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ABSTRACT

Recent research on piano transcription has focused primarily
on note events. Very few studies have investigated pedalling
techniques, which form an important aspect of expressive pi-
ano music performance. In this paper, we propose a novel
method for piano sustain-pedal detection based on Convolu-
tional Neural Networks (CNN). Inspired by different acoustic
characteristics at the start (pedal onset) versus during the ped-
alled segment, two binary classifiers are trained separately to
learn both temporal dependencies and timbral features using
CNN. Their outputs are fused in order to decide whether a
portion in a piano recording is played with the sustain pedal.
The proposed architecture and our detection system are as-
sessed using a dataset with frame-wise pedal on/off annota-
tions. An average F1 score of 0.74 is obtained for the test
set. The method performs better on pieces of Romantic-era
composers, who intended to deliver more colours to the piano
sound through pedalling techniques.

Index Terms— Piano sustain pedal, convolutional neural
networks, playing technique detection.

1. INTRODUCTION

The sustain pedal is frequently used for seamless legato play-
ing as well as the enrichment of sound in expressive piano
performance. This is achieved using the piano mechanism
whereby all dampers are lifted off the strings when the sus-
tain pedal is pressed. Strings associated with the sounding
notes are therefore sustained, while the others are slightly co-
excited through sympathetic resonance. It is noted that ped-
alling techniques are not always indicated in music scores and
can be played in many different ways, even if pedal markings
are provided [1]. Automatic sustain-pedal detection can help
reveal the secrets of artistic expressions in virtuoso perfor-
mance. In this paper, we define piano pedalling detection as
a task to localise the portions played with the sustain pedal in
an audio recording.
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Existing studies on piano sustain-pedal detection take
advantages of machine learning classifiers such as Support
Vector Machines (SVM), combined with hand-crafted audio
features of the sustain-pedal effects. In [2], notes played with
or without the sustain pedal are separated using a threshold
learnt through auto-regressive modelling of the energy of the
residuals after the harmonics have been removed. The resid-
ual energy was found to increase when the sustain pedal is
fully engaged in [3]. More features based on both harmonics
and residuals were exploited to identify notes played with
pedalling techniques of different timing and depth using a
trained decision-tree-based SVM model in [4]. Since these
features were extracted from isolated notes, dedicated new
features were developed to detect pedalling in polyphonic
music. A method for detecting onset times of legato ped-
alling (pressing the sustain pedal immediately after the note
onset) was first proposed in [5] based on a measure of sym-
pathetic resonance. Since a piano transcription technique was
used as an intermediate step, the robustness of this method
may be reduced by note transcription errors.

To overcome the limitations in previous works, we
propose a novel detection method based on CNN using a
new dataset. This consists of pieces by various composers
recorded in pairs with and without pedals, see Sec. 3.1 for de-
tails. CNNs have been widely used to boost the performance
in music information retrieval (MIR) tasks, such as tempo
estimation [6], singing voice detection [7] and so on. In our
approach, two CNN models with five 2D convolution layers
were first trained for binary classification from pre-segmented
fixed-length excerpts of pedal onsets and pedalled segments
separately. They were then used as detectors in short-time
analysis using overlapping windows to obtain local infor-
mation in the pieces with various lengths. Their outputs
were fused for identifying the presence/absence of the sustain
pedal from every frame. To the best of our knowledge, this
approach is the first to achieve piano sustain-pedal detection
from polyphonic piano music. It can also be incorporated
into a system for full transcription of piano music with the
help of the state-of-the-art note event detection proposed in
[8]. Python code of the experiments, along with the trained
models, are made available online'.

Thttps://github.com/beiciliang/sustain-pedal-detection
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Fig. 1. Framework of the sustain-pedal detection system.

2. METHOD

Given that pedal and no-pedal versions of audio files with the
same note events are available, two CNNs (see Sec. 2.1) are
trained to predict whether a segment is played with or without
pedal. Our approach, including how the models are trained, is
illustrated in Figure 1. According to the ground truth encoded
in MIDI data, onset and offset times of each sustain-pedal use
can be obtained. These times are used to prepare excerpts in
pairs (pedal and no-pedal) to train our CNN models as binary
classifiers (collectively designated as Conv2D). This training
strategy can facilitate the learning of features that are invari-
ant to note event changes. To obtain results for each piece,
we applied decision fusion [9] to the outputs of the classi-
fiers Conv2D-onset and Conv2D-segment from slid-
ing windows over the test piece in order to localise portions
played with the sustain pedal.

2.1. Conv2D Training

According to piano acoustics and the observations in our prior
works [4] and [5], musical features can be different in the
frames around a pedal onset versus the ones within a pedalled
segment. Here, a pedalled segment is referred to as samples
between a pedal onset time and its corresponding offset time.
Transient appears in the evolution of residual amplitude at the
moment when the sustain pedal is pressed. Along with the
engagement of the sustain pedal, more amplitude beatings are
observed in the harmonics. The extent of sympathetic reso-
nance and blurring effects are also enhanced. Therefore, we
trained two models to distinguish excerpts with pedal onset
and pedalled segment respectively from their associated no-
pedal excerpts.

With polyphonic piano music, musical features related
to the sustain pedal are rather subtle compared with features

input of Conv2D-onset or Conv2D-segment
mel-spectrogram (#frequency X #time X #channel)

convolution
20 x3 x7) |
max-pooling (2 X 2)
convolution (3 x 3 x 21)
max-pooling (2 X 2)
convolution (3 x 3 x 21)
max-pooling (2 X 2)
convolution (3 x 3 x 21)
max-pooling (4 x 4)
fully-connected (2 units)

B x20x7) ! Bx3x7)

[ output (softmax) |

Table 1. Proposed structure and configurations of Conv2D.

designed for conventional transcription tasks, such as note
onset detection and pitch estimation. Designing hand-crafted
features to represent the subtlety can be inefficient and may
require computationally expensive algorithms. Inspired by
the success of CNN in audio tagging [10], we applied CNN
to learn discriminative features from log-amplitude mel-
spectrograms. This input representation has been shown to
yield significant improvements in the music tagging task [11].

We used identical architectures to train the two Conv2D
models as described in Table 1. It was proposed in [12] that
using different musically motivated filter shapes in the first
layer of CNN could achieve higher prediction accuracy. As
we discussed above, pressing the sustain pedal can result in
both temporal and spectral changes. Therefore, shapes of the
filters in the first layer were set to 3 x 20 x 7,20 x 3 x 7
and 3 x 3 x 7, which correspond to dimensions: frequency
x time X channel. Thereby larger time/frequency contexts
can be modelled. The outputs of the first convolution lay-
ers were concatenated together along the channel dimension.
The following three layers each have 3 x 3 x 21 filters. At
each convolution layer, we applied zero padding such that
the output has the same length as the input. Other configu-
rations and hyper-parameters were configured to prevent the
network from over-fitting and to accelerate convergence as
follows. Batch Normalisation was added after every convolu-
tion. The output of every convolutional layer was then passed
through a Rectified Linear Unit (ReLU), followed by a max-
pooling layer and a dropout layer with the probability 0.25
to aid generalisation [13]. The final layer is fully-connected
with average-pooling and softmax activation in order to map
the output to the range [0,1]. This can be interpreted as a like-
lihood score of the presence of the sustain pedal in an excerpt.

With the above architecture, two Conv2D models were
trained using the Adam optimiser [14] to minimise categorical
cross entropy. Both obtained better performance than other
models in the binary classification tasks, which are discussed
in Sec. 3.2. Since our main focus is to analyse the perfor-
mance of the proposed method on sustain-pedal detection, for
the brevity of this paper, effects of different configurations
and hyper-parameters are not discussed.



2.2. Fusion of Conv2D-onset and Conv2D-segment

Our database includes piano pieces of different lengths. The
detectors Conv2D-onset and Conv2D-segment are first
used separately. Their outputs from short-time sliding win-
dows over the mel-spectrogram of a piece were thresholded
at 0.98 to obtain binary decisions at a higher precision. De-
tection was then reinforced by decreasing the rate of false pos-
itives through fusion, as described by Algorithm 1. Let D,
and D, be the lists of binary decisions produced by the two
detectors, Ty, and T4 be the associated lists of frame times
in second. D is the list of final detection result that implies
the sustain pedal is on or off at every frame. According to the
ground-truth annotation, we can evaluate the performance of
our detection method considering all the frames of the test set
as discussed in Sec. 3.3.

Algorithm 1 Decision fusion

Require: 7: the tolerance time window
procedure FUSION(Dons, Dseg, Tons, Tseg)

D <« zeros(Dseg)

forallj € {1,...,len(Dsecg) — 2} do

if Dseglj — 1) A Dseglj] A Dseg[j + 1] then
foralli € {0, ...,len(Dons) — 1} do
if Dons[i] A abs(Tons[i] — Tseglj — 1]) < 7 then
D[j —1,5,j + 1] + Dsegli — 1,4,5 + 1]

return D

3. EXPERIMENT AND RESULTS
3.1. Dataset

Since we were not able to find a dataset including both pedal
and no-pedal versions of audio files, we decided to create a
dataset large enough to train the Conv2D. For this purpose,
1567 MIDI files publicly available from the Minnesota In-
ternational Piano-e-Competition website?> were downloaded.
They were recorded using a Yamaha Disklavier which can
capture nuances from the performance of skilled competi-
tors. Pianoteq 6 PRO?, a physically modelled virtual instru-
ment approved by Steinway & Sons, was used to render high
quality audio with a sampling rate of 44.1 kHz and a reso-
lution of 24 bits from these MIDI files. We employed the
Steinway Model D grand piano instrument and close-miking
recording mode using a pair of figure-of-eight U87 micro-
phones. Audio with and without sustain-pedal effect was then
generated through preserving or removing the sustain-pedal
message in the MIDI data. We used audio data generated
from the year 2011 Competition as the test set, which cov-
ers pieces by 28 different composers from Baroque to the
Modern period. Data from other years of the competition
were shuffled to form the training and validation set. We
obtained 1113/279/175 pieces, i.e., 70%/20%/10% split for
training/validation/testing.

Zhttp://www.piano-e-competition.com
3https://www.pianoteq.com/pianoteq6

Model Onset Segment
MFCC-SVM 0.8471 0.9173
Conv2D-3x3 0.9791 0.9965
Conv2D 0.9852 0.9972

Table 2. Best AUC-ROC scores of the three models.

Ground-truth annotations for each piece consist of binary
labels (on and off) indicating whether the sustain pedal is
pressed or released at every frame. They were obtained by
thresholding the sustain-pedal MIDI message in range [0,127]
at 64. A pedal onset is determined to have happened during
a frame where the pedal state changes from off to on. A ped-
alled segment is determined to start at a pedal onset and finish
when the state returns to off. According to the distribution
of pedalled-segment duration calculated from all the MIDI
files, the sustain pedal is commonly pressed for between 0.3
and 2.3 seconds. To prepare fixed-length excerpts for training
Conv2D-onset, we choose 0.5-second excerpts around
every pedal onset. Excerpts for training Conv2D-segment
were clipped from pedalled segments which are more than
0.3-second long and then processed to obtain 2 seconds in
length*. The start and end times of these pedal excerpts
were also used to obtain no-pedal excerpts from audio with-
out sustain-pedal effect. Therefore excerpts were arranged in
pairs. The training/validation set contains 893062/241670 ex-
cerpts for Conv2D—-onset and 707944/195454 excerpts for
Conv2D-segment. Mel-spectrograms with 128 mel-bands
were extracted from excerpts in real-time on the GPU using
Kapre [15], which can simplify audio preprocessing and save
storage. Time-frequency transformation was performed us-
ing 1024-point FFT with a hope size of 441 samples (10 ms).
We used Keras [16] and Tensorflow [17] frameworks in our
implementation.

3.2. Binary Classification

To examine whether the proposed CNN architecture can
better discriminate pedal versus no-pedal excerpts through
modelling larger time/frequency contexts, Conv2D was com-
pared with another two models (namely Conv2D-3x3 and
MFCC-SVM) in binary classification tasks. Conv2D-3x3 re-
placed the first convolution layer of Conv2D by 3 x 3 x 21
filters, which was originally proposed for image classification
[18] and has been found to be effective in music classification
[19]. It captures fewer temporal and spectral dependencies
than Conv2D. MFCC-SVM was inspired by methods in con-
ventional MIR tasks, which involve hand-crafted features and
machine learning classifiers. It used the means and stan-
dard deviations of 20 Mel-Frequency Cepstral Coefficients
(MFCCs), and their first and second-order derivatives as fea-
tures to train the SVM. We used Librosa [20] for MFCC
extraction, and Scikit-learn [21] for SVM construction.

4Pedalled segments that are shorter/longer than 2 seconds are re-
peated/trimmed to create a 2-second excerpt.
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Fig. 2. Box plot of F1 score and bar plot of pedal-frame proportion ordered by composer’s lifetime.

Both Conv2D and Conv2D-3x3 were trained until the
validation accuracy no longer improved for 10 epochs. Batch
size was set to 250 examples randomly selected from the
training set. The SVM parameters were optimised using
grid-search based on the validation results. Both linear and
radial kernels were used. Bandwidth for radial kernel was
selected from range [1/23, 1/feature vector dimension]. The
penalty parameter was selected from rage [0.1, 32]. Con-
sidering the large size of our dataset, roughly 1/10 of the
training/validation set, i.e., 70000/20000 from excerpts of
pedal onset and pedalled segment separately, were used for
comparing the models. In the binary classification tasks
of identifying excerpts with pedal onset or pedalled segment,
the three models’ best AUC-ROC scores (Area Under Curve -
Receiver Operating Characteristic) based on the validation set
are presented in Table 2. Conv2D achieved the highest scores
in both tasks. This demonstrates the better performance of
our proposed model. We further trained Conv2D-onset
and Conv2D-segment with the whole training set. We can
obtain accuracy scores of 0.9470 and 0.9901 respectively for
the entire validation set.

3.3. Detection from Polyphonic Music

We applied sliding windows to a test piece in order to get
decision outputs from the two trained models separately
at every frame. The windows for Conv2D-onset and
Conv2D-segment cover a duration of 0.5 and 0.3 sec-
onds, with a hope size equivalent to 0.01 and 0.1 seconds
respectively. In particular, the 0.3-second samples were tiled
to two seconds such that the input size was coherent with
the one in the training phase. Following the decision fusion
policy introduced in Sec. 2.2, we first located portions that
had more than three frames continuously considered as pedal
by Conv2D-segment. If Conv2D-onset also returned
pedal within 0.1 second around the beginning of a portion,
the sustain pedal was detected as on in the frames of this por-
tion. The rest of the frames were assigned to off. We finally
obtained frame-wise on/off results for a piece.

Our detection method was evaluated on every piece in the
test set using four common evaluation measures. The accu-
racy is the proportion of frames correctly labelled. Preci-
sion, recall and F1 score are calculated with respect to la-
bel on. There are 435999 on and 282795 off frames in to-
tal. From this we obtain average values of the four measures:
0.7964, 0.8572, 0.6655 and 0.7422. A detailed look at the F1
scores for the pieces by different composers is presented as
a box plot with median value annotation in Figure 2. The
percentage of the on frames according to the ground truth
and the number of pieces associated to each composer are
also shown. Our detection method inclines towards pedalled
frames. It works best for the pieces around the Romantic era,
when modern pedalling techniques appear to have been estab-
lished and became widely used. The highest F1 median value
of 0.89 was obtained for Debussy’s pieces. For pieces that
rely less on the sustain pedal in performance, such as the ones
in the Baroque and early-Classical era, detection performance
could be influenced by the increasing false positive rate.

4. CONCLUSION

In this paper, we presented a new approach for piano sustain-
pedal detection. We took advantage of CNNs to model the
temporal and spectral contexts within the first layer with dif-
ferent filter shapes. We can thus capture the nuances of two
phases of pressing the sustain pedal. Two corresponding mod-
els with the same architecture were trained as binary classi-
fiers using excerpts in pairs (pedal versus no-pedal). Their
decision outputs were fused to locate segments played with
the pedal from polyphonic music. Our experimental results
show that this method is useful for indicating onset and off-
set times of the sustain pedal, which are essential for inter-
preting most of the classical piano pieces. Considering our
dedicated dataset, the reduced acoustic complexity may lead
to generalisation issues on commercial recordings. We be-
lieve our trained models can be efficiently adapted to various
real-world scenarios using transfer learning. This consists our
future work.
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