs for the test. They are treated extensively in [3].

On the other hand, the test never declares a prime to be composite.

The above discussion holds for any input n, no matter how it

is chosen. When n is a uniformly random odd k-bit integer, much

better performance can be assured. For example, a result of [14]

assures that the probability pk,1 that a composite n chosen in this

way passes one round of random-base MR testing is bounded by

k242−
√
k
. Thus, for k = 1024, we have pk,1 ≤ 2

−40
. Using more

precise bounds from [14], this can be improved to pk,1 ≤ 2
−42.35

.

These bounds are what motivates the rather small numbers of

rounds of MR testing in the default setting in OpenSSL’s primality

test, for example.

2.1.2 Lucas. The Lucas primality test [5] makes use of Lucas se-

quences, defined as follows:

Definition 2.1 (Lucas sequence [5]). Let P and Q be integers and

D = P2 − 4Q . Then the Lucas sequences (Uk) and (Vk) (with k ≥ 0)

are defined recursively by:

Uk = PUk−1 −QUk−2 where, U0 = 0,U1 = 1,

Vk = PVk−1 −QVk−2 V0 = 2, V1 = P .

Since we are concerned with primality testing cryptographic

sized numbers, we can use efficient techniques for computing large

Lucas sequences such as binary Lucas chains as described in [32].

The Lucas probable prime test then relies on the following theorem

(in which

(
x
p

)
denotes the Legendre symbol, with value 1 if x is a

square modulo p and value -1 otherwise):

Theorem 2.2 ([13]). Let P and Q be integers, D = P2 − 4Q , and
let the Lucas sequences (Uk), (Vk) be defined as above. If p is a prime
with gcd(p, 2QD) = 1, then

Up−
(
D
p

) ≡ 0 (mod p). (1)

The Lucas probable prime test repeatedly tests property (1) for

different pairs (P ,Q). This leads to the notion of a Lucas pseudo-

prime with respect to such a pair.

Definition 2.3 (Lucas pseudoprime). Let P and Q be integers and

D = P2−4Q . Let n be a composite number such that gcd (n, 2QD) =
1. IfUn−

(
D
n

) ≡ 0 (mod n), thenn is called a Lucas pseudoprimewith

respect to parameters (P ,Q).

Similar results to those for the MR primality test can be estab-

lished for the Lucas test: a single Lucas test will declare a given

composite number as being composite with probability at least

1− (4/15) and as being prime with probability at most (4/15), with
these bounds being tight [4].

2.1.3 Baillie-PSW. The Baillie-PSW test [37] is a deterministic

primality test consisting of a single Miller-Rabin test with base 2

followed by a single Lucas test. A slight variant of the test in which

the Lucas test is replaced with a more stringent version, known as

a strong Lucas test is mentioned in [5]. Generally, the consensus

that has emerged over time is that the Lucas test should be used

with the parameters (P ,Q) set as defined by Selfridge’s method A:

Definition 2.4 (Selfridge’s Method A [5]). LetD be the first element

of the sequence 5,−7, 9,−11, 13, . . . for which
(
D
n

)
= −1. Then set

P = 1 and Q = (1 − D)/4.

If no such D can be found, then n must be a square and hence

composite. In practice, one might attempt to find such a D up

to some bound Dmax, then perform a test for squareness using

Newton’s method for square roots (see Appendix C.4 of [24]), before

reverting to a search for a suitable D if needed. This is generally

more efficient than doing a test of squareness first.

The idea of the Baillie-PSW test is that its two components

are in some sense “orthogonal” and should between them catch

all composites. Extensive computations have never produced a

pseudo-prime for the Baillie-PSW test, that is, a composite number

that passes it. Indeed there are (moderate) cash prizes available

for providing one. However, none of these computations extend to

numbers of cryptographic size. Moreover, Pomerance [36] has given

a heuristic argument for the existence of infinitely many Baillie-

PSW pseudo-primes. There do not appear to exist any bounds

demonstrating the test’s strength on uniformly random k-bit inputs,
in contrast to the results of [14] for the MR test. In summary, while

the Baillie-PSW test appears to be very strong, there are no proven

guarantees concerning its accuracy. One positive feature is that,

being deterministic, it does not consume any randomness (whereas

a properly implemented MR test does).

2.1.4 Supplementary and Preliminary Tests. It is often more effi-

cient to perform some supplementary or preliminary testing on an

input n before executing the main work of the primality test. A com-

mon strategy is to first perform trial division on n using a list of r
small primes. This can be done directly, or by equivalently checking

if gcd(
∏r

i pi ,n) , 1 where {p1, . . . ,pr } is the list of primes used.

The list of primes can be partitioned and multiple gcds computed,

so as to match the partial products of primes with the machine

word-size. This is a very cheap test to perform, and can be quite

powerful when testing random inputs. The question arises of how

r , the number of primes to use in trial division, should be set. We

shall return to this question later.

2.1.5 Primality Testing in OpenSSL. Since we will extensively com-

pare our primality test and its API with those of OpenSSL, we give a

detailed description of the approach found in OpenSSL (1.1.1c May

2019). We note that the specific parts of the code studied remain

almost completely unchanged in subsequent versions up to 1.1.1e

(March 2020), and across other long term support (LTS) versions of

OpenSSL such as 1.1.0 and 1.0.2.

OpenSSL provides two functions for primality testing: BN_is-
_prime_ex and BN_is_prime_fasttest_ex, both in file bn_prime-
.c. The core part of the code is in the second of these, while the

first simply acts as a wrapper to this function that forces omission

of trial division. The second function call has the form:

int BN_is_prime_fasttest_ex(const BIGNUM *w, int

checks, BN_CTX *ctx_passed, int do_trial_division,

BN_GENCB *cb)

Here, w is the number being tested. The option to do trial division

is defined via the do_trial_division flag. When set, the function

will perform trial division using the first 2047 odd primes (exclud-

ing 2), with no gcd optimisations (the code also separately tests

whether the number being tested is equal to 2 or 3, and whether it is

odd). After this, the function calls bn_miller_rabin_is_prime to

invoke the MR testing with pseudo-random bases. The number of

MR rounds is set using the argument checks. When checks is set to
BN_prime_checks, a value that defaults to zero, then the number of

MR rounds is chosen such that the probability of the test declaring

a random composite number n with k bits as being prime is at most

2
−λ

, where λ is the security level that a 2k-bit RSA modulus should

provide. Thus, the number of MR rounds performed is based on

the bit-size k , as per Table 1. The entries here are based on average

case error estimates taken from [29], which in turn references [14].

2.2 Prime Generation
A critical use case for primality testing is prime generation (e.g.

for use in RSA keys). The exact details of the algorithms used vary

across implementations, but the majority follow a simple technique

based on first generating a random initial candidate n of the desired

bit size k , possibly setting some of its bits, then doing trial division

against a list of small primes, before performing multiple rounds

of primality testing using a standard probabilistic primality test

such as the MR test. If the trial division reveals a factor or the MR

test fails, then another candidate is generated. This can be a fresh

random value, but more commonly, implementations add 2 to the

previous candidate n. This allows an important optimisation: if a

k t λ (bits)

k ≥ 3747 3 192

k ≥ 1345 4 128

k ≥ 476 5 80

k ≥ 400 6 80

k ≥ 347 7 80

k ≥ 308 8 80

k ≥ 55 27 64

k ≥ 6 34 64

Table 1: The default number of rounds t of Miller-Rabin per-
formed by OpenSSL 1.1.1c when testing k-bit integers deter-
mined by the function BN_prime_checks_for_size and the
associated bits of security λ.

table of remainders for the trial divisions of n is created in the first

step, then this table of remainders can be quickly updated for the

new candidate n + 2. Fresh divisions can then be avoided – one just

needs to inspect the updated table of remainders. We refer to this

procedure as trial division by sieving or just sieving. It is, of course,
much more efficient than performing trial divisions anew for each

candidate. Note that this approach leads to a slightly non-uniform

distribution on primes: primes that are preceded by a long run

of composites are more likely to result from it than primes that

are close to their preceding primes. However, it is known that the

deviation from the uniform distribution is small [12].

2.2.1 OpenSSL. OpenSSL adopts the above high-level procedure,

with one important difference. The code is found in BN_generate-
_prime_ex in file bn_prime.c. The function call has the following

form:

int BN_generate_prime_ex(BIGNUM *ret, int bits,

int safe, const BIGNUM *add, const BIGNUM *rem,

BN_GENCB *cb)

Here bits is the desired bit-size, safe is a flag that, when set, asks

the function to produce a safe prime p = 2q + 1, and add and rem
allow the callee to set additional conditions on the returned prime.

We will ignore safe, add and rem in our further work; an analysis

of how they affect prime generation when using our primality test

is left to future work.

The initial steps are performed together in a separate func-

tion called probable_prime. A cryptographically strong pseudo-

random number is first generated by BN_priv_rand. The two most

significant bits and the least significant bit are then set to ensure

the resulting candidate n is odd and of the desired bit-size. This

number is then sieved using a hard-coded list of the first 2047

odd primes p2, . . . ,p2048, so p1 = 2,p2 = 3, . . . ,p2048 = 17863. If

a candidate passes the sieving stage, it is tested for primality by

BN_is_prime_fasttest_ex. This function carries out the default

number of Miller-Rabin rounds, as per Table 1. Trial division is

omitted by setting the do_trial_division flag in the function

call. This is because trial division has already been carried out ex-

ternally via sieving. This exploits the complexity of the OpenSSL

API for primality testing to gain performance, an option not avail-

able if a simplified API is desired (as we do). Importantly, if the MR

tests fail, then instead of going to the next candidate that passes

sieving, a fresh, random starting point is selected and the procedure

begins again from the start.

3 CONSTRUCTION AND ANALYSIS OF A
PRIMALITY TEST WITH A
MISUSE-RESISTANT API

We now propose how to construct a performant primality test with

a misuse-resistant API. Our design goal is to ensure good perfor-

mance in the most important use cases (malicious input testing,

prime generation) while still maintaining strong security. At the

same time, we want the simplest possible API for developers: a

single input n (the number being tested) and single a 1-bit output

(0 for composite, 1 for probably prime).

We propose four different primality testing functions, all built

from the algorithms described in Section 2.1. The first of these

follows OpenSSL with its default settings, and we name this Miller-

Rabin Average Case (MRAC). It provides a baseline for analysis

and comparison. The second and third use 64 and 128 rounds of

MR testing, respectively. We name them MR64 and MR128. The

fourth uses the Baillie-PSW test, and we name it BPSW for short.

For each of these four options, we provide an assessment (both by

analysis and by simulation) of its security and performance when

considering random composite, random prime, and adversarially

generated composite inputs. We also consider the influence of trial

division on each test’s performance. For concreteness, throughout

we focus on the case of 1024-bit inputs, but of course the results

are easily extended to other bit-sizes.

3.1 Miller-Rabin Average Case (MRAC)
The first test we introduce, MRAC, is a reference implementation

of OpenSSL’s primality test, as per the function BN_is_prime-
_fasttest_ex described in Section 2.1.5 with input checks set

to BN_prime_checks, so that the number of MR rounds performed

is based on the bit-size k , as per Table 1. Recall that this function
either does no trial division or does trial division with the first 2047

odd primes. Of course, this test is quite unsuitable for use in general,

because it performs badly on adversarial inputs: [3] showed that it

has a worst case false positive rate of 1/22t where for example t = 5

for 1024-bit inputs. On the other hand, it is designed to perform

well on random inputs.

3.1.1 MRAC on Random Input. We now consider the expected

number of MR rounds performed when receiving a random 1024

bit odd input. For now, we ignore the effect of trial division. The

probability that a randomly chosen odd k-bit integer is prime is

qk := 2/ ln(2k) by standard estimates for the density of primes [42]

(for k = 1024,qk ≈ 1/355). In this case MRAC will do t MR rounds,

as per Table 1. Otherwise, for composite input, up to t rounds of MR

testing will be done. One could use the bounds from [14] to obtain

bounds on the expected number of MR rounds that would be carried

out on composite input. However, for numbers of cryptographic

size (e.g. k = 1024 bits), to a very good approximation, the number

needed is just 1, since with very high probability, a single MR test

is sufficient to identify a composite (recall that the probability that

a single round of MR testing fails to identify a 1024-bit composite

is less than 2
−40

). From this, one can compute the expected number

of rounds needed for a random, odd input: it is approximately the

weighted sum t · qk + 1 · (1 − qk) = 1 + (t − 1)qk . For k = 1024, we

have t = 5 and qk = 0.0028, and this expression evaluates to 1.026.

3.1.2 MRAC on Random Input with Trial Division. Now we bring

trial division into the picture. Its overall effectiveness will be deter-

mined by the collection of small primes in the list P = {p1,p2, . . . ,pr }
used in the process (where we assume all the pi are odd) and the

relative costs of MR testing and trial division (about 800:1 in our

experiments).

For random odd inputs, the fraction σ (P) of non-prime candi-

dates that are removed by the trial division by the primes in P can

be computed using the formula:

σ (P) = 1 −

r∏
i=1

(
1 −

1

pi

)
. (2)

This follows easily by noting that a fraction 1 − 1

pi of integers are

not divisible by pi , so the probability that a randomly sampled

integer is not divisible by any of the pi is
∏r

i=1

(
1 − 1

pi

)
, and hence

the probability that a randomly sampled odd integer is divisible by

at least one pi is σ (P). In turn, this means that any candidate that

passes the trial division stage is 1/(1 − σ (P)) times more likely to

be a prime than an odd candidate of equivalent bit-size chosen at

random (this is because a fraction 1 − σ (P) of integers remain after

sieving, and all primes survive sieving).

But simply adding more primes to the list P is not necessarily

effective: fewer additional composites are removed at a fixed cost

(one additional trial division per prime), and eventually it is better to

move on to a more heavyweight test (such as rounds of MR testing).

Moreover, from inspecting the formula for σ (P), it is evident that,
for a given size r of set P (and hence a given cost for trial division), it

is better to set P as containing the r smallest odd primes (including 2

is not useful as the inputn is already assumed to be odd). Henceforth,

we assume that when P is of size r , then it consists of the first r odd
primes. We write σr in place of σ (P) in this case. Using Mertens’

theorem [30], we can approximate σr as follows:

σr ≈ 1 − 2e−γ / ln(pr). (3)

where γ = 0.5772 . . . is the Euler-Mascheroni constant.

As an example, BN_is_prime_fasttest_ex in OpenSSL per-

forms trial division on the first 2047 odd primes (ending at p2047 =
17863). As shown in Figure 1, using the first r = 2047 primes gives

a value of σ2047 = 0.885. This is only a little larger than using, say,

the r = 128 smallest odd primes yielding σ128 = 0.831.

Now we build a cost model for MRAC including trial division.

This will also be applicable (with small modifications) for our other

tests.

LetCi denote the cost of a trial division for prime pi and letCMR
denote the cost of a single MR test.

4
Then the total cost of MRAC

on random prime k-bit inputs is:
r∑
i=1

Ci + t ·CMR (4)

4
In practice, we could setCi to be a constantCTD for the range of i we are interested
in, but using a more refined approach is not mathematically much more complex.

since the test then always performs all r trial divisions (assuming

k is large enough) and all t MR tests. For random, odd composite
inputs, the average cost is approximately:

σ1 ·C1 + (σ2 − σ1) · (C1 +C2) + . . . + (σr − σr−1) · (C1 + · · · +Cr)

+(1 − σr) · (
r∑
i=1

Ci +CMR). (5)

This is because a fraction σ1 of the composites are identified by

the first trial division, a further fraction σ2 − σ1 are identified after

2 trial divisions, etc, while a fraction (1 − σr) require all r trial

divisions plus (roughly) 1 round of MR. Here we assume that the

MR test performs in the same way on numbers after trial division

as it does before. After some manipulation, this last expression can

be simplified to:

r∑
i=1

(1 − σi−1) ·Ci + (1 − σr) ·CMR (6)

where we set σ0 = 0. This expression can be simplified further if we

assume that theCi are all equal to someCTD (a good approximation

in practice), and apply Mertens’ theorem again. For details, see the

equivalent analysis in [28].

From expressions (4) and (6), the expected cost for random, odd,

k-bit input can be easily computed via a weighted sumwith weights

qk and 1 − qk . However, the cost is dominated by expression (6)

for the composite case. From (6), the futility of trial division with

many primes is revealed: adding a prime by going from r to r + 1
on average adds a term (1 − σr) · Cr+1, but only decreases by a

fraction σr+1 − σr the term in front of CMR . As can be seen from

Figure 1, when r is large, 1 − σr is around 0.1, while σr+1 − σr
becomes very small. So each increment in r only serves to increase

the average cost by a fraction of a trial division (and with the cost

of trial division increasing with r).
Figure 2 shows a sample (theoretical) plot of the average cost of

MRAC as a function of r for k = 1024. This uses as costs CTD =
0.000371ms and CMR = 0.298ms obtained from our experiments

(reported below) for k = 1024 and the weighted sum of expressions

(4), (6). This curve broadly confirms the analysis of [28] which

suggests setting pr = CMR/CTD to minimise the running time of

primality testing with trial division; here we obtain CMR/CTD ≈
800, corresponding to r ≈ 140.

5

3.1.3 MRAC on Adversarial Input. Recall from [3] that worst-case

adversarial inputs can fool random-baseMR testing with probability

1/4 per round. The expected number of rounds needed to identify

such inputs as composite is then 1.33. However, with t rounds of
testing, MRAC will fail to identify such composites as being so with

probability 1/22t (and will indicate that the input was prime). Note

that this analysis is unaffected by trial division, since the adversarial

inputs used have no small primes factors – the trial division just

increases the running time of the test.

5
The analysis of [28] technically applies to prime generation, but ignores certain terms

in such a way as to actually analyse the cost of primality testing of composite numbers.

In this sense, it is only valid when the cost of primality testing for prime inputs can be

ignored compared to the case of composite inputs; this is not the case in general, but

is a reasonable approximation for MRAC.

Figure 1: Proportion of candidates removed by trial division,
σr , as a function of r , the number of primes used.

Figure 2: A plot of the theoretical running time of MRAC as
a function of r , the number of primes r used in trial division
for k = 1024, using CTD = 0.000371ms and CMR = 0.298ms
obtained from our experiments.

3.2 Miller-Rabin 64 (MR64)
Next we consider trial division followed by up to 64 rounds of

MR testing with random bases (the test will exit early if a base

that is a witness to compositeness of the input n is found). We

refer to this test as MR64. By design, this test guarantees a failure

probability of at most 2
−128

, no matter the input distribution, so

it offers robust security guarantees without the user needing to

understand the context of the test (i.e. whether the test is being

done with adversarial inputs or not).

3.2.1 MR64 on Random Input. As for MRAC, for a random, odd

composite,k-bit input, the expected number of rounds ofMR testing

Figure 3: Comparing the theoretical running time of MR64
and MRAC as a function of r (the number of primes r used
in trial division) for k = 1024, using CTD = 0.000371ms and
CMR = 0.298ms obtained from our experiments.

(without trial division) is very close to 1. On the other hand, for

prime, k-bit input, the number of rounds is exactly 64. This enables

the average cost without trial division on random, odd, k-bit input
to be computed: it is approximately given by the weighted sum

(64 · qk + 1 · (1 − qk)) ·CMR = (1 + 63qk) ·CMR (7)

For k = 1024, we again have qk = 2/ ln(2k) = 0.0028, and this sum

evaluates to 1.18CMR , about 17% higher than MRAC for the same

input distribution.

3.2.2 MR64 on Random Input with Trial Division. Following the

analysis for MRAC, we can compute the cost of MR64 on random,

prime, k-bit input as:
r∑
i=1

Ci + 64 ·CMR (8)

since here all trial divisions are performed, together with 64 rounds

of MR testing. For random, odd, composite input with r -prime trial

division, the expected cost is very close to that of MRAC with the

same r , since whenever MR testing is invoked, almost always one

round suffices. As for the case of MR64 without trial division, it is

the prime inputs that make the cost difference here: they involve 64

rounds of MR testing instead of the (close to) 1 needed for composite

inputs. Again, a theoretical prediction for random, odd input can be

made by combining the expressions for odd, composite and prime

input using a weighted sum.We omit the details, but Figure 3 shows

the theoretical curve for MR64 as compared to MRAC (using costs

CTD = 0.000371ms and CMR = 0.298ms for k = 1024 as before).

3.2.3 MR64 on Adversarial Input. By design, the MR64 test will

fail to identify a worst-case adversarial input as a composite with

probability at most 2
−128

, this after 64 rounds of MR testing. The

expected number of rounds needed to successfully classify such

inputs is again 1.33.

3.3 Miller-Rabin 128 (MR128)
This test is identical to MR64, but up to 128 rounds of MR testing are

invoked. The intention is to reduce the false positive rate from 2
−128

to 2
−256

. The analysis is almost identical to that for MR64, replacing

64 by 128 where it appears in the relevant formulae. We include it

for comparison purposes and because the OpenSSL documentation

does target 256 bits of security when testing very large numbers

(larger than 6394 bits in size
6
). The headline figure for this test is its

expected cost (without trial division) of (1+ 127qk) ·CMR , equating

to 1.36 ·CMR on random, odd, 1024-bit inputs, roughly 35% higher

than MRAC at the same input size.

3.4 Baillie-PSW (BPSW)
The final test we consider is the Baillie-PSW test. Recall that this is

the combination of a single Miller-Rabin test to base 2, with a Lucas

test using Selfridge’s Method A to select D. If the input n we are

testing is a perfect square, then there does not exist a valid choice

of D (see Section 2.1.2). So we must decide upon a point to test for

this. Baillie and Wagstaff [5] show that, when n is not square, the

average number of D values that need to be tried until a suitable

one is found is 1.78. We choose to run a test to check if n is a perfect

square only after 7 unsuccessful attempts to select D. This choice
is inspired by other implementations [27] and provides a balance

between the relatively cheap process of testing a choice of D with

the more expensive test for n being a perfect square. We perform

the Miller-Rabin part of the test first, since it is the more efficient

of the two techniques, omitting the Lucas test early if this indicates

compositeness. We then search for D using Selfridge’s Method A,

using it to carry out a Lucas test if found. We abort the search for

D after 7 attempts and then test n for being a perfect square. If this

test fails, we revert to searching for a suitable D and then perform

the Lucas test when one is eventually found.

3.4.1 BPSW on Random Input. The analysis without trial division
is much like that of MRAC, assuming that MR with a fixed base

2 performs as well as MR with a random base when the number

being tested is uniformly random. For prime inputs, the average

cost is CMR +CL , where CL is average the cost of doing the Lucas

part of the test (and any tests of squareness); for composite inputs,

the cost is roughlyCMR since the MR test catches the vast majority

of composites. The performance on random inputs is the weighted

sum of these, as usual. In our implementation, the average forCL for

1024-bit inputs is equal to 17.04·CMR (5.078ms compared to 0.298ms

on average for 1024-bit inputs, based on 2
20

trials). Overall, then,

this test has an expected cost (without trial division) of 1.05 ·CMR
on random, odd, 1024-bit inputs, roughly 4% more than MRAC.

The analysis with trial division is again similar to that for MRAC:

when the input is prime, the average cost is

∑r
i=1Ci +CMR +CL ,

while when the input is composite, it is of the same form as in (6)

(where we are able to omit a term CL under the assumption that

the base 2 MR test is effective in detecting composites). We omit

further detail.

6
See the man page https://www.openssl.org/docs/man1.1.0/

man3/BN_is_prime_fasttest_ex.html and code documentation https://github.com/

openssl/openssl/blob/fa4d419c25c07b49789df96b32c4a1a85a984fa1/include/openssl/

bn.h#L159.

3.4.2 BPSW on Adversarial Input. It is relatively easy to construct

composites passing a base 2 MR test. For example, integers of the

form (2x + 1) (4x + 1) with each factor a prime have a roughly 1 in

4 chance of doing so (see [3] for further discussion). Such inputs

are highly likely to be detected by the Lucas part of the BPSW test,

so the cost of BPSW on such inputs would be

∑r
i=1Ci + CMR +

CL . However, we do not know if such numbers are worst-case

adversarial inputs for BPSW, and indeed, we cannot rule out the

existence of BPSW pseudo-primes, that is, composites which are

declared probably prime by the test. Recall that Pomerance [36]

has given heuristic evidence that there are infinitely many such

pseudo-primes. Perhaps the smallest is beyond the bit-size we care

about in cryptographic applications, but we cannot be sure. Note

also that such a pseudo-prime, if it can be found, would always fool

the BPSW test (because the test is deterministic). This is in sharp

contrast to MR64 and MR128, where we can give precise bounds on

the false positive rate of the tests. We consider this, along with the

relative complexity of implementing the BPSW test, to be a major

drawback.

3.5 Experimental Results
Having described our four chosen primality tests and given a theo-

retical evaluation of them, we now turn to experimental analysis.

This analysis gives us a direct comparison with the current ap-

proach of OpenSSL (MRAC with trial division either off or based

on 2047 primes). It also allows us to study how the Baillie-PSW test

performs against Miller-Rabin testing in practice, something that

does not appear to have been explored before.

3.5.1 Random Input. Our results for random, odd, 512-bit, 1024-bit

and 2048-bit inputs to the tests are shown in Table 2. We worked

with 2
25

inputs at each bit size, produced using OpenSSL’s internal

random number generator. All timings are in milliseconds, and

are broken down into results for composite inputs, inputs that

were declared prime, and overall results. We also report results

for different amounts of trial division — none, r ∈ {64, 128, 384}
(which, from our theoretical analysis above, we consider to be a

sensible amount of trial division for the differently-sized inputs) and

r = 2047 (as in OpenSSL). All results were obtained using a single

core of a Intel(R) Xeon(R) CPU E5-2690 v4 @ 3.20GHz processor,

with code written in C using OpenSSL 1.1.1b (26-Feb-2019) for

big-number arithmetic and basic Miller-Rabin functionality. We

also computed standard deviations to accompany each timing, but

omit the details due to lack of space.

Of the 2
25

random, odd, 1024-bit numbers that we generated,

94947 were prime. This is closely in line with the estimated q1024 ×
2
25 ≈ 94548 given by the usual density estimate.

The results in Table 2 are broadly in-line with our earlier theo-

retical analysis. Some highlights, focussing on 1024-bit inputs:

• MRAC is fast overall, but with r = 2047, OpenSSL is doing

far too much trial division on 1024-bit inputs. Much better

performance could be achieved for this input size in OpenSSL

by setting r = 128 (more than 2x speed-up overall can be

gained).

• MR64 is 8-9 times slower than MRAC on prime input, re-

flecting the many more rounds of MR testing being done in

MR64.

https://www.openssl.org/docs/man1.1.0/
man3/BN_is_prime_fasttest_ex.html
https://github.com/openssl/openssl/blob/fa4d419c25c07b49789df96b32c4a1a85a984fa1/include/openssl/bn.h#L159
https://github.com/openssl/openssl/blob/fa4d419c25c07b49789df96b32c4a1a85a984fa1/include/openssl/bn.h#L159
https://github.com/openssl/openssl/blob/fa4d419c25c07b49789df96b32c4a1a85a984fa1/include/openssl/bn.h#L159

r Declared Composite

MRAC MR64 MR128 BPSW

0 0.085 0.085 0.085 0.079

64 0.020 0.020 0.020 0.020

2047 0.067 0.067 0.067 0.067

r Declared Composite

MRAC MR64 MR128 BPSW

0 0.312 0.313 0.312 0.302

128 0.063 0.063 0.063 0.061

2047 0.135 0.134 0.134 0.133

r Declared Composite

MRAC MR64 MR128 BPSW

0 2.40 2.40 2.40 2.39

384 0.401 0.401 0.402 0.401

2047 0.523 0.523 0.523 0.522

r Declared Prime

MRAC MR64 MR128 BPSW

0 0.375 4.65 9.29 2.11

64 0.389 4.67 9.31 2.12

2047 0.818 5.10 9.73 2.55

r Declared Prime

MRAC MR64 MR128 BPSW

0 1.50 19.1 38.1 5.39

128 1.55 19.1 38.2 5.44

2047 2.26 19.8 38.9 6.15

r Declared Prime

MRAC MR64 MR128 BPSW

0 9.55 152.6 305.2 41.6

384 9.87 152.2 304.0 41.9

2047 11.4 153.3 304.8 43.5

r Overall

MRAC MR64 MR128 BPSW

0 0.086 0.111 0.137 0.091

64 0.022 0.046 0.073 0.031

2047 0.071 0.095 0.121 0.081

(a) 512-bit

r Overall

MRAC MR64 MR128 BPSW

0 0.315 0.366 0.419 0.316

128 0.067 0.117 0.170 0.077

2047 0.141 0.190 0.244 0.150

(b) 1024-bit

r Overall

MRAC MR64 MR128 BPSW

0 2.41 2.61 2.83 2.45

384 0.414 0.614 0.827 0.459

2047 0.538 0.737 0.948 0.582

(c) 2048-bit

Table 2: The mean running time (in ms) for each test when testing MRAC, MR64, MR128 and BPSW for random (a) 512-bit,
(b) 1024-bit, and (c) 2048-bit odd inputs and various amounts of trial division (r). We show the breakdown of means for inputs
declared as either prime or composite, as well as the overall averages. Results based on 2

25 trials.

• MR128 is roughly twice as slow as MR64 on prime input

(reflecting the doubling of rounds of MR testing). On random

input, the gap between MR64 and MR128 is not so large

(because most composites are identified by trial division or

after just one round of MR testing).

• BPSW is quite competitive with MRAC overall and only 2-3

times slower for prime input. This is because the Lucas test

part of BPSW is expensive but rarely invoked for random

input, but always done for prime input.

• Based on overall figures, MR64 with r = 128 outperforms

MRAC with r = 2047 (as used in OpenSSL) by 17% on 1024-

bit input (and by 54% on 512-bit input with r = 64). This

indicates that, by tuning parameters carefully, it is possible

to obtain improved performance over the current approach

used in OpenSSL whilst enjoying strong security across all

use cases (i.e. a guaranteed false positive rate of 2
−128

).

Further improvements in running time can be obtained by fine-

tuning the value of r on a per test basis, and according to input

size. Importantly, the latter is feasible even with a simple API (and

indeed seems to be the only general, input-dependent optimisation

possible). To illustrate this, we show in Figure 4 the average running

times for MRAC and MR64 on random, odd, 1024-bit input for

varying r . The figure also shows the theoretical curves obtained

previously. There is excellent agreement between the experimental

data and the curves obtained from the model. In both cases, the

curve is quite flat around its minimum, but we see that using r = 128

gives close to optimal performance for this value of k = 1024. The

figure also illustrates that using large amounts of trial division (as

per OpenSSL) harms performance for this input size, as was also

explained theoretically in Section 3.1. Specifically, OpenSSL uses

r = 2047, putting its performance with default settings (MRAC)

well above the minimum obtainable with MR64 with a carefully

tuned choice of r .

Figure 4: Experimental and theoretical performance of
MRACandMR64 on random, odd, 1024-bit input for varying
amounts of trial division, r . The horizontal dashed line rep-
resents the minimum of the average running time of MR64
across all choices of r . This gives a visual representation of
the comparison betweenMR64 with r = 128 andMRACwith
r = 2047.

Rounds MRAC MR64

1 787054 786765

2 196110 196268

3 49167 49305

4 12157 12103

5 4088 3129

6 – 776

7 – 169

8 – 44

9 – 13

10 – 4

Table 3: Number of rounds of MR testing needed to identify
as composite 1024-bit numbers of the formn = (2x+1) (4x+1)
with 2x + 1, 4x + 1 prime from an initial set of 220 candidates.
MRAConly performs 5 rounds ofMR testing for this bit-size
and failed to identify exactly 1000 candidates.

3.5.2 Adversarial Input. To bring into sharp relief the failings of

MRAC as a general-purpose primality test, we generated a set of

2
20

1024-bit composites of the form n = (2x + 1) (4x + 1) in which

the factors 2x + 1, 4x + 1 are both prime. Numbers of this special

form are known to pass random-base MR tests with probability 1/4.

We then put these n through our MRAC and MR64 tests without

trial division,
7
tracking how many rounds of MR were used on

each input by each test. Table 3 shows the results. MR64 needed

a maximum of 10 rounds of MR testing to correctly classify all

the inputs, while MRAC, using only 5 rounds of MR for inputs

of this size, incorrectly classified exactly 1000 of the inputs. This

performance is in-line with expectations, as the expected number

of misclassifications is 2
20 × (1/4)5 = 2

10
.

3.6 Other Bit Sizes
So far in our experimental evaluation, we have focussed onk = 1024,

i.e. testing of 1024-bit inputs. We have carried out similar testing

also for k = 512, 2048, 3072. Figures 5, 6 and 7 show these additional

results for the MRAC and MR64 tests, focussing on the effect of

varying r on running time. Notice the characteristic “hockey-stick”

shape of the curves in all the figures.

In each figure, the dashed horizontal time highlights the mini-

mum running time for MR64. Notably, for k = 512, this is signifi-

cantly lower than MRAC with r = 2047 (as in OpenSSL). We saw

the same effect for k = 1024 in Figure 4. For k = 2048, MR64 with

the best choice of r is slightly slower than MRACwith r = 2047 (but

still competitive). For k = 3072, the influence of r on running time

is quite small, and MRAC consistently comes out ahead of MR64

(but recall that MRAC is unsafe for maliciously chosen inputs).

These experiments confirm our earlier observation: the choice

of r , the amount of trial division, can have a significant effect on

running time of primality tests, and should be taken into account

when selecting a test.

7
Including trial division would not change the results.

Figure 5: Experimental and theoretical performance of
MRAC and MR64 on random, odd, 512-bit input for varying
amounts of trial division, r .

Figure 6: Experimental and theoretical performance of
MRAC and MR64 on random, odd, 2048-bit input for vary-
ing amounts of trial division, r .

3.7 Selecting a Primality Test
We select MR64 with the amount of trial division, r , depending on

the input size as our preferred primality test. Our reasons are as

follows:

• MR64 has strong security guarantees across all use cases (un-

like MRAC and BPSW). These guarantees can be improved

by switching to MR128, but we consider the guarantees of

MR64 to be sufficient for perhaps all but the most stringent

requirements.

• MR64 is easy to implement, while a test like BPSW requires

significant additional code (see Appendix B).

Figure 7: Experimental and theoretical performance of
MRAC and MR64 on random, odd, 3072-bit input for vary-
ing amounts of trial division, r .

• MR64 with an input-size-dependent choice of r outperforms

the current approach used in OpenSSL (MRAC with fixed

r = 2047) up to k = 1024 and remains competitive with

MRAC even for larger inputs. (Obviously OpenSSL could

also be made faster by tuning r , but this would not improve

security for malicious inputs).

• MR64 permits a very simple API, with a single input (the

number being tested) and a single output (whether the input

was composite or probably prime), whilst still allowing input-

size-dependent tuning of r .

Table 4 shows our recommended values of r to use with MR64,

based on the experimental results obtained above. Further small

improvements in performance could be obtained by being more

precise in setting r values and by further partitioning the set of k
values, but the gains would be marginal.

We further validate this selection of MR64 in the next section,

where we examine the performance of different tests when used as

part of prime generation (as opposed to testing).

4 PRIME GENERATION
In this section, we want to assess the impact of our choice of pri-

mality test on a key use case, prime generation. We focus on the

scenario where our primality test is used as a drop-in replacement

for the existing primality test in OpenSSL, without making any

modifications to the prime generation code. We are not suggesting

this should be done in practice, but merely evaluating the impact

of switching to our proposed test in a strawman application.

4.1 Experimental Approach
In order to establish a benchmark, we first use OpenSSL’s prime

number generating function BN_generate_prime_ex as it appears

in the standard library. As discussed in detail in Section 2.2, this

k r

k ∈ [1, 512] 64

k ∈ [513, 1024] 128

k ∈ [1025, 2048] 384

k ∈ [2049, 3072] 768

k ∈ [3073,∞) 1024

Table 4: Recommended values of r for use with the MR64
primality test.

k r used MR64 MRAC Overhead

512 64 12.37 8.859 40%

1024 128 60.83 45.20 35%

2048 384 385.2 268.5 43%

3072 768 1379 946.7 46%

Table 5: Running time (in ms) for prime generation us-
ing our proposed primality test (MR64 with input-length-
dependent trial division) and current OpenSSL primality
test (MRAC with no trial division). Each timing is based on
2
20 trials.

involves sieving with s = 2047 primes and using the OpenSSL

primality test that consumes t rounds of MR testing on a sequence

of candidates n, n + 2, . . ., restarting the procedure from scratch

whenever an MR test fails. Here t is determined as in Table 1 (i.e. the

test is what we call MRAC). Importantly, OpenSSL exploits the rich

API of its primality test to switch off trial division in the primality

tests, since that trial division is already taken care of by the cheaper

sieving step.

Next, we change the underlying primality test to use our selected

test: MR64 with input-length-dependent trial division (as per Ta-

ble 4), keeping all other aspects of OpenSSL’s prime generation

procedure the same. All the trial division done in our underlying

primality test is of course redundant, because of the sieving step

carried out in OpenSSL’s prime generation code. However, with our

deliberately simplified API for primality testing, that extra work

would be unavoidable. Similarly, our underlying primality test per-

forms more rounds of MR testing (64 instead of the 3-5 used in

MRAC) when a prime is finally encountered. It is the amount of

this extra work that we seek to quantify here.

Our experimental results are shown in Table 5. It can be seen

that the overhead of switching to our primality test in this use

case ranges between 35% and 46%. This is a significant cost for this

use case, but recall that the gain is a primality test that has strong

security guarantees across all use cases, along with a simple and

developer-friendly API.

We can build simple cost models which illustrate the perfor-

mance differences we have observed; see also [28] for a similar

model. Details are deferred to Appendix A

5 IMPLEMENTATION AND INTEGRATION IN
OPENSSL

We communicated our findings to the OpenSSL development team,

specifically to Kurt Roeckx, one of the OpenSSL core developers.

He did his own performance testing, and concluded that our new

API and primality test should be deployed in OpenSSL. In personal

communication with Roeckx, we were informed that these changes

are slated for inclusion in OpenSSL 3.0, which is scheduled for re-

lease in Q4 of 2020.

In more detail, the following changes were made:

• Our proposed API is included via a new, external facing func-

tion (see https://github.com/openssl/openssl/blob/master/

crypto/bn/bn_prime.c#L253):

int BN_check_prime(const BIGNUM *p, BN_CTX *ctx,
BN_GENCB *cb)

{
return bn_check_prime_int(p, 0, ctx, 1, cb);

}

This code wraps the existing “internal" primality testing

function

bn_check_prime_int. Note that the API has 3 parameters,

instead of our desired 1: OpenSSL still needs to pass pointers

to context and callback objects for programmatic reasons.

• The “internal” primality testing function bn_check_prime-
_int has been updated to do a minimum of 64 rounds of MR

testing (and 128 rounds for 2048+ bit inputs). This deviates

slightly from our recommendation to always do 64 rounds

of testing – it is more conservative. Note that the average

case analysis of [14] is no longer used to set the number

of rounds of MR testing in the default case. This function

also uses a small table to determine how many primes to

use in trial division; the numbers are aligned with our rec-

ommendations in Table 4. Details are in the new function

calc_trial_divisions.8

• The rest of the OpenSSL codebase has been updated to

use the new API, except for the prime generation code.

That code has also been updated (see https://github.com/

openssl/openssl/blob/master/crypto/bn/bn_prime.c#L123). It

now uses yet a third internal function for its primality testing

(see bn_prime.c#L170):

bn_is_prime_int(ret, checks, ctx, 0, cb);

Here, checks determines the number of rounds ofMR testing

done, and is set to either 64 or 128 according to the input

size. In the call, "0" indicates that trial division is no longer

done. The number of MR rounds here could have been set

based on average case performance, as was formerly the case,

rather than worst case, but it seems the OpenSSL developers

have opted for simplicity over performance. Not doing trial

division inside the primality test is appropriate here because

the inputs have already been sieved to remove numbers with

small prime factors by this point.

• The “old" and complex external-facing APIs in the functions

BN_is_prime_ex and BN_is_prime_fasttest_ex have been

8
See https://github.com/openssl/openssl/blob/master/crypto/bn/bn_prime.c#L74.

marked for deprecation in OpenSSL 3.0: they will only be

included in a build of the library in case the environmental

variable OPENSSL_NO_DEPRECATED_3_0 is set.
9

5.1 Reference Implementation of Baillie-PSW
For completeness, in Appendix B, we give a reference implementa-

tion of the Baillie-PSW test as it could be implemented in OpenSSL.

This also helps to provide an understanding of the increase in code

complexity involved in using this test.

6 CONCLUSIONS AND FUTUREWORK
We have proposed a primality test that is both performant and

misuse-resistant, in the sense of presenting a simplest-possible

interface for developers. The test balances code simplicity, perfor-

mance, and security guarantees across all use cases. We have not

seen a detailed treatment of this fundamental problem in the litera-

ture before, despite the by-now classical nature of primality testing

as a cryptographic task. Our recommendations – both for the API

and for the underlying primality test – have been adopted in full

by OpenSSL and are scheduled for inclusion in OpenSSL 3.0, which

is expected to be released in Q4 2020.
10

We have focussed in this work on regular prime generation.

Our work could be extended to consider efficiency of safe-prime

generation. Special sieving procedures can be used in this case: if

one creates a table of values n mod pi , then one can also test 2n + 1
for divisibility by each of the pi very cheaply; techniques like this

were used in [18] in a slightly different context. Further work is

also needed to fully assess the impact of the amount of sieving (s)
on the performance of prime generation at different input lengths

(k). Our work could also be extended to make a systematic study

of prime generation code in different cryptographic libraries. For

example, we have already noted that the OpenSSL code aborts and

restarts whenever a Miller-Rabin test fails; this behaviour leads to

sub-optimal performance, and it would be interesting to see how

much the code in OpenSSL and in other leading libraries could be

improved.

One can view our work as addressing a specific instance of the

problem of how to design simple, performant, misuse-resistant APIs

for cryptography. In our discussion of related work, we highlighted

other work where this problem has also been considered, in sym-

metric encryption, key exchange, and secure channels. A broader

research effort in this direction seems likely to yield significant

rewards for the security of cryptographic software. As here, it may

occasionally also yield improved performance.

ACKNOWLEDGEMENTS
We thank Yehuda Lindell for posing the question that led to this

research. We also thank Kurt Roeckx for valuable discussions.

Massimo was supported by the EPSRC and the UK government

as part of the Centre for Doctoral Training in Cyber Security at

Royal Holloway, University of London (EP/K035584/1).

Paterson was supported in part by a gift from VMware.

9
See https://www.openssl.org/docs/manmaster/man3/BN_is_prime_fasttest_ex.html

for details.

10
See https://www.openssl.org/blog/blog/2019/11/07/3.0-update/.

https://github.com/openssl/openssl/blob/master/crypto/bn/bn_prime.c#L253
https://github.com/openssl/openssl/blob/master/crypto/bn/bn_prime.c#L253
https://github.com/openssl/openssl/blob/master/crypto/bn/bn_prime.c#L123
https://github.com/openssl/openssl/blob/master/crypto/bn/bn_prime.c#L123
bn_prime.c#L170
https://github.com/openssl/openssl/blob/master/crypto/bn/bn_prime.c#L74
https://www.openssl.org/docs/manmaster/man3/BN_is_prime_fasttest_ex.html
https://www.openssl.org/blog/blog/2019/11/07/3.0-update/

REFERENCES
[1] Yasemin Acar, Michael Backes, Sascha Fahl, Simson L. Garfinkel, Doowon Kim,

Michelle L. Mazurek, and Christian Stransky. 2017. Comparing the Usability

of Cryptographic APIs. In 2017 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, 154–171. https://doi.org/10.1109/SP.2017.52

[2] Yasemin Acar, Sascha Fahl, and Michelle L. Mazurek. 2016. You are Not Your

Developer, Either: A Research Agenda for Usable Security and Privacy Research

Beyond End Users. In IEEE Cybersecurity Development, SecDev 2016, Boston, MA,
USA, November 3-4, 2016. IEEE Computer Society, 3–8. https://doi.org/10.1109/

SecDev.2016.013

[3] Martin R. Albrecht, Jake Massimo, Kenneth G. Paterson, and Juraj Somorovsky.

2018. Prime and Prejudice: Primality Testing Under Adversarial Conditions, See

[26], 281–298. https://doi.org/10.1145/3243734.3243787

[4] François Arnault. 1997. The Rabin-Monier Theorem for Lucas Pseudoprimes.

Mathematics of Computation of the American Mathematical Society 66, 218 (1997),

869–881.

[5] Robert Baillie and Samuel S Wagstaff. 1980. Lucas Pseudoprimes. Math. Comp.
35, 152 (1980), 1391–1417.

[6] Daniel J. Bernstein. 2006. Curve25519: New Diffie-Hellman Speed Records. In

PKC 2006 (LNCS, Vol. 3958), Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal

Malkin (Eds.). Springer, Heidelberg, 207–228. https://doi.org/10.1007/11745853_

14

[7] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. 2012. The Security Impact of

a New Cryptographic Library. In LATINCRYPT 2012 (LNCS, Vol. 7533), Alejandro
Hevia and Gregory Neven (Eds.). Springer, Heidelberg, 159–176.

[8] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Alfredo

Pironti, and Pierre-Yves Strub. 2014. Triple Handshakes and Cookie Cutters:

Breaking and Fixing Authentication over TLS. In 2014 IEEE Symposium on Secu-
rity and Privacy. IEEE Computer Society Press, 98–113. https://doi.org/10.1109/

SP.2014.14

[9] Daniel Bleichenbacher. 2005. Breaking a Cryptographic Protocol with Pseudo-

primes. In PKC 2005 (LNCS, Vol. 3386), Serge Vaudenay (Ed.). Springer, Heidelberg,
9–15. https://doi.org/10.1007/978-3-540-30580-4_2

[10] Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky, and Philipp Jo-

vanovic. 2016. Nonce-Disrespecting Adversaries: Practical Forgery Attacks on

GCM in TLS. In 10th USENIX Workshop on Offensive Technologies, WOOT 16,
Austin, TX, USA, August 8-9, 2016., Natalie Silvanovich and Patrick Traynor (Eds.).

USENIX Association. https://www.usenix.org/conference/woot16/workshop-

program/presentation/bock

[11] Colin Boyd, Britta Hale, Stig Frode Mjølsnes, and Douglas Stebila. 2016. From

Stateless to Stateful: Generic Authentication and Authenticated Encryption Con-

structions with Application to TLS. In CT-RSA 2016 (LNCS, Vol. 9610), Kazue Sako
(Ed.). Springer, Heidelberg, 55–71. https://doi.org/10.1007/978-3-319-29485-8_4

[12] Jørgen Brandt and Ivan Damgård. 1993. On Generation of Probable Primes

By Incremental Search. In CRYPTO’92 (LNCS, Vol. 740), Ernest F. Brickell (Ed.).
Springer, Heidelberg, 358–370. https://doi.org/10.1007/3-540-48071-4_26

[13] Richard Crandall and Carl Pomerance. 2006. Prime Numbers: A Computational
Perspective. Vol. 182. Springer Science & Business Media. pp.136-140.

[14] Ivan Damgård, Peter Landrock, and Carl Pomerance. 1993. Average Case Error

Estimates for the Strong Probable Prime Test. Math. Comp. 61, 203 (1993), 177–
194.

[15] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. 2013.

An empirical study of cryptographic misuse in Android applications, See [41],

73–84. https://doi.org/10.1145/2508859.2516693

[16] Sascha Fahl, Marian Harbach, Henning Perl, Markus Koetter, and Matthew Smith.

2013. Rethinking SSL development in an appified world, See [41], 49–60. https:

//doi.org/10.1145/2508859.2516655

[17] Marc Fischlin, Felix Günther, Giorgia Azzurra Marson, and Kenneth G. Paterson.

2015. Data Is a Stream: Security of Stream-Based Channels. In CRYPTO 2015,
Part II (LNCS, Vol. 9216), Rosario Gennaro and Matthew J. B. Robshaw (Eds.).

Springer, Heidelberg, 545–564. https://doi.org/10.1007/978-3-662-48000-7_27

[18] Steven D. Galbraith, Jake Massimo, and Kenneth G. Paterson. 2019. Safety

in Numbers: On the Need for Robust Diffie-Hellman Parameter Validation. In

PKC 2019, Part II (LNCS, Vol. 11443), Dongdai Lin and Kazue Sako (Eds.). Springer,

Heidelberg, 379–407. https://doi.org/10.1007/978-3-030-17259-6_13

[19] Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke, Christian Stransky, Se-

bastian Möller, Yasemin Acar, and Sascha Fahl. 2018. Developers Deserve Se-

curity Warnings, Too: On the Effect of Integrated Security Advice on Cryp-

tographic API Misuse. In Fourteenth Symposium on Usable Privacy and Secu-
rity, SOUPS 2018, Baltimore, MD, USA, August 12-14, 2018., Mary Ellen Zurko

and Heather Richter Lipford (Eds.). USENIX Association, 265–281. https:

//www.usenix.org/conference/soups2018/presentation/gorski

[20] Matthew Green and Matthew Smith. 2016. Developers are Not the Enemy!:

The Need for Usable Security APIs. IEEE Security & Privacy 14, 5 (2016), 40–46.

https://doi.org/10.1109/MSP.2016.111

[21] Shay Gueron, Adam Langley, and Yehuda Lindell. 2017. AES-GCM-SIV: Spec-

ification and Analysis. IACR Cryptology ePrint Archive 2017 (2017), 168. http:

//eprint.iacr.org/2017/168

[22] Peter Gutmann. 2002. Lessons Learned in Implementing and Deploying Crypto

Software. In Proceedings of the 11th USENIX Security Symposium, San Francisco,
CA, USA, August 5-9, 2002, Dan Boneh (Ed.). USENIX, 315–325. http://www.

usenix.org/publications/library/proceedings/sec02/gutmann.html

[23] Achim Jung. 1987. Implementing the RSA cryptosystem. Computers & Security 6,

4 (1987), 342–350. https://doi.org/10.1016/0167-4048(87)90070-8

[24] Cameron F. Kerry, Acting Secretary, and Charles Romine Director. 2013. FIPS PUB

186-4 FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION

Digital Signature Standard (DSS).

[25] David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich. 2014. Why Does

Cryptographic Software Fail?: A Case Study and Open Problems. In Asia-Pacific
Workshop on Systems, APSys’14, Beijing, China, June 25-26, 2014. ACM, 7:1–7:7.

https://doi.org/10.1145/2637166.2637237

[26] David Lie, MohammadMannan, Michael Backes, and XiaoFengWang (Eds.). 2018.

ACM CCS 2018. ACM Press.

[27] Jack Lloyd. 2020. Botan Github Repository. https://github.com/randombit/

botan/blob/5d74496ee51b8a2d1c418b0a66bddac6f0263749/src/lib/math/

numbertheory/primality.cpp#L51.

[28] Ueli M. Maurer. 1995. Fast Generation of Prime Numbers and Secure Public-Key

Cryptographic Parameters. Journal of Cryptology 8, 3 (Sept. 1995), 123–155.

https://doi.org/10.1007/BF00202269

[29] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. 1996. Handbook
of Applied Cryptography. CRC press.

[30] Franz Mertens. 1874. Ein Beitrag zur analytischen Zahlentheorie. Journal für die
reine und angewandte Mathematik 1874, 78 (1874), 46–62.

[31] Gary L Miller. 1975. Riemann’s hypothesis and tests for primality. In Proceedings
of seventh annual ACM symposium on Theory of computing. ACM, 234–239.

[32] Peter L. Montgomery. 1992. Evaluating Recurrences of Form Xm+n =
f (Xm, Xn, Xm−n) via Lucas Chains. Unpublished manuscript.

[33] SarahNadi, Stefan Krüger,MiraMezini, and Eric Bodden. 2017. “Jumping Through

Hoops": Why do Java Developers Struggle With Cryptography APIs?. In Software
Engineering 2017, Fachtagung des GI-Fachbereichs Softwaretechnik, 21.-24. Februar
2017, Hannover, Deutschland (LNI, Vol. P-267), Jan Jürjens and Kurt Schneider

(Eds.). GI, 57. https://dl.gi.de/20.500.12116/1268

[34] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, Marco Herzog, Sergej

Dechand, and Matthew Smith. 2017. Why Do Developers Get Password Storage

Wrong?: A Qualitative Usability Study. In ACM CCS 2017, Bhavani M. Thurais-

ingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM Press, 311–328.

https://doi.org/10.1145/3133956.3134082

[35] Christopher Patton and Thomas Shrimpton. 2018. Partially Specified Channels:

The TLS 1.3 Record Layer without Elision, See [26], 1415–1428. https://doi.org/

10.1145/3243734.3243789

[36] Carl Pomerance. 1984. Are There Counter-Examples to the Baillie-PSW Primality

Test? Dopo Le Parole aangeboden aan Dr. A. K. Lenstra.. pseudoprime.com/

dopo.pdf

[37] Carl Pomerance, John L Selfridge, and Samuel SWagstaff. 1980. The Pseudoprimes

to 25 · 109 . Math. Comp. 35, 151 (1980), 1003–1026.
[38] Michael O Rabin. 1980. Probabilistic Algorithm for Testing Primality. Journal of

number theory 12, 1 (1980), 128–138.

[39] Phillip Rogaway. 2004. Nonce-Based Symmetric Encryption. In FSE 2004 (LNCS,
Vol. 3017), Bimal K. Roy and Willi Meier (Eds.). Springer, Heidelberg, 348–359.

https://doi.org/10.1007/978-3-540-25937-4_22

[40] Phillip Rogaway and Thomas Shrimpton. 2006. A Provable-Security Treatment

of the Key-Wrap Problem. In EUROCRYPT 2006 (LNCS, Vol. 4004), Serge Vaudenay
(Ed.). Springer, Heidelberg, 373–390. https://doi.org/10.1007/11761679_23

[41] Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). 2013. ACM CCS
2013. ACM Press.

[42] Atle Selberg. 1949. An Elementary Proof of the Prime-Number Theorem. Annals
of Mathematics (1949), 305–313.

[43] Glenn Wurster and Paul C. van Oorschot. 2008. The Developer is the Enemy. In

Proceedings of the 2008Workshop on New Security Paradigms, Lake Tahoe, CA, USA,
September 22-25, 2008, Matt Bishop, Christian W. Probst, Angelos D. Keromytis,

and Anil Somayaji (Eds.). ACM, 89–97. https://doi.org/10.1145/1595676.1595691

https://doi.org/10.1109/SP.2017.52
https://doi.org/10.1109/SecDev.2016.013
https://doi.org/10.1109/SecDev.2016.013
https://doi.org/10.1145/3243734.3243787
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/11745853_14
https://doi.org/10.1109/SP.2014.14
https://doi.org/10.1109/SP.2014.14
https://doi.org/10.1007/978-3-540-30580-4_2
https://www.usenix.org/conference/woot16/workshop-program/presentation/bock
https://www.usenix.org/conference/woot16/workshop-program/presentation/bock
https://doi.org/10.1007/978-3-319-29485-8_4
https://doi.org/10.1007/3-540-48071-4_26
https://doi.org/10.1145/2508859.2516693
https://doi.org/10.1145/2508859.2516655
https://doi.org/10.1145/2508859.2516655
https://doi.org/10.1007/978-3-662-48000-7_27
https://doi.org/10.1007/978-3-030-17259-6_13
https://www.usenix.org/conference/soups2018/presentation/gorski
https://www.usenix.org/conference/soups2018/presentation/gorski
https://doi.org/10.1109/MSP.2016.111
http://eprint.iacr.org/2017/168
http://eprint.iacr.org/2017/168
http://www.usenix.org/publications/library/proceedings/sec02/gutmann.html
http://www.usenix.org/publications/library/proceedings/sec02/gutmann.html
https://doi.org/10.1016/0167-4048(87)90070-8
https://doi.org/10.1145/2637166.2637237
https://github.com/randombit/botan/blob/5d74496ee51b8a2d1c418b0a66bddac6f0263749/src/lib/math/numbertheory/primality.cpp#L51
https://github.com/randombit/botan/blob/5d74496ee51b8a2d1c418b0a66bddac6f0263749/src/lib/math/numbertheory/primality.cpp#L51
https://github.com/randombit/botan/blob/5d74496ee51b8a2d1c418b0a66bddac6f0263749/src/lib/math/numbertheory/primality.cpp#L51
https://doi.org/10.1007/BF00202269
https://dl.gi.de/20.500.12116/1268
https://doi.org/10.1145/3133956.3134082
https://doi.org/10.1145/3243734.3243789
https://doi.org/10.1145/3243734.3243789
pseudoprime.com/dopo.pdf
pseudoprime.com/dopo.pdf
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1007/11761679_23
https://doi.org/10.1145/1595676.1595691

A COST MODEL FOR PRIME GENERATION
Sieving can be recast as a one-time trial division of the first candi-

date n with the first s odd primes (OpenSSL uses s = 2047), followed

by per candidate updating of a table of remainders. We assume the

latter can be done essentially for free compared to other operations

and ignore its cost henceforth. Then the average cost of prime gen-

eration when the underlying primality test uses up to t rounds of
MR testing but no trial division, is given by:

*
,

s∑
i=1

Ci+
-
+

(
ln(2k) · (1 − σs)/2

)
·CMR + (t − 1) ·CMR . (9)

Here the first term comes from sieving. The second term comes

from, on average, inspecting ln(2k) · (1 − σs)/2 odd, composite

candidates in the sieved version of the list n,n + 2,n + 4, . . . before
encountering a prime, and doing 1 MR test to reject each composite

(recall that, because of sieving, the density of primes in the list

n,n + 2,n + 4, . . . is boosted by a factor 1/(1 − σs); recall also that

almost every random composite is rejected with just 1 MR test).

The third term comes from doing a further t − 1MR tests when a

prime is finally found. To model OpenSSL’s performance, we would

set t according to Table 1.

It should be evident from expression (9) that, as with trial division,

working with large s in the initial sieve is not profitable: eventually,

the gains made from decreasing the term 1 − σs are outweighed
by the cost of initial sieving by trial division. Moreover, this model

neglects the true cost of updating the table of remainders between

candidates. This cost is linear in s (albeit with a small constant) and

so heightens the effect. A more detailed model including this cost

could of course be developed.

If we now assume that (redundant) trial division with r ≤ s
primes is also carried out in the underlying primality test, and that

the test uses up to t ′ rounds of MR testing, then the average cost

becomes:

*
,

s∑
i=1

Ci+
-
+

(
ln(2k) · (1 − σs)/2

)
· ((

r∑
i=1

Ci) +CMR) + (t
′ − 1) ·CMR

(10)

Here, the additional cost compared to (9) is precisely that of doing

a full set of r trial divisions for each candidate – this cost is always

incurred because when r ≤ s , all the candidates which might fail

trial division at some early stage have already failed on sieving. To

model the performance of OpenSSL with our chosen primality test,

MR64, t ′ must be set to 64 rather than the values in Table 1; the

difference means that, when a prime is finally encountered, the cost

of testing it will be higher.

The difference in the costs as expressed in (9) and (10) is given

by: (
ln(2k) · (1 − σs)/2

)
· (

r∑
i=1

Ci) + δt ·CMR (11)

where δt = t ′−t , depending on k , is the difference in the maximum

number of rounds of MR testing carried out in the two cases.

For MR64 and MRAC, and for k of cryptographic size, δt ranges
between 59 and 61. For our selected primality test, MR64 with input-

length-dependent trial division, r in the above expression is also

k-dependent, and is set by Table 4. The first term in (11) accounts

for the cost of redundant trial division over the first r primes for

N := ln(2k) · (1 − σs)/2 different candidates. Here both r and N
are in the range of a few hundred. For example, when k = 1024

we set r = 128, and when s = 2047, we have N ≈ 41. Hence, when

k = 1024, we do about 5200 redundant trial divisions, compared

to an extra δt = 59 MR tests. For this k , the extra MR tests are

about 8 times more expensive than the redundant trial divisions

(roughly 17.5ms versus 2ms based on our experimental timings).

This indicates that the redundant trial division contributes much

less to the overhead of prime generation than do the extra MR tests

that are necessary to make our primality test secure in all use cases.

Note that this analysis ignores the fact that OpenSSL aborts

and restarts with a fresh, random value whenever an MR test fails;

this effect may be significant in practice and we leave a detailed

evaluation to future work. Note also that this modelling deficiency

does not affect our experimental results reported in the main body,

since they were obtained by measuring the running time of the

actual OpenSSL code.

B REFERENCE IMPLEMENTATION OF THE
BAILLIE-PSW TEST

For completeness, we include here our code that implements a

Baillie-PSW primality test in the context of OpenSSL’s bn_prime.c.
Functions from the existing OpenSSL code-base have been omitted.

bn_prime_bpsw.c

int BN_is_prime_BPSW_ex(BIGNUM *a, BN_CTX *ctx_passed ,

int do_trial_division , BN_GENCB *cb)

{

int i, j, l, ret = -1;

int k;

BN_CTX *ctx = NULL;

BIGNUM *A1, *A1_odd , *check = BN_new (); /* taken from ctx */

BN_MONT_CTX *mont = NULL;

TRIAL_DIVISION_PRIMES = 129;

BN_set_word(check , 2); //only testing MR to base 2

/* Take care of the really small primes 2 & 3 */

if (BN_is_word(a, 2) || BN_is_word(a, 3))

return 1;

/* Check odd and bigger than 1 */

if (! BN_is_odd(a) || BN_cmp(a, BN_value_one ()) <= 0)

return 0;

/* first look for small factors */

if (do_trial_division) {

for (i = 1; i < TRIAL_DIVISION_PRIMES; i++) {

BN_ULONG mod = BN_mod_word(a, primes[i]);

if (mod == (BN_ULONG)-1)

goto err;

if (mod == 0)

return BN_is_word(a, primes[i]);

}

if (! BN_GENCB_call(cb, 1, -1))

goto err;

}

if (ctx_passed != NULL)

ctx = ctx_passed;

else if ((ctx = BN_CTX_new ()) == NULL)

goto err;

BN_CTX_start(ctx);

A1 = BN_CTX_get(ctx);

A1_odd = BN_CTX_get(ctx);

if (check == NULL)

goto err;

/* compute A1 := a - 1 */

if (! BN_copy(A1, a) || !BN_sub_word(A1 , 1))

goto err;

/* write A1 as A1_odd * 2^k */

k = 1;

while (! BN_is_bit_set(A1, k))

k++;

if (! BN_rshift(A1_odd , A1, k))

goto err;

/* Montgomery setup for computations mod a */

mont = BN_MONT_CTX_new ();

if (mont == NULL)

goto err;

if (! BN_MONT_CTX_set(mont , a, ctx))

goto err;

j = witness(check , a, A1, A1_odd , k, ctx , mont);

if (j == -1)

goto err;

if (j) {

ret = 0;

goto err;

}

if (! BN_GENCB_call(cb, 1, i))

goto err;

ret = 1;

l = BN_lucas_test_ex(a);

if (!l) {

ret = 0;

goto err;

}

err:

if (ctx != NULL) {

BN_CTX_end(ctx);

if (ctx_passed == NULL)

BN_CTX_free(ctx);

}

BN_MONT_CTX_free(mont);

return ret;

}

int BN_lucas_test_ex(BIGNUM * n){

// performs a Lucas test (with Selfridge 's paramters) on n

BIGNUM *two = BN_new ();

BN_set_word(two , 2);

// sanity check input , n odd and > 2

if (BN_cmp(two ,n)==1) { // 1 if a > b i.e b < a

BN_free(two);

return 0;

}

if (BN_cmp(n,two)==0) {

BN_free(two);

return 1;

}

if (! BN_is_odd(n)) {

BN_free(two);

return 0;

}

BN_CTX *ctx = BN_CTX_new ();

BIGNUM *result = BN_new ();

BIGNUM *zero= BN_new ();

BIGNUM *np1 = BN_new ();

BIGNUM *minusone = BN_new ();

BIGNUM *u = BN_new ();

BIGNUM *d = BN_new ();

BIGNUM *minusnineteen = BN_new ();

int32_t J;

int32_t res;

const char *m1 = "-1";

const char *m19 = "-19";

BN_add(np1 ,n,BN_value_one ());

BN_zero(zero);

BN_dec2bn (&minusone , m1);

BN_dec2bn (& minusnineteen , m19);

BN_set_word(d, 5);

// while jacobi(d,n) != -1

while ((J = BN_jacobi(d,n))!= -1) {

if (J==0) { // if jacobi(d,n) == 0 then d | n, i.e n is composite

res = 0;

goto free;

}

if (BN_cmp(zero ,d)==1) { // 0>d

BN_mul(d,d,minusone ,ctx);

BN_add(d,d,two);

}

else{

BN_add(d,d,two);

BN_mul(d,d,minusone ,ctx);

}

if (BN_cmp(d,minusnineteen)==0

&&!(BN_cmp(BN_is_perfect_square(n),zero)==0)){

res = 0;

goto free;

}

}

u = BN_lucas_sequence(d,np1 ,n);

BN_mod(result ,u,n,ctx);

if (BN_cmp(result ,zero)==0) {

res = 1;

goto free;

}

else{

res = 0;

goto free;

}

free:

BN_CTX_free(ctx);

BN_free(result);

BN_free(zero);

BN_free(np1);

BN_free(minusone);

BN_free(two);

BN_free(u);

BN_free(d);

return res;

}

int BN_jacobi(BIGNUM *a, BIGNUM *n){

// computes jacobi symbol of (a/n),

// currently returns 2 if a,n are invalid input

BIGNUM *x = BN_new ();

BIGNUM *y = BN_new ();

BIGNUM *halfy = BN_new ();

BIGNUM *r = BN_new ();

BIGNUM *s = BN_new ();

BN_CTX *ctx = BN_CTX_new ();

BN_nnmod(x,a,n,ctx);

BN_copy(y,n);

int J = 1;

int k = 0;

BIGNUM *three = BN_new ();

BN_set_word(three , 3);

BIGNUM *four = BN_new ();

BN_set_word(four , 4);

BIGNUM *five = BN_new ();

BN_set_word(five , 5);

BIGNUM *eight = BN_new ();

BN_set_word(eight , 8);

if (! BN_is_odd(n)|| BN_cmp(n,BN_value_one ()) <= 0) {

J = 2;

goto free;

}

while (BN_cmp(y,BN_value_one ()) == 1) { // while y > 1

BN_mod(x,x,y,ctx);

BN_rshift1(halfy ,y);

if (BN_cmp(x,halfy)==1) {

BN_sub(x,y,x);

BN_mod(r,y,four ,ctx);

if (BN_cmp(r,three)==0) {

J = -J;

}

}

if (BN_is_zero(x)) {

//gcd(a,n)!=1 so we return 0

J = 0;

goto free;

}

//count the zero bits in x,

//i.e the largest value of n s.t 2^n divides x evenly.

k = 0;

while (! BN_is_bit_set(x, k)) {

k++;

}

BN_rshift(x,x,k);

if (k%2) {

BN_mod(s,y,eight ,ctx);

if (BN_cmp(s,three)==0 || BN_cmp(s,five)==0) {

J = -J;

}

}

BN_mod(r,x,four ,ctx);

BN_mod(s,y,four ,ctx);

if (BN_cmp(r,three)==0 && BN_cmp(s,three)==0) {

J = -J;

}

BN_swap(x,y);

}

free:

BN_CTX_free(ctx);

BN_free(x);

BN_free(y);

BN_free(halfy);

BN_free(r);

BN_free(s);

BN_free(three);

BN_free(four);

BN_free(five);

BN_free(eight);

return J;

}

void BN_rshift1_round(BIGNUM *r, BIGNUM *a){

// temporary fix as part of code demo , but the rounding in BN_rshift1

// is not consistant with python/java across positive and negative numbers.

// This function adds one before the shift if a is negative and performs

// BN_rshift1 normally otherwise. e.g this function rounds -127/2 = -63.5

// to -64 (toward -infinity), where as BN_rshift1 would round to -63 (toward 0)

// This is needed in my implementation of jacobi symbol calculation.

//Can 't simply negate result , as we still want 127/2 = 63.

BIGNUM *zero= BN_new ();

BIGNUM *one= BN_new ();

BN_zero(zero);

BN_one(one);

if (BN_cmp(zero ,a)==1) { //a < 0

BN_sub(r,a,one);

BN_rshift1(r,r);

}

else{

BN_rshift1(r,a);

}

BN_free(zero);

BN_free(one);

}

BIGNUM * BN_lucas_sequence(BIGNUM *d, BIGNUM *k, BIGNUM *n){

// computes the Lucas sequence U_k modulo n, where d = p^2 -4q

BN_CTX *ctx = BN_CTX_new ();

BIGNUM *kp1 = BN_new ();

BIGNUM *u = BN_new ();

BIGNUM *v = BN_new ();

BIGNUM *u2 = BN_new ();

BIGNUM *v2 = BN_new ();

BIGNUM *r= BN_new ();

BIGNUM *zero= BN_new ();

BIGNUM *one= BN_new ();

BN_add(kp1 ,k,BN_value_one ());

BN_zero(zero);

BN_one(one);

BN_one(u);

BN_one(v);

size_t k_bits = BN_num_bits(kp1) -1;

for (size_t i = k_bits -1; i != (size_t) -1; --i) {

BN_mod_mul(u2,u,v,n,ctx);

BN_mod_sqr(r,u,n,ctx); //r = u^2 mod n

BN_mod_mul(r,r,d,n,ctx); // r = r *d = u^2 *d (mod n)

BN_mod_sqr(v2,v,n,ctx); //v2 = v^2 mod n

BN_mod_add(v2,v2,r,n,ctx); // v2 = v2 + r = v^2 + (u^2*d) (mod n)

if (BN_is_odd(v2)) {

BN_sub(v2,v2,n);// v2 = v2 - n

}

BN_rshift1_round(v2,v2);

BN_copy(u,u2);

BN_copy(v,v2);

if (BN_is_bit_set(k,i)) {

BN_nnmod(r,v,n,ctx); //r= v mod

BN_add(u2,u,r); // u2 = u + v mod n

if (BN_is_odd(u2)) {

BN_sub(u2,u2,n);

}

BN_rshift1_round(u2,u2);

BN_mod_mul(r,d,u,n,ctx); // r = d*u mod n

BN_add(v2,v,r); // v2 = r + v = v + d*u mod n

if (BN_is_odd(v2)) {

BN_sub(v2,v2,n);

}

BN_rshift1_round(v2,v2);

BN_copy(u,u2);

BN_copy(v,v2);

}

}

BN_CTX_free(ctx);

BN_free(kp1);

BN_free(v);

BN_free(u2);

BN_free(v2);

BN_free(r);

BN_free(zero);

BN_free(one);

return u;

}

BIGNUM * BN_is_perfect_square(BIGNUM * C){

//https :// nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS .186 -4. pdf sec C.4

// checks if C is a perfect square.

//If so, function returns X where C = X^2 else function returns 0

BIGNUM *one= BN_new ();

BIGNUM *zero= BN_new ();

BIGNUM *ret= BN_new ();

BN_one(one);

BN_zero(zero);

if (BN_cmp(one ,C)==1) {

printf (" is_perfect_square requires C >=1 \n");

BN_free(one);

return zero;

}

if (BN_cmp(one ,C)==0) {

BN_free(zero);

return one;

}

BN_CTX *ctx = BN_CTX_new ();

BIGNUM *B = BN_new ();

BIGNUM *X = BN_new ();

BIGNUM *r = BN_new ();

BIGNUM *s = BN_new ();

BIGNUM *X2 = BN_new ();

BIGNUM *two= BN_new ();

size_t c_bits = BN_num_bits(C);

size_t m = (c_bits +1)/2;

BN_set_word(two , 2);

BN_set_bit(B,m);

BN_add(B,B,C);

BN_set_bit(X,m);

BN_sub(X,X,one);

BN_mul(X2,X,X,ctx);

for (;;) {

BN_add(r,X2,C);

BN_mul(s,X,two ,ctx);

BN_div(X,NULL ,r,s,ctx);

BN_mul(X2,X,X,ctx);

if (BN_cmp(B,X2)==1) {

break;

}

}

if (BN_cmp(X2,C)==0) {

ret = X;

goto free;

}

else {

ret = zero;

goto free;

}

free:

BN_CTX_free(ctx);

BN_free(B);

BN_free(r);

BN_free(s);

BN_free(X2);

BN_free(one);

BN_free(two);

BN_free(zero);

return ret;

}

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Paper Organisation

	2 Further Background
	2.1 Primality Testing
	2.2 Prime Generation

	3 Construction and Analysis of a Primality Test With a Misuse-resistant API
	3.1 Miller-Rabin Average Case (MRAC)
	3.2 Miller-Rabin 64 (MR64)
	3.3 Miller-Rabin 128 (MR128)
	3.4 Baillie-PSW (BPSW)
	3.5 Experimental Results
	3.6 Other Bit Sizes
	3.7 Selecting a Primality Test

	4 Prime Generation
	4.1 Experimental Approach

	5 Implementation and Integration in OpenSSL
	5.1 Reference Implementation of Baillie-PSW

	6 Conclusions and Future Work
	References
	A Cost Model for Prime Generation
	B Reference Implementation of the Baillie-PSW test

