
SUBMIT TO IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 1

A Lite Distributed Semantic Communication
System for Internet of Things

Huiqiang Xie, Student Member, IEEE, and Zhijin Qin, Member, IEEE

Abstract—The rapid development of deep learning (DL) and
widespread applications of Internet-of-Things (IoT) have made
the devices smarter than before, and enabled them to perform
more intelligent tasks. However, it is challenging for any IoT
device to train and run DL models independently due to its
limited computing capability. In this paper, we consider an IoT
network where the cloud/edge platform performs the DL based
semantic communication (DeepSC) model training and updating
while IoT devices perform data collection and transmission
based on the trained model. To make it affordable for IoT
devices, we propose a lite distributed semantic communication
system based on DL, named L-DeepSC, for text transmission
with low complexity, where the data transmission from the
IoT devices to the cloud/edge works at the semantic level to
improve transmission efficiency. Particularly, by pruning the
model redundancy and lowering the weight resolution, the L-
DeepSC becomes affordable for IoT devices and the bandwidth
required for model weight transmission between IoT devices
and the cloud/edge is reduced significantly. Through analyzing
the effects of fading channels in forward-propagation and back-
propagation during the training of L-DeepSC, we develop a chan-
nel state information (CSI) aided training processing to decrease
the effects of fading channels on transmission. Meanwhile, we
tailor the semantic constellation to make it implementable on
capacity-limited IoT devices. Simulation demonstrates that the
proposed L-DeepSC achieves competitive performance compared
with traditional methods, especially in the low signal-to-noise
(SNR) region. In particular, while it can reach as large as 20x
compression ratio without performance degradation.

Index Terms—Internet of Things, neural network compression,
pruning, quantization, semantic communication.

I. INTRODUCTION

With the widely deployed connected devices, Internet of
Things (IoT) networks are providing more and more intelligent
services, i.e., smart home, intelligent manufacturing, and smart
cities, by processing a massive amount of data generated by
those connected devices [1], [2]. Deep learning (DL) [3] has
demonstrated great potentials in processing various types of
data, i.e., images and texts. The DL-enabled IoT devices are
capable of exploiting and processing different types of data
more effectively as well as handling more intelligent tasks than
before. Although some IoT devices have certain capability to
process simple DL models, the limited memory, computing,
and battery capability still prevent from wide applications of
DL [4]. Therefore, the burden of DL model updates is usually
transferred to the cloud/edge platform [5]. Particularly, the DL
model is trained at the cloud/edge platform based on data
from the IoT devices, and then the trained model is distributed

Huiqiang Xie and Zhijin Qin are with the School of Electronic Engineering
and Computer Science, Queen Mary University of London, London E1 4NS,
UK (e-mail: h.xie@qmul.ac.uk, z.qin@qmul.ac.uk).

to IoT devices. However, data transmitted over the air could
be distorted by wireless channels, which may cause improper
trained results, i.e., local optimum. Moreover, the large number
of parameters in DL models leads to high latency when
distributing the DL models with limited bandwidth. Therefore,
transmitting accurate data to the cloud/edge platform over
wireless channels for model training and reducing the number
of parameters in DL models for lower latency and power
consumption at the IoT devices are two crucial problems.

To address the first problem on accurate data transmission
in an IoT network, semantic communication system, which
interprets information at the semantic level rather than bit
sequences [6], is promising. To make a decision based on
the received information, there are usually three steps: i) the
traditional communication receiver to recover the raw data [7];
ii) the feature extractor to obtain and interpret the meanings of
the raw data for the decision [8]; and iii) the effects network to
produce the desired effects according to the extracted features
[9], [10]. Correspondingly, the communication is categorized
into three levels [11], including transmission level to guar-
antee the transmission accuracy of bit sequence, semantic
level to guarantee the exchange of semantic information, and
effectiveness level to measure the corresponding effects or
caused actions of transmitted information, i.e., network re-
configuration, which is illustrated in Fig. 1. The traditional
communication system works at the transmission level shown
in Fig. 1(a), which aims at transmitting and receiving symbol
accurately [12]. The followed feature extractor network and
effect networks are designed separately based on applications.
However, designing these modules separately may lead to
error propagation and prevent from reaching joint optimality.
For example, the feature network is not able to correct errors
from the traditional receiver, which will affect the subsequent
decision making in the effect network. Thus, through designing
the traditional receiver and feature extractor network jointly
(the semantic level) or merging traditional receiver, feature
extractor network, and effects network together (the effec-
tiveness level), communication systems have the capability of
error correction at the semantic level and effectiveness level,
respectively. In this paper, we will focus on distributed seman-
tic communications for IoT networks and leave effectiveness
level communication to future research.

With the recent advancements on DL, it is promising to
represent a traditional transceiver or each individual signal
processing block by a deep neural network (DNN) [13].
Inspired by the autoencoder in DL techniques, an end-to-end
(E2E) communication system has been proposed to merge the
signal processing blocks in traditional communication [14].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/342314112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SUBMIT TO IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 2

Traditional

Receiver

Feature Extractor

Network

Effect

Network

Effect

Network
Semantic Receiver

Effect Receiver

(a) Transmission level

(b) Semantic level

(c) Effectiveness level

Received

symbols

Recovered

symbols

Extracted

Features

Received

symbols

Recovered

Features

Take

Action

Take

Action

Take

Action
Received

symbols

Fig. 1. Illustration of three communication levels at the receiver.

Missing channel gradients becomes the bottleneck of training
E2E communication systems. There are several works for
mitigating this problem [15]–[17]. Dörner et al. proposed a
two-phase training processing [15] by training the transceiver
with a stochastic channel model firstly, and fine-toning the
receiver over real channels. Aoudia et al. estimated the channel
gradients by sampling from a relaxed distribution based on
stochastic reinforce learning policy [16], where the transmitter
and receiver are trained separately. Ye et al. proposed genera-
tive adversarial network (GAN) to approximate the unknown
channel model [17] so that the channel gradients can be
estimated by the GAN.

There have been some initial works related to deep semantic
communications [18]–[22]. Bourtsoulatze et al. [18] proposed
joint source-channel coding for wireless image transmission
based on the convolutional neural network (CNN), where peak
signal-to-noise ratio (PSNR) is used to measure the accuracy
of image recovery at the receiver. Taking image classifica-
tion tasks into consideration, Lee et al. [19] developed a
transmission-recognition communication system by merging
wireless image transmission with the effect network as DNNs,
i.e., image classification, which achieves higher image classi-
fication accuracy than performing them separately. For texts,
Farsad et al. [21] designed joint source-channel coding for
erasure channel by using a recurrent neural network (RNN)
and a fully-connected neural network (FCN), where the system
recovers the text directly rather than perform channel and
source decoding separately. In order to understand texts better
and adapt to dynamic environments, Xie et al. [22] developed a
semantic communication system based on Transformer, named
DeepSC, which clarifies the concepts of semantic information
and semantic error at the sentence-level for the first time.
In brief, compared with traditional approaches, the semantic
communication systems are more robust to channel variation
and are able to achieve better performance in terms of source
recovery and image classification, especially in the low signal-
to-noise (SNR) regime.

To deal with the second problem in reducing the number of
parameters, network slimmer has attracted extensive attention
to compress DL models without degrading performance since
neural networks are usually over-sized [23]. Parameters prun-
ing and quantization are two main approaches for DL model
compression. Parameter pruning is to remove the unnecessary
connections between two neurons or important neurons. Han
et al. [24] proposed an iterative pruning approach, where the

model is trained first, then pruned by a given threshold, and
is fine-tuned to recover performance in terms of image classi-
fication. This approach could reduce the connections without
losing accuracy. Liu et al. [25] proposed to prune the filters in
CNN by training the model with the L1 regularization so that
redundancy weights converge to zero directly without sacrific-
ing the performance. By analyzing the connection sensitivity
among neurons and layers, Li et al. [26] remove the insensitive
layers, which further increases inference speed. By applying
these pruning approaches, DL models can be compressed
by 13 to 20 times. Quantization aims to represent a weight
parameter with lower precision (fewer bits), which reduces the
required bitwidth of data flowing through the neural network
model in order to shrink the model size for memory saving
and simplify the operations for computing acceleration [27].
With vector quantization, Gong et al. [28] quantize the DL
models. Similarly, Zhou et al. [29] investigated an iterative
quantization, which starts with a trained full-resolution model
and then quantizes only a portion of the model followed by
several epochs of re-training to recover the accuracy loss
from quantization. A mix precision quantization by Li et
al. [30] quantizes weights while keeping the activations at
full-resolution. The training algorithm by Jacob et al. [31]
preserves the model accuracy after post-quantization. With the
quantization, the weights can generally be compressed from
32-bit to 8-bit without performance loss. Similarly, pruning
and quantizing can be also used in DL-enabled communication
systems. For example, Guo et al. [32] have shown that model
compression can accelerate the processing of channel state
information (CSI) acquisition and signal detection in massive
multiple-input multiple-output (MIMO) systems without per-
formance degradation.

Through applying network slimmer into our existing work
DeepSC, the aforementioned two challenges in IoT networks
can be effectively addressed. Although the above works vali-
date the feasibility, we still face the following issues to make
it affordable for IoT devices:

• Question 1: How to design semantic communication
systems over wireless fading channels?

• Question 2: How to form the constellation to make it
affordable for capacity-limited IoT devices?

• Question 3: How to compress semantic models for fast-
model transmission and low-cost implementation on IoT
devices?

In this paper, we design a distributed semantic communi-
cation system for IoT networks. Especially, a lite DeepSC is
proposed (L-DeepSC) to address the above questions. Differ-
ent from our previous work [22], this work solves the training
DeepSC problem over fading channels with imperfect CSI
and considers different wireless channel models to show the
generalization of our method. Moreover, this work extends
[22] to a more practical IoT scenario, where two key problems,
model updating, and broadcasting, are solved. This work also
addresses the issue of the finite constellation sizes for capacity-
constrained IoT devices while [22] assumes infinite constella-
tions. The main contributions of this paper are summarized as
follows.

SUBMIT TO IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 3

• We design a distributed semantic communication network
under power and latency constraints, in which the receiver
and feature extractor networks are jointly optimized by
overcoming fading channels.

• By identifying the impacts of CSI on DL model training
over fading channels, we propose a CSI-aided semantic
communication system to speed up convergence, where
the CSI is refined by a de-noise neural network. This
addresses the aforementioned Question 1.

• To make data transmission and receiving affordable for
capacity-constrained devices, we design a finite-bits con-
stellation to solve Question 2.

• Due to over-parametrization, we propose a model com-
pression algorithm, including network sparsification and
quantization, to reduce the size of DL models by pruning
the redundancy connections and quantizing the weights,
which addresses the aforementioned Question 3.

The rest of this paper is organized as follows. The dis-
tributed semantic communication system model is introduced
and the corresponding problems are identified in Section II.
Section III presents the proposed L-DeepSC. Numerical results
are used to verify the performance of the proposed L-DeepSC
in Section IV. Finally, Section V concludes this paper.
Notation: Cn×m and Rn×m represent the sets of complex

and real matrices of size n × m, respectively. Bold-font
variables denote matrices or vectors. x ∼ CN (µ, σ2) means
variable x follows the circularly-symmetric complex Gaussian
distribution with mean µ and covariance σ2. (·)T and (·)H
denote the transpose and Hermitian of a vector or a matrix,
respectively. <{·} and ={·} refer to the real and the imaginary
parts of a complex number.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Text is an important type of source data, which can be
sensed from speaking and typing, environmental monitoring,
etc. By training DL models with these text data at cloud/edge
platform, the DL models based IoT devices have the capability
to understand text data and generate semantic feature to be
transmitted to the center to perform intelligent tasks, i.e.,
intelligent assistants, human emotion understanding, and envi-
ronment humid and temperature adjustment based on human
preference [33].

As shown in Fig. 2(a), we focus on distributed seman-
tic communications for IoT networks. The considered sys-
tem is consisted of various IoT networks with two layers,
the cloud/edge platform and distributed IoT devices. The
cloud/edge platform is equipped with huge computation power
and big memory, which can be used to train the DL model by
the received semantic features. The semantic communication
enabled IoT devices to perform intelligent tasks by understand-
ing sensed texts, which are with limited memory and power
but expected long lifetime, i.e., up to 10 years. Particularly,
our considered distributed semantic communication system
consists of the following three steps:

1) Model Initialization/Update: The cloud/edge platform
first trains the semantic communication model by initial
dataset. The trained model is updated in the subsequent

iterations by the received semantic features from IoT
devices.

2) Model Broadcasting: The cloud/edge platform broad-
casts the trained DL model to each IoT device.

3) Semantic Features Upload: The IoT devices constantly
capture the text data, which are encoded by the proposed
semantic transmitter shown in Fig. 2(b). The extracted
semantic features are then transmitted to the cloud/edge
for model update and subsequent processing.

The aforementioned Questions 1-3 correspond to model ini-
tialization/update, semantic features uploading, and model
broadcasting, respectively. Different from the traditional infor-
mation transmission, semantic features can be not only used
for recovering the text at the semantic level accurately, but
also exploited as the input of other modules, i.e., emotion
classification, dialog system, and human-robot interaction, for
training effect networks and perform various intelligent tasks
directly. The devices can also exchange semantic features,
which has been previously discussed in our work in [22]. We
focus on the communication between cloud/edge platforms
and local IoT devices to make the semantic communication
model affordable.

A. Semantic Communication System

The DeepSC shown in Fig. 2(b) can be divided into three
parts mainly, transmitter network, physical channel, and re-
ceiver network, where the transmitter network includes se-
mantic encoder and channel encoder, and the receiver network
consists of semantic decoder and channel decoder.

We assume that the input of the DeepSC is a sentence,
s = [w1, w2, · · · , wN], where wn represents the n-th word in
the sentence. The encoded symbol stream can be represented
as

X = Cα (Sβ (s)) , (1)

where Sβ (·) is the semantic encoder network with parameter
set β and Cα (·) is the channel encoder with parameter set α.

If X is sent through a wireless fading channel, the signal
received at the receiver can be given by

Y = fH(X) = HX+N, (2)

where H1 represents the channel gain between the transmitter
and the receiver, and N ∼ N

(
0, σ2

n

)
is additive white

Gaussian noise (AWGN).
The decoded signal can be represented as

ŝ = S−1χ

(
C−1δ (Y)

)
, (3)

where ŝ is the recovered sentence, C−1δ (·) is the channel
decoder with parameter set δ and S−1χ (·) is the semantic
decoder network with parameter set χ, the superscript -1
represents the decoding operation.

1Here, we have omitted discussion of complex channels. If the complex
channel is H̄, then H̄ = [< (H) ,−= (H) ;= (H) ,< (H)].

SUBMIT TO IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 4

Semantic

features

Devices

Cloud/Edge Computing

Semantic Encoder Channel Encoder

Semantic Decoder Channel Decoder

P
h
y
sic

al C
h
an

n
el

Source

Recovered

Feature/Source

(a) Proposed distributed semantic

communication network.

(b) Semantic Communication System

 Model Initialization/Update

(b) Semantic communication system

Distributed Semantic communication Network

Transmitter

Semantic

Decoder

Receiver

Physical Channel

Semantic Channel

Channel

Decoder

Channel

Encoder

Training

Dataset

Semantic

Encoder

Training

Dataset
s X ŝ ŝ

Semantic

Encoder

Channel

Encoder

Channel

Decoder

Semantic

Decoder

P
h
y
sical

C
h
an

n
el

Semantic

Channel

Transmitter Receiver

s X Y ŝ

Fig. 2. The framework of semantic communications for IoT networks.

The whole semantic communication can be trained by the
cross-entropy (CE) loss function, which is given by

LCE(s, ŝ) =
∑
i=1

(q (wi)− 1) log (1− p (wi))

−
∑
i=1

q (wi) log (p (wi)),
(4)

where q(wi) is the real probability that the i-th word, wi,
appears in source sentence s, and p(wi) is the predicted
probability that the i-th word, wi, appears in ŝ. CE can
measure the difference between the two distributions. Through
minimizing the CE loss, the network can learn the word
distribution, q(wi), in the source sentence, s. Consequently,
the syntax, phrase, and the meaning of words in the context
can be learnt by DNNs.

B. Problem Description
Instead of bits, the input sentence, s, in the DeepSC, will

cause that the learned constellation is no longer limited to a
few points anymore. After transmitting X, the fading channel
increases the difficulty of model training compared with the
AWGN channel. Meanwhile, the huge number of parameters,
α,β,χ, δ, indicates the complexity of the whole model.
These factors limit DeepSC for IoT networks and incur the
aforementioned Questions 1-3, including feasible constellation
design, training for fading channel, and model compression.

1) Training of fading channel: In DL, the training process
can be divided forward-propagation to predict the target and
back-propagation to converge the neural network, as stated in
the following.

Forward-propagation: From the received signal to recover
semantic information, the estimation sentence is given by

ŝ = S−1χ

(
C−1δ (Y)

)
, (5)

Back-propagation: Taking semantic encoder as an example,
the parameter vector at the tth iteration are is updated by

β(t) = β(t− 1)− η ∂LCE
∂β

, (6)

where η is the learning rate and ∂LCE

∂β is the gradient, computed
by

∂LCE
∂β

=
∂LCE
∂ŝ

∂ŝ

∂Y

∂Y

∂X

∂X

∂β

=
∂LCE
∂ŝ

∂ŝ

∂Y
H
∂X

∂β
.

(7)

In (7), H will introduce stochasticity during weight updat-
ing. For an AWGN channel, H = I will not affect it. However,
for fading channels, H is random, which may lead to that β
fails to converge to the global optimum while the forward-
propagation in (5) is unable to recover semantic information
accurately based on the local optimum. Thus, it is critical to
design the training process to mitigate the effects of H, which
also makes the DeepSC applicable for fading channels.

2) Feasible constellation design: Generally, the DL mod-
els run on floating-point operations (FLOPs), which means
that the input, output, and weights are in a large range of
±1.40129 × 10−45 to ±3.40282 × 10+38 [34]. Although
DeepSC can learn the constellations from the source infor-
mation and channel statistics, the learned constellation points,
such as cluster constellation [35], are disordered in the range
of ±1.40129 × 10−45 to ±3.40282 × 10+38, which brings
additional burden to the hardware of IoT devices, for instance,
the high-resolution phase-shift and amplitude-shift pose high
requirements on the circuit. Therefore, it is desired to form
feasible constellations with only finite points for the current
radio frequency (RF) systems. In other words, we have to
design a smaller constellation for the DeepSC.

3) Model communication: The more parameters DeepSC
has, the stronger the signal processing ability, which however
increases computational complexity and model size and results
in high power consumption. In the distributed DeepSC system,
the trained DeepSC model deployed at local IoT devices is
frequently updated to perform intelligent tasks better. The
IoT application limits the bandwidth and cost of distributing
the DeepSC model. Furthermore, to extend the IoT network
lifetime, especially the battery lifetime, most local devices

SUBMIT TO IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 5

are with finite storage and computation capability, which
limits the size of DeepSC. Therefore, compressing DeepSC
not only reduces the latency of model transmission between
the cloud/edge platform and local devices but also makes it
possible to run the DL model on local devices.

III. PROPOSED LITE DISTRIBUTED SEMANTIC
COMMUNICATION SYSTEM

To address the identified challenges in Section II, we pro-
pose a lite distributed semantic communication system, named
L-DeepSC. We analyze the effects of CSI in the model training
under fading channels and design a CSI-aided training process
to overcome the fading effects, which successfully deals with
Question 1. Besides, the weight pruning and quantization are
investigated to address Question 2. Finally, our finite-points
constellation design solves Question 3, effectively.

A. Deep De-noise Network based CSI Refinement and Can-
cellation

The most common method to reduce the effects of fading
channels in wireless communication is to use the known
channel properties of a communication link, CSI. Similarly,
CSI can also reduce the channel impacts in training L-DeepSC.
Next, we will first analyze the role of CSI in L-DeepSC
training.

In order to simplify the analysis, we assume the transmitter
and the receiver are with one-layer dense with sigmoid activa-
tion, where transmitter has an additional untrainable embed-
ding layer, and receiver also has an untrainable de-embedding
layer. The IoT devices are with the trained transmitter model
and the cloud/edge platform works as the receiver, as shown
in the system model Fig. 2. The IoT devices and cloud/edge
platform are equipped with the same number of antennas.
After the embedding layer, the source message, s, is embedded
into, S. Then, encode S into

X = σ (WTS+ bT) , (8)

where X2 is the semantic features transmitted from the IoT
devices to the cloud/edge platform. WT and bT are the train-
able parameters to extract the features from source message
s, and σ(·) is the sigmoid activation function.

The received symbol at the cloud/edge platform is affected
by channel H and AWGN as in (2). From the received symbol,
the cloud/edge platform recovers the embedding matrix by

Ŝ = σ (WRY + bR) , (9)

where the estimated source message, ŝ, can be obtained after
de-embedding layer. WR and bR can learn to recover s. The
L-DeepSC can be optimized by the loss function in (4). The
fading channels not only contaminates the gradients in the
back-propagation, but also restricts the representation power
in the forward-propagation.

2Here, we have avoided discussion of complex signal. If the complex signal
is X̄, then X̄ = [< (X) ,= (X)] .

Back-propagation: It updates parameter WT by its gradi-
ent

∂LCE (̂s, s)
∂WT

= (FRWRHFT)
T∇ŝLCE (̂s, s) sT , (10)

where FR ∼ diag (σ′ (WRy + bR)) and FT ∼
diag (σ′ (WT s+ bT)). In (10), the H is untrainable and
random, therefore it will cause perturbation for the weight
updating, i.e., the weight updating with higher variance. If
the transmitter consists of very deep neural networks, the
perturbation will affect the back-propagation of the whole
transmitter network, where the perturbation will propagate to
the whole transmitter network by the chain rule.

Forward-propagation: With the received signal WR, the
source messages can be recovered by

Ŝ = σ (WRY + bR)

= σ (WRHX+WRN+ bR) .
(11)

In (11), WR has to learn how to deal with the channel
effects and decode at the same time, which increases training
burden and reduces network expression capability. Meanwhile,
the errors caused by channel effects also propagate to the
subsequent layers for the L-DeepSC receiver with multiple
layers.

The impacts of channel can be mitigated by exploiting CSI
at the cloud/edge. If channel H is known, then the received
symbol can be processed by

Ỹ =
(
HHH

)−1
HHY = X+ Ñ, (12)

where Ñ =
(
HHH

)−1
HHN. In (12), the channel effect

is transferred from multiplicative noise to additive noise, Ñ,
which provides the possibility of stable back-propagation as
well as the stronger capability of network representation.
With (12), back-propagation and forward-propagation can be
performed by setting H = I in (10) and (11), respectively.
Therefore, the channel effects can be completely removed.

The above discussion shows the importance of CSI in
model training. However, CSI can be only estimated generally,
i.e., least-squared (LS), linear minimum mean-squared error
(LMMSE), or minimum mean-squared error (MMSE) estima-
tors. Due to exploiting prior channel statistics, LMMSE and
MMSE estimators usually perform better than the LS estima-
tors. Thus, LMMSE and MMSE estimators are sensitive to the
accuracy of channel statistic while the LS estimator requires
no prior channel information. Meanwhile, DL techniques can
also be used to improve the performance of channel estimation
[36], [37].

For simplicity, we initially use the LS estimator. Then, we
adopt the deep de-noise network to increase the resolution of
the LS estimator as in [38] shown in Fig. 3. Particularly, the
rough CSI estimated by the LS estimator with few pilots first
denoted by

Hrough = YpX
H
p = H+NXH

p , (13)

where Yp = HXp+N, Yp is the received pilot signal, Xp is
the transmitted pilot signals. Then, (13) can be represented as

Hrough = H+ N̂, (14)

SUBMIT TO IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 6

ADNet

Channel

Cancellation
Receiver

H
rough

H
refine

LS

Estimator
pilotY

dataY dataY ŝ

Fig. 3. The proposed CSI refinement and cancellation based on de-noise
neural networks.

where N̂ = NXH
p .

From (14), Hrough consists of exact H and the noise,
N̂. De-noise neural networks are used to recover H more
accurately from Hrough by considering H and Hrough as the
original picture and noisy picture, respectively. Here, we ex-
ploit attention-guided denoising convolutional neural network
(ADNet) [39] to refine CSI. ADNet includes four blocks,
a sparse block, a feature enhancement block, an attention
block, and a reconstruction block. After the input image, the
sparse block is used to extract useful features from the given
noisy image. Attention block can extract the noise information
hidden in the complex background and is integrated into the
feature enhancement block to reduce the complexity. Finally,
the de-noised image is reconstructed by the reconstruction
block.

The refined CSI, Hrefine denoted by

Hrefine = ADNet
(
Hrough

)
. (15)

In (15), the ADNet(·) is trained the the loss function,
L (Hrefine,H) = 1

2 ‖Hrefine −H‖2F . Since the performance
of the LS estimator is similar to that of LMMSE and MMSE
estimators in the high SNR region, we pay more attention
to the low SNR region when training ADNet. With proper
training, ADNet can mitigate the impacts from noise but
without any prior channel information, especially in the low
SNR region. Such a design provides a good solution for
Question 1.

B. Model Compression

Through applying CSI into model training, the cloud/edge
platform can extract the semantic features from L-DeepSC.
However, the size and complexity of the trained L-DeepSC
model are still very large, which causes high latency for the
cloud/edge platform to broadcast updated L-DeepSC. Note that
both weights pruning and quantization can reduce the model
size and complexity, therefore, we compress the DeepSC
model by a joint pruning-quantization scheme to make it
affordable for IoT devices. As shown in Fig. 4, the original
weights are first pruned at a high-precision level by identifying
and removing the unnecessary weights, which makes the
network sparse. Quantization is then used to convert the trained
L-DeepSC model into a low-precision level. The proposed
network sparsification and quantization can address Question
3 and are introduced in detail in the following.

0.88 0.19 0.35 -2.34

-1.08 0.55 0.93 -0.97

0.53 0.41 0.32 -0.49

-0.79 -0.84 -1.27 0.24

0.88 0 0 -2.34

-1.08 0.55 0.93 -0.97

0.53 0 0 0

-0.79 -0.84 -1.27 0

1 0 0 -1

-1 1 1 -1

1 0 0 0

-1 -1 -1 0

(a) (b) (c)

Fig. 4. Flowchart of the proposed joint pruning-quantization, (a) the original
weights matrix; (b) the weights after pruning, where the example pruning
function is x = 0 for x < 0.5; (c) the weights after quantization, where the
example quantization function is x = sign(x).

Algorithm 1 Network Sparsification.
Input: The pre-trained weights W, the sparse ratio γ.
Output: The pruned weights Wpruned.

1: Count the the total number of connections, M .
2: Sort the whole connections from small to large, s.
3: Obtain the threshold by (17) with M and γ, wthre.
4: for n = 1 to N do
5: Prune the connections by (16), W(n)

pruned.
6: end for
7: Fine-tune the pruned model by loss function (4).

1) Network Sparsification: A proper criterion to disable
neural connections is important. Obviously, the connections
with small weight values can be pruned. Therefore, the pruning
issue here turns into setting a proper pruning threshold.

As shown in Fig. 2(b), the DeepSC consists with neural
networks, α,β,χ, δ, where each includes multiple layers.
As the DeepSC mainly consists of dense layers, we choose
unstructured pruning method in this paper, where the com-
putation workload of sparse model can be reduced by the
sparsity algorithm and FPGA design [40], [41], i.e., sparse
matrix-vector multiplication. Assume there are total N layers
in the pre-trained DeepSC model with W

(n)
i,j being the weight

of connection between the ith neuron of the (n + 1)th layer
and jth neuron of nth layer. With a pruning threshold wthre,
the model weights can be pruned by

W
(n)
i,j =

{
W

(n)
i,j , if

∣∣∣W(n)
i,j

∣∣∣ > wthre,

0, otherwise,
(16)

We determine the pruning threshold by

wthre = sM×γ , (17)

where s = sort
([
W(1),W(2), · · · ,W(N)

])
, is the sorted

weights value from least important one to the most important
one, M is the total number of connections, and γ, the sparsity
ratio between 0 and 1, indicates the proportion of zero values
in weights. The weight pruning can be divided into two steps,
weight pruning to disable some neuron connections and fine-
tine to recover the accuracy, as shown in Algorithm 1.

2) Network Quantization: The quantization includes weight
quantization and activation quantization. The weights, W(n)

i,j ,
from a trained model, can be converted from 32-bit float point

SUBMIT TO IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 7

Algorithm 2 Network Quantization.
Input: The pre-trained weights W, the quantization level m,

the correlation coefficient c, and the calibration data K.
Output: The pre-trained weights Wquantized and the range of

activation xmin and xmax.
1: Phase 1: Weights Quantization.
2: for n = 1 to N do
3: Compute the range of weights, max

(
W(n)

)
and

min
(
W(n)

)
.

4: Quantize the weights by (18), W̃(n).
5: end for

6: Phase 2: Activations Quantization.
7: for t = 1 to K do
8: for n = 1 to N do
9: Update the dynamic range of activation by (20) and

(21), x(n)min(t) and x(n)max(t).
10: end for
11: end for
12: Quantize the activations by (22).
13: Fine-tune the quantized model by STE and loss function

(4).

to m-bits integer through applying the quantization function
by

W̃
(n)
i,j = round

(
qw

(
W

(n)
i,j −min

(
W(n)

)))
, (18)

where qw is the scale-factor to map the dynamic range of float
points to an m-bits integer, which is given by

qw =
2m − 1

max
(
W(n)

)
−min

(
W(n)

) . (19)

For activation quantization, the results of matrix multiplica-
tion are stored in accumulators. Due to the limited dynamic
range of integer formats, it is possible that the accumula-
tor overflows quickly if the bit-width for the weights and
activation is the same. Therefore, accumulators are usually
implemented with higher bit-widths, for example, INT32 +=
INT8× INT8. Besides, the range of activations is dynamic
and dependent on the input data. Therefore, the output of
activations has to re-quantize into m-bits integer for the subse-
quent calculation. Unlike weights that are constant, the output
of activations usually includes elements that are statistical
outliers, which expand the actual dynamic range. For example,
even if 99% of the data is distributed between -100 and
100, an outlier, 10,000, will extend the dynamic range into
from -100 to 10,000, which significantly reduces the mapping
resolution. In order to reduce the influence from the outliers,
an exponential moving average (EMA) is used by

x
(n)
min(t+ 1) = (1− c)x(n)min(t) + cmin

(
X(n) (t)

)
, (20)

and

x(n)max(t+ 1) = (1− c)x(n)max(t) + cmax
(
X(n) (t)

)
, (21)

where x
(n)
min(t + 1) and x

(n)
max(t + 1) are used for the range

of activation quantization, and x
(n)
min(1) = min

(
X(n) (1)

)
,

x
(n)
max(1) = max

(
X(n) (1)

)
, X(n)(t) is the output of activa-

tions at nth layer with tth batch data, c ∈ [0, 1) represents
the correlation between the current x(n)min/x(n)max with its past
value. The effects from outliers can be mitigated by the past
normal values. After t+1 epochs, the x(n)min and x(n)max are fixed
based on x(n)min(t+1) and x(n)max(t+1). Then, the output of the
activations can be quantized by

X̃(n) = clamp
(

round
(
qx

(
X(n) − x(n)min

))
;−M,M

)
,

(22)
where qa = (2m − 1)/(x

(n)
max − x(n)min) is the scale-factor and

clamp (·) is used to eliminate the quantized outliers, which is
given by

clamp
(
X(n);−T, T

)
= min

(
max

(
X(n),−T

)
, T
)
, (23)

where T = 2m − 1, which is the border of the m-bits integer
format.

As shown in Algorithm 2, the network quantization includes
two phases: i) weight quantization; ii) activations quantization.
In phase 1, the weights of each layer can be quantized by
(18) directly. In phase 2, the calibration process is applied
by running a few calibration batches in order to get the
activations statistics. In each batch, x(n)min(t) and x(n)max(t) will
be updated based on the activations statistics from the previous
batches. These quantization processes might lead to slight
accuracy degradation. The quantization-aware training (QAT)
is required to re-train for minimizing the loss of accuracy.
Since the rounding operation is not derivable, a straight-
through estimator (STE) is used to estimate the gradient of
quantized weights in the back-propagation [42].

C. Constellation Design with Fewer Quantization Bits

The cloud/edge platform can further reduce the size of L-
DeepSC with model compression after the model is trained,
which not only reduces the latency significantly for broad-
casting the updated DeepSC to IoT devices, but also changes
DeepSC to L-DeepSC with low complexity. However, high-
resolution waveform poses high requirements cost-sensitive
IoT devices. In other words, the cost-sensitive IoT devices
are usually capacity-limited and cannot afford a large number
of constellation points which are with phase and amplitude
close to each other.

Different from bits, the source message, s, is more com-
plicated and the learned constellation will not be limited to
a few points, which brings additional burden on hardware.
Besides, the DL models generally run in FP32, which also
expands the range of constellation. Thus, we aim to reduce the
size of learned constellation without degrading performance,
where the output of X is the learned constellation while X
is also the output of activation of last layer at the local IoT
devices. Inspired from the network quantization, we convert
the learned high-resolution constellation into low-resolution
one with few points. Thus, we use two-stage quantization to
narrow the range of constellations, which is represented by

Xdequantize =
Xquantize

qx
+ xmin, (24)

SUBMIT TO IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 8

where Xquantize is the quantized X from (22), qx is the scale-
factor and xmin is the obtained by (20) and Xdequantize is the
dequantized X.

First, we quantize the X into m-bits integer so that the
range of X is narrowed to the size of 2m. For example, when
m = 8, the size of the constellation is reduced to 256. Then,
Xquantize is dequantize to restore X. Such an Xdequantize has a
similar distribution as X but is with fewer constellation points,
which is helpful to lower the hardware cost at transmitter and
preserves the performance as much as possible and therefore
provides the solution for Question 2.

In summary, by exploiting the solutions for the afore-
mentioned Questions, we develop a lite distributed semantic
communication system, named L-DeepSC, which could reduce
the latency for model exchange under limited bandwidth, run
the models at IoT devices with low power consumption, and
deal with the distortion from fading channels when upload-
ing semantic features. As a result, the proposed L-DeepSC
becomes a good candidate for the IoT networks.

IV. NUMERICAL RESULTS

In this section, we compare the proposed L-DeepSC with
traditional methods under different fading channels, including
Rayleigh and Rician fading channels. The weights pruning
and quantization are also verified under fading channels. For
the Rayleigh fading channel, the channel coefficient follows
CN (0, 1); for the Rician fading channel. it follows CN (µ, σ2)
with µ =

√
k/(k + 1) and σ =

√
1/(k + 1). where k is the

Rician coefficient and we use k = 2 in our simulation.
The transmitter of L-DeepSC is the same as that of DeepSC

in [22]. The parameters for the decoding network at the
receiver are shown in Table I for the fading channels, where
the sum of the outputs of Dense 3 and Dense 5 is the
input of the LayerNorm layer. The Transformer encoder and
decoder are semantic encoder and decoder [22], respectively,
which enables the systems to understand text and extract
semantic information. We also prune the whole network since
we consider the communications between cloud/edge platform
and each IoT devices as well as the communications between
IoT devices.

TABLE I
THE SETTING OF L-DEEPSC TRANSCEIVER.

Layer Name Units Activation

Transmitter

Embedding layer 128 None
4×Transformer Encoder 128 (8 heads) None

Dense 1 256 Relu
Dense 2 16 None

Receiver

Dense 3 128 Relu
Dense 4 512 Relu
Dense 5 128 None

LayerNorm None None
4×Transformer Decoder 128 (8 heads) None

Prediction Layer Dictionary Size Softmax

The output features are with 8 symbols per word. We
initialize the learnable embedding matrix from N (0, 1) with
shape (vocab size, embedding-dim). The embedding dim is
set to 128 in our program and the vocab size depends on
the training dataset. The batch size is 64, learning rate is

128−0.5 min
(
step−0.5, step× 4000−1.5

)
, where step is the

counting number in the back-propagation. This corresponds
to increasing the learning rate linearly for the first 4000
training steps and decreasing it thereafter proportionally to
the inverse square root of the step number. We also adopt
the L2 regularization and the Adam optimizer with β1 = 0.9,
β2 = 0.98, and ε = 10−8.

The adopted dataset is the proceedings of the European Par-
liament [43], which consists of around 2.0 million sentences
and 53 million words. The dataset is pre-processed into lengths
of sentences with 4 to 30 words and is split into training data
and testing data with 0.1 ratio. The benchmark approach is
based on separate source coding and channel coding technolo-
gies, which adopt variable-length coding (Huffman coding)
for source coding, where we build the Huffman codes by
counting the frequency of letters and punctuation so that the
look-up table is not large. Turbo coding and Reed-Solomon
(RS) coding [44] for channel coding, where turbo decoding
method is log-MAP algorithm with 5 iterations, and quadra-
ture amplitude modulation (QAM). The bilingual evaluation
understudy (BLEU) score is used to measure the performance
[45].

A. Constellation Design

Fig. 5 compares the full-resolution constellation and the
4-bits constellation. The full-resolution constellation points
in Fig. 5(a) contain more information due to the higher
resolution, but require complicated hardware, which is almost
impossible to design. Through mapping the full-resolution
constellation into a finite space, the 4-bits constellation points
in Fig. 5(b) become simplified, which makes it possible
to implement in the existing RF system. Note that the 4-
bits constellation keeps a similar distribution with the full-
resolution constellation. For example, there exist certain blank
regions at the edge of the constellation in Fig. 5(a), while the
4-bits constellation shows a similar trend in Fig. 5(b). Such
similar distribution prevents sharp performance degradation
when the resolution of constellation decreases significantly.

Fig. 6 shows the BLEU scores versus SNR for different con-
stellation sizes under AWGN, including 4-bits constellation, 8-
bits constellation, and full-resolution constellation. All of them
could achieve very similar performance when SNR > 9 dB,
which demonstrates the constellation design is effective and
cause no significant performance degradation. Full resolution
and 8-bits constellations perform slightly better than 4-bits
constellation when SNR is low. This is because some weights
information used for denoising is lost when the resolution of
the constellation is small.

B. Performance over Fading Channels

Fig. 7 compares the channel estimation MSEs of LS,
MMSE, and ADNet-aided LS estimator versus SNR under the
Rayleigh fading channels. Note that MMSE equals to LMMSE
for the AWGN channels. The MMSE and LS estimators have
similar accuracy in the high SNR region, thus the range of
training SNRs for the ADNet is set from 0 dB to 10 dB to
improve the performance of the LS estimator in the low SNR

SUBMIT TO IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 9

(a) Full-resolution Constellation (b) 4-bits constellation

Fig. 5. The comparison between the full-resolution constellation and 4-bits constellation.

0 3 6 9 12 15 18

SNR (dB)

0

0.2

0.4

0.6

0.8

1

B
L

E
U

 S
c
o

re

Original Constellation

8-bits Constellation

4-bits Constellation

Fig. 6. The BLEU scores of different constellation sizes versus SNR under
AWGN.

region. As a result, the MSE of ADNet based LS estimator
is significantly lower than that of LS and MMSE estimators
when SNR is low. With increasing SNR, the MSE of ADNet
based LS estimator approaches to that of the LS and MMSE
estimators. Therefore, the ADNet based LS estimator can be
substituted by the LS estimator to reduce the complexity in
the high SNR region.

Fig. 8 and Fig. 9 illustrate the relationship between BLEU
score and SNR with the 4-bits constellation over the Rician
and the Rayleigh fading channels, respectively, where DeepSC
is trained with perfect CSI and the L-DeepSC is trained
with perfect CSI, rough CSI by (14), refined CSI by (15)
and without CSI, respectively. The traditional approaches are
Huffman coding with (5,7) RS and with turbo coding (rate
1/2), both with 64-QAM. We observe that all DL-enabled
approaches are more competitive under the fading channels.
RS coding is better than turbo coding in terms of BLEU score.
This is because RS coding is linear block coding with long

0 3 6 9 12 15 18

SNR (dB)

10-3

10-2

10-1

100

M
S

E

LS estimator

MMSE estimator

LS estimator with ADNet

Fig. 7. The MSE for MMSE estimator, LS estimator, and the proposed ADNet
based LS estimator.

block-length, which can correct long bit sequences, however,
turbo coding is convolution coding with short block-length,
where the coded bits only are related with previous m bits,
i.e., m = 3, so that the adjacent words result in higher error
rate. The performance of L-DeepSC is very close to that of
DeepSC in terms of BLEU score, but requires much less
bandwidth for communications. The system trained without
CSI performs worse than those trained with CSI, especially
under the Rayleigh fading channels, which also confirms the
analysis of (10) and (11). Without CSI, the performance differ-
ence between the Rayleigh channels and the Rician channels is
caused by the line-of-sight (LOS), which can help the systems
recognize the semantic information during training. Besides,
with the aid of CSI, the effects of the fading channels are
mitigated significantly, as we have analyzed before. When
SNR is low, the system with perfect CSI or refined CSI
outperforms that with rough CSI. As SNR increases, all these
systems, L-DeepSC with perfect CSI, refined CSI, and rough

SUBMIT TO IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 10

0 3 6 9 12 15 18

SNR (dB)

0

0.2

0.4

0.6

0.8

1
B

L
E

U
 S

c
o

re

DeepSC with perfect CSI

L-DeepSC with perfect CSI

L-DeepSC with refined CSI

L-DeepSC with rough CSI

L-DeepSC without CSI

huffman + RS with perfect CSI

huffman + Turbo with perfect CSI

Fig. 8. The BLEU scores versus SNR under Ricain fading channels, with
perfect CSI, rough CSI, refined CSI, and no CSI.

0 3 6 9 12 15 18

SNR (dB)

0

0.2

0.4

0.6

0.8

1

B
L

E
U

 S
c
o

re

DeepSC with perfect CSI

L-DeepSC with perfect CSI

L-DeepSC with refined CSI

L-DeepSC with rough CSI

L-DeepSC without CSI

huffman + RS with perfect CSI

huffman + Turbo with perfect CSI

Fig. 9. The BLEU scores versus SNR under Rayleigh fading channels, with
perfect CSI, rough CSI, refined CSI, and no CSI.

CSI, converge to similar performance gradually.

C. Model Compression

In this experiment, we investigate the performance of
network slimmer, including network sparsification, network
quantization, and the combination of both. The pre-trained
model used for pruning and quantization is trained with 4-
bits constellation under the Rician fading channels.

Fig. 10 shows the influences of network sparsity ratio, γ,
on the BLEU scores with different SNRs under the Rician
fading channels, where the system is pruned directly when
γ increases from 0 to 0.9 and is pruned with fine-tuning
when γ increases to 0.99 continually. The proposed L-DeepSC
achieves almost the same BLEU scores when the γ increases
from 0 to 0.9, which shows that there exists a mass of
weights redundancy in the trained DeepSC model. When the
γ increases to 0.99, the BLEU scores still drop slightly due to
the processing of fine-tuning, where the performance loss at
0 dB and 6 dB is larger than that at 12 dB and 18 dB. Thus,

0 0.1 0.3 0.5 0.7 0.9 0.99

0

0.2

0.4

0.6

0.8

1

B
L

E
U

 S
c
o

re

SNR = 18dB

SNR = 12dB

SNR = 6dB

SNR = 0dB

Fig. 10. The BLEU scores of different SNRs versus sparsity ratio, γ, under
Rician fadings channel with the refined CSI.

2 4 8 12 16 20

0

0.2

0.4

0.6

0.8

1

B
L

E
U

 S
c
o

re

SNR = 18dB

SNR = 12dB

SNR = 6dB

SNR = 0dB

Fig. 11. The BLEU scores of different SNRs versus quantization level, m,
under Rician fading channels with the refined CSI.

for the high SNR cases, the model can be pruned directly
with only slight performance degradation. For the low SNR
region, it is possible to prune 99% weights without significant
performance degradation when the system is sensitive to power
consumption.

Fig. 11 demonstrates the relationship between the BLEU
score and the quantization bit number, m, under the Rician
fading channels, where m is defined in (19), and the system
is quantized with QAT when the m is smaller than 2. The
performance with m = 8 to m = 20 is similar, which indicates
that the effectiveness of low-resolution neural networks. If
the system is more sensitive to power consumption and can
tolerant to certain performance degradation, the resolution of
the neural networks can be further reduced to 4-bits level.
However, the BLEU score decreases dramatically from m = 4
to m = 2 over the whole SRN range since most of the key
information is removed in the low-resolution neural network.

Table II compares the BLEU scores and compression ratios
under different combinations of weights pruning and weights

SUBMIT TO IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 11

TABLE II
THE BLEU SCORE AND COMPRESSION RATIO, ψ, COMPARISONS VERSUS DIFFERENT SPARSITY RATIO, γ , AND QUANTIZATION LEVEL, m, IN SNR =

12dB.

Pruned Model BLEU score
with m = 4

ψ
BLEU score
with m = 8

ψ
BLEU score
with m = 12

ψ
BLEU score
with m = 16

ψ
BLEU score
with m = 32

ψ

γ = 0 0.811194 8 0.906763 4 0.902354 2.667 0.903089 2 0.895602 1
γ = 0.3 0.838967 11.429 0.892745 5.714 0.908537 3.81 0.910184 2.857 0.89851 1.429
γ = 0.6 0.835863 20.0 0.897143 10.0 0.90815 6.667 0.900468 5.0 0.9093 2.5
γ = 0.9 0.810322 80.0 0.895306 40.0 0.898784 26.667 0.910554 20.0 0.89515 10
γ = 0.95 0.779685 160.0 0.875814 80.0 0.873426 53.333 0.877221 40.0 0.87653 20

TABLE III
THE COMPARISON BETWEEN L-DEEPSC AND DEEPSC TRANSCEIVER IN

PARAMETERS, SIZE, RUNTIME, AND BLEU SCORE.

Parameters Size Runtime BLEU score
γ = 0,
m = 32

3,333,120 12.3 MB 20ms 0.895602

γ = 0.6,
m = 8

1,333,247 1.28 MB 18ms 0.897143

quantization with SNR = 12 dB, where the compression ratio
is computed by

ψ =
M × 32

Mpruned ×m
, (25)

where M is the number of weights before pruning and Mpruned

is the number of weights remaining after pruning, 32 is the
number of required bits for FP32 and m is the number of the
required bits after quantization. The performance decreases
when γ increases or m decreases, which are consistent with
Fig. 16 and Fig. 11. From the table, different compression
ratios could lead to similar performance. For example, the
BLEU score with γ = 30% and m = 8 is similar to that with
γ = 90% and m = 12, but the compression ratio is about five
times different, i.e., 5.714 and 26.667. By properly choosing
a suitable sparsity ratio and a quantization level, the same
performance can be achieved but with a high compression
ratio.

Table III compares the DeepSC and L-DeepSC with 60%
weights sparsity and 8-bit quantization when SNR is 12 dB,
where we mainly consider the transmission of the weights.
The simulation is performed in CPU by the computer with
Intel Core i7-9700CPU@3.00GHz. After network slimmer,
the model size is reduced from 12.3 MB to 1.28 MB while
achieving a similar BLEU score, which means the bandwidth
resource can be saved significantly without degrading the
performance. Besides, the runtime slightly decreases from
20ms to 18ms since the unstructured pruning method is
employed, and there exists the communication time between
flash memory and some operation that can not be optimized.
If the model size is bigger, the L-DeepSC could save more
runtime.

V. CONCLUSION

In this paper, we proposed a lite distributed semantic
communication system, named L-DeepSC, for the Internet
of Things (IoT) networks, where the participating devices
are usually with limited power and computing capabilities.

Specially, the receiver and feature extractor were designed
jointly for text transmission. Firstly, we analyzed the effec-
tiveness of CSI in forward-propagation and back-propagation
during system training over the fading channels. The analyt-
ical results reveal that the fading channels contaminate the
weights update and restrict model representation capability.
Thus, a refined LS estimator with fewer pilot overheads
was developed to eliminate the effects of fading channels.
Besides, we map the full-resolution original constellation into
finite bits constellation to lower the cost of IoT devices,
which was verified by simulation results. Finally, due to
the limited narrow bandwidth and computational capability
in IoT networks, two model compression approaches have
been proposed: 1) the network sparsification to prune the
unnecessary weights, and 2) network quantization to reduce
the weights resolution. The simulation results validated that
the proposed L-DeepSC outperforms the traditional methods,
especially in the low SNR regime, and has provided insights
into the balance among compression ratio, sparsity ratio, and
quantization level. Therefore, our proposed L-DeepSC is a
promising candidate for intelligent IoT networks, especially
in the low SNR regime.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Thingss: a survey,”
Computer Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[2] T. Qiu, N. Chen, K. Li, M. Atiquzzaman, and W. Zhao, “How can
heterogeneous Internet of Things build our future: A survey,” IEEE
Commun. Surv. Tutorials, vol. 20, no. 3, pp. 2011–2027, Feb. 2018.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[4] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, “Deep
learning for IoT big data and streaming analytics: A survey,” IEEE
Commun. Surv. Tutorials, vol. 20, no. 4, pp. 2923–2960, Jun. 2018.

[5] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for
the Internet of Things with edge computing,” IEEE Network, vol. 32,
no. 1, pp. 96–101, Jan. 2018.

[6] R. Carnap, Y. Bar-Hillel et al., An Outline of A Theory of Semantic
Information. RLE Technical Reports 247, Research Laboratory of
Electronics, Massachusetts Institute of Technology., Cambridge MA,
Oct. 1952.

[7] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
Cambridge University Press, 2005.

[8] I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, Feature Extraction:
Foundations and Applications. Springer, 2008, vol. 207.

[9] R. Szeliski, Computer Vision: Algorithms and Applications. Springer
Science & Business Media, 2010.

[10] N. Indurkhya and F. J. Damerau, Handbook of Natural Language
Processing. CRC Press, 2010, vol. 2.

[11] C. E. Shannon and W. Weaver, The Mathematical Theory of Communi-
cation. The University of Illinois Press, 1949.

[12] D. Tse and P. Viswanath, Fundamentals Wireless Communication.
Cambridge University Press, 2005.

SUBMIT TO IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 12

[13] Z. Qin, H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep learning in physical
layer communications,” IEEE Wireless Commun., vol. 26, no. 2, pp.
93–99, Apr. 2019.

[14] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Trans. Cogn. Comm. & Networking, vol. 3, no. 4,
pp. 563–575, Oct. 2017.

[15] S. Dörner, S. Cammerer, J. Hoydis, and S. ten Brink, “Deep learning
based communication over the air,” IEEE J. Sel. Topics Signal Process-
ing, vol. 12, no. 1, pp. 132–143, Dec. 2018.

[16] F. A. Aoudia and J. Hoydis, “Model-free training of end-to-end com-
munication systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 11, pp.
2503–2516, Aug. 2019.

[17] H. Ye, L. Liang, G. Y. Li, and B.-H. Juang, “Deep learning-based end-to-
end wireless communication systems with conditional gans as unknown
channels,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3133–
3143, Feb. 2020.

[18] E. Bourtsoulatze, D. B. Kurka, and D. Gündüz, “Deep joint source-
channel coding for wireless image transmission,” IEEE Trans. Cogn.
Commun. Netw., vol. 5, no. 3, pp. 567–579, May 2019.

[19] C. Lee, J. Lin, P. Chen, and Y. Chang, “Deep learning-constructed joint
transmission-recognition for internet of things,” IEEE Access, vol. 7, pp.
76 547–76 561, Jun. 2019.

[20] M. Jankowski, D. Gündüz, and K. Mikolajczyk, “Joint device-edge in-
ference over wireless links with pruning,” in Prob. IEEE Int’l Workshop
Signal Process. Advances Wireless Commun. (SPAWC), Atlanta, GA,
USA, Aug. 2020, pp. 1–5.

[21] N. Farsad, M. Rao, and A. Goldsmith, “Deep learning for joint source-
channel coding of text,” in Proc. IEEE Int’l. Conf. Acoustics Speech
Signal Process. (ICASSP), Calgary, AB, Canada, Apr. 2018, pp. 2326–
2330.

[22] H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled
semantic communication systems,” arXiv:2006.10685, 2020. [Online].
Available: https://arxiv.org/abs/2006.10685

[23] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus,
“Exploiting linear structure within convolutional networks for efficient
evaluation,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), Montreal,
Quebec, Canada, Dec. 2014, pp. 1269–1277.

[24] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), Montreal, Quebec, Canada, Dec. 2015, pp. 1135–
1143.

[25] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” in Proc.
IEEE Int’l. Conf. on Comput. Vis. (ICCV), Venice, Italy, Oct. 2017, pp.
2755–2763.

[26] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” in Proc. IEEE Int’l. Conf. on Learning
Representations (ICLR), Toulon, France, Apr. 2017.

[27] R. Krishnamoorthi, “Quantizing deep convolutional networks for
efficient inference: A whitepaper,” arXiv:1806.08342, 2018. [Online].
Available: http://arxiv.org/abs/1806.08342

[28] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep
convolutional networks using vector quantization,” arXiv:1412.6115,
2014. [Online]. Available: http://arxiv.org/abs/1412.6115

[29] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network
quantization: Towards lossless cnns with low-precision weights,” in
Proc. IEEE Int’l. Conf. on Learning Representations (ICLR), Toulon,
France, Apr. 24-26, 2017.

[30] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,”
arXiv:1605.04711, 2016. [Online]. Available: http://arxiv.org/abs/1605.
04711

[31] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. G. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Salt Lake City, UT, USA, Jun. 2018, pp.
2704–2713.

[32] J. Guo, J. Wang, C.-K. Wen, S. Jin, and G. Y. Li, “Compression and
acceleration of neural networks for communications,” IEEE Wireless
Commun., vol. 27, no. 4, pp. 110–117, July 2020.

[33] D. Gil, A. Ferrández, H. Mora-Mora, and J. Peral, “Internet of Things: A
review of surveys based on context aware intelligent services,” Sensors,
vol. 16, no. 7, p. 1069, Jul. 2016.

[34] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2008, pp.
1–70, 2008.

[35] B. Zhu, J. Wang, L. He, and J. Song, “Joint transceiver optimization for
wireless communication phy using neural network,” IEEE J. Sel. Areas
Commun., vol. 37, no. 6, pp. 1364–1373, Mar. 2019.

[36] K. Thakkar, A. Goyal, and B. Bhattacharyya, “Deep learning and
channel estimation,” in Proc. Int’l Conf. on Adv. Comput. and Commun.
Systems (ICACCS), Coimbatore, India, Mar. 2020, pp. 745–751.

[37] E. Balevi, A. Doshi, and J. G. Andrews, “Massive MIMO channel
estimation with an untrained deep neural network,” IEEE Trans. Wireless
Commun., vol. 19, no. 3, pp. 2079–2090, Jan. 2020.

[38] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a
Gaussian denoiser: Residual learning of deep cnn for image denoising,”
IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, Feb. 2017.

[39] C. Tian, Y. Xu, Z. Li, W. Zuo, L. Fei, and H. Liu, “Attention-guided cnn
for image denoising,” Neural Netw., vol. 124, pp. 117–129, Apr. 2020.

[40] R. Dorrance, F. Ren, and D. Marković, “A scalable sparse matrix-vector
multiplication kernel for energy-efficient sparse-blas on fpgas,” in Proc.
ACM/SIGDA Int’l sym. Field-programmable gate arrays, Feb. 2014, pp.
161–170.

[41] L. Zhuo and V. K. Prasanna, “Sparse matrix-vector multiplication on
fpgas,” in Proc. ACM/SIGDA Int’l sym. Field-programmable gate arrays,
Feb. 2005, pp. 63–74.

[42] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating
gradients through stochastic neurons for conditional computation,”
arXiv:1308.3432, 2013. [Online]. Available: http://arxiv.org/abs/1308.
3432

[43] P. Koehn, “Europarl: A parallel corpus for statistical machine transla-
tion,” in MT Summit, vol. 5, 2005, pp. 79–86.

[44] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
J. Society Industrial Applied Math., vol. 8, no. 2, pp. 300–304, Jan. 1960.

[45] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proc. Annual Meeting
Assoc. Comput. Linguistics (ACL), Philadelphia, PA, USA, Jul. 2002,
pp. 311–318.

Huiqiang Xie (Student Member, IEEE) received
the B.S. degree from Northwestern Polytechnical
University and the M.S. degree from Chongqing
University. He is currently pursuing the Ph.D. degree
with the Queen Mary University of London, U.K.
His research interests include semantic communica-
tion, massive MIMO, and machine learning.

Zhijin Qin (Member, IEEE) received the B.S.
degree from the Beijing University of Posts and
Telecommunications, Beijing, China, in 2012, and
the Ph.D. degree in electronic engineering from
the Queen Mary University of London (QMUL),
London, U.K., in 2016.

She was a Post-Doctoral Research Associate with
Imperial College London from 2016 to 2017 and
then, a Lecturer with Lancaster University from
2017 to 2018. Since 2018, she has been a Lec-
turer with the School of Electronic Engineering

and Computer Science, QMUL. Her research interests include semantic
communications, deep learning and compressive sensing for wireless signal
processing. She was a recipient of the 2017 IEEE GLOBECOM Best Paper
Award and the 2018 IEEE Signal Processing Society Young Author Best
Paper Award. She serves as an Associate Editor for IEEE Transactions on
Communications, IEEE Communications Letters, and IEEE Transactions on
Cognitive Communications and Networking.

https://arxiv.org/abs/2006.10685
http://arxiv.org/abs/1806.08342
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432

	Introduction
	System Model and Problem Formulation
	Semantic Communication System
	Problem Description
	Training of fading channel
	Feasible constellation design
	Model communication

	Proposed Lite Distributed Semantic Communication System
	Deep De-noise Network based CSI Refinement and Cancellation
	Model Compression
	Network Sparsification
	Network Quantization

	Constellation Design with Fewer Quantization Bits

	Numerical Results
	Constellation Design
	Performance over Fading Channels
	Model Compression

	Conclusion
	References
	Biographies
	Huiqiang Xie
	Zhijin Qin

