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Abstract

The reconfiguration graph Rk(G) of the k-colourings of a graph G
has as vertex set the set of all possible k-colourings of G and two
colourings are adjacent if they differ on the colour of exactly one ver-
tex.

Cereceda conjectured ten years ago that, for every k-degenerate
graph G on n vertices, Rk+2(G) has diameter O(n2). The conjecture
is wide open, with a best known bound of O(kn), even for planar
graphs. We improve this bound for planar graphs to 2O(

√
n). Our

proof can be transformed into an algorithm that runs in 2O(
√
n) time.

1 Introduction

Let G be a graph, and let k be a non-negative integer. A k-colouring of
G is a function f : V (G) → {1, . . . , k} such that f(u) 6= f(v) whenever
(u, v) ∈ E(G). The reconfiguration graph Rk(G) of the k-colourings of G has
as vertex set the set of all k-colourings of G and two vertices of Rk(G) are
adjacent if they differ on the colour of exactly one vertex. Let d be a positive
integer. Then G is said to be d-degenerate if every subgraph of G contains a
vertex of degree at most d. Expressed differently, G is d-degenerate if there
is an ordering v1, . . . , vn of its vertices such that vi has at most d neighbours
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vj with j < i. Note that each d-degenerate graph G has a (d+ 1)-colouring,
and so Rk(G) is well-defined for each k > d.

In the past decade, the study of reconfiguration graphs for graph colour-
ings has been the subject of much attention. One typically asks whether the
reconfiguration graph is connected. If so, what is its diameter and, in case
it is not, what is the diameter of its connected components? See [4, 8, 9]
for some examples. Computational work has focused on deciding whether
there is a path in the reconfiguration graph between a given pair of colour-
ings [5, 10, 14]. Other structural considerations of the reconfiguration graph
have also been investigated in [1, 2]. Reconfiguration graphs have also been
studied for many other decision problems; see [16] for a recent survey.

We remark that reconfiguration problems for graph colourings do not
have known results for which the reconfiguration graph is connected but has
a diameter that is not polynomial in the order of the graph. (In nearly all
cases, the diameter turns out to be quadratic in the number of vertices.) On
the other hand, the problem of deciding whether a pair of colourings are in the
same component of the reconfiguration graph tends to be PSPACE-complete
whenever the reconfiguration graph is disconnected. There are exceptions to
this pattern such as, for example, deciding whether a pair of 3-colourings of
a graph belong to the same component [10].

Given a d-degenerate graph G, it is not difficult to show that Rd+2(G) is
connected [13]. The foregoing pattern motivated Cereceda [7] to conjecture
that Rd+2(G) has diameter that is quadratic in the order of G.

Conjecture 1. Let d be a positive integer, and let G be a d-degenerate graph
on n vertices. Then Rd+2(G) has diameter O(n2).

Conjecture 1 has resisted some efforts and has only been verified (other
than for trees) for graphs with degeneracy at least ∆ − 1 where ∆ denotes
the maximum degree of the graph [12]. It is also known to hold if degeneracy
is replaced by tree-width [3].

In the expectation of the difficulty of Conjecture 1, Bousquet and Perar-
nau [6] have shown that for every d ≥ 1 and ε > 0 and every graph G with
maximum average degree d − ε, the diameter of Rd+1(G) is O(nc) for some
constant c = c(d, ε) (see [11] for a short proof). Their result in particular
implied that the reconfiguration graph of 8-colourings for planar graphs has
a diameter that is polynomial in the order of the graph. Since planar graphs
are 5-degenerate, the one outstanding case of Conjecture 1 restricted to pla-
nar graphs is thus k = 7 (aside, of course, from improving the constant term
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in the exponent of the diameter). On the other hand, the best known upper
bound on the diameter in Conjecture 1 is O(dn) – even for planar graphs –
and this follows from [13]. In this note, we significantly improve this bound
for planar graphs.

Theorem 1. For every planar graph G on n vertices, R7(G) has diameter
at most 2O(

√
n).

1.1 An overview of the proof

We sketch the key steps of the proof. The main idea is based on the approach
by Feghali, Johnson, and Paulusma [12]. Namely, to find a recolouring se-
quence that goes through a colouring that uses less colours. More precisely,
given two 7-colourings α and β of a planar graph G, to prove the theorem
it suffices to describe a sequence of (sub-exponentially many) recolourings
between α and β. Our general strategy will be to describe, in a first stage, a
recolouring sequence σ1 from α to some 5-colouring γ1 of G and a recolouring
sequence σ2 from β to some 5-colouring γ2. In a second and final stage, we
will use the two missing colours in γ1 and γ2 to find a recolouring sequence
σ3 from γ1 to γ2. The final solution is then obviously the concatenation of
σ1, σ3, and (the reverse of) σ2. We now give the details.

The most difficult part of the proof is Lemma 2, which states that we
can find a recolouring sequence from a 7-colouring of G to some 6-colouring
by subexponentially many recolourings. To achieve this, we first show, in
Lemma 1, that there always exists a recolouring sequence from a 7-colouring
of G to some 6-colouring by at most πn2 recolourings, where π is the product
of degrees of vertices having ‘high’ degree. Since the maximum average degree
of a planar graph is strictly less than 6, we can then show, in Lemma 2, that
this implies π ≤ 2O(

√
n). We note that this part of the proof does not exploit

at all the planarity of G – all that is needed is for our graph to have maximum
average degree bounded away by one from the number of colours. Now, to
further recolour the 6-colouring obtained in the previous step to some 5-
colouring, we essentially follow the approach from [11], that is, to find a
‘large’ independent set I of G such that each vertex of I has ‘low’ degree and
then apply induction on G− I; some difficulties that are not present in [11]
must, however, be deal with. Namely, to extend the recolouring sequence
in G − I to a recolouring sequence in G, it is important to ensure that the
neighbourhood of every vertex in I contains at most 5 colours. It is here that
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we crucially rely on the planarity of G.
In the final step, we will use the two missing colours in γ1 and γ2 to

recolour a subset S ⊆ V (G) such that G − S has a nice structure that can
be easily used to quickly finish the proof. Specifically, we combine known
results by Mihók, Thomassen, and Wood [15, 17, 18] to find two independent
sets I1 and I2 such that G−I1−I2 is 2-degenerate. Then we recolour I1 with
colour 6, I2 with colour 7 and then use a result of Cereceda [7] to recolour
γ1 to γ2 in G− I1 − I2 by O(n2) recolourings.

2 The proof of Theorem 1

We begin with the following three lemmas. In the first lemma, we obtain a
crude bound on the number of recolourings required for degenerate graphs
to reduce the number of colours by one.

Lemma 1. Let k ≥ 1, and let G be a k-degenerate graph on n vertices. Let
{u1, . . . , us} be the set of vertices of G of degree at least k + 2. If α is a
(k + 2)-colouring of G, then we can recolour α to some (k + 1)-colouring of
G by at most O(n2

∏s
i=1 deg(ui)) recolourings.

Proof. The proof is a generalisation of the one found in [12].
Fix a k-degenerate ordering σ = v1, . . . , vn of G and assume without loss

of generality that ui appears before uj in σ whenever i < j. To avoid any
confusion, when considering a subset of vertices vi1 , . . . , vit with i1 < i2 <
· · · < it we refer to vi1 as the leftmost vertex in the subset and to vit as the
rightmost vertex.

Given an index h ∈ [n], we will describe an algorithm recolour(h) that
outputs a sequence of recolourings with the following properties:

(i) for i < h, vi is not recoloured,

(ii) for i > h, vi is recoloured at most
∏s

j=` deg(uj) times, where u` is the
leftmost vertex of degree at least k + 2 with index at least h in σ, and

(iii) vh is recoloured once to a different colour.

Note that the algorithm takesO(n
∏s

i=1 deg(ui)) recolourings to recolour vh.
Hence, by repeatedly using such a sequence on the lowest index of a vertex
with colour k + 2, we can obtain a colouring in which colour k + 2 does
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not appear by O(n2
∏s

i=1 deg(ui)) recolourings, and the lemma follows. The
description of the algorithm is found below.

ALGORITHM 1: recolour(h)

Data: A graph G, a k-degenerate ordering σ of G and index h ∈ [n]
Result: A sequence of recolourings satisfying the properties (i), (ii), and (iii)

1 if there is a colour c that is not used on vh or any of its neighbours then
2 recolour vh to c and terminate;
3 end
4 else if vh has degree exactly k + 1 then
5 let vi be the rightmost neighbour of vh;
6 let c be the colour of vi;
7 call recolour(i);
8 recolour vh to c;

9 end
10 else if vh has degree at least k + 2 then
11 let c be a colour not appearing on vh or any of its neighbours vj with

j < h;
12 let vi1 , . . . , vit be the neighbours of vh with h < i1 < i2 < · · · < it;
13 for j ∈ [t] in ascending order do
14 if the colour of vij is c then
15 call recolour(ij);
16 end

17 end
18 recolour vh to c;

19 end

We prove the correctness and properties (i)–(iii) of the algorithm by induction
on n − h. Obviously, whenever the condition on Line 1 of recolour(h)
applies, we only recolour vh once to a colour not appearing on it or any of its
neighbours. Since σ is a k-degenerate ordering, this is the case when h = n
and the algorithm is correct and satisfies (i)–(iii) for n− h = 0.

For the induction step, assume that h < n, every colour is used either on
vh or its neighbour, and for all i > h the algorithm recolour(i) is correct
and satisfies properties (i)–(iii).

Since every colour appear either on vh or its neighbour, the degree of vh
is at least k + 1.
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Case 1: vh has degree k + 1. Then the condition on Line 4 applies and
recolour(h) performs the steps on Lines 5–8. Since there are k+ 2 colours
and each colour appears either on vh or on one of its neighbours, each colour
appears precisely once in the closed neighbourhood of vh. As vi is the right-
most neighbour of vh and σ is k-degenerate ordering, we have that i > h.
This implies that recolour(i) recolours vi, but none of the other neighbours
of vh; therefore the colour c does not appear on any neighbour of vh and we
can safely recolour it to c on Line 8. This also implies that (i) and (ii) and
(iii) follow from (i) and (ii) for recolour(i).

Case 2: vh has degree at least k + 2. Then recolour runs the steps
on Lines 10–18. Since the algorithm applies the recursive calls only on the
vertices with greater index than h in σ, (i) holds.

After the execution of the for-loop between Line 13 and Line 17, colour c
no longer appears on v or any of its neighbours, after which vh is recoloured
to c on Line 18. So the algorithm is correct and (iii) holds. To prove (ii),
note that the algorithm calls recolour(i) at most deg(vh) times and only
when i > h. Hence, each vertex will get recoloured at most

deg(vh)
s∏

j=`+1

deg(uj) =
s∏

j=`

deg(uj),

since u` = vh, and (ii) follows. This completes the proof of the lemma.

The maximum average degree of a graph G is defined as

mad(G) = max

{∑
v∈V (H) deg(v)

|V (H)|
: H ⊆ G

}
,

By Euler’s formula, the maximum average degree of a planar graph is strictly
less than six. By definition, if a graph has maximum average degree strictly
less than k for some positive integer k, then this graph is also (k − 1)-
degenerate.

In our next lemma, we show that we can reduce the number of colours
by one using subexponentially many recolourings if we further assume our
graph to have bounded maximum average degree.

Lemma 2. Suppose k ≥ 2 is an integer and G is a a graph with n vertices
and mad(G) < k + 1. If α is a (k + 2)-colouring of G, then we can recolour
α to some (k + 1)-colouring of G by kO(k

2√n) recolourings per vertex.
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Proof. We proceed by induction on n = |V (G)|. (Our proof can be trans-
formed into a recursive algorithm running in time kO(k

2√n).)
Suppose H is a graph with mad(H) < k + 1 that contains at most 2(k +

1)
√
|V (H)| vertices of degree at most k. Let αH be a (k+ 2)-colouring of H,

and let h = |V (H)|.

Claim 1. We can recolour αH to some (k + 1)-colouring of H by kO(k
2
√
h)

recolourings.

Proof of Claim. Let U = {u1, . . . , us} be the set of vertices of degree at least
k + 2 in H, let W = {w1, . . . , wt} be the set of vertices of degree less than
or equal to k, and let Z = V (H) \ (U ∪W ) = {z1, . . . , zh−s−t} be the set of
vertices of degree precisely k + 1. Due to Lemma 1, to prove the claim it
suffices to show that

∏s
i=1 deg(ui) ≤ kO(k

2
√
h).

We can assume that H is connected, because otherwise we can prove the
claim for each connected component of H. Thus,

s∑
i=1

deg(ui) +
t∑

i=1

deg(wi) ≥
s∑

i=1

deg(ui) + t. (1)

On the other hand, since mad(G) < k + 1,

s∑
i=1

deg(ui) +
t∑

i=1

deg(wi) +
h−s−t∑
i=1

deg(zi) < (k + 1)h

⇐⇒
s∑

i=1

deg(ui) +
t∑

i=1

deg(wi) + (k + 1)(h− s− t) < (k + 1)(h− s− t+ s+ t)

⇐⇒
s∑

i=1

deg(ui) +
t∑

i=1

deg(wi) < (k + 1)(s+ t). (2)

Combine Inequalities (1) and (2):

t+
s∑

i=1

deg(ui) < (k + 1)(s+ t) =⇒ (k + 2)s+ t < (k + 1)(s+ t)⇐⇒ s < kt.

Since, by assumption, t < 2(k + 1)
√
h, it follows that s < 2k(k + 1)

√
h.

Substituting these bounds into (k + 1)(s+ t)− t gives us

s∑
i=1

deg(ui) < k(k + 1)22
√
h+ k(k + 1)2

√
h ≤ 4k(k + 1)2

√
h = a. (3)

7



By the AM-GM inequality of arithmetic and geometric means, it holds
that ∑s

i=1 deg(ui)

s
≥
( s∏

i=1

deg(ui)

)s−1

. (4)

Combining Inequalities (3) and (4) we get

a

s
>

( s∏
i=1

deg(ui)

)s−1

,

or, since both sides of the inequality are positive, equivalently

f(s) =

(
a

s

)s

>
s∏

i=1

deg(ui).

It remains to find an upper bound for the expression f(s) when s is between
1 and k(k+ 1)2

√
h. The derivative f ′(s) = ∂f(s)/∂s of f(s) at s is given by

f ′(s) =

(
a

s

)s

·
(

log

(
a

s

)
− 1

)
,

and since f ′(s) is positive for each s ∈ [1, 2k(k + 1)
√
h], it follows that f(s)

is maximized when s = k(k + 1)2
√
h. Therefore, we obtain

(2(k + 1))k(k+1)2
√
h >

s∏
i=1

deg(ui),

finishing the proof of the claim.

For the inductive step, suppose that G contains more that 2(k + 1)
√
n

vertices of degree at most k and that we can recolour any subgraph H of
G with h < n vertices to some (k + 1)-colouring γH such that each vertex

gets recoloured at most kO(k
2
√
h) times. Let S be an independent set in G

containing only vertices of degree at most k of size at least 2
√
n. Since G can

be greedily coloured with (k+ 1) colours using its k-degenerate ordering and
G contains more than 2(k + 1)

√
n vertices of degree at most k, such a set S

exists and can be found in polynomial time. By the inductive hypothesis we
can recolour the graph H = G− S to some (k + 1)-colouring such that each
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vertex get recoloured at most kck
2
√
h times for some constant c > 1. We can

extend this sequence of recolourings of H to a sequence in G by recolouring
a vertex u ∈ S whenever some neighbour of u gets recoloured to its colour
(this is possible because the number of colours is k + 2 and u has at most k
neighbours in G). At the end of the sequence, we can recolour each vertex
of S to a colour other than k+ 2. It follows that the maximum number f(n)
of times a vertex of G is recoloured satisfies

f(n) ≤ k ·
(
kck

2
√
h
)

+ 1 ≤ k ·
(
kck

2
√

n−2
√
n
)

+ 1 = kck
2
√

n−2
√
n+1 + 1. (5)

Since k ≥ 2, to show that f(n) ≤ kck
2√n, it suffice to show that ck2

√
n >

ck2
√
n− 2

√
n + 1 for each n ≥ 4. Adding −1 to both sides of (5) and then

squaring yields the result.

In our next lemma, we adapt the proof method introduced in [11] to show
that we can further reduce the number of colours by one for planar graphs.

Lemma 3. Let G be a planar graph, and let γ be a 6-colouring of G. Then
we can recolour γ to some 5-colouring of G using seven colours by at most
O(nc) recolourings for some constant c > 1.

Proof. Let H be any subgraph of G, and let h = |V (H)|. An independent
set I of H is said to be special if it contains at least h/49 vertices and every
vertex of I has at most 6 neighbours in G − I. Let S be the set of vertices
of H of degree at most 6. Then S has at least h/7 vertices since otherwise∑

v∈V (H)

deg(v) ≥
∑

v∈V (H)−S

deg(v) > 7

(
h− h

7

)
= 6h,

which contradicts that mad(G) < 6. Let I ⊆ S be a maximal independent
subset of S. Each vertex of I has at most 6 neighbours in S and every vertex
of S − I has at least one neighbour in I. Therefore, |I|+ 6|I| ≥ |S| and so I
is a special independent set as needed.

Let us prove by induction on the order of G that there is a sequence of
recolourings from a 6-colouring γ of G to some 5-colouring of G. We will
then argue that at most O(nc) recolourings have been performed for some
constant c > 1, thereby finishing the proof.

Let I be a special independent set of G, and let G∗ be the graph obtained
from G by
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• removing all vertices of degree at most 5 in I from G and

• for each vertex v in I of degree 6, deleting v and identifying a pair of
neighbours of v that are coloured alike in γ (such a pair always exists
since at most 6 colours appear on v and its neighbours).

Notice that G∗ is planar. Indeed, one can think of some embedding of G in
the plane and then note that the neighbours of any vertex v form part of the
boundary of a face F in G − v; thus, indentifying a pair of neighbours of v
inside the interior of F in the graph G− v does not break the planarity.

Let γ′ denote the colouring of G∗ that agrees with γ on V (G∗) ∩ V (G)
and such that, for each z ∈ V (G∗) \ V (G), if z is the vertex obtained by
the identification of some vertices x and y of G, then γ′(z) = γ(x)(= γ(y)).
Graph G∗ has less vertices than G, so can we apply our induction hypothesis
to find a sequence of recolourings from γ′ to some 5-colouring γ′′ of G∗.

We let γ? be the 5-colouring of G−I that agrees with γ′′ on V (G)∩V (G∗)
and such that, for each pair of vertices x, y ∈ V (G) identified into a new
vertex z, γ?(z) = γ′′(x) = γ′′(y). We can transform γ′ to γ? by

• recolouring x and y using the same recolouring as z for every pair
x, y ∈ V (G)− I identified into a vertex z ∈ V (G∗);

• recolouring each v ∈ V (G∗) ∩ V (G) using the same recolouring.

We can extend this sequence to G by recolouring each vertex of I to a
colour from {1, . . . , 7} not appearing on it or its neighbours (this is possible
since each vertex of I either has degree at most 5 or has degree 6 but with
at least two neighbours that are in some sense always coloured alike). At the
end of this sequence, we recolour each vertex of I of colour 7 to another colour
(this is again possible by the same reasoning). So our aim of transforming
into a 5-colouring is achieved unless some vertex of I has colour 6.

Suppose that there is a vertex v of I with colour 6. We emulate the proof
of the 5-Colour Theorem to show that we can recolour v to a colour from
{1, . . . , 5} without introducing new vertices of colour 6 or 7. By repeating
the same procedure at most |I| times, we can transform γ into a 5-colouring
of G, as needed. For this, we require some definitions.

Let i and j be two colours. Then a component C of a subgraph of G
induced by colours i and j is called an (i, j)-component. Suppose that C is
an (i, j)-component, 7 /∈ {i, j}. Then colours i and j are said to be swapped
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on C if the vertices coloured j are recoloured 7, then the vertices coloured i
are recoloured j, and finally the vertices initially coloured j are recoloured i.
Since no vertex coloured i or j in C is adjacent to a vertex of colour 7, it is
clear that each colouring is proper and that no new vertices of colour 7 are
introduced.

If for a vertex v at least one colour in {1, . . . , 5} does not appear in its
neighbourhood, we can immediately recolour v. So we can assume that v
has either degree 5 or 6 with precisely five neighbours v1, . . . , v5 coloured
distinctly; if a colour appears more than once in the neighbourhood of v,
then we assume without loss of generality it is the colour of v5. Suppose
also that these neighbours appear in this order in a plane embedding of G.
Let i denote the colour of vi (i = 1, . . . , 5). If the (1, 3)-component C1,3 that
contains v1 does not contain v3, we swap colours 1, 3 on C1,3 (this is possible
since colour 7 is not used on G), which in turn allows us to recolour v to 1.
So we can assume that C1,3 contains both v1 and v3. In the same vein, the
vertices v2 and v4 must be contained in the same (2, 4)-component C2,4. By
the Jordan Curve Theorem, this is impossible. Hence, either C1,3 does not
contain both v1 and v3 or C2,4 does not contain both v2 and v4 and we are
able to recolour v, as required.

We now estimate the number of recolourings of a vertex v ∈ I in terms
of the number of recolourings of vertices of G − I. When recolouring γ to
a 6-colouring β that uses only colours 1 to 5 on G − I, v is recoloured at
most five more times than any of its neighbours (this bound is achieved if v
is recoloured every time one of its neighbours is recoloured and these neigh-
bours are recoloured the same number of times). Moreover, recolouring β to
a 5-colouring of G contributes an additional O(n) recolourings per vertex.
Therefore, the maximum number f(n) of recolourings per vertex satisfies the
recurrence relation

f(n) ≤ 5 · f
(
n− n

49

)
+O(n),

and the lemma follows by the master theorem.

We also require some auxiliary results whose algorithmic versions (run-
ning in polynomial time) is implicit in the respective papers.

Lemma 4 ([7]). Let d and k be positive integers, k ≥ 2d+ 1, and let G be a
d-degenerate graph on n vertices. Then Rk(G) has diameter O(n2).

11



Lemma 5 ([17]). Let G = (V,E) be a planar graph. There is a partition
V = I ∪D such that G[I] is an independent set and G[D] is a 3-degenerate
graph.

Lemma 6 ([15, 18]). Let k be a positive integer, and let G = (V,E) be a
k-degenerate graph. There is a partition V = I ∪ F such that G[I] is an
independent set and G[F ] is a (k − 1)-degenerate graph.

We combine Lemmas 5 and 6 to obtain the following corollary.

Corollary 2.1. Let G = (V,E) be a planar graph. Then there is a partition
V = I1 ∪ I2 ∪ A such that G[I1] and G[I2] are independent sets and G[A] is
a 2-degenerate graph.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let α and β be two 7-colourings of G. To prove the
theorem, it suffices to show that we can recolour α to β by 2O(

√
n) recolourings.

Combining Lemmas 2 and 3, we can recolour α to some 5-colouring γ1 ofG
and β to some 5-colourings γ2 by 2O(

√
n) recolourings. We apply Corollary 2.1

to find a partition V = I1∪ I2∪A such that G[I1] and G[I2] are independent
sets and H = G[A] is a 2-degenerate graph. From γ1 and γ2 we recolour the
vertices in I1 to colour 7 and those in I2 to colour 6 (the colours that are not
used in either γ1 or γ2). Let γH1 and γH2 denote, respectively, the restrictions
of γ1 and γ2 to H. We focus on H and as long as we do not use colours 6
and 7 we can recolour γH1 to γH2 without worrying about adjacencies between
A and I1 ∪ I2. Since H is 2-degenerate, we can apply Lemma 4 with k = 5
and d = 2 to recolour γH1 to γH2 by O(n2) recolourings. This completes the
proof.

3 Final remarks

From the proof of Theorem 1, notice that to obtain a polynomial bound on
the diameter of the reconfiguration graph for 7-colourings of planar graphs, it
would suffice to show that we can recolour any 7-colouring of a planar graph
to some 6-colouring by polynomially many recolourings.

Problem 1. Given a planar graph G and a 7-colouring α of G, can we
recolour α to some 6-colouring of G by O(nc) recolourings for some constant
c > 0?

12



In order to obtain a sub-exponential bound on the diameter of reconfigu-
ration graphs of colourings for graphs with any bounded maximum average
degree, it would suffice to find a positive answer to the following problem.
(The proof of this fact follows by combining Lemma 2 with an affirmative
answer to Problem 2 in the same way that Lemmas 8, 9 and 10 in [12] are
combined to obtain Theorem 6 in [12].)

Problem 2. Let k ≥ 2, and let G = (V,E) be a graph with mad(G) < k.
Then there exists a partition {V1, V2} of G such that G[V1] is an independent
set and mad(G[V2]) < k − 1.
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