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Abstract  

Background: visceral pain hypersensitivity is a key feature in functional gastrointestinal 

conditions. This condition leads to an exaggerated response to known painful stimuli, or 

chronic pain with no apparent trigger. There is an important paucity of effective clinical 

interventions for visceral pain hypersensitivity.  

Aim: To understand the central nervous system (CNS) control of visceral pain 

hypersensitivity via descending pain pathways to the spinal cord. Additionally, I aim to 

test the feasibility of a non-pharmacological intervention such as non-invasive vagal 

nerve stimulation to reduce this condition in healthy humans.  

Methods:  I used PRISMA guidelines for systemtic review and meta-analysis to 

investigate: i) decending pain control in visvceral pain, ii) The antinociceptive effect of 

vagal nerve stimulation. To investigate the descending pain control, I used a Conditioned 

Pain Modulation Paradigm where applying a second painful sitmuls inhibits the initial 

pain by triggering descending inhibiton. To test the effect of autonomic modulation on 

oesophageal pain hypersensitivity, I used a previously approved noninvasive 

transcutaneous vagal nerve stimulation device in a human model of experimentally 

induced pain hypersensitivity by slow infusion of hydrochloric acid in the distal 

oesophagus.  

Results: My systematic review and meta-analysis demonstrated that Conditioned Pain 

Modulation is significantly inhibited in visceral pain hypersensitivity. I also showed that a 

reduced Conditioned Pain Modulation at baseline is a strong predictive factor of 

developing pain hypersensitivity in healthy humans. I also demonstrated that vagal nerve 
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stimulation is effective in various pain conditions in a meta-analysis, I then demonstrated 

in an experimental study that vagal nerve stimulation can reverse acid-induced 

oesophageal pain hypersensitivity.   

Conclusions: there is a marked reduction in descending pain inhibition in visceral pain 

hypersensitivity. Poor descending pain inhibition is associated with developing 

experimental pain hypersensitivity. Vagal nerve stimulation can reverse experimental 

pain hypersensitivity, likely by a central mechanism.  
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Introduction 

 

Pain is a defining symptom in many functional gastrointestinal disorders. Those disorders 

are very common. For example, Gastroesophageal reflux disease has a prevalence in 

Europe of 8.8-25.9%, with 10-40% of patients complain of persistent pain or discomfort 

despite adequate acid suppression, indicating important functional component (9).  

The main aim of this thesis is to understand clinically relevant aspects of visceral pain 

hypersensitivity (exaggerated pain responses) with a special focus on the central aspect 

of hypersensitivity, such as the top-down control of pain. I also attempted to understand 

the rationale and the feasibility of using the autonomic nervous system as a portal to 

modulate visceral pain hypersensitivity.  

I take a special interest in oesophageal pain hypersensitivity and use this as a model 

whenever it is possible. However, being a less studied subject, I used other functional 

gastrointestinal disorders with pain hypersensitivity to infer relevant conclusions on pain 

processing. 

In the 1st chapter, I introduce relevant notions of the pain (nociceptive) system, the 

autonomic nervous system and the interaction between the two systems which are 

important for the understanding of the thesis.  

In chapter 2, I present my 1st experimental study. In this study, I studied the autonomic 

signature of two interventions, previously known to have an analgesic effect on 

experimental visceral pain. These interventions include slow deep breathing and 
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modulation of attention. In this study, I aimed to determine whether a shared autonomic 

mechanism may explain the analgesic effect of interventions.  

In chapter 3, I explore the top-down (brain-gut) modulation of pain control. This chapter 

is a meta-analysis to investigate if the top-down inhibition of pain is affected in visceral 

pain conditions.  

Chapter 5 is an experimental study to understand the relationship between experimental 

pain hypersensitivity and the descending pain modulation (top-down control) of pain in 

a human model of oesophageal pain hypersensitivity.  

Chapter 5 is a systematic literature review and meta-analysis of the effect of vagal nerve 

stimulation on pain in general. In this chapter, I show that vagal nerve stimulation is an 

effective treatment in various pain conditions. I then, in chapter 6, use vagal nerve 

stimulation in an experimental study to influence oesophageal pain hypersensitivity in 

humans.  

In chapter 7, I summarised my findings and lay down future plans for research.  
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Chapter 1  

The nociceptive and the autonomic nervous system 

Introduction  

This chapter aims to introduce topics relevant to this thesis such as pain transduction, 

transmission and perception. This chapter is not a comprehensive literature review of 

the physio-pathology of pain in general but a more focused overview of nociceptive pain 

which is relevant to this thesis.  

The nociceptive system 

Pain is defined by the International Association for Study of Pain as an unpleasant sensory 

and emotional experience associated with actual or potential tissue damage(10). It is an 

undesirable, disagreeable sensation (11). It serves to protect the body from potentially 

harmful events (12, 13). The main survival aim of pain is to remove the body away from 

the noxious stimulus voluntarily. 

Types of pain 

Pain is classified in a variety of ways. In reality, these categories often overlap. Some 

classifications are more useful than others depending on the focus of the subject.  

Acute pain and chronic pain 

Acute pain is of short duration, has an apparent underlying causative event and may 

signify healing or a damage control process following that event (14, 15). Chronic pain 

may not have an obvious underlying cause. It usually extends beyond the reasonably 

expected time for tissue healing (16). This distinction is useful in a clinical setting; acute 
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pain requires more urgent management since its cause may be fatal or the cause of long-

lasting disability (15). Chronic pain may be defined as pain lasting more than three 

months, according to the International Association for the Study of Pain (IASP) (16). 

However, somatic, acute and chronic pain differ in nature as well; acute pain may be 

described as sharp,  pricking or stabbing sensation, while chronic pain is often said to be 

slow, aching, or burning (13, 15, 16). 

Nociceptive pain 

Nociceptive pain is experienced when sensory pain receptors (nociceptors) in tissues are 

stimulated. It is further classified into fast or first physiological pain and slow or second 

pathophysiological pain (15). Fast pain is felt in healthy tissue within a tenth of a second 

upon an acute painful stimulus, such as the application of an electric shock or sharp 

object (14, 15). Slow pathophysiological pain corresponds to tissue damage and may 

occur following the stimulus, with a milder or different type of stimulus, or even without 

a stimulus, and this is probably due to sensitisation(13). Fast pain is usually only felt in 

superficial tissues, whereas slow pain is also experienced in deep tissues. The character 

of slow pain is usually similar to that of chronic pain (13, 15, 17). 

Nociceptive pain can also be described as either somatic or visceral pain (15). Somatic 

pain is easily localised, while visceral pain is difficult to describe as restricted to a specific 

body part, and often said to be “generalised” (18). The reason for this may be that there 

are fewer visceral sensory nerves than somatic sensory nerves and fewer visceral pain 

pathways in the central nervous system (18). The automatic reflexes elicited by visceral 

pain are often more prominent than those elicited by somatic pain (18). Inflammation 

plays an important role in the modulation of nociception. Release of inflammatory 
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mediators (ex: substance P, prostaglandins, serotonin, acetylcholine, bradykinin) 

sensitise the primary afferents resulting in a reduction if pain threshold (19).  

Neuropathic pain 

Neuropathic pain is now defined by the International Association for the Study of Pain 

(IASP) as ‘pain caused by a lesion or disease of the somatosensory nervous system’(10). 

Neuropathic pain could affect both, the central or the peripheral part of the 

somatosensory system.  Damage to the peripheral sensory nerves could result in chronic 

pain secondary to diabetic, or alcoholic neuropathy, radiculopathy, trigeminal neuralgia 

and other debilitating conditions. Neuropathic pain can also arise at the level of the 

central nervous system such as  in multiple sclerosis, spinal injury or after stroke(20).  

The nature of the sensation is often distinct from that of the nociceptive pain, it is usually  

described as “burning” or “electrical” (13).  

 

Nociplastic pain  

Nociplastic pain is a new category of pain added to the 2017 taxonomy of the 

International Association for the Study of Pain (IASP) (10).  It refers to the activation of 

nociceptive receptors without clear evidence of tissue damage. It is most likely related 

to altered nociception. Examples include low back pain, complex regional pain syndrome 

and fibromyalgia.  
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Primary and Secondary Chronic Pain  

This classification is on the latest International Classification of Diseases ICD11(21). 

Primary (idiopathic) chronic pain, overlaps with the nociplastic pain classification 

mentioned above.  Primary chronic pain is recognised as a disease in itself such as low 

back pain, fibromyalgia and pain in functional gastrointestinal disorders. Whereas, 

secondary chronic pain is a symptom of an underlying condition such as cancer pain, 

neuropathic pain caused by multiple sclerosis and other chronic pain with a known 

aetiology  (22, 23).  

 

Pain pathways and systems 

Overview 

Nociception involves the signalling of pain (12). The nociceptive system refers to the 

entire system responsible for collection, transmission and processing of pain signals (13). 

Traditionally, those pathways are investigated by electrophysiologic studies in animals 

such as single unit recording by invasive electrodes(24-28). However, other methods 

such as functional Magnetic Resonance Imaging (fMRI) and Electroencephalograph (EEG) 

have also been used to map those pathways in humans (13, 29-31). 

The first-order neurons are nociceptors in peripheral tissues, the axons of which synapse 

with neurons in the dorsal horn of the spinal cord (13, 14). These second-order neurons 

either directly ascend to higher centres in the brain or interact with spinal neurons (13). 

Peripheral transmission of pain 

Primary afferent neurons carrying pain signals are pseudo unipolar neurons with their 

cell bodies in the trigeminal or dorsal root ganglion (17). 
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Types of nociceptors 

Nociceptors are sensory pain receptors in peripheral tissues(14). They consist of the free 

nerve endings of first-order neurons and are sensitive to a variety of stimuli including 

mechanical, thermal and chemical events (12, 14). We may classify nociceptors based on 

the type of stimulus they respond to, the type of nerve fibre (A or C), and whether they 

are silent or not(17). Silent (“wide-dynamic range” or “convergent”) pain receptors are 

usually unresponsive to temperature and pressure, but become active to these stimuli if 

sensitised by molecules involved in inflammation (substance P, prostaglandins, 

serotonin, acetylcholine, bradykinin)  (17, 32).  

For example, nociceptors in the oesophagus respond to acid by activating two proton-

gated channels: transient receptor potential vanilloid-1 (TRPV1- thermal) and acid-

sensing ion channels (ASICs- chemical), while mechanical nociceptor such as TRPAI can 

detect distention (33). 

 

Peripheral pain fibres 

Fast and slow types of pain travel through different fibres to the spinal cord. Fast pain is 

transmitted through myelinated A fibres (the majority of which are A-δ fibres) at a 

velocity of 5m/s to 30m/s, which is faster than the transmission of slow or chronic pain 

through unmyelinated C fibres at 0.4m/s to 1.4m/s (17, 34). This transmission occurs 

simultaneously via both fibres when the same acutely painful stimulus is applied, 

resulting in a dual sensation of nociceptive pain; a sharp pain, followed by a lingering dull 

pain (15, 17). 
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A-fibres are clustered in groups, with each group serving a small location, and distributed 

less widely than C fibres, making fast pain localisation more precise than that of slow 

pain (17). 

Aδ and C fibres travel to superficial and deep spinal cord laminae (Rexed’s laminae I, II 

and V, VI; circumcanular lamina X) while Aβ fibres (the largest in diameter of these three 

types of fibres) mainly travel to the deep Rexed’s laminae (III to VI) (32). 

Central transmission of pain 

When they reach the dorsal horn of the spinal cord, primary afferent neurons may 

synapse directly with neurons projecting to higher centres, or with interconnecting 

neurons in the spinal cord (11). These interneurons may be excitatory or inhibitory. 

Inhibitory interneurons can exert their effects on projection neurons (PNs), excitatory 

interneurons or the first-order neurons to dampen their actions (15, 32). The main 

neurotransmitters in descending inhibition are opioids and noradrenaline, while the 

main excitatory neurotransmitter is Serotonin or 5-hydroxytryptamine (5-HT). First-

order neurones may also send ascending and descending collaterals, and these branches 

form the dorsolateral tract of Lissauer (35). After entering the dorsal grey matter, 

second-order neurons arise from Rexed’s laminae, decussate (crossover) and ascend in 

the anterolateral spinal cord (35). Two main tracts carry pain signals from the spinal cord 

to the higher centres, called the neospinothalamic and palaeospinothalamic tracts (35). 

Interestingly, these tracts are named according to their evolutionary origin; the 

palaeospinothalamic tract has a more primitive origin, and perhaps this reflects the types 

of sensations this tract carries; slow poorly localised pain (36). The spinoreticular, 
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spinomesencephalic and spinohypothalamic pathways also carry pain signals to the brain 

(11, 37). 

Neospinothalamic tract 

Fibres from the periphery synapse in laminae of the dorsal horn, from where central 

neurons arise to form the neospinothalamic tract (15). The projection neurons promptly 

decussate and ascend in the anterolateral column of the spinal cord to the brain (15). A 

few fibres terminate in the reticular formation of the brain stem, and some other 

neurons wind up in the posterior nuclear group of the thalamus, but the majority 

terminate in the ventrobasal thalamus (15). 

Palaeospinothalamic tract 

The spinoreticulothalamic or palaeospinothalamic tract is formed from the deeper 

laminae of the spinal cord (15, 36). Pain signals follow a path similar to that for fast pain, 

as projections first decussate, then ascend in the anterolateral column of the spinal cord 

(15). Unlike the neospinothalamic pathway, however, at least three-fourths of the fibres 

terminate in the reticular formation, tectal area or the periaqueductal grey area of the 

brainstem with the remainder ending up in the thalamus (15). Pain is then further 

transmitted to basal portions of the brain through several neurons; however, chronic 

pain is still felt when these higher centres are sectioned in animals, underlining the 

importance of the basal areas in interpreting chronic pain (15). Please notice that these 

basal structures play an essential role in the autonomic refluxes as I will elaborate later 

in this chapter.  
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Pain modulation 

Pain is modulated in a variety of ways, both centrally (such as via descending facilitatory 

and inhibitory pathways from higher centres-explained later) and peripherally (by the 

sensitisation of receptors) (11, 13, 32). Thus, the intensity of pain experienced by an 

individual can vary even with an identical set of stimuli. 

Pain experience differs from individual to individual; however, depending on the 

circumstances, such experiences may also differ within the same individual. The 

difference is sometimes remarkable; for example, soldiers may report little pain to gun-

shot wounds during the battle (38). Such variability in pain experience is possible due to 

a complex pain control system that intervenes at multiple levels; from pain conduction 

at the periphery, transmission to the central nervous system, to the processing of such 

stimuli at cortical levels. 

Peripheral and central sensitisation 

Central sensitisation is defined as an ‘’increased responsiveness of nociceptive neurons 

in the central nervous system to their normal or subthreshold afferent input’’. While 

Peripheral sensitisation is defined as ‘’increased responsiveness and reduced threshold 

of nociceptive neurons in the periphery to the stimulation of their receptive fields’’(10, 

39). See figure 1.  

Sensitisation of nociceptors 

Most sensory receptors in the body adapt to their excitatory stimulus (15). However, 

nociceptors undergo little or no adaptation, allowing pain to be felt continuously as long 

as the precipitating condition is present (15). Paradoxically,  in many cases of chronic 

pain, pain receptors undergo sensitisation as the stimulus persists (11). 
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There are various ways in which receptors can become more sensitive to pain. In some 

cases, the same receptor undergoes sensitisation (for example, silent receptors 

becoming active). This causes hyperalgesia (exaggerated response to a painful stimulus). 

Repetitive activation of nociceptors can cause central sensitisation at the level of the 

spinal cord leading to a progressive increase in pain intensity with the same stimulus. 

This central phenomenon is called temporal summation, which is one manifestation of 

hyperalgesia (11). 

 In other cases, surrounding receptors which may not even be “nociceptive” in nature 

(silent nociceptors) can begin to transmit pain, for example, mechanical allodynia (a 

painful response to non-painful stimuli, for example, painful touch)(11, 32). The 

activation of silent nociceptors is also one of the mechanisms for central 

sensitisation(11).  

Allodynia can be explained by Aβ fibres which are responsible for a shift in the phenotype 

of first-order neurons so that they begin to produce excitatory molecules normally 

involved in pain signalling (11, 32). Besides, receptor neurons that undergo damage may 

be reorganised, placing primary sensory neurons in communication with ascending 

neurons and bypassing the normal dampening mechanisms of painful signals at the level 

of the spinal cord (32). This bypass mechanism might answer why traditional analgesics 

are not effective in relieving allodynia after nerve damage or neuropathic pain and 

suggests as a solution that we explore therapies targeting ascending neurons (32). 

Descending tracts may cause sensitisation to pain in silent or wide-dynamic range 

receptors in several ways. This sensitisation occurs when a pain stimulus is repeatedly 

provided. One possibility of how this happens is unique communications between 
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descending pathways and primary afferent fibres (which may or may not involve 

inhibitory interneurons) (32). Another possibility is the inhibition of excitatory neurons 

that relay with projection neurons (32). Projection neurons may also be directly acted 

upon by descending tracts at specific loci physically shared with primary sensory neurons 

(32). Some believe that the ascending pain signals carried by projection neurons may be 

modified by intracellular signalling pathways that are acted upon by descending control 

(32). The clinical importance of studying these processes is that when looking at patients 

who exhibit this type of sensitisation, one needs to target therapies that will alleviate 

pain but not dampen the other senses which could prove challenging (32). 

 

 

Figure 1: Peripheral and central sensitisation. Peripheral sensitisation refers to the increase in pain 
transduction at the level of the nociceptors, and this increase is usually triggered by tissue damage or 
inflammation with the release of local mediators such as Substance P, Prostaglandins, serotonin and 
acetylcholine. Central sensitisation refers to the increase in pain transmission at the level of the spinal cord. 
Perception of pain at the level of the spinal cord can, in turn, alter the overall experience of pain. Adapted 
from Aziz et al. 2000(40). 
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Gate control theory of pain 

The gate control theory of pain was initially drawn up by Melzack and Wall (41) and 

proposed that peripheral pain signals to the central nervous system are “gated” in the 

spinal cord by various influences (42). These influences are provided by the cells in the 

substantia gelatinosa of the spinal cord (41). The non-painful sensory neurons projecting 

to the spinal cord can compete with painful stimuli to pass the “gate” and ascend to 

other structures (41). The gate control theory of pain is the main theory relied upon 

when explaining the antinociceptive effect of non-painful stimuli, such as massage and 

acupuncture. Since the proposal of this theory, our understanding of pain control has 

come a long way. Advances in the neurobiology of pain has implicated several synergic 

mechanisms that may determine the size of the ‘’gate opening’’. One of the factors that 

determine the despatch of pain signal through the ‘’gate’’ is the descending control of 

pain. 

 

Descending pathways 

Descending control refers to the ability of higher structures to inhibit or facilitate 

receptive pain fields at the spinal cord (32). See figure 2.  

Descending pathways may interfere with primary sensory neurons (“pre-synaptic 

actions”), or spinal interneurons or projection neurons in the spinal cord (“post-synaptic 

actions”) (32). When descending inhibition acts upon an interneuron that has an 

inhibitory nature in itself, either a different neurotransmitter is used, or the usual 

neurotransmitter acts via different second receptor and coupling mechanisms (32). Thus, 

it follows that the same neurotransmitter may have opposing functions; for instance, 
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serotonin (5H-T) may exacerbate or attenuate nociception in the spinal cord (32). It also 

follows, in theory, that drugs targeting specific receptor types or second messengers can 

provide pain relief with a high efficacy (32). 

Apart from direct synapses between descending tract neurons and sensory neurons, 

“volume transmission” also takes place in the spinal cord (32). Volume transmission is a 

way of intracellular communication by means of diffuse neurotransmitter in the 

extracellular fluids, it is roughly analogous to injecting drugs into the spinal cord. 

Neurotransmitters such as dopamine and glutamate diffuse locally after their release, 

resulting in broad and lingering effects on nearby synapses or other cells in the vicinity, 

such as adjacent astroglia  (32, 43). These effects are, to a good extent, dependent on 

the pharmacokinetic properties of the transmitter molecules (32).  

Neurons are not the only spinal cord cells involved in descending control of pain. 

Descending tracts also affect spinal glial cells and invasive T cells, both of which produce 

substances that can modify pain transmission (32). For example, glial cells produce an 

acetylcholine-binding protein that can affect autonomic signalling (32). 

Motor responses to pain, such as reflexes and the promotion of motionlessness to 

improve healing are also influenced by descending control on the ventral horn of the 

spinal cord (32).  
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Figure 2: Schematic representation of the descending pathways. Several structures contribute to the origin 
of the descending pathways such as rostroventral medulla (RVM) and other brainstem nuclei, the nucleus 
tractus solitarius (NTS), the parabrachial nucleus (PBN), the dorsal reticular nucleus (DRT), the 
hypothalamus and the cortex. The separation of the descending pathways into facilitatory and inhibitory 
pathways is functional rather than anatomical. The descending pathway can alter pain transmission at the 

level of the primary afferent neuron, projection neuron or by activating interneurons (excitatory or inhibitory).  

 

Types of descending control 

Although, the same structures are involved in descending control, functionally there are 

two distinct pathways according to the type of influence they exert on pain processing 

in the spinal cord, descending facilitation and descending inhibition (32). As described 

above, the same neurotransmitter may modulate actions in both of these pathways 

simultaneously via different receptor neurons or different receptor types (32). 
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The rostroventromedial medulla has been extensively studied in this regard (32). There 

are two kinds of neurons recognised in the rostroventromedial medulla, “OFF” cells and 

“ON” cells (32). “OFF” neurons are involved in descending inhibition, are stimulated by 

opioid analgesics and upon receiving sensory pain input, pause their discharge before a 

pain reflex (32). “ON” cells behave oppositely and are implicated in descending 

facilitation (32). 

Origin of the descending pathways 

Central structures from which descending pathway neurons project to the dorsal horn 

are the hypothalamus, parabrachial nucleus, nucleus tractus solitarius, brainstem nuclei, 

cerebral cortex (frontal, parietal and anterior cingulate cortex) and periaqueductal grey 

matter (32). These pathways enter the spinal cord through the dorsolateral and 

ventrolateral funiculi (32). 

Hypothalamus 

The hypothalamus plays a significant role in organising sensory information and is well 

connected to the nucleus tractus solitarius, periaqueductal grey matter, 

rostroventromedial medulla and those parts of the corticolimbus that are associated 

with feeling pain and related emotions (32). Hyperalgesia can be elicited by damaging 

the medial hypothalamus and a few other hypothalamic nuclei (32). Several nuclei of the 

hypothalamus give rise to descending pathways which end in the spinal cord, for 

example, the paraventricular nucleus, the arcuate nucleus, the tuberomammillary 

nucleus and the posterior periventricular nucleus (32). 
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Parabrachial nucleus 

Pathways originating in the parabrachial nucleus mainly influence the nerve cells of the 

superficial laminae of the dorsal grey matter of the spinal cord. Excitation of this area 

dulls the reaction of dorsal horn cells to all types of sensory signals, including pain (32). 

Nucleus tractus solitarius  

The nucleus tractus solitarius is important in managing input from the viscera. It receives 

a large amount of sensory information from the vagal nerve and neurons in the dorsal 

horn (32). 

Brainstem centres  

Monoaminergic pathways to the spinal cord arise from several groups of neurons in the 

brainstem (32). The rostroventromedial medulla receives mostly indirect sensory input, 

and each of its nuclei sends descending pathways to the superficial and deep spinal cord 

laminae; these pathways are considered to essentially cause continued pain in cases of 

inflammation and damage to the nociceptor cells (32). 

The dorsal reticular nucleus of the medulla also has direct connections to superficial and 

deep Rexed’s laminae, some of which are reciprocal, thus forming looped pathways as 

well (32). Hyperalgesia can be caused by dorsal reticular excitation, while damage to this 

structure causes numbing of the pain associated with inflammation (32). Further, it has 

also been suggested that the dorsal reticular nucleus is implicated in “Diffuse Noxious 

Inhibitory Controls” also called Conditioned Pain Modulation, which is analgesia in one 

body areas triggered by a painful stimulus to an anatomically distant area (32). Diffuse 

Noxious Inhibitory Control is discussed further later in this chapter. Unlike the 
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rostroventromedial medulla, the dorsal reticular nucleus is poorly studied concerning 

underlying mechanisms and connections (32). 

Periaqueductal grey matter 

Periaqueductal grey (PAG) is a critical structure in the descending pain control. It receives 

direct and indirect projections from higher structures such as the anterior cingulate 

cortex and amygdala(44, 45).  PAG also receive ascending nociceptive inputs from the 

dorsal-horn via the Parabrachial nuclei. PAG, through its reciprocal connections with the 

RVM, plays a crucial role in the descending modulation.  Activity in the PAG are mediated 

mainly by µ-opioid agonists but also GABAergic inhibitors, cannabinoid receptor agonists 

and results in monoaminergic descending inhibition control via RVM (32, 46).  

Cerebral cortex 

Nociception in the spinal cord can be modulated by even the highest levels in the central 

nervous system. Pain can be inhibited by excitation of the insular and ventro-orbital 

cortex via other areas of the central nervous system discussed above (32). However, 

excitation of other areas, such as the anterior cingulate cortex, has been shown to 

initiate descending facilitation pathways in the rat (32). Functional MRI studies have 

repeatedly implicated the anterior cingulate cortex in pain perception in humans(44, 45).   

Fibres originating from the frontocortical, somatosensory and parietal cortex pass 

uninterrupted to the spinal cord where they act mainly on resident neurons of the dorsal 

horn; however, there are also many multi-neuronal pathways from the cortex to the 

spinal cord (32). Some of these pathways run to the dorsal column nucleus, which is 

known to play a part in both proprioception signalling and the initiation of visceral and 

neuropathic pain (32). 
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Conditioned pain modulation 

One way of assessing descending inhibition is by measuring the conditioned pain 

inhibition. Conditioned pain modulation refers to the endogenous pain inhibition of a 

specific stimulus when a second pain stimulus is applied simultaneously in an 

anatomically distant part of the body. It is evaluated by assessing participant’s pain 

threshold to a specific stimulus (test stimulus), then reassessing it after applying a second 

painful stimulus, also called conditioning stimulus. Following the principle that ‘’pain 

inhibits pain’’. CPM was formally known as Diffuse Noxious Inhibitory Control described 

by Le Bars (47). Diffuse Noxious Inhibitory Control is a specific term that refers to a 

brainstem mediated mechanism. Thus, Conditioned Pain Modulation was adopted as an 

alternative term to incorporate the psychophysiological factors important in shaping this 

type of pain control in humans (48). 

In healthy humans, there is a significant increase in pain threshold to the test stimulus 

after applying a second conditioning stimulus (49). Conditioned pain inhibition is thought 

to be mediated via Diffuse Noxious Inhibitory Control system. In rats, Diffuse Noxious 

Inhibitory Controls is thought to be mediated via neurones in the subnucleus reticularis 

dorsalis (SRD) (50). However, human studies suggest the involvement of other nuclei, 

such as the Periaqueductal grey and structures that allow for interactions with higher 

structures (51). 

Conditioned pain modulation is reduced in a variety of chronic pain conditions such as 

Functional Abdominal Pain, Irritable Bowel Syndrome, Functional Dyspepsia, and other 

conditions such as osteoarthritis, diabetic neuropathy (52-54). This reduction in CPM has 

a large effect size, as confirmed by our meta-analysis in chapter 3 (55).   
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A reduction in the noradrenergic descending pain inhibition or activation of the 

serotonergic pain facilitation  may play a key role in visceral pain hypersensitivity where 

there is an exaggerated response to a potentially painful stimulus (55). However, more 

work is needed to explain the sequence of events linking visceral hypersensitivity in 

chronic pain conditions, reduced conditioned pain modulation and descending pain 

control.    

 

The autonomic nervous system 

The autonomic nervous system (ANS) is a collection of sensory (afferent) and motor 

(efferent) neurons that link the central nervous system (CNS) with visceral effectors (56). 

Newer definitions recognise the influence of the central nervous system in setting the 

baseline and modifying the activity of the autonomic nervous system (57). 

Classifications 

Langley classified the autonomic nervous system into the parasympathetic nervous 

system which is responsible for the body’s rest and digest function and controls 

homeostasis; the sympathetic nervous system which responds to an emergency that 

causes stress or fear and requires a fight or take flight response (run away); and the 

enteric nervous system, which is also known as the second brain due to its independent 

reflex activity within the gastrointestinal tract (58). The autonomic nervous system is also 

called the automatic nervous system due to the involuntary nature of its responses.  
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Functions 

Table 1 describes some of the innervation and functions of the effectors of the 

autonomic nervous system(59). The sympathetic nervous system also innervates the 

pineal gland and lymphatic tissues (60).  

Table 1: Functions of the autonomic nervous system  

 

A dash means the target tissue is not innervated by this division of the autonomic nervous system. Adopted from 

Gliman’s The Pharmacological Basis of Therapeutics, 12 ed. NewYork(57) 
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Relevant anatomy 

The neurons of the autonomic nervous system synapse at autonomic ganglia; thus, 

presynaptic and postsynaptic neurons are termed preganglionic and postganglionic 

neurons, respectively (57, 60). 

Descending outputs from the CNS to the periphery make up the preganglionic neurons; 

the craniosacral (parasympathetic) outflow and the thoracolumbar (sympathetic) 

outflow (60). The neurotransmitter of presynaptic neurons in both sympathetic and 

parasympathetic is acetylcholine. Norepinephrine is the main postsynaptic transmitter 

in the sympathetic and acetylcholine is released by the postsynaptic parasympathetic 

neurons. 

The vagus nerve is the longest of the cranial nerves. It carries afferent and efferent 

parasympathetic fibers. The main sensory nucleus of the vagal nerve is the nucleus 

tractus solitarius (NTS). NTS receives sensory input from the viscera (32). 

The diagram (Figure3) helps describe the neuroanatomical arrangement of the 

autonomic nervous system(61).  
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Figure 3: the neuroanatomical arrangement of the autonomic nervous system 

 

Functional anatomy 

Sympathetic Nervous System  

Preganglionic neurons 

The cell bodies of the preganglionic sympathetic neurons lie in the intermediolateral 

column of the spinal cord from the first thoracic to the upper third or fourth lumbar 

segments. These neurons exit the spinal cord in the ventral roots and white rami 

terminate in the sympathetic ganglia as described below, on the enteric nervous system, 

and some of the adrenal medulla. (57, 60) 
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Postganglionic neurons 

The cell bodies of sympathetic postganglionic neurons are found in the paravertebral 

ganglia, the prevertebral ganglia or the pelvic splanchnic ganglia. The paravertebral 

ganglia form a chain (sympathetic trunks or chains) parallel to the vertebral column, 

which extends on each side to the sacrum. White and grey rami connect them to spinal 

nerves. A majority of the postganglionic neurons travel via the spinal nerves, and the rest 

through splanchnic nerves to supply viscera (60). 

The prevertebral ganglia lie in front of the vertebral column, are unpaired and mostly 

located around the origin of the major branches of the abdominal aorta. The axons of 

the ganglia cells are long and mostly unmyelinated (60). 

The pelvic splanchnic ganglia are located in the pelvic plexus. The preganglionic 

sympathetic neurons that terminate in these ganglia come through via the hypogastric 

nerves (or plexuses) (60). 

Parasympathetic Nervous System  

Preganglionic neurons 

The cell bodies of preganglionic parasympathetic neurons are situated in the 

mesencephalon and the medulla oblongata (tectal and bulbar system) and the 

intermediate zone of the sacral spinal cord (sacral system). The third, seventh and ninth 

cranial nerves deliver them to the parasympathetic ganglia of the head; the tenth cranial 

nerve (vagus nerve) to the ganglia of viscera in the thorax and abdomen; and the pelvic 

splanchnic nerves to the pelvic ganglia. The sacral outflow also consists of preganglionic 

neurons to the enteric nervous system.(60) 
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Postganglionic neurons 

The cell bodies of postganglionic neurons are situated in parasympathetic ganglia in the 

head, in or close to the walls of the target viscera, and in the pelvic plexus (60). Their 

axons are thus often short. 

 

The interaction between the nociceptive and autonomic nervous systems 

 

The nociceptive system and the autonomic nervous system are intertwined and exert 

effects on each other. See Figure 4 for some of the shared structures.  

Descending control and higher autonomic centres 

Several parts of the hypothalamus process sensory and autonomic information. 

Pathways (that likely use glutamine) connect the medial preoptic nucleus (MPN) of the 

hypothalamus to the PAG and the RVM.(32). The MPN and anterior and lateral 

hypothalamus all have an inhibitory effect on pain via descending parasympathetic 

pathways. The PBN and the NTS play similar roles as the hypothalamus with regards to 

the processing and inhibiting pain. The PBN has connections with the NTS, RVM, spinal 

DH and the trigeminal nucleus of the medulla. Although the NTS is usually implicated in 

the inhibition of pain, it has been observed in several studies that vagal input to the NTS 

involving the RVM can cause descending facilitation of pain (32) 

Descending control and spinal autonomic centres 

Certain descending control tracts greatly influence the sacral and thoracolumbar 

preganglionic autonomic ganglia, in particular, those that use 5-HT, noradrenaline, 
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Substance P and thyrotropin-releasing hormone (TRH). This influence must be 

considered when studying these mechanisms, so as not to be confused by results altered 

by cardiovascular (CVS) changes. Autonomic CVS changes, for example, mean arterial 

pressure changes, can alter pain signalling in the spinal cord.  Conversely, this can also 

mean that spinally administered analgesics affect cardiovascular functions. Furthermore, 

ascending vagal fibres to the NTS can exert control over descending tracts via a looped 

pathway (32). 

Descending control and the sympathetic nervous system 

The direction of sympathetic fibres into the spinal cord following sensory neuronal 

damage can cause increased neuropathic pain. Sympathetic changes can also have an 

effect on inflammation and pain in the periphery. Some spinal analgesic drugs, for 

instance, α2-AR agonists, dampen sympathetic influence (32). 
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Figure 4: The autonomic and nociceptive networks. In this figure, we notice that the autonomic and the pain 
network share fundamental structures. For example, structures such as Cingulate cortex, thalamus, 
amygdala, periaqueductal grey are shared between the two functional networks.  

 

 

 There are other indirect connections between the pain system and the autonomic 

nervous system; one of those interesting connections is the three-way relationship 

between the autonomic nervous system emotions and pain.  One of those theories that 

may link the autonomic nervous system with emotions and potentially pain is the James-

Lange theory of emotions briefly explained below.  

 

 

 

Nociceptive central network  Autonomic central network  
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The James Lange Theory of Emotion 

Emotions are known to alter the pain threshold. Likely by complex top-down control of 

nociception and by alteration to the cortical processing. Studies suggest a shared 

neuronal network between emotions and the nociceptive system (62). 

The theory of the origin of emotion was first proposed by American psychologist William 

James (1884) and Danish physiologist Carl Lange (1887) independently.  In essence, it 

suggests that emotions are produced by physiological changes such as autonomic 

changes(63). For example, if a person is in a dangerous environment, such as being 

attacked by a predator, subconsciously, that person will recognise the situation as a 

dangerous one, his or her heart will race, breathing will be shallow and rapid. Those 

physiological changes will trigger the emotion of fear. They argue that this is a more 

logical sequence of events(64). Psychology literature is rich in arguments and contra 

arguments for this theory. The theory has important limitations that are out of the scope 

of this theses. However, it emphasises the important observation that there are near-

universal autonomic responses associated with specific types of emotions, such as fear 

and anxiety. 

Another alternative interpretation of how autonomic responses can, by itself, trigger 

emotions is by pavlovian conditioning. Every time a person is in a stressful situation, the 

heart starts to race, the breathing frequency will increase, start sweating, and so on. 

Conversely, whenever a person is relaxed, the opposite of those physiological responses 

take place. Those situations repeat for a staggering number of times throughout our 

lives.  One plausible hypothesis is that if we would design an intervention that mimics 

the autonomic responses of emotion, then we may be able to trigger that emotional 
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status. For example, slow deep breathing, both slows heartbeats and respiration rate, 

leading to a relaxed status that can trigger emotions that are more likely to increase pain 

thresholds and promote analgesia. 

 

In summary, several classifications are used to describe pain, such as acute, chronic, 

somatic, visceral nociceptive, neuropathic and nociplastic pain. Those may overlap. 

Generally, there are three stages in pain-sensing; transduction, transmission and 

processing. Pain regulation depends on several intertwining systems. Higher structures 

send descending pathways to control pain transmission are the level of the spinal cord. 

Cortical, emotional, hormonal and autonomic factors can influence descending 

pathways.  

 

In conclusion, the regulation of pain is complex and involves several interconnected 

pathways. The autonomic and the pain system are structurally and functionally 

intertwined. This relationship may allow for using the autonomic nervous system to 

influence the pain system. 
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Aims and Hypothesis  

 

Aims 

In this thesis, I aim to understand the central nervous system (CNS) control of visceral 

pain hypersensitivity via descending pain pathways to the spinal cord. Additionally, I aim 

to test the feasibility of a non-pharmacological intervention such as non-invasive vagal 

nerve stimulation to reduce this condition in healthy humans.  

Hypotheses  

I hypothesise that dysregulation in the descending pain modulation is a key contributor 

to visceral pain hypersensitivity. Moreover, I hypothesis that using electrical stimulation 

of the vagal nerve can modulate the nociceptive system and revere experimentally 

induced visceral hypersensitivity.  
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Chapter 2 

Effect of slow deep breathing and attention on the autonomic 

nervous system 

 

Introduction 

The autonomic nervous system (ANS) is a complex bodily system, in addition to the 

enteric nervous system, it is comprised of two distinct yet intertwined entities. These are 

the parasympathetic nervous system (PNS) and the sympathetic nervous system (SNS).  

The vagal nerve acts as a key aspect of the PNS, implicated in the homeostatic regulation 

of numerous internal bodily organ systems including the heart, lungs and gastrointestinal 

tract.  Furthermore, the vagus nerve is thought to correspond to the functional state of 

the PNS, and consequently, over the past decades, the degree of vagal nerve activity has 

been quantified in research as differences in interbeat intervals (the time difference 

between two successive heartbeats. One measure of interbeat intervals that reflects 

parasympathetic tone is termed Cardiac Vagal Tone(65). 

 

The PNS has previously been suggested to hold a critical role in the modulation of visceral 

pain, a complex phenomenon that is highly variable and influenced by a multitude of 

inter-individual factors (66, 67). In particular, a link between an individual’s CVT and 

visceral pain perception has been investigated in recent years, leading to the suggestion 
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that an increase in CVT may correspond to a decrease in pain arising from the 

gastrointestinal (GI) tract(68). The proposed anti-hyperalgesic effect of the PNS is 

suggested to mediate through the efferent cholinergic pathway (69).  

Distraction has been used successfully to control pain(70-72). The attention task used in 

this study has an antinociceptive effect at the level of the oesophagus. (30). Coen et al, 

used this task to study visceral pain provoked by balloon distention in the oesophagus. 

The mechanism was suggested to be central, mainly due to distraction.  

Aims  

In this study, we try to determine if there is a shared autonomic response between the 

two analgesic interventions (slow deep breathing and attention) that can contribute to 

the analgesic effect. 
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Methods 

Ethical approval 

The study protocol was reviewed and approved by Queen Mary, University of London, 

UK (reference QMERC2015/55). Besides, both written and informed consent was 

obtained from all study participants before reading the participant information sheet. 

 

Subjects 

Twenty-one volunteers participated in the study, recruited by local advertisement from 

staff and students of Queen Mary, University of London, UK. The study inclusion criteria 

were that of healthy individuals aged 18-60, with a gender distribution ratio not greater 

than 60:40. Women were studied during their follicular phase only to limit the effect of 

endogenous hormones upon autonomic parameters. Furthermore, participants were 

excluded if there was a positive history of anxiety or depression, drug abuse, 

cardiovascular conduction pathologies, or if women were either pregnant or 

breastfeeding. 

 

Twenty-one participants expressed their interest and were subsequently recruited. One 

subject was excluded from all subsequent analysis due to poor data acquisition with 

regard to the autonomic measurements made, leaving a total cohort of twenty healthy 

volunteers (11 male; mean age 24 years, range 20 – 30) was utilised. Participant weight 

and height were recorded, along with the subsequent calculation of body mass index 

(BMI), in order to control for any influence of these parameters upon patient autonomic 

physiology. Mean ± standard deviation (SD) height was 1.70m ± 0.10, mean weight was 
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65.00 ± 13.30 kg and mean BMI was 22.4 kg/m2 ± 3.50 kg/m2, thus it was interpreted the 

cohort similar enough for inclusion and statistical comparison of autonomic physiological 

data. 

 

Psychophysiological measurements 

For all participants, personality traits and degree of anxiety were quantified using 

validated questionnaires (73, 74). The Big Five Inventory (BFI) was utilised to measure 

the numerical degree of personality traits extraversion, agreeableness, 

conscientiousness, neuroticism and openness, whereby a higher figure represents a 

greater degree of a given trait (73). BFI is scored using a percent of the maximum possible 

score (POMP) system(75).  In addition, state and trait anxiety was quantified using the 

Spielberger State-Trait Anxiety Inventory (STAI) questionnaire (range 20–80, whereby a 

higher score equates to higher anxiety) assessing degree of anxiety on the day of the 

experiment (state (STAI-S)) and general anxiety (trait (STAI-T)) (74).  

 

Autonomic neurophysiology 

Throughout all experiments, ANS data were acquired through a multitude of parameters. 

Some were more specific to the parasympathetic nervous system, such as CVT, some 

were more specific to the sympathetic nervous system, such as cardiac sympathetic 

index (CSI) and, lastly, mixed measures of both arms of the autonomic system were also 

quantified, such as heart rate and blood pressure. These will be described below. 

Importantly, all ANS measurements were recorded in accordance with internationally 

agreed recommendations (76). 
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Mixed Measures 

Using the previously validated photoplethysmographic technique (Portapres, 

Amsterdam, Netherlands) (77, 78), real-time arterial blood pressure was measured non-

invasively in the ring finger of the left hand in all subjects, with the arm positioned at the 

level of the heart. Heart rate was also measured continuously, whereby 

electrocardiogram (ECG) electrodes (Ambu Blue Sensor P, Ballerup, Denmark) were 

placed in the right sub-clavicular area, the cardiac apex and left ankle, so as to 

correspond to an axis consistent with Eindhoven’s Lead II. The ECG signal was acquired 

at 5 kHz, by means of a biosignals acquisition system (Neuroscope, Medifit Instruments, 

Enfield, UK), whereby real-time heart rate (HR, beats/min) was quantified by the interval 

between consecutive R waves (R-R intervals, in ms). In addition, raw data was fed into 

the NeuroScope for further processing and real-time derivation of the autonomic indices 

using VaguSoft (Medifit Instruments, London, UK). 

 

Parasympathetic Nervous System Measurements: Cardiac Vagal Tone 

Using the NeuroScope, CVT was measured continuously in real-time, as an index of 

brainstem parasympathetic nervous system efferent activity. A non-invasive continuous 

index of CVT described as pulse synchronised phase shifts in consecutive cardiac cycles 

is a form of pulse interval variability or jitter, was performed in real-time as previously 

described (79, 80). This also facilitates measurements of latencies of responses. The CVT 

is quantified in clinically validated units of a linear vagal scale (LVS) with zero reference 

point, equivalent to full atropinisation in healthy male human volunteers (65). 
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Contrasted to power spectral analysis of HR variability, CVT is validated for time epochs 

of less than 1 minute.  

 

Sympathetic Nervous System Measurements: Cardiac Sympathetic Index 

By calculating the cardiac sympathetic index (CSI), SNS activity was also quantified. CSI is 

derived from a modified Lorez plot of interbeat intervals(81). 

 Following the initial acquisition of R-R interval data, as described above, data was 

reformatted and entered into the Cardiac Metric program (CMetx, University of Arizona, 

AZ, USA). This permits the calculation of the validated Toichi’s CSI, expressed as a ratio 

of R-R intervals, and hence has no units (81). 

 

Study design 

The experimental time course consisted of two separate visits in a crossover design, 

separated by at least one week to permit a ‘wash out’ period for the intervention 

subjects were exposed to. Before patient inclusion in the study, an initial telephone 

screening consultation was performed, to ensure all inclusion and exclusion criteria were 

met (see above). At the beginning of the first visit for any given subject, a 12 lead ECG 

was obtained to screen for any cardiovascular conduction pathologies that may 

otherwise confound results. Furthermore, participants would then complete the BFI 

questionnaire, along with the STAI-T (73, 74). Participants were studied between 0900-

1200 only and were informed to refrain from alcohol and caffeine in the preceding 24 

hours, smoking in the preceding 2 hours, and fast for 6 hours before the study, all of 
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which were undertaken to control for influential variables of autonomic activity. 

Furthermore, all experiments were undertaken in a quiet temperature-controlled 

environment (20 - 22°C). 

 

Experimental time course 

Following the screening consult, subjects were pseudo-randomised to receive one of two 

interventions during their first experimental visit, to which the other intervention would 

be employed during the second visit. The experimental intervention encompassed either 

a paced deep breathing exercise or a distraction task, both of which were 30 minutes in 

duration. Participants were positioned in a chair at 45 degrees, and when all real-time 

data acquisition devices were adequately recording (i.e. with minimal signal 

interference), the three-part experimental design was commenced. All autonomic data 

were acquired continuously throughout. The experimental paradigm was divided into 

the following epochs. Firstly, a 10-minute baseline reading was performed, whereby 

participants were simply told to relax. Following this, the 30-minute intervention would 

commence, either the paced deep breathing or distraction task. Finally, a further 5-

minute baseline period was undertaken. Following this, participants would complete the 

STAI-S, thus concluding the experimental visit. 

 

Deep Breathing Intervention 

For the paced deep breathing intervention, participants would watch and listen to a 30-

minute video whereby they were instructed to mimic the breathing patterns of the 

demonstrator. During the video, 1-minute periods of paced deep breathing would cycle 
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with a 5-minute rest period, when participants were told to breathe normally and relax. 

During the 1-minute deep breathing exercise, the full inspiratory capacity lasted 4 

seconds and was followed by exhalation to forced expiratory vital capacity in 6 seconds, 

repeated at a frequency of 0.1 Hz, thus achieving a rate of 6 breaths per minute. In a 

subsequent analysis of the deep breathing intervention, the exact time course of the 

deep breathing activity was mapped to the beat numbers acquired from the 

Neuroscope, thus permitting data analysis of both the whole 30-minute period 

(encompassing both deep breathing and rest periods), but also during the deep 

breathing exercise only. The utility of paced deep breathing is comparable and validated 

by previously published studies (69, 82). 

 

Distraction Task Intervention 

The 30-minute distraction intervention employed was that of the validated 1-back task 

(Cogstate Ltd, USA). This task involves the presentation of a series of playing cards on a 

computer screen, whereby participants would need to continuously identify whether a 

current and sequential card were the same, or indeed different. Depending on if the 

cards were the same or different, participants were asked to use the computer mouse 

and identify this by clicking either the ‘left’ or ‘right’ button. The card presentation was 

pseudo-randomised and serves as a validated method to ‘distract’ study participants; 

this is a computerised version of the N-back Task proposed by Kirchner in 1958 (30, 83). 
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Statistical analysis 

Data distribution was analysed using the Kolmogorov-Smirnov test. Quantitative data are 

herein presented either as mean ± SD, for parametric data, or median with interquartile 

ranges (IQRs) for parametric and non-parametric data respectively. Of note, CVT data 

values were not normally distributed. For non-parametric data, Wilcoxon signed-rank 

tests were utilised to compare CVT during experimental conditions. Furthermore, to 

assess the intervention effects on SNS and mixed measure parameters, repeated 

measures ANOVA were used, with posthoc correction using the Bonferroni method. 

Sphericity was confirmed by Mauchly's test for all ANOVA reports. For CVT and CSI, 

change from baseline was used rather than absolute values  (delta-CVT, delta-CSI), this 

was chosen to reduce inter-individual variability. All statistical tests performed were two-

tailed and statistical significance was thresholded to a criterion of p<0.05. All statistical 

analyses of both psychophysiological and autonomic neurophysiological data were 

performed using proprietary software (SPSS version 20 IBM, New York, USA).  
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Results  

Table 2 below summarises the measurements of the autonomic variables during several 

epochs of each intervention.  

 

 

Table 2 : absolute values of autonomic measurements during each intervention and 

demographic data.  

Variable Attention 

baseline 

Attention Post 

attention 

Breathing 

baseline 

Breathing Post 

breathing 

Cardiac vagal 

tone  

Median [IQR]     

                  

9.50 

[5.2-11.7]                   

9 

[6.2,11.7]  

11  

[8.2,12] 

8.5 

[5.2,13.2] 

9  

[7.25, 15.5] 

8 

 [7, 13] 

Cardiac 

sympathetic 

index   

Mean [SD] 

 

2.50  

[0.85] 

2.67 

[0.93] 

2.66 

[0.91] 

2.60 

[0.88] 

3.18 

[0.85] 

3.24 

[1.26] 

Heart rate  

Mean [SD] 

beat/min 

 

69 [14] 72 [13] 65 [11] 68 [11]  69 [10] 66 [10] 
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Systolic blood 

pressure 

Mean [SD] 

mmHg 

 

115.9 

 [17.9] 

127.6  

[17.6] 

127.6 

[16.8] 

116  

[13.5] 

120.5 

 [12.5] 

124 

 [ 17.1] 

Baroreceptor 

sensitivity  

Mean [SD] 

8.2 [3.8] 7.7 [3.5] 8.5 [3.7] 8.6 [5]  8.3 [4] 8.7 [6] 

 

Demographics  Age 

[years] 

BMI Weight  Height  Smoking 

Mean [SD] 23.9 [2.57] 

years  

22.4 [3.5] 

Kg/m2 

65 [13.7]  

kg 

1.69 [0.1]  

meter 

0 % 
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Parasympathetic effects 

 

Parasympathetic effects were measured by cardiac vagal tone. Using Wilcoxon test, SDB 

increased CVT (p= 0.01), Attention task did not affect CVT. However, post-Attention CVT 

was increased (p=0.03). 

  

Figure 5: Delta Cardiac Vagal Tone (CVT) during slow deep breathing (SDB) and Attention.  
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Table 3: Parasympathetic effects. Using Wilcoxon test, SDB increased CVT (p= 0.01), Attention task did 
not affect CVT. However, post-Attention CVT was increased (p=0.03). 

Variable                              Attention 

baseline                 

Attention Post 

attention                 

Breathing 

baseline             

Breathing Post 

breathing         

Cardiac vagal 

tone  

Median 

[IQR]     

                  

9.50 

[5.25-

11.75]                   

9 [6.25, 

11.75]  

11 [8.25,  

12] 

8.5[5.25, 

13.25] 

9 [7.25, 

15.5] 

8 [7, 13] 
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Sympathetic effects 

 

Sympathetic effects were measured by cardiac sympathetic index. ANOVA tests showed 

a significant effect on Cardiac Sympathetic Index (CSI) between interventions, F (2, 38) = 

4.73, p=0.015. Follow-up pairwise comparisons reviled that SDB significantly increased 

CSI (∆= 0.58, CI 0.56-1.1, p= 0.027) 

  

 Figure 6: Delta Cardiac Sympathetic Index (CSI) during slow deep breathing (SDB) and Attention 
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Table 4: Sympathetic effects. ANOVA tests showed a significant effect on Cardiac Sympathetic Index (CSI) 
between interventions, F (2, 38) = 4.73, p=0.015. Follow-up pairwise comparisons reviled that SDB 
significantly increased CSI (∆= 0.58, CI 0.56-1.1, p= 0.027) 

 

Variable                              Attention 

baseline                 

Attention Post 

attention                 

Breathing 

baseline             

Breathing Post 

breathing         

Cardiac 

sympathetic 

index  Mean 

[SD] 

  

2.50 

[0.85] 

2.67  

[0.93] 

2.66 

[0.91] 

2.60 

[0.88] 

3.18 

[0.85] 

3.24  

[1.26] 

 

 

 

 

 

 

 

 



64 
 

 

Mixed Effects 

 

Mixed effects refer to measurements that are influenced by both sympathetic and 

parasympathetic systems. Those are heart rate and blood pressure.  Attention increased 

both HR and SBP, (∆= 2.9, CI 0.35-5.3, p<0.02), (∆= 10.7, CI 5.2-16.2, p, 0.001) 

respectively. 

  

Figure 7: Systolic blood pressure (SBP) during slow deep breathing (SDB) and attention. Attention 
increased both SBP, (∆= 10.7, CI 5.2-16.2, p, 0.001) using a Wilcoxon test.   
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Figure 8: Heart rate (HR) during slow deep breathing (SDB) and attention. Attention increased both HR (∆= 
2.9, CI 0.35-5.3, p<0.02) using Wilcoxon test. 
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Table 5. Attention increased both HR and SBP, (∆= 2.9, CI 0.35-5.3, p<0.02), (∆= 10.7, CI 5.2-16.2, p, 
0.001) respectively. 

Variable                              Attention 

basline                 

Attention Post-

attention                 

Breathing 

baseline             

Breathing Post-

breathing         

Heart rate  

Mean[SD] 

beat/min 

  

69  [14] 72 [13] 65 [11] 68 [11]  69 [10] 66 [10] 

Systolic 

blood 

pressure 

Mean [SD] 

mmHg 

  

115.9 [17.9] 127.6 [17.6] 127.6 [16.8] 116 [13.5] 120.5 [12.5] 124 [ 17.1] 
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Psychophysiological data 

 

All participants completed the BFI and STAI. Of the BFI score dimensions, mean 

extraversion was 28.2 ± 5.9, mean agreeableness was 38.3 ± 5.1, mean 

conscientiousness was 35.3 ± 5.4, mean neuroticism was 16.2 ± 5.3 and mean openness 

was 37.1 ± 4.4. Mean trait anxiety was 46.4 ± 3.6, mean state anxiety after the PDB task 

was 47.6 ± 3.7 and mean state anxiety following the distraction task was 48.2 ± 3.6. 

Anxiety states did not significantly differ following either intervention. After correcting 

for multiple testing, personality trait and anxiety inventory did not correlate with 

autonomic variables.   
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Discussion  

 

Slow Deep Breathing and Attention had distinct patterns of autonomic responses. Slow 

deep breathing activated both the sympathetic and parasympathetic system while the 

significant effect of attention on Cardiac Vagal Tone was restricted to the post-

intervention period; this effect is likely due to relaxation. Attention significantly 

increased HR and systolic blood pressure. During Attention, there was a trend towards 

increasing in Sympathetic Tone and a reduction in Parasympathetic Tone, without being 

statistically significant, likely to be a type 2 error. 

Slow deep breathing caused a pronounced activation of the parasympathetic nervous 

system measured by CVT. This activation was instant, lasted throughout the intervention 

and returned to baseline immediately after the cessation of the task. Attention task did 

not change CVT significantly from baseline. However, there was an increase in CVT after 

the cessation of the task.  

Parasympathetic activation of slow deep breathing is consistent with multiple studies 

that reported a correlation between slow breathing and increased HRV (69, 84-88). 

The parasympathetic activation of slow deep breathing disappeared almost instantly 

after the cessation of the task, suggesting that if long term activation of the 

parasympathetic nervous system is needed, then, longer epochs of slow deep breathing 

might be necessary.  
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Several studies reported a correlation between parasympathetic activity and pain 

thresholds (69, 86, 87). Interestingly, Busch et al., studied the effect of two paradigms of 

slow deep breathing on pain; one task required constant attention while the other was 

aimed to be relaxing, only slow deep breathing with relaxation had an anti-nociceptive 

effect (89).  

Attention, on the other hand, did not significantly alter the cardiac vagal tone. However, 

there was a pronounced post attention activation of the parasympathetic nervous 

system. This increase in cardiac vagal tone is most likely due to relaxation at the end of 

a stressful task. Although, in this study, we did not measure pain tolerance, the role of 

attention in pain modulation is well documented in the literature (30, 90).  It is most 

likely related to distraction from the painful stimulus. This indicates that the 

antinociceptive effect is likely at the level of cortical processing of pain.  

Attention in this study mainly refers to distraction from pain stimulus by shifting the 

attention to another task; it does not refer to attention to the painful stimulus.  

There is some evidence to suggest that interventions combining both breathing 

techniques and distraction, such as mindfulness are superior to distraction alone(91). 
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Limitations  

This study is not without limitations. One of those is the lack of breathing monitoring 

during the attention task. There is a possibility that the autonomic effect of attention 

was driven by changes in breathing pattern due to the difficulty of the task, this change 

in breathing could, in turn, be responsible for the autonomic signature. However, Chang 

et al. showed that attention did not change the breathing rate with mild, moderate and 

intense attention tasks (92). 

The other limitation is the absence of a painful stimulus. The presence of a painful 

stimulus could change the autonomic response.  

 

Conclusions 

The two intervention mounted rather distinct autonomic responses. This finding, making 

it less likely that there is a fixed autonomic behaviour that can change the pain threshold.  

The two interventions are likely to operate via separate mechanisms. Attention is likely 

due to a central mechanism mediated via cognitive structures, likely related to 

distraction. Slow deep breathing antinociceptive mechanism has been suggested to 

operate via the efferent vagal nerve. Botha et al. showed that cholinergic blockade 

diminished the analgesic effect suggesting and efferent mechanism (69).   If the 

mechanism of action is distinct between the two interventions, then a synergic 

antinociceptive effect is plausible.  
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Chapter 3  

 

Conditioned Pain Modulation in Irritable Bowel Syndrome; 

Systematic Review and Meta-Analysis: 

 

 

Introduction 

  

The central nervous system can profoundly influence the intensity and hence perception 

of ascending nociceptive sensory signalling. This  ‘descending modulation’ is mediated 

through endogenous pain inhibitory or excitatory pathways (41, 93). A balance between 

those two opposing pathways will determine the nociceptive influx to higher brain 

structures.  Inhibitory pathways are especially important for the scope of this review. 

They mediate a physiological phenomenon termed Conditioned Pain Modulation (CPM) 

where a  painful stimulus can inhibit another existing pain(48).  

Experimentally, conditioned pain modulation can be objectively quantified in three 

steps. Firstly, pain thresholds are measured after an initial test stimulus. Secondly, a 

separate, or what is referred to as a conditioning, a tonic stimulus is applied to an 

anatomically distant region. Finally, the initial test stimulus is reapplied with pain 
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threshold recorded a second time (94). Normally, the pain thresholds between the first 

and second test stimulus increase, when measured at the same time of applying a 

conditioning stimulus. However, in chronic pain disorders, such as migraine, fibromyalgia 

and temporomandibular disorder, pain thresholds to the test stimulus fail to increase in 

the presence of a conditioning stimulus, this, in turn, suggests a degree of deficiency in 

conditioned pain modulation (95-97). Considering that many of these pain disorders are 

frequently comorbid with IBS, it is plausible to suggest that deficient conditioned pain 

modulation may also be important, but under-recognised, a pathophysiological feature 

that contributes to visceral hypersensitivity. Thus, we aimed to address this knowledge 

gap in IBS by performing a systematic review with meta-analysis to assess whether 

conditioned pain modulation is deficient in IBS patients, compared to healthy subjects. 

Secondary aims included investigation of the influence of the diagnostic criteria used to 

define IBS, as well as the predominant bowel habit, on conditioned pain modulation.  

We chose irritable bowel syndrome as a representative of visceral pain hypersensitivity 

because it is the most studied condition in the literature with good quality studies that 

can infer some useful information on the status of conditioned pain modulation in 

functional GI disorders with pain hypersensitivity as the main feature.  

 

Irritable bowel syndrome (IBS) is a common disorder characterised by recurrent 

abdominal pain associated with a change in bowel habit (98). With a reported population 

prevalence of 11.2% (99), it is associated with a significant reduction in health-related 

quality of life and work productivity (100). Heightened sensitivity of the viscera to 

experimental stimulation, referred to as ‘visceral hypersensitivity’, is an important 
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independent contributor to the gastrointestinal (GI) symptom burden of IBS (101). The 

pathogenesis of abdominal pain and visceral hypersensitivity in IBS is complex, 

multidimensional, and incompletely understood (102). However, dysregulation within 

the ‘brain-gut axis’, a bidirectional interface between the brain and the viscera, has been 

implicated (103). Several alterations have been suggested such as peripheral 

sensitisation of nociceptors, low grade inflammation, impaired mucosal function, central 

sensitisation, dysregulated descending inhibition of pain,  perception alterations and 

psychiatric predisposition(102).  

 

Materials & methods 

Search strategy  

We performed a  systematic review and meta-analysis following PRISMA 

recommendations (104). Firstly, we did a literature search using MEDLINE and Web of 

Science (1980 – 10th of May 2018). We searched for studies using the terms 'irritable 

bowel syndrome and functional bowel disorder as a medical subject heading (MeSH) and 

free-text terms. Then, we combined those with the set operator “AND” with following 

terms: diffuse noxious inhibitory control, DNIC, conditioned pain modulation, 

conditioning pain modulation, CPM, heterotopic noxious conditioning stimulation, 

heterotopic noxious counter stimulation, heterotopic nociceptive conditioning 

stimulation, heterotopic nociceptive counter stimulation, descending pain modulation, 

descending pain inhibition, counter stimulation, counter-irritation as free text terms. 

Publications were restricted to those studying adult populations, defined as greater than 

16 years old, with a documented diagnosis of IBS according to any internationally 
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accepted definition of IBS (Manning, Kruis or Rome criteria (i.e. Rome I, II, III or IV)) were 

included. Additional inclusion criteria were: i) use of a conditioned pain modulation 

model; ii) presence of a control group; iii) at least ten subjects in each group and iv) a 

clearly stated outcome measure to calculate conditioned pain modulation. We excluded 

studies if the subjects were taking opioid analgesics or had concomitant chronic pain 

conditions. No language restrictions were set. Relevant studies were independently 

reviewed in full by two investigators (KF and MG). Disagreements were resolved by 

consensus. Conference proceedings from 4 international meetings (Digestive Diseases 

Week, United European Gastroenterology Week, International Association for the Study 

of Pain World Congress and the Joint International Neurogastroenterology and Motility 

meeting) were also searched from 1997-2018. 

 

Outcome assessment 

The name of the first author, year of publication, number of subjects, diagnostic criteria 

used, IBS subtypes, study design and conditioned pain modulation paradigm and 

outcomes were recorded in a standardised fashion using an Excel spreadsheet (Excel for 

Mac 2011, Microsoft, Redmond, USA).  

 

Study methodology quality assessment  

The independent reviewers were blinded to each other’s assessment. The studies were 

assessed for bias in 6 categories; the 1st four categories are adapted from a previous 

meta-analysis that looked at the effect of chronic pain on conditioned pain modulation 

(51). We added two extra criteria that we considered necessary for this type of study; 
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those are the assessment of outcomes and the possibility of co-existence of other painful 

conditions. Each category was numerically graded as 0, 1 or 2, which were considered as 

low, moderate and high risk of bias, respectively. Contingent on these six distinct 

parameters, each study received an overall bias score from 0-12. These categories were: 

1) blinding of assessors (high-risk if un-blinded or not stated); 2) cases representative of 

the population by use of internationally accepted criteria to identify patients (high-risk if 

no criteria were mentioned, moderate risk if specified but not internationally validated); 

3) comparability of cases and controls on age and gender (low risk if <10 %, moderate if 

between 10-20%, high-risk if >20%); 4) controlling for known confounders, including 

menstrual cycle phase; the time of day of assessment; caffeine or alcohol intake; 

presence of other types of pain during testing; attention to the test stimulus/distraction 

from the conditioned pain; medication that could alter the pain perception; 

psychological disorders. If a study controlled for three or more of the confounders then 

it was considered at low risk, if at least two confounders were controlled for in the study, 

then it was considered as moderate risk, and if the study was controlled for 1 or 0 

confounders, then it was considered at high risk. 5) Assessment of outcomes (low risk if 

used a validated conditioned pain modulation paradigm with a painful test and 

conditioning stimulus, high risk if the painful nature of either stimulus is not clear; (6) 

other concomitant disorders of chronic pain (low risk if they were excluded or statistically 

accounted for, moderate risk if it was specified but not excluded and high risk if not 

mentioned in the study).  

In this meta-analysis, we excluded subgroups with concomitant pain conditions or 

psychological factors that may influence conditioned pain modulation, such as in 

Heymen et al. we excluded patients with migraine and temporomandibular joint 
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disorders (105). We also excluded conditioned pain modulation measured inside the MRI 

machine in Wong et al. (106). Wilder-Smith et al. [2014] used two conditioned pain 

modulation paradigms; foot heat and capsaicin as test stimuli (54). However, enough 

data to calculate an effect size was only provided for capsaicin as test stimulus and foot 

heat stimulation as conditioning stimulus, and thus only this paradigm was used in this 

meta-analysis (54). 

We excluded Wilder-Smith et al. [2004] from the meta-analysis because it did not 

provide means and SDs, but medians and interquartile ranges instead (53). Due to the 

small number of participants in this study (n=10 in each arm), it was not technically 

possible to convert this into means and SDs to calculate an effect size necessary for the 

meta-analysis or use other data to calculate a pooled odds ratio(107).  

 

Statistical analysis 

Data were pooled by a random-effects model using Der Simonian-Laird weights (108), as 

this was considered the most plausible methodology given the likely heterogeneity 

between studies and would provide a more conservative estimate of the effect and its 

confidence interval. Data such as group’s means, group’s means before and after 

interventions, standard deviations, p-values and number of participants, were used to 

calculate a standardised difference in means with 95% confidence interval. The 

standardised difference in means was then converted to the natural logarithm of the 

odds ratio using relevant formulas that can be found in this reference(109).  

Outcomes are expressed as pooled odds ratio with 95% confidence intervals (CI). The 

odds ratio is a measure that explains the association between an exposure and an 
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outcome (110) — for example, exposure to disease (IBS) and outcome (reduced 

conditioned pain modulation). We also calculated Hedge’s g effect size; this is a measure 

of the standardised mean difference between 2 groups(111). An effect size of > 0.8 is 

generally considered as a large effect size(112).  

The I² statistic and Cochran’s Q test were used to assess for study heterogeneity. The I² 

statistic describes the percentage of variation across studies that is due to a true 

heterogeneity, rather than chance, with values ranging from 0% to 100%. I2 values of 

25%, 50%, and 75% were considered low, moderate, and high(113). Cochran’s Q is 

distributed as per the chi-square statistic. We performed pre-specified subgroup 

analyses to ascertain whether there was effect modification by diagnostic criteria used 

or IBS sub-type. Tests were considered statistically significant if the p-value was < 0.05. 

We used a funnel plot to visually inspect for publication bias. Propriety software 

(Comprehensive Meta-Analysis, Biostat, New Jersey, USA, Version 2), was used to 

perform all the calculations for the meta-analysis and generate Forest plots for the stated 

outcomes.  

 

Results 

Search results  

The search generated 645 citations, of which 13 were relevant, and 12 met the inclusion 

criteria, see Figure 9. Of the 12 studies included, there were 248 patients and 216 

controls. All studies had a case-control design, see Table 5. 11 of the 12 studies were 

conducted in females only.  



78 
 

 

Figure 9: Flow diagram for the assessment of studies identified in the systematic review. 
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Table 6: Summary of included studies. Abbreviations: F, females; HC, healthy controls; IBS, irritable bowel 
syndrome; IBS-C, irritable bowel syndrome-constipation predominant; IBS-D, irritable bowel syndrome-
diarrhoea predominant; M, males; n, number of subjects. 

Study IBS sub-

type 

Cohort 

demographics 

 

Test stimulus & 

location 

 

Conditioning stimulus, 

location and duration 

Outcome 

measure 

CPM 

result 

Bouhassira 

et al. (114, 

115) (2013) 

IBS-C 

 

IBS, n = 20 

HC, n = 11 

Females only  

Electrical 

stimulus 

 

Sural nerve 

Cold pressor test (2-

4C) 

Contralateral hand 1 

min. 

Reflex 

(RIII) 

HC>IBS 

Heymen et 

al. (51, 105) 

(2010) 

IBS  

(all 

subtypes) 

IBS, n = 27 

HC, n = 21 

Females only  

Heat stimulus 

 

Left hand 

Cold pressor test 

(12C) 

Right hand 44 sec. 

Pain rating HC>IBS 

Jarrett et al. 

(2016) (116) 

IBS 

(all 

subtypes) 

IBS, n = 46 

HC, n = 31 

Females only  

Heat stimulus 

 

Forearm 

Hot pressor test 

(46.5C) 

Contralateral hand 1 

min. 

Pain rating HC=IBS 

Jarrett et al. 

(2014) (117) 

IBS 

(all 

subtypes) 

IBS, n = 20 

HC, n = 20 

Females only  

Heat stimulus 

Forearm 

Cold pressor test 

(12C) 

Contralateral hand 1 

min. 

Pain rating HC=IBS 

King et al. 

(2009) (118) 

IBS 

(all 

subtypes) 

IBS, n = 14 

HC, n = 28 

Females only  

Heat stimulus 

Left hand 

Cold pressor test (8-

16C 0.1C) 

Right foot 30 sec. 

Pain rating HC>IBS 

Piché et al. 

(2013) (119) 

IBS-D IBS, n = 14 

HC, n = 14 

Females only  

Electrical 

stimulus 

Retro-malleolar 

path of right 

sural nerve 

Cold pain (Ice pack -

12C) 

Left forearm 2 min. 

Pain rating HC=IBS 

Piché et al. 

(2011) (120) 

IBS-D IBS, n = 14 

HC, n = 14 

Females only  

Electrical 

stimulus 

Cold pain (Ice pack -

12C) 

Left forearm 2min. 

Pain rating HC>IBS 
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Retro-malleolar 

path of right 

sural nerve 

Piché et al. 

(2010) (121) 

IBS-D IBS, n = 11 

HC, n = 18 

Females only  

Electrical 

stimulus 

Retro-malleolar 

path of left sural 

nerve 

Cold pressor test (4C) 

Right hand 2 min. 

Pain rating HC>IBS 

Song et al. 

(2006)(122) 

IBS 

(all 

subtypes) 

IBS, n = 12 

HC, n = 12 

Females only  

Rectal 

distention 

Cold pressor test (4C) 

Left foot 30 sec. 

Pain rating HC>IBS 

Wilder-Smith 

et al. (2007) 

(123) 

IBS 

(all 

subtypes) 

IBS, n = 40 

HC, n = 20 

Females only  

Rectal 

distension 

Cold pressor test (4C) 

Left foot 2 min. 

Pain rating HC>IBS 

Williams et 

al.  (2013) 

(124) 

IBS 

(all 

subtypes) 

IBS, n = 22 

HC, n = 16 

Females only  

Heat stimulus 

Right forearm 

Cold pressor test 

(12C 1C) 

Left hand 1 min. 

Pain 

threshold 

HC>IBS 

Wong et al. 

(2016) (106) 

IBS 

(all 

subtypes) 

IBS, n = 13, M = 6, 

F = 7 

HC, n = 11, M = 4, 

F= 7 

Mixed gender  

Rectal 

distension 

Heat stimulus 

(44,5C) 

Left foot 30 sec. 

Pain 

threshold 

HC=IBS 
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Diminished conditioned pain modulation in IBS 

Conditioned pain modulation in IBS populations versus healthy controls was more likely 

to be diminished with an odds ratio of 4.84 (95% CI 2.18-10.71, p<0.0001). There was a 

large standardised difference in mean between IBS and healthy controls with a hedges’ 

g effect size of 0.85 (95% CI 0.42 - 1.28, p<0.001)  (125). Significant heterogeneity 

between studies was noted (Q-test χ2 =52, p<0.001, I2 =78.8). Visual inspection of the 

Funnel plot did not provide evidence of publication bias, see figure 10. 

 

 

Figure 10: A Funnel plot of the included studies demonstrating symmetry which suggests that there is no 
significant publication bias. 
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Effect modification by diagnostic criteria used 

 

Of the 12 studies that met the inclusion criteria, nine studies used the Rome III definition 

and three studies used Rome II. The odds ratio of impaired conditioned pain modulation 

using the Rome II and III criteria was 3.44 (95% CI 1.76 - 6.70, p<0.0001) and 5.65 (95% 

CI 1.87 - 17.04, p=0.002) respectively, see figure 12. However, between groups analysis 

did not reveal a statistically significant difference; Q= 0.54, df= 1, p=0.46.  

 

Figure 12: Forest plot of the odds ratio of impaired Conditioned pain modulation according to different Rome 
IBS definition. The pooled odds ratio for Rome II, Rome III was 3.44 (95% CI 1.76 - 6.70, p<0.0001) and 
5.65 (95% CI 1.87 - 17.04, p-0.002) respectively. Abbreviations: CPM: Conditioned pain modulation, CI: 
confidence interval. 

 

Effect modification by IBS SUBTYPE 

Of the 12 studies that met the inclusion criteria, eight studies included pooled both 

subtypes of IBS patients into one group without reporting separate conditioned pain 

modulation outcome for each subtype, 1 study included only IBS-constipation (IBS-C) and 

three studies only IBS-diarrhoea (IBS-D) patients. The odds ratio of impaired conditioned 

pain modulation in IBS-D was 3.76 (95% CI 1.68 - 8.44, p=0.001), Q-test χ2 = 1.25, df =2, 
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p=0.54, I2 =0. Odds ratio based on the one study of IBS-C was 13.05 (95% CI 2.97 - 57.29, 

p=0.001), Q-test χ2 = 0, df =0, p=1, I2 =0.  For the studies with mixed populations of IBS, 

χ2 = 47.4, df =7, p<0.001, I2 =85.23.  There was no statistically significant difference when 

comparing the three groups of studies (IBS-D, IBS-C, and studies with mixed IBS 

populations), Q= 2.08, df=2, p=0.35. See figure 13.  

 

Figure 13: Forest plot of the odds ratio of Impaired Conditioned pain modulation in IBS subtypes. The pooled 
odds ratio for IBS-C was 13.04 (95% CI 2.97 - 57.29, p=0.001) and for IBS-D 3.76 (95% CI 1.68 - 8.44, 
p=0.001). Abbreviations: CPM: Conditioned pain modulation; CI: confidence interval; IBS-A, all mixed 
subtypes of IBS (i.e. not classified in the reporting paper); IBS-C, IBS with constipation predominance; IBS-

D, IBS with diarrhoea predominance.   

 

 

 

Study methodological quality assessment 

The methodological quality of the included studies is summarised in Table 6. A total bias 

assessment scale was agreed to range between 0-12, depending on individual criteria, 

with 0 indicating no bias. All the included studies scored between 2 to 5. None of the 

studies was blinded; hence the lowest total score was 2.  
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Table 7:  Study methodological scoring. 

Study Blinding of 

outcome 

assessors 

to 

participant 

group 

Patients 

representative 

of the 

population 

Control for 

known 

confounders 

Comparability 

of cases and 

controls 

(gender and 

age) 

Assessment 

of 

outcomes  

Coexistence 

of other 

chronic 

pain 

condition 

Total 

bias 

score 

Bouhassira 

et al. 

(2013)(115) 

2 0 2 0 0 1 5 

Heymen et 

al. (2010) 

(105) 

2 0 0 0 0 0 2 

Jarrett et al. 

(2016) 

(116) 

2 0 1 0 0 2 5 

Jarrett et al. 

(2014) 

(117) 

2 0 0 0 0 0 2 

King et al. 

(2009)(118) 

2 0 1 0 0 0 3 

Piché et al. 

(2013) 

(119) 

2 0 0 0 0 0 2 

Piché et al. 

(2011)(120) 

2 0 1 0 0 0 3 

Piché et al. 

(2010)(121) 

2 0 1 0 0 0 3 
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Song et al. 

(2006) 

(122) 

2 0 1 0 0 2 5 

Wilder-

Smith et al. 

(121) 

(2007)(123) 

2 0 1 0 0 0 3 

Williams et 

al.  (2013) 

(124) 

2 0 0 0 0 0 2 

Wong et al. 

(2016)(106) 

2 0 0 1 0 0 3 

 

Discussion 

Our meta-analysis illustrates that IBS patients are nearly five times more likely to have 

diminished conditioned pain modulation when compare to healthy controls. The 

increased likelihood is also associated with an important standardised difference in mean 

reflected by a large Hedge’s g effect size. Between groups comparisons, failed to show a 

significant difference between IBS subtypes or the Rome criteria used for diagnosis, 

although some interesting trends were noticed in this regard. Of note, King et al. yielded 

an odds ratio of impaired conditioned pain modulation that is many folds greater than 

any other study (118). However, this particular study was assigned the smallest relative 

weight in the random model used in this meta-analysis, making it unlikely that this has 

significantly skewed the overall results. Most studies (10/12) either used rigours criteria 

to exclude other painful conditions except IBS or reported separate data of patients with 

concomitant painful conditions; this enabled us to exclude such data from the meta-
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analysis. The latter makes it likely that the effect seen in this meta-analysis is related to 

IBS.  

These results have several important implications across the field, particularly 

concerning underlying pathophysiology of the disorder, as well as future clinical practice.  

The central defining characteristic of IBS is chronic abdominal pain, with a percentage of 

patients displaying heightened pain sensitivity to visceral stimuli, termed visceral 

hypersensitivity (126). Visceral hypersensitivity may arise, and be maintained, due to 

abnormalities at any level of the brain-gut axis, such as sensitisation of peripheral and 

central neurons  (127). Moreover, data from several functional brain imaging studies 

have also provided evidence for aberrant central pain processing in cortical and 

subcortical regions (102, 128, 129). Abnormal descending pain modulation is likely to 

adversely contribute to many of these mechanisms as it includes many of the constituent 

components of the brain-gut axis. Thus, there are three plausible explanations as to the 

deficiency in conditioned pain modulation that we have identified in IBS patients. Firstly, 

in this patient group, there is a true imbalance between descending inhibition and 

descending pain facilitation. Secondly, the ‘normal’ physiological descending inhibitory 

pain regulatory system is insufficient to dampen nociceptor recruitment at the level of 

the dorsal horn, where “gating” of visceral nociceptive afferent transmission occurs. 

Finally, a combination of dysregulation within descending pain modulatory pathways and 

established central sensitisation at the central nervous system may result in an overall 

impairment in conditioned pain modulation (130). This latter explanation is the most 

likely as the development of central sensitisation at the spinal dorsal-horn neurone level 

due to peripheral injury or inflammation may be a consequence of dysregulated 
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descending control from centres such as the rostral ventromedial medulla to the spinal 

dorsal horn (131). 

Several central nervous system regions are involved in the descending pain modulation, 

for instance, the insula, prefrontal anterior cingulate cortex, amygdala, hypothalamus, 

rostral ventromedial medulla and dorsal pons (132-134). The major neurotransmitters 

within the descending pathways are serotonin (5-HT), norepinephrine, and dopamine 

which regulate the excitability of dorsal horn neurons (32, 135, 136)- see figure 14. 

Notably, the above-mentioned brain regions and neurotransmitter pathways have 

important interactions with the autonomic nervous system (137, 138). Interventions that 

could reduce the descending excitatory effect, or enhance the descending inhibitory 

effect, may, therefore, be theoretically useful in the management of pain in IBS and such 

intervention could be physiological, pharmacological, or even electrical.  
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Figure 14: Descending pain modulation pathways identifying the main transmitter systems. Adapted from 
Benarroch(139). 

 

Current diagnostic classification of IBS is based upon symptoms in the absence of a 

demonstrable structural or biochemical abnormality (140). This has inevitably created an 

inherently heterogeneous group of patients. The management of pain in IBS is 

particularly problematic (141). Coupled with variation in clinical response and a high 

placebo response has represented significant challenges in the development of 

efficacious interventions  (142). A potential approach is personalised management based 

on individual features as advocated by the introduction of the multidimensional clinical 
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profile for the management of functional GI disorders (143).  Although recent studies 

have provided important insights into the pathophysiology of IBS, many of the methods 

used are often labour intensive, invasive, and expensive. In contrast, performing a 

conditioned pain modulation paradigms in IBS patients is straightforward, reproducible 

and inexpensive and requires only a minimal amount of specialist equipment (144). 

Recent evidence suggests that assessment of conditioned pain modulation may allow for 

the individualisation of pain treatments in other conditions of chronic pain; for example, 

Wilder-Smith et al. and Landau et al., showed that baseline conditioned pain modulation 

might predict postsurgical neuropathic pain (145-149).  

S. Sugimine et al. showed in a placebo-controlled study that the effect of pregabalin on 

conditioned pain modulation was strongly correlated with initial conditioned pain 

modulation (r = 0.73, p < 0.0001), the lower the initial conditioned pain modulation was, 

the more positive effect pregabalin had on conditioned pain modulation, oppositely, 

participant with initially high conditioned pain modulation may have a reduction in 

conditioned pain modulation after receiving pregabalin(150). Conditioned pain 

modulation has also been shown to predict analgesic  response to centrally acting 

medications targeting noradrenergic pathways in diabetic neuropathy(151). 

Interestingly, Niesters et all showed that Tapantadol (acts via opioid and noradrenergic 

pathways) could improve CPM in patients with diabetic neuropathy after 4 weeks of 

treatment(152).  

Neuromodulatory analgesic agents, such as tricyclic antidepressants and selective 

serotonin reuptake inhibitors (SSRI), have an established role in the management of IBS 

however, the number needed to treat remains relatively large (153-156). The exact 
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mode of action remains unclear but may be due to the interference with specialised 

brain networks involving emotional and cognitive processing of pain or by engaging 

descending pathways to alter pain transmission at the level of the dorsal horn of the 

spinal cord; both mechanisms can, in turn, alter conditioned pain modulation (157). 

Outcome studies investigating the relationship between conditioned pain modulation in 

IBS and response to neurotransmitters might offer an objective method to predict the 

efficacy of those medications and result in a more acceptable number needed to treat.  

There is a trend that patients diagnosed with Rome III criteria may have a more 

diminished conditioned pain modulation that those diagnosed with Rome II. Although 

the difference was not statistically significant, this may be due to a type 2 error, where 

only three studies used Rome III while nine studies used Rome II.  According to the Rome 

II criteria, abdominal pain or discomfort must be present for at least 12 weeks in the last 

12 months. In contrast, Rome III states that these symptoms must be present in the last 

three months with the start of symptoms of at least six months before the diagnosis. 

Notably, studies that have compared these criteria have shown that patients diagnosed 

using Rome III have significantly more severe abdominal pain and alteration in bowel 

habit than those diagnosed using Rome II (158). 

In contrast to the Rome III criteria, the Rome IV criteria have removed the term 

“discomfort” from the definition (159). While the prevailing reasons for this change were 

largely semantic, i.e. several languages do not have a word for discomfort, there are likely 

large variations in patients’ interpretation of this term (160). Coupled with changes in 

the temporal definition of abdominal pain, rising to weekly in Rome IV from 3 times 

monthly in Rome III, it is likely that this will lead to a reduction in the population 
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prevalence of IBS as the new diagnostic criteria will represent a more severe subgroup 

(161, 162). It is plausible to propose that a more severe IBS phenotype, characterised by 

greater pain, may have heightened deficiencies in conditioned pain modulation and thus 

may become a more salient pathophysiological feature of the disorder. This possibility 

requires confirmation in future studies.  

 

Limitations  

This study is not without limitations. Firstly, this meta-analysis was confined to study 

conditioned pain modulation in IBS and thus extrapolation to other functional 

gastrointestinal disorders, where visceral pain is a defining feature, is uncertain although 

similar deficiencies in conditioned pain modulation have been reported in patients with 

functional dyspepsia and functional abdominal pain (52, 54). Secondly, within the 

literature to date, there is a female bias in the recruited subjects (88%), and therefore 

generalizability to male patients is less certain. A previous meta-analysis reported that 

deficiencies in conditioned pain modulation in males is less than in females and may 

provide insights into the female preponderance in some types of IBS (163). The 

neurobiological basis of gender differences both in IBS and conditioned pain modulation 

is incompletely understood. It has been proposed that differences in pain sensitivity 

throughout the menstrual cycle may explain some of this variability (114). However, nine 

out of eleven studies included controlled for the stage of the menstrual cycle, thereby 

lessening the potential effect on our overall results. Thirdly, the identified studies were 

undertaken in tertiary care centres, so there is likely some inherent selection bias 

towards a more severe disease phenotype which potentially limits the external validity. 



93 
 

Fourthly, although, impaired conditioned pain modulation indicates a top-down 

dysregulation of pain control, it may not be able to differentiate between spinal, bulbar, 

cortical or emotional drivers of this dysregulation. Finally, we also demonstrated 

considerable heterogeneity between studies, particularly concerning differences in 

testing paradigms and outcome measures. However, Lewis et al. did not find that 

difference in the conditioning stimulus type, or test stimulus type significantly affects the 

study effect size (51). Nevertheless, our results show a clear association between IBS and 

impaired conditioned pain modulation, although no comment can be made on the 

direction of causality, which requires future longitudinal study.  

 

Concluding remarks  

In conclusion, this meta-analysis supports the hypothesis that conditioned pain 

modulation is diminished in IBS. This deficit is likely due to a combination of a 

dysregulated descending pain modulation and central sensitisation. In future, 

conditioned pain modulation paradigms could be used to improve homogeneity in 

clinical trials, although the international consensus is needed on the specific parameters 

of such paradigms such as the use of rectal distention vs somatic pain, the type of 

conditioning stimulus and controlling for possible confounding factors (164). An 

interesting potential of this technique may be the personalisation of neuromodulatory 

therapy in patients with IBS, which may improve outcomes and warrants further studies.  
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Chapter 4  

The Effect of Experimentally Induced Oesophageal 

Hypersensitivity on Conditioned Pain Modulation 

 

Introduction 

Pain is a common experience that drives behaviour and plays an important role in 

survival. Pain experience may differ from individual to individual; however, depending 

on the circumstances, such experience may also differ within the same individual. The 

difference is sometimes quite remarkable; for example, it has been reported that soldiers 

may report little pain to gun-shot wounds during the battle(38).     Such variability in pain 

experience is possible due to a complex pain control system that intervenes at multiple 

levels; from pain conduction at the periphery, transmission to the central nervous 

system, to the processing of such stimuli at cortical levels.  

 

One of the mechanisms of interest in this study is the descending inhibition of pain that 

may account for some on the variation in pain experience and may be used as a gateway 

to therapeutic pain regulation in the future. Descending inhibition refers to the ability of 

central nervous system structures (such as brainstem, limbic system, cortical regions) to 

inhibit pain at the level of the spinal cord.  

 



95 
 

One way of assessing descending inhibition is by measuring the Conditioned Pain 

Modulation (CPM). CPM refers to the endogenous pain inhibition of a specific stimulus 

when a second pain stimulus is applied simultaneously but in another region of the body. 

It is evaluated by assessing participant’s pain threshold to a specific stimulus (test 

stimulus), then reassessing it after applying a second painful stimulus, also called 

conditioning stimulus. Following the principle that ‘’pain inhibits pain’’. CPM was formally 

known as Diffuse Noxious Inhibitory Control (DNIC) described by Le Bars, Dickenson and 

colleagues (47). DNIC is a specific term that refers to a brainstem mediated mechanism; 

thus, Conditioned Pain Modulation was adopted as an alternative term to incorporate 

the psychophysiological factors important in shaping this type of pain control in 

humans(48).    

 

In healthy humans, there is a significant increase in pain threshold to the test stimulus 

after applying a second conditioning stimulus(49). Conditioned pain inhibition is thought 

to be mediated via Diffuse Noxious Inhibitory Control system. In rats, DNIC is thought to 

be mediated via neurones in the subnucleus reticularis dorsalis (SRD)(50). However, 

human studies suggest the involvement of other nuclei such as the Periaqueductal grey 

and structures that allow for interactions with higher structures such as the autonomic 

nervous system, emotional centres, past experience and other factors (51, 165, 166).  

 

CPM is reduced (i.e. reduction in pain threshold to the test stimulus after application of 

the conditioning stimulus is less pronounced) in a variety of chronic pain conditions such 

as Functional Abdominal Pain, Irritable Bowel Syndrome, Functional Dyspepsia, etc. (52-
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54). This reduction in CPM has a large effect size of in various types of painful conditions 

as suggested by a meta-analysis (51).  

 

Descending pain modulation dysregulation may play a key role in visceral pain 

hypersensitivity where there is an exaggerated response to a potentially painful stimulus 

or sometimes without an obvious stimulus. Pain hypersensitivity is thought to take place 

at one or more levels, such as:  

• Peripheral: enhanced transduction of painful signals as seen during local injury or 

inflammation (peripheral sensitisation) 

• Central: at the level of the dorsal horn of the spinal cord where pain signals are 

integrated and amplified before being projected to higher structures (central 

sensitisation) 

• Cortical level: during the perception (interpretation) phase  

Current literature of CPM in visceral pain cannot fully explain the relationship between 

visceral pain hypersensitivity and CPM for several reasons:   

• In chronic visceral pain conditions, is not possible to assess the baseline CPM 

before the condition started; thus, it is difficult to say whether the reduction in 

CPM preceded visceral pain or it is a consequence of it 

• Unlike acute painful conditions, in chronic visceral pain conditions such as 

functional gastrointestinal disorders, the painful condition does not completely 

resolve with time, thus, it is not possible to assess CPM in those patients after the 

painful condition has resolved. 
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• Unlike other types of pain, where the insult stimulus is well-known and 

potentially treatable, the insult stimulus in visceral pain is often vague and non-

targetable 

For all the above reasons, a better human experimental model is needed to investigate 

the link between CPM and visceral hypersensitivity.  

 

Our group has pioneered a human model to investigate acid-induced experimental 

oesophageal hypersensitivity. The model allows the study of central sensitisation in 

healthy humans. Below is a basic description of the model:  

 

Human Model of acid-induced oesophageal hypersensitivity 

 

 

Most participants (approximately 70%, Sharma 2012) will drop their pain threshold by > 
6mA as a consequence of developing central sensitisation 

Participant will rest for 30 min to allow for sensitisation to take place, after that pain 
threshold is retested 

Pain threshold is measured at baseline, then 0.15 mmol of HCL is infused for 30 min 
(8ml/min) just above the level of the lower oesophageal sphincter 

At the distal end of the catheter, there is a perfusion port while 15cm above that level 
there is a stimulating electrode used for measuring electrical pain threshold 

Nasal catheter is passed in the oesophagus with the tip resting 2 cm above the lower 
oesophageal sphincter 

The level of the lower oesophageal sphincter is identified using high resolution 
manometry
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This model has been validated against saline infusion and has been repeatedly used and 

validated by our group and others (68, 167-169). The stimulation electrode is placed 15 

cm proximal to the acid infusion port to avoid testing the pain threshold at the inflamed 

section of the oesophagus, thus testing central sensitisation rather than peripheral 

sensitisation. Previous studies confirmed the absence of pH changes at the level of 

stimulation electrode (168).  This model also allows for the collection of autonomic 

variables throughout the experiment using ECG signals.  Our group has shown a 

significant association between the development of visceral hypersensitivity and the 

reduction in parasympathetic tone (168) such that those who reduce their 

parasympathetic tone the most during acid infusion also sensitise the most; thus, the 

proposed study provides an exploratory data regarding a possible association between 

CPM and parasympathetic tone.  

 

In this model, approximately 70% of participants sensitise (drop their pain threshold by 

> 6mA) to the established dose and period of acid-infusion (168). 

 

CPM response may differ depending on gender as it is less pronounced in females (51). 

It has also been shown that CPM depends on the phase of the menstrual cycle (170). We 

accounted for this by studying females only, in their follicular phase of the menstrual 

cycle. The choice to study females is also because of the predominance of this gender in 

functional digestive disorders(171). 
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Figure 15:  A schematic representation of the oesophageal pain hypersensitivity model. From left to right: - 
A- a catheter is placed in the oesophagus which has a proximal pH probe and silver bipolar electrical 
stimulation electrodes to measure oesophageal pain sensitivity and a distal pH probe & infusion port. B – 
Subjects are randomised to receive either saline or acid infusion. As expected, when saline was infused, 
pH remained stable in the proximal and distal oesophagus, whereas there is a demonstrable drop in pH in 
the distal but not the proximal oesophagus during acid. C- Following saline infusion, pain thresholds in the 
proximal oesophagus -which has not been exposed to acid- show decreased pain sensitivity, i.e. increase 
in pain thresholds over time (green-shaded area) due to habituation, but following acid infusion, there is 
increased pain sensitivity, i.e. decrease in pain thresholds over time (red-shaded area) due to central 
sensitisation. Adapted from Sarker, Aziz et al. Lancet 2000.  

 

 

Hypothesis  

• Baseline CPM can predict the development of experimentally induced 

oesophageal pain hypersensitivity  
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Rationale:  

If CPM is associated with visceral hypersensitivity, then: 

• It can be used as a surrogate maker when evaluating potential treatments for 

visceral hypersensitivity 

• In future studies, therapeutic interventions may target CPM pathways to treat 

visceral hypersensitivity 

Main aims:  

• To investigate the relationship between CPM and experimental oesophageal pain 

hypersensitivity  

• To investigate if baseline CPM can predict the development of experimental 

oesophageal hypersensitivity  

Primary outcome measure 

CPM before and after acid infusion. CPM is calculated as the percentage change in ‘test 

stimulus’ pain threshold (PT) before and during the conditioning stimulus.  

Secondary outcome measure  

Autonomic measures, including Cardiac Vagal Tone measured for 5 minutes, at baseline 

and between 25 min-30 min after acid-infusion 
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Methods  

 

Inclusion criteria  

• Women aged 18-65 years 

• No chronic pain conditions, including Irritable Bowel Syndrome, fibromyalgia, 

migraine, and other pain conditions  

• Not on any regular medications  

• No history of Gastroesophageal Reflux Disease (heartburn less than twice per 

week) 

• No heart conditions such as arrhythmias   

Exclusion criteria 

• Not meeting all inclusion criteria  

• Not able to give informed consent (poor command of English language)  

• Pregnancy  

• Cold-induced problems such as: 

• Raynauds disease  

• Injuries or skin conditions on the foot  

•  Cold-induced skin disorders such as Cold-induced urticaria and similar 

conditions  

•   Known intolerances to cold temperature for other reasons not mentioned 

here such as arthritis or sickle cell anaemia 
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We controlled for: 

• Gender: we recruited women only  

• Menstrual cycle phase: all participants were studied during the follicular phase  

• Alcohol consumption, caffeine; restricted 24 hours before the study 

• We collected information for co-variate analysis such as age, gender, BMI, other 

medical conditions, rigorous exercise, sleep deprivation and psychological factors 

and anxiety using validated questionnaires  

• We standardised the investigator-participant interaction by keeping verbal 

interaction to a minimum after explaining all the steps before commencing the 

study 

 
 
 
 

Study design 

This is a single visit correlational study. Please see below a study flow chart.  
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Figure 16: Study flowchart  

 

 

 

Interventions 

High-resolution oesophageal manometry  

To define the anatomical landmarks of the oesophagus (i.e. position of the lower 

oesophageal sphincter, if the recruited subject has not been studied before using this 

model), then high-resolution oesophageal manometry (HRM) was performed using 

End of the study 

Second CPM measurement (left foot in ice-water)

Pain threshold measurements 

30 min rest to allow for sensitisation 

Oesophageal acid infusion for 30 min 

10 min rest 

Baseline CPM measurement (left foot in ice-water)

Baseline Pain threshold measurements (oesophageal electrode) 

5 min of autonomic baseline 

Oesophageal intubation with a special catheter ; through the nose 

High-resolution manometry to locate the lower oesophageal sphincter (not a full 
test) 

HAD, State and Trait questionnaires 

Signing the informed consent form 

Screening and going through inclusion and exclusion criteria 

Discussing the participant information sheet  
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ManoScan 360™ High-Resolution Manometry system from Sierra Scientific . A specialised 

HRM catheter sheathed in a single-use sleeve was inserted through the nostril into the 

oesophagus until the distal end of the catheter is resting in the proximal stomach. The 

catheter is then taped to the nose. Lower oesophageal sphincter (LOS) position, in terms 

of cm from the nostril, was recorded and used to guide insertion of naso-oesophageal 

catheters in the next phases of the study. Manometry is a routine diagnostic test. 

 

Autonomic nervous system measurements 

At baseline, and continuously after that, measurement of the parasympathetic tone 

using cardiac vagal tone was made using the non-invasive Neuroscope system (172).  

 

Acid infusion and pain tolerance measurements   

Oesophageal intubation  

A specialised catheter was inserted through the nose into the oesophagus (3 mm 

diameter catheter, Unisensor AG, Ch-8544 Attikon, Switzerland). The catheter has a 

distal infusion port (5cm from the tip) and a proximal stimulation electrode to test pain 

thresholds (16 cm proximal to the tip). The tip of the catheter will be placed 2 cm above 

the lower oesophageal sphincter (located by HRM).  

 



105 
 

Pain tolerance threshold testing  

Pain tolerance threshold (PTT) in this protocol is defined as the level of pain when 

participants report that they cannot tolerate any further increase (Visual analogue scale 

or VAS of 7 out of 10).  

Electrodes were connected to an electrical stimulator and stimuli are delivered at a 

frequency of 0.5 Hz, using square wave pulses (0.5 s duration), at intensities varying 

between 0 and 90 mA. The intensity of stimulation was increased incrementally by 2 mA 

until reaching the pain threshold.  The electrical stimulation was immediately stopped 

when PTT was reached. 

Pain tolerance threshold was measured at baseline (T0) and, at 60 minutes (T60) after 

starting the distal oesophageal acid infusion. The same technique was used to measure 

pain threshold to assess CPM.  

 

 Oesophageal acid infusion  

Using the distal port on the oesophageal catheter, we infused 0.15 molar hydrochloric 

acid (T10-40) (medical grad product, used in practice for IV infusion) using an intravenous 

pump with a rate of 8 ml per minute for 30 minutes.  

 

CPM testing  

CPM was calculated as the percentage change in PTT before and during the conditioning 

stimulus. Example: If baseline PTT=100mA, PTT during the cold condition stimulus is 

120mA, then CPM= +20%. 
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After obtaining oesophageal electric PTT, we applied conditioning stimulus by placing the 

left foot in cold water that kept at 2-4 degree Celsius (temperature is kept within the 

interval by adding ice cubes). Then we tested oesophageal PTT as detailed in the above 

section while the conditioning stimulus is applied throughout the pain tolerance testing.  

Cold-stimulus is known to be effective in eliciting a CPM response(51). Traditionally, the 

conditioning stimulus is applied to a heterotopic (on the other side) place from the test 

stimulus; thus, the position on the feet was chosen to avoid applying both stimuli to the 

same spinal afferent’s distribution.  

 

 

 

 

 

 

 

 

Figure 17: Timing of selected study interventions 
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Statistical considerations  

Statistical analysis  

We used partial correlation method using SPSS 25 IBM. We statistically corrected for age, 

height and weight.  

 Sample size calculation 

Using a regression model with an estimated effect size of CPM in chronic pain conditions 

to be 0.78 (adopted from a meta-analysis (51), 16 participants must complete the study 

to have 80% power and 0.05 alfa level.  

 

Ethical approvals  

This study was approved by Queen Mary, University of London Ethics committee. 

Approval reference: QMERC2017/72.  

 

Results 

 

Relationship between baseline CPM and sensitisation  

 

There was a strong and significant correlation between baseline CPM and the degree of 

sensitisation, r=0.695, p=0.008. Delta PTT below refers to the post-acid infusion pain 

threshold as a percentage from baseline pain threshold. For example, participants who 

reduce their PTT by 20 percent, will have a Delta PT of 80%, while participants who 
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reduce their PTT by 10 percent have a Delta PT of 90%.  Thus, more sensitisation takes 

place, the lower Delta-PT will be.  

 

Figure 18: Partial correlation between baselines conditioned pain modulation (CPM) and delta pain 
threshold.  

 

 

Table 8 Partial correlation between baselines conditioned pain modulation (CPM) and delta pain threshold 
adjusted for age, height and weight   

Control Variables Baseline 

CPM 

Age & Height (cm) & 

Weight (kg) 

Delta -PT Correlation .695 

Significance (2-

tailed) 

.008 

df 11 
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Relationship between change in CPM and sensitisation  

 

There was an inverse correlation between the direction of CPM and sensitisation, r= -

0.558, p= 0.047. The higher degree of sensitisation correlated with a larger increase in 

CPM from baseline. This may suggest that participants who sensitised the most 

attempted to increase their CPM the most. However, these participants had a low CPM 

at baseline.  

 

Figure 19: Correlation between change in CPM and change in pain threshold after oesophageal acid 
infusion.  
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Table 9: Correlation between change in CPM and change in pain threshold after oesophageal acid infusion 
adjusted for age, height and weight. df: degree of freedom.   

Control Variables Delta PT 

Age & Height (cm) & Weight (kg) Delta CPM Correlation -.558 

Significance (2-tailed) .047 

df 11 
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Relationship between baseline CPM and baseline cardiac vagal tone  

 

We could not detect a significant correlation between baseline cardiac vagal tone and 

baseline conditioned pain modulation, r= -0.214, p=0.483.  

 

Table 10: Partial correlation between baseline cardiac vagal tone and baseline conditioned pain modulation. 
df: degree of freedom.   

Control Variables Baseline 

CPM 

Age & Height (cm) & 

Weight (kg) 

CVT 

baseline 

Correlation -.214 

Significance (2-

tailed) 

.483 

df 11 
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Other data  

For a summary of other collected data, please refer to the tables below. No statistics 

were performed to avoid multiple testing.  

 

Table 11: Absolute values of autonomic variables during the interventions   

 CVT baseline CVT during  

acid-infusion 

CVT rest 

post-

acid 

HR baseline HR acid 

infusion 

HR rest 

Total Mean 11.1818 12.3465 13.6312 71.818 69.065 67.506 

Std. 

Deviation 

5.52676 4.60099 5.90688 11.8310 8.8992 8.7209 

Skewness .867 .946 .835 .931 .456 .487 

 

 

 

Table 12: Demographic data of participants and CPM  

 Age Height 

(cm) 

Weight 

(kg) 

Baseline 

CPM 

Mean 26.2

5 

167.13 61.288 125.6856 

Std. 

Deviation 

6.13

7 

4.897 7.7476 24.71599 

Skewness 1.29

3 

-.257 .778 1.256 
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Psychological data 

All participant had a normal HAD score of less than 7.  

Discussion 

Functional gastrointestinal disorders are grouped and diagnosed according to clinical 

criteria rather than physiological and pathological criteria. This is clinically useful, mainly 

for prognostic reasons and to exclude sinister diseases. However, the clinical 

classification will inevitably create an umbrella term that groups several distinct 

pathological mechanisms under the same disease heading. This is particularly 

problematical in research. For example, if a specific intervention is effective against a 

subtype of a functional disorder with anxiety as the main feature, then it may be less 

effective in patients with similar symptoms that are driven by enteric nervous system 

dysfunction. Detecting an intervention with a moderate effect size in heterogeneous 

groups is challenging and will need a very large number of participants. For this, we are 

likely to miss reasonably effective intervention when tested based on symptoms only. 

One of the theoretical mechanisms in functional gastrointestinal disorders with pain as 

the main feature is a dysregulated top-down control (see the previous chapter). This 

study clearly shows that the status of baseline top-down control measured by 

Conditioned Pain modulation is a strong predictor of pain sensitisation. Those with 

relatively effective conditioned pain modulation are less likely to sensitise. On the other 

hand, those who sensitise the most, increase their CPM in percentage terms the most 
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from baseline. Although the percentage change is more when compared to those with 

less sensitisation, they have a lower baseline to start with.  

The correlation between baseline CPM and sensitisation is strong and significant, 

suggesting a relevant underlying mechanism. CPM is a surrogate marker of top-down 

control. However, it cannot pinpoint the level of dysregulation. CPM is influenced by 

several structures, spinal, bulbar, autonomic and cortical structures. Given the broad 

range of control, it is very challenging to pinpoint the dysfunctional part of the chain. 

However, interventions along the chain are likely to be effective, especially at the top 

level of the chain, such as cortical structures involved in the processing of pain.  

 

CPM may be a rudimentary way of assessing top-down pain control. However, it may 

predict participant likely to develop pain hypersensitivity when exposed to a sensitising 

stimulus. Our study clearly shows this in experimental settings. Wilder-Smith et al. and 

Landau et al. showed that baseline conditioned pain modulation might predict 

postsurgical neuropathic pain (149, 173). Those conclusions are in line with our findings.  

The foreseeable benefits of incorporating CPM in research and perhaps clinical practice 

can be summarised as below.  

First, CPM can be used to monitor treatment progress in patients with chronic painful 

conditions, especially if a pharmaceutical agent is used that is known to target 

descending inhibition.  

Second, it can also be used in research to reduce heterogeneity and thus to reduce the 

sample size needed to test an intervention, likely to enhance top-down control of pain.  
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Limitations 

 

This was a study undertaken in a stringent laboratory setting that is rarely met in the real 

clinical world. This study indicates that CMP is a reasonable predictor of developing pain 

hypersensitivity in healthy volunteers; however, this conclusion will need further testing 

in clinical settings.  Another limitation is that we recruited female participants only, thus 

extrapolation to male populations may require further testing.   

 

In conclusion, conditioned pain modulation at baseline is a strong predictor of 

developing experimental pain hypersensitivity in healthy volunteers. Conditioned pain 

modulation may be a useful tool to predict the efficacy of therapeutic interventions 

targeting descending inhibitory pathways. Conditioned pain modulation may also be a 

useful tool in clinical trials of analgesic drugs by reducing heterogeneity of study 

population. 
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Chapter 5:  

The Effect of Transcutaneous Vagal Nerve Stimulation on Pain- 

Systematic Review and Meta-Analysis  

 

 

Introduction 

We have previously published an extensive review regarding the clinical uses of Vagal 

nerve stimulation (174). Vagal nerve stimulation has been used in various pain conditions 

with some degree of success in experimental studies. My main interest is using vagal 

nerve stimulation for the central modulation of pain, more specifically, oesophageal pain 

hypersensitivity. However, oesophageal pain hypersensitivity is a novel application with 

no publications regarding the use of vagal nerve stimulation in this condition.  For this 

reason, we had to widen our literature search to all types of pain.  To understand the 

degree of evidence of this intervention, we conducted a systematic review of the 

literature and a meta-analysis of the effect of non-invasive vagal nerve stimulation on 

pain in general.  
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Methods 

 

Inclusion criteria 

• Prospective randomised controlled studies investigation non-invasive Vagus 

nerve stimulation in humans in pain conditions   

• Clearly measured pain outcomes  

 

Search strategy 

 

The study was conducted according to PRISMA guidelines and registered on PROSPERO 

web site. Two researchers independently searched Pub Med and Web of science. Those 

two researchers were students who worked under my supervision to conduct this 

project. They had training in principles of evidence-based medicine, and literature 

search.  Keywords were agreed to be: vagus nerve stimulation, Or Vagus AND pain. The 

search was restricted to human studies only. We included all articles published prior to 

31.04 2018. There was no restriction on language. The abstracts were screened, full 

papers were screened if met inclusion criteria.  

 

Data extraction 

Using a designed Excel Spreadsheet (Excel 2016, Microsoft, Redmond, USA), Data were 

extracted independently by two investigators. This data included study identifiers, 

groups and intervention characteristics, primary and secondary outcomes.   
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Study methodology quality assessment 

 

A checklist was designed to assess the risk of bias in 6 categories. The risk for each 

category was set as low (0 points), moderate (1 point) or high (2 points). The categories 

were:1) blinding of assessors  (high risk if not blinded or not clearly stated) 2) use of 

internationally accepted criteria for underlying clinical condition (high risk if not stated, 

moderated risk if not internationally validated) 3) matching of treatment and control 

groups concerning age  (low risk if <10%, moderate if 10-20% and high >20%) 4)  

matching of treatment and control group concerning gender (low risk if <10%, moderate 

if 10-20% and high >20%) 5) the exclusion of depressive disorders as a known confounder 

to pain (high risk if not mentioned, moderated risk if mentioned and measured and low 

risk if excluded or adjusted for) 6) control for other known confounders such as 

menstrual cycle phase, the time of day of assessment, caffeine or alcohol intake, 

concomitant medication use (pain-killers), stress or anxiety  (the high risk was considered 

in case of control for one or fewer confounders, moderate risk was assumed when at 

least two confounders were controlled, and the low risk was attributed to control for 

three or more confounders. 

 

 

 

Statistical analysis 

Due to the expected heterogeneity between the included studies, we used a random-

effects model using Der Simonian-Lard weights. We used the Hedges g with 95% 



119 
 

confidence intervals to measure effect sizes (175, 176). An effect size of 0.2 is considered 

small, while 0.5 is medium and 0.8 is large. The effect size is a measure used to estimate 

the difference between the treatment and the control groups regarding the pain-related 

effect of vagal nerve stimulation 

The Higgins I2 test is used to determine heterogeneity. It ranges between 0% to 100% 

where 25%, 50%, and 75% indicate low, medium and high statistical heterogeneity 

respectively (177). Publication bias was assessed by visual analysis of the funnel plot. 

Comprehensive Meta-analysis, Biostat, New Jersy, USA, Version 2 software was used to 

perform the meta-analysis and produce the Forest plot. 
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Results  

Search results:  

Search results are summarised in Figure 20. 

 

Figure 20: Flowchart of search results.  

 

 

1110 potentially 

relevant papers 

identified 

Duplicates removed 

N=50 

1060 studies broadly 

screened 

1045 studies excluded 

after evaluation of 

title/abstract 

15 papers retrieved 

for the full-text 

assessment 

6 studies excluded 

because: 

5 were not controlled 

1 post hoc analysis  

 
9 studies included in 

quantitative and 

qualitative synthesis 
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Characteristics of the included studies  

 

Characteristics of the included studies are summarised in the table below.  
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Bias assessment  

Methodological quality assessment is summarised in table 13. Visual analysis of the 

funnel plot did not suggest publication bias, see figure 21.  

Table 13: Bias assessment scores.  

 

Study 

 

Blinding 

of 

outcomes 

assessors 

Patients 

selection 

Patients/controls 

matching for age 

Treatment/control 

matching gender 

Exclusion 

of 

depressive 

disorders 

Control for 

 confounders  

Total 

bias 

score 

Busch,2013 0 0 0 0 0 1 1 

Frokjaer,2016 0 0 0 0 2 0 2 

Goadsby,2018 0 0 0 0 2 2 4 

Kovacik,2017 0 0 0 0 2 1 3 

Laqua,2014 2 0 0 0 2 2 6 

Napadaw,2012 2 0 0 0 2 1 5 

Silberstein,2016 

ACT1 

0 0 0 0 2 2 4 

Silberstein,2016 

EVENT 

0 0 0 0 2 2 4 

Usichenko,2017 2 0 0 0 2 2 6 
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Figure 21: Funnel plot of the included studies, the visual inspection does not indicate a significant publication 
bias  

Heterogeneity of included studies  

There was a large heterogeneity in the included studies; Q-value 134.08, I 

squared=83.59, p-value < 0,001 

The overall effect of vagal nerve stimulation on pain  

Non- invasive vagal nerve stimulation had a small but significant effect on pain; Hedges 

g = 0.217, p=0.005 see figure 22.  
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Study name
Subgroup within study

Time point
Statistics for each study

Hedges's g and 95% CI

Hedges's 
Standard 

Lower 
Upper 

g
error

Variance
limit

limit
Z-Value

p-Value

Busch V et al, 2013
Combined

Single time point 
0.331

0.066
0.004

0.202
0.460

5.034
0.000

Frokjaer et al, 2016
Combined

Single time point 
0.135

0.319
0.102

-0.491
0.761

0.422
0.673

Goadsby et al, 2018
Combined

Combined
-0.279

0.273
0.074

-0.813
0.256

-1.022
0.307

Kovacic K et al, 2017 
PFSD worse pain 

Combined
0.656

0.201
0.040

0.262
1.050

3.265
0.001

Laqua R et al, 2014
Combined

Combined
0.091

0.221
0.049

-0.343
0.524

0.409
0.682

Napadow V et al, 2012
Tonic deep-tissue mechanical PI

Combined
0.677

0.378
0.143

-0.064
1.418

1.791
0.073

Silberstein et al; ,2016  ACT one
Mean PI at 15 min  Ech+Cch

Single time point 
0.146

0.173
0.030

-0.194
0.486

0.843
0.399

Silberstein et al; ,2016  ACT1
Combined

Single time point 
0.168

0.123
0.015

-0.074
0.410

1.364
0.173

Silberstein et al; ,2016 EVENT
Mean change in the number of headache days/ week

Single time point 
0.151

0.257
0.066

-0.354
0.655

0.585
0.558

Usichenko T et al, 2017
Heat pain thresholds

Single time point 
-0.215

0.311
0.097

-0.824
0.395

-0.691
0.490

0.217
0.076

0.006
0.067

0.367
2.836

0.005

-2.00
-1.00

0.00
1.00

2.00

Favours A
Favours B

Meta Analysis

Meta Analysis
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Effect modification by type of pain 

Vagal nerve stimulation appeared to have a significant effect on somatic and visceral pain 

but not on headache. The overall Hedges’ g of 0,564 (0,173-0,955; p= 0,005) was 

observed in visceral pain whereas the effect size of somatic pain was 0,328 (0,033-0,623; 

p value=0,029), see the figure below. 
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G
roup by

Type of pain 
Study nam

e
Subgroup w

ithin study
Tim

e point
Statistics for each study

H
edges's g and 95%

 C
I

H
edges's 

Standard 
Low

er 
U

pper 

g
error

Variance
lim

it
lim

it
Z-Value

p-Value

Headache 
Goadsby et al, 2018

Mean change in PI in Cch
15 min

-0.984
0.301

0.091
-1.574

-0.393
-3.263

0.001

Headache 
Goadsby et al, 2018

Mean change in PI in Ech
15 min

3.160
0.678

0.460
1.831

4.489
4.660

0.000

Headache 
Silberstein et al; ,2016  ACT one

Mean PI at 15 min  Ech+Cch
Blank

0.146
0.173

0.030
-0.194

0.486
0.843

0.399

Headache 
Silberstein et al; ,2016 EVENT

Mean change in the number of headache days/ week
Blank

0.151
0.257

0.066
-0.354

0.655
0.585

0.558

Headache 
Silberstein et al; ,2016  ACT1

Cch response rate at 15 minutes
Blank

-0.123
0.173

0.030
-0.463

0.217
-0.708

0.479

Headache 
Silberstein et al; ,2016  ACT1

Ech response rate at 15 minutes
Blank

0.467
0.176

0.031
0.122

0.811
2.657

0.008

Headache 
0.240

0.269
0.072

-0.286
0.767

0.894
0.371

Somatic
Busch V et al, 2013

Cold PT contralateral
Blank

0.059
0.203

0.041
-0.338

0.456
0.292

0.770

Somatic
Busch V et al, 2013

Cold PT ipsilateral
Blank

0.155
0.203

0.041
-0.242

0.553
0.765

0.444

Somatic
Busch V et al, 2013

Heat PT contralateral
Blank

0.168
0.203

0.041
-0.229

0.566
0.830

0.407

Somatic
Busch V et al, 2013

Heat PT ipsilateral
Blank

0.044
0.203

0.041
-0.353

0.441
0.219

0.827

Somatic
Busch V et al, 2013

Mechanical PT contralateral side
Blank

0.315
0.204

0.042
-0.084

0.714
1.546

0.122

Somatic
Busch V et al, 2013

Mechanical PT ipsilateral side
Blank

0.229
0.203

0.041
-0.169

0.627
1.126

0.260

Somatic
Busch V et al, 2013

Pressure PT contralateral
Blank

2.590
0.276

0.076
2.050

3.130
9.399

0.000

Somatic
Busch V et al, 2013

Pressure PT ipsilateral side
Blank

0.217
0.203

0.041
-0.181

0.615
1.069

0.285

Somatic
Busch V et al, 2013

Tonic heat PT contralateral side
Blank

0.278
0.203

0.041
-0.120

0.677
1.369

0.171

Somatic
Busch V et al, 2013

Tonic heat PT ipsilateral side
Blank

0.288
0.204

0.041
-0.111

0.687
1.416

0.157

Somatic
Frokjaer et al, 2016

Bone PT
Blank

0.393
0.454

0.206
-0.496

1.282
0.866

0.387

Somatic
Frokjaer et al, 2016

Muscle PT
Blank

-0.118
0.449

0.202
-0.999

0.763
-0.263

0.793

Somatic
Laqua R et al, 2014

Electric PT antinociceptive response
Blank

0.819
0.316

0.100
0.200

1.438
2.594

0.009

Somatic
Laqua R et al, 2014

Electric PT nociceptive response
Blank

-0.612
0.310

0.096
-1.220

-0.004
-1.974

0.048

Somatic
Usichenko T et al, 2017

Heat pain thresholds
Blank

-0.215
0.311

0.097
-0.824

0.395
-0.691

0.490

Somatic
Napadow V et al, 2012

Tonic deep-tissue mechanical PI
15-post stimulation

0.669
0.378

0.143
-0.072

1.409
1.770

0.077

Somatic
0.328

0.150
0.023

0.033
0.623

2.182
0.029

Visceral
Kovacic K et al, 2017 

PFSD worse pain 
1 week

0.564
0.199

0.040
0.173

0.955
2.827

0.005

Visceral
0.564

0.199
0.040

0.173
0.955

2.827
0.005

Overall
0.385

0.110
0.012

0.170
0.599

3.509
0.000

-1.00
-0.50

0.00
0.50

1.00

Favours A
Favours B

M
eta Analysis
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Discussion 

 

Our study shows that there is a small but statically significant effect of non-invasive vagal 

nerve stimulation on pain. It is no surprise that the included studies had significant 

heterogeneity. Studies differed in conditions being treated, location of vagal nerve 

stimulation, stimulation parameters, and primary endpoints. Despite that, there is a 

modest but significant effect size when compared to sham.  

Subgroup analysis showed that vagal nerve stimulation reduces visceral pain and somatic 

pain but not headache. These data are based on a few studies with marked 

heterogeneity. For example, the data for visceral pain is based on one study only(178). 

In contrast, there is marked heterogeneity in studies addressing pain in chronic 

headache. This review included one study addressing chronic migraine and two other 

studies on cluster headache. Cluster headache can be further subdivided to chronic 

cluster and episodic cluster headache.  

With regards to somatic pain, the overall effect size was statistically significant in favour 

of vagal nerve stimulation, but Hedges’ g of individual studies varied depending on pain 

modalities. The small number of studies did not allow for further subgroup analysis of 

mechanical and thermal modalities separately; instead, we could only extrapolate on the 

overall effect size on somatic pain. Although the “mechanical” pain modalities were 

found to be more significantly reduced by vagal nerve stimulation, tonic pain models 

showed promising results with regards to both mechanical and heat paradigms. These 

findings suggest a role of a central mechanism of action of vagal nerve stimulation as the 
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tonic pain paradigms test temporal summation, which is central nervous system-specific 

(179). 

The included studies used various device locations. Frokjaer et al., applied the stimulator 

exclusively on the cymba conchae, whereas in other studies the device was placed on 

the cavity conchae, tragus or dorsal and ventral aspects of the ear. These areas could be 

additionally supplied with the great auricular and trigeminal nerves that may reinforce 

the vagal nerve stimulation via connections to the spinal trigeminal nucleus (3, 180).  

 

Stimulation of the tragus, dorsal and ventral aspects of the ear tended to show positive 

results, while studies that used cervical stimulation tended to be negative. These 

observations must be accepted with caution because the effect size may reflect several 

factors such as different disease populations, duration of stimulation, parameters of 

stimulation and many other factors.  

 

Laqua et al. and Usichenko et al. studies did not show an overall difference between 

active and sham intervention with regards to experimentally induced electrical and heat 

pain, respectively (5, 6). However, the detailed subgroup analysis of participants with 

vagal nerve stimulation suggested a decreased pain threshold indicating a pro-

nociceptive effect. Those results could be potentially explained either a type one error 

or a paradoxical effect in susceptible individuals.  
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The exact mechanics are unknown. Kovacic et al., (8), demonstrated a hypoalgesic effect 

of percutaneous electric nerve field stimulation on patients with functional abdominal 

pain. The authors postulate that this effect might be driven via stimulation of brainstem 

nuclei involved in pain pathways, such as the Nucleus of the Solitary Tract (NTS). This 

stimulation is likely to be anatomically medicated via vagal nerve stimulation (VNS). The 

other studies also showed a similar antinociceptive effect of VNS on various types of pain.  

The effect is seemingly independent of the stimulation parameters. To our knowledge, 

no human study has investigated precise parameters to elicit a specific response but 

rather used known parameters to avoid habituation and remain safe.  

 

Despite considerable progress in our understanding of the neurobiology of vagal 

afferents, a mechanistic appreciation of how VNS exerts a seemingly diverse beneficial 

effect remains lacking. However, we would propose two factors that may explain this. 

Firstly, the possibility of publication bias. This is less likely for one reason; there are a 

plethora of possible combinations of stimulation parameters such as frequency, 

wavelength, wave morphology, current intensity, shape of the electrodes, size of the 

electrodes, individual differences in skin resistance, proximity of nerve afferents to the 

electrodes, duration of stimulation, time of the day of stimulation and finally anatomical 

variations in skin innervation. To find a specific stimulus, the proportion of negative 

studies to positive studies must be large. Thus, even with large publication bias, negative 

studies should considerably outnumber positive ones, which is not what we see. 

Secondly, it is plausible to suggest that the effect of VNS is non-specific. The hypoalgesic 

effect may be driven via sending nonspecific signals at the level of the brainstem. These 
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signals will have a ''competing for effect'' with incoming pain stimuli or perhaps triggering 

a nonspecific reflex that activates descending pain inhibition or even results in a 

nonspecific release of inhibitory neurotransmitters. The effect is therefore independent 

of the stimulation parameters or perhaps type of the stimulation as long as such stimuli 

reach specific brainstem nuclei involved in pain pathways. If this hypothesis is sound, the 

hypoalgesic effect could be induced by the stimulation of any of the cranial nerves. For 

example, Kovacic et al used an enlarged auricular field that encompasses areas supplied 

the great auricular and trigeminal nerves that may, in turn, stimulate the vagal nerve via 

communications with the spinal trigeminal nucleus(8). For anatomical considerations, 

the vagus nerve is perhaps one of the best candidates due to its extensive network. If 

this is the case, then we can argue that the shape of the electrode, exact location or 

parameters, etc. are less relevant if they avoid habituation and remain safe.  

 

The exact neurobiology of how a competing stimulus prevents incoming pain signals at 

the level of the brainstem remains to be elicited. In Melzack and Wall’s ‘’gate-control 

theory of pain’', competing (non-noxious) stimulus can inhibit noxious stimulus at the 

level of the spinal cord (41). Our hypothesis shares many aspects of this theory, with the 

evident difference that the level of inhibition is at the level of the brainstem rather than 

the spinal cord. It is evident that this conceptual hypothesis needs significant tuning and 

extensive testing.  

 

In summary, this literature review and meta-analysis suggests that vagal nerve 

stimulation has an anti-nociceptive property.  While the effect size was modest but 
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remained statistically significant. There is important heterogeneity in those included 

studies which may limit subgroup analysis at this stage.  

 

In conclusion, there is enough literature data in favour of the anti-nociceptive effect of 

noninvasive vagal nerve stimulation that warrant further investigations and clinical trial 

in various pain conditions.  
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Chapter 6  

Effect of Transcutaneous Vagal Nerve Stimulation on Reversing 

Acid-Induced Oesophageal Pain Hypersensitivity  

 

Introduction 

 

Oesophageal pain is a major global cause of disability, healthcare-seeking and reduction 

in quality of life (181). Chronic oesophageal pain is a symptomatic feature of disorders 

such as erosive oesophagitis, non-erosive reflux disease and non-cardiac chest pain. The 

latter has been estimated to account for approximately 700,000 consultations in the 

accident, and emergency departments with care costs to the National Health Service 

estimated to be in the order of £83 million per annum. Patients often display heightened 

sensitivity to intra-oesophageal stimuli, which is referred to as oesophageal pain 

hypersensitivity (182, 183). However, the experience of oesophageal pain is highly 

individual with a multitude of factors including physiological and psychological factors 

proposed to account for this variability (172).  

 

Amongst the physiological factors, autonomic nervous system (ANS) plays an important 

role. The ANS is a bidirectional, hierarchically controlled brain-body nexus that integrates 

the external environment with the internal milieu. The ANS has been postulated to play 

a pivotal role in the modulation of pain through its multiple interactions that occur at the 
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level of the periphery, spinal cord, brainstem, and forebrain (184). The ANS has two 

broadly antithetic branches, the parasympathetic nervous system (PNS) and the 

sympathetic nervous system (SNS). The primary neural substrate of the PNS is the vagus 

nerve.  

 

Previously, we have sought to determine the role of ANS in modulating oesophageal pain 

hypersensitivity using a safe, well-validated clinical model of oesophageal pain (40), 

where participants were randomised to receive saline or acid infusion in the lower 

(distal) oesophagus. Following acid infusion into the distal oesophagus, pain thresholds 

to electrical stimulation are reduced in both the exposed (distal) and the (upper 

(proximal)) non-acid exposed oesophagus, the latter most likely as sequelae of central 

sensitization.  

Work from our group has demonstrated that during distal oesophageal acidification, 

there is a rise in SNS tone and a fall in PNS tone (167). Interestingly, we have also 

demonstrated that participants who decreased their PNS tone the most developed a 

heightened degree of oesophageal pain hypersensitivity (168). Despite progress in 

identifying the mechanisms that account for development and maintenance of the 

oesophageal pain hypersensitivity, translation into efficacious drug treatments has 

remained limited, notwithstanding concerns regarding safety and side effects (185). 

Therefore, it is not surprising that several psychological and alternative/complementary 

interventions, such as cognitive behavioural therapy and yoga, have been employed in 

the management of oesophageal pain syndromes (186).  
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A common feature of these interventions is the conscious control of breathing frequency 

and depth. Deep breathing has been proffered as a method of inducing analgesia, 

possibly through increasing PNS tone (187). These data and ours provided a rationale for 

the suggestion that the PNS may have analgesic properties in the oesophagus. We have 

recently examined this possibility using the oesophageal pain hypersensitivity model 

where participants undertook either, deep breathing to physiologically increase PNS 

tone or normal (sham) breathing during oesophageal acidification. Deep breathing 

significantly increased cardiac vagal tone (figure 24 panel A) and prevented the 

development of oesophageal pain sensitivity (188), (figure 24 panel B). It has been 

proposed by our group that other methods of increasing PNS tone, for instance 

electrically, have a similar effect (submitted, QMERC2014/5).                                                                                                                        

Electrical vagal nerve stimulation (VNS) was first used in humans in 1988 and is an 

efficacious treatment for drug-resistant epilepsy (189). Traditional VNS is undertaken in 

a procedure where a bipolar helical electrode is placed around the cervical vagal nerve, 

which is connected to a pulse generator placed in a subcutaneous pocket in the chest, 

not dissimilar to a cardiac pacemaker, (figure 25 panel A). However, this method of VNS 

necessitates surgical implantation with its attendant risks and complications (190). 

Recently, an external transcutaneous VNS (t-VNS) system, consisting of an earplug-like 

electrode to interface with the concha of the outer ear and a handheld battery-powered 

electrical stimulator, has become commercially available (NEMOS system(CE marked)), 

(figure 25 panel B). The auricular branch of the vagus nerve innervates the concha of the 

ear and is located directly under the skin, making it a suitable target for transcutaneous 

stimulation. t-VNS has been demonstrated to be safe, well-tolerated and has a high 

degree of user-friendliness. A preliminary study has reported that t-VNS reduces 



139 
 

sensitivity to heat pain in healthy volunteers (7). Furthermore, recent studies have 

demonstrated that t-VNS patterns of brain activation, as determined by functional 

magnetic resonance imaging, were similar to those evoked by traditional VNS (191). 

Thus, VNS per se represents an attractive proposition for investigating the role of the 

PNS in oesophageal pain and t-VNS specifically, a viable, safe and acceptable technology 

for achieving this. 

 

 

We have recently examined the possibility of using the proposed tVNS device to prevent 

the development of acid-induced oesophageal hypersensitivity in our human model 

described above, where participants undertook either active tVNS, to increase PNS tone 

or sham tVNS during oesophageal acidification. tVNS significantly increased cardiac vagal 

tone and prevented the development of oesophageal pain sensitivity (manuscript 

Figure 24: A- The effect of sham breathing (shaded black) and deep breathing (unshaded) on the cardiac 
vagal tone (PNS tone) indicating that deep breathing increases vagal tone (p<0.0001). 

B- The effect of sham breathing, deep breathing and deep breathing + atropine on change in pain 
thresholds. Mixed effects regression modelling showed a coefficient of effect for deep breathing of 9.94 
(95% CI 8.3-11.6, p= 0.0001). Atropine blocked the analgesic effect of deep breathing. Adapted from Botha 

et all, Gut 2014.  
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submitted, QMUL Ethics approval number QMERC2014/5) (figure 26). Although the 

latter study shows that tVNS prevents the development of oesophageal hypersensitivity 

when used simultaneously with acid infusion, in many patients, acid-induced 

oesophageal hypersensitivity is due to Gastro-oesophageal reflux disease, where 

sensitisation is already established and, therefore, it is important to determine whether 

the tVNS can reverse sensitisation that has been established. If proven, the ability to 

reverse oesophageal pain sensitivity gives tVNS a dual mechanism of action (i.e. 

prevention and reversal of oesophageal hypersensitivity), thus strengthening the 

rationale for translation into clinical practice. The focus on enhancing the reversal of 

oesophageal pain sensitivity is especially important when taking into consideration the 

larger therapeutic window to use this intervention when compared with prophylactic 

stimulation during reflux episodes only. The pivotal experiments evaluating the role of 

VNS in reversing acid-induced oesophageal pain hypersensitivity have not been 

conducted. Our aim is, therefore, to use the model above of acid-induced oesophageal 

pain hypersensitivity, to determine the effect of t-VNS on the reversal of pain 

hypersensitivity after it has already been established following acid infusion.  

 

Hypothesis  

 

We, therefore, hypothesised that t-VNS reverses the development of acid-induced 

oesophageal pain hypersensitivity by increasing PNS tone.  
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Figure 25: Electrical vagal nerve stimulation. Panel A (left) depicts a traditional invasive vagal nerve 
stimulation whereas panel B demonstrates external non-invasive transcutaneous vagal nerve stimulation 
(NEMOS system). 
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Figure 26– The effect of active and sham tVNS on the development of oesophageal pain hypersensitivity, 
derived from change in pain thresholds. Mixed effects linear regression, controlling for age and gender, 
demonstrated that VNS prevented the development of acid-induced esophageal hypersensitivity in 
comparison to sham stimulation (coefficient 15.4mA /unit time (95% confidence interval 8.8 to 22.2), 

p=0.001) 
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Methods 

We proposed to undertake a study evaluating the use of t-VNS in our validated model of 

oesophageal pain hypersensitivity. The study flowchart is summarised in figure 28.  

Sample size 

Based on our extensive experience with this model of acid-induced oesophageal 

hypersensitivity, we have produced summary data demonstrating that subjects have a 

mean reduction in pain thresholds of -14.3% +/- standard deviation of 16.4% at T120 

relative to baseline. Seventeen subjects would provide 90% power at a two-sided 

significance level of 0.05 to detect a difference of 14.3%, i.e. to prevent sensitisation in 

an AB/BA crossover design.  

 

Study design 

 

A flowchart presentation of the study design is presented in figure 27. 
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Figure 23: Study flowchart  

 

 

 

Visit 1  

Psychological profiling and autonomic nervous system measurements 

 

 Validated questionnaires assessing anxiety (Hospital Anxiety and Depression Scale and 

Spielberger State/Trait anxiety) were completed. To define the anatomical landmarks of 

the oesophagus (i.e. position of the lower oesophageal sphincter, if the recruited subject 

has not been studied before using this model), then high-resolution oesophageal 

manometry was undertaken first to define this. At baseline, and continuously after that, 

 
Effect of Transcutaneous Vagal Nerve Stimulation (t-VNS) on the maintenance of oesophageal pain 

hypersensitivity  

45 Healthy volunteers

Parasympathetic nervous system monitoring at baseline and continuously thereafter 

Subjects intubated with oesophageal catheter and baseline oesophageal sensory and pain thresholds to 
electrical stimulation measured in the proximal oesophagus.

Acid infusion as per protocol (0.1M hydrochloric acid for 30min)

Randomisation 1:1

Sham t-VNS 
For 30min

Proximal  oesophageal sensory & pain threshold to electrical stimulation (Non-sensitisers will be 
excluded) 

Active t-VNS 
For 30min

proximal  oesophageal sensory & pain threshold to electrical stimulation
At  T90  and T120

Crossover with at least 2 weeks between visits

Figure 6 – Proposed study flowchart investigating the effect of t-VNS  on reducing oesophageal pain 
hypersensitivity in healthy volunteers.

T0

T0-30

T60

T90 & 
120

Time
(min)

T60-90
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measurement of PNS tone were made using the non-invasive Neuroscope system, a 

technologically advanced biosignals acquisition system that allows for validated 

measurement of efferent (cardiac vagal tone) of the PNS (172). This monitoring also 

provides an additional safety aspect to the study. 

 

Randomisation Procedures  

 The randomisation of subjects to either active or sham intervention was performed 

using approved statistical software (www.randomization.com). Subjects were not told 

which intervention (active/sham) they have been randomised to. 

High-resolution Manometry 

 The ManoScan 360™ High-Resolution Manometry system from Sierra Scientific was 

used. A specialised HRM catheter sheathed in a single-use sleeve was inserted through 

the nostril into the oesophagus until the distal end of the catheter is resting in the 

proximal stomach. The catheter is then taped to the nose. Lower oesophageal sphincter 

(LOS) position, in terms of cm from the nostril, were recorded and used to guide insertion 

of further catheters in the next steps of the study.  

Acid infusion and pain tolerance measurements  

Intra-oesophageal intubation of participants was undertaken using a specialised 

catheter, containing a distal infusion port and a pair of silver-silver chloride bipolar ring 

electrodes (3 mm diameter catheter (Unisensor AG, Ch-8544 Attikon, Switzerland). 

Oesophageal sensory testing was performed via a pair of silver-silver chloride bipolar ring 

electrodes (inter-electrode distance 1 cm), situated 16 cm proximal to the tip of a 3 mm 
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diameter catheter. Following identification of the lower oesophageal sphincter, using 

high-resolution manometry, electrical stimulation was performed 17 cm proximal to the 

lower oesophageal sphincter. Electrodes were connected to an electrical stimulator, and 

stimuli are delivered at a frequency of 0.5 Hz, using square wave pulses (0.5 s duration), 

at intensities varying between 0 and 90 mA. The intensity of stimulation was increased 

incrementally by two mA, and each subject were asked to report both, the sensory 

threshold (visual analogue scale (VAS) of 1 out of 10), and when they cannot tolerate any 

further increase (VAS of 7 out of 10), that is defined as pain tolerance threshold (PTT). 

The electrical stimulation was immediately stopped when PTT is reached. 

 Electrical sensory and pain tolerance testing were undertaken in the proximal 

oesophagus at baseline (T0) and, at 60 minutes (T60), 90 minutes (T90) and 120 minutes 

(T120) after starting distal oesophageal acid infusion of 0.15M hydrochloric acid (T0-30) 

(Stepping Hill Hospital, Stockport) using a syringe pump (KDS Scientific 100, Linton 

Instrumentation, Palgrave, UK). At T60, non-sensitisers were excluded. Non-sensitisers 

are defined as having a post-acid infusion reduction in upper oesophageal PTT of ≤ 6 mA 

at T60, as previously defined by Sharma et al. (169).  

Active and sham vagal stimulation 

To evaluate the effect of t-VNS on enhancing the recovery of OPH, after acid infusion 

participants were randomised, in a single-blinded manner (participants were blinded to 

the position of the active intervention in the study), to receive either active t-VNS (placed 

on the region of the outer ear supplied by the auricular branch of the vagus) or sham t-

VNS (t-VNS module placed on the area located below the tragus, supplied by the Great 

Auricular nerve) (Figure 28). The device delivers rectangular pulses (250 μS, 25 Hz) (7) 
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(NEMOS, Cerbomed GmbH, Erlangen, Germany (CE marked). Both intervention 

(active/sham) lasted for 30 minutes (T60-T90). We then repeated pain tolerance 

measurements at T60, T90 and T120 (Figure 29). The sham intervention was adopted 

after it was recently validated in a published clinical trial using tVNS and paced deep 

breathing to modulate gastroduodenal motility, only active stimulation and not sham 

significantly increased vagal tone (192). 

Blinding 

Participants were blinded to the position of the active intervention in the study and were 

told that we are measuring the effect of stimulation on two distinct nerves. Analysis of 

results was performed by an investigator blinded to the type of intervention. Participants 

were told that we are studying the effect of electrical stimulation on 2 distinct nerves.  

 

 

 

Figure 28: Nerve supply of the outer ear. The ellipse markings show the proposed positioning of the electrodes for 
active and sham stimulation. 
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Figure 29: Timeline representation of the proposed interventions in each visit 

 

 

 

 

 

 

 

Following a period of no less than two weeks, to reduce any potential carryover effect, 

participants were crossed over and restudied to receive the intervention they did not 

receive in visit 1. 
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Schedule of assessment: 

Assessment  Visit 1 Visit 2 

Medical and social history 

taking 

x  

Questionnaires  x x 

Inclusion and exclusion 

criteria  

x x 

High-resolution 

Manometry   

x  

ANS monitoring  x x 

PTT measurements  x x 

Oesophageal acid-infusion  x  x  

Exclusion on non-

sensitizers 

x  

Randomisation  x  

Active/sham  

tVNS 

x x 

 

 

Primary outcome measure  

• Pain tolerance to electrical stimulation at T120 

Secondary outcome measures  

• Pain tolerance thresholds at T60, T90  
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• Effect of t-VNS on ANS variables  

 

Data Analysis  

 

Changes in pain tolerance thresholds were analysed using linear mixed-effects 

regression model with a maximum restricted likelihood (fixed effects: time, 

interventions, i.e. active t-VNS vs sham t-VNS; random effect = subject) with T0 

thresholds accounted for in the model as zero to yield a regression coefficient for 

intervention effect. All analyses were two-sided, and a statistical criterion of α<0.05 were 

adopted. Analyses were conducted using the propriety software Stata /SE version 10.1 

for Windows (College Station, TX, USA) and SPSS 20, (SPSS Inc., Chicago, IL).  

 

Participants  

 

Healthy subjects, aged 18-41, were recruited from the staff and local population around 

Queen Mary University of London by advertisement and poster only or from our existing 

databases of healthy volunteers who have previously agreed to have their contacted 

details included in the database and expressed interest in being informed of other 

studies in the institute. Vulnerable groups were not be approached. We recruited 

participants to compensate for dropouts until the sample size was met.  
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Inclusion criteria: 

1. Healthy volunteers, aged 18-60, from the staff of Queen Mary, University of London 

and the local population.  

2. Inclusion was determined based on availability, with no prior selection bias included. 

They should be able to attend the Wingate Institute for at least 2 x 2.5-3 hours sessions.  

 

Exclusion criteria: 

1.  Participants are unable to provide informed consent (e.g. not English speaking) 

2. Participants with any systemic disease or medications that may influence the 

autonomic nervous system (e.g. beta-agonists or Parkinson’s disease) 

3. Participants with a history of cardiovascular conduction problems 

4. Participants who are pregnant 

5. Participants who have tinnitus 

6. Participants with cochlear implants 

7. Those with reflux disease 

8. Those on medication, whether prescribed or over the counter, including acid 

reduction medication 
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Results 

 

Demographics  

Twenty-five participants (12 male, mean age 26.4 years, range 19-41) were recruited. In 

total, 7 participants (4 male, mean age 27.7 years, range 19-36) were excluded with five 

classified as non-sensitizers, and a further 2 participants did not tolerate naso-

oesophageal intubation, see flowchart below. This was an expected rate of non-

sensitization based on our previous work, thus leaving, 18 participants (8 male, mean 

age 26 years, range 19-41). 
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Figure 30: FLOWCHART - The effect of vagus nerve stimulation on reversing established oesophageal 
pain hypersensitivity. Sensitisers and non-sensitizers were defined based on their proximal oesophagal 
pain thresholds to distal oesophageal acidification during their sham t-VNS visit. Participants who failed 
to sensitise at the sham t-VNS visit were excluded from subsequent analysis. There was a washout 
period of 2 weeks between visits.  
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Vagus nerve stimulation reverses established oesophageal hypersensitivity 

 

The most common symptom reported with acid infusion was nausea (4/18, 22.2%). 

Absolute threshold data at (T0) and after acid infusion (T60, T90, T120) are shown in 

Table 14. There were no differences in absolute values of PTT at T0 or T60 in participants 

receiving t-VNS or sham VNS (T0 mean (SD) t-VNS 38.7mA (12.6) vs sham t-VNS 37.3mA 

(15.7), p=0.69, T60 t-VNS 28.7mA (11)) vs sham t-VNS 27.2mA (11.2), p=0.55). Relative 

to the T60 time-point, there was an increase in PTT with t-VNS at T90 of 3mA (95% CI 1 

- 5.1) in comparison to sham t-VNS of 0.7 mA (95% CI -1 – 2.3). Similarly, at T120, there 

was an increase in PTT with t-VNS of 3.8mA (95% CI 1.5 - 6.1) in comparison to sham t-

VNS, 1.3mA (95% CI -0.4 – 3). Mixed-effects regression showed a significant effect for t-

VNS (coefficient 17.3mA /unit time (95% CI 9.8 - 24.7), p=0.0001), see Figure 31.  
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Figure 3124: The effect of t-VNS  and sham t-VNS on the reversing established oesophageal pain 
hypersensitivity, derived from the paired change in pain thresholds (mean ± standard error of the mean), 
in the proximal oesophagus at T60, T90 and T120, with mixed-effects regression showing a coefficient 

of 17.3mA /unit time (95% CI 9.8 - 24.7), p=0.0001. 
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Table 14: Absolute values for proximal oesophageal PTT before (T0) and after (T60, T90 and T120) acid 
infusion with (a) t-VNS and (b) sham t-VNS delivered after acid infusion.  

 

a. Pain tolerance thresholds – t-VNS after oesophageal acidification 

 T0 T60 T90 T120 

Pain thresholds: 

mean (SD) mA 

38.7 (12.6) 28.7 (11.0) 32.1 (16.5) 34.5 (20.7) 

b. Pain tolerance thresholds– sham t-VNS after oesophageal acidification 

Pain thresholds: 

mean (SD) mA 

37.3 (15.7) 27.2 (11.2) 30.3 (12.1) 32.9 (13.9) 
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Effect of tVNS on cardiac vagal tone 

Using a Repeated Measures general linear model, I could not find a statistically significant 

effect of vagal nerve stimulation on cardiac vagal tone, see table 15, figure 32 and table 

16.  

 

 

Table 15: Absolute values of cardiac vagal tone during the different epochs of the experiment  

 

Active Sham 

Baseline 9.61 11.30 

Acid infusion 9.8 9.42 

Sensitization 12.17 11.30 

Stimulation/sham 10.58 12.55 

Post Stimulation/sham 11.16 13.78 
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Figure 32: Effect of active/sham transcutaneous vagal nerve stimulation on cardiac vagal tone.   

 

 

 

Table 16: Repeated Measures general linear model failed to detect a statistically significant effect of vagal 
nerve stimulation on cardiac vagal tone. df: degree of freedom, tVNS: transcutaneous vagal nerve 

stimulation.   

 

Source Type III Sum of Squares df Mean Square F p-value 

Intercept 22362.624 1 22362.624 197.503 .000 

tVNS 71.080 1 71.080 .628 .434 

Error 3736.475 33 113.227   
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Relationship between cardiac vagal tone and sensitisation  

There was no significant correlation between change in cardiac vagal tone and the 

degree of sensitisation, see figure 33.  

 

Figure 25: Correlation between the change in cardiac vagal tone (DELTA_CVT) and change in pain 

threshold (DELTA_PT). Pearson’s correlation was 0.06, p=0.731. 
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DISCUSSION 

This study suggests that t-VNS reverses established acid-induced oesophageal pain 

hypersensitivity. This effect is likely mediated by vagal modulation of the central 

nociceptive network.  It is also possible, although less likely that the  effect could also be 

mediated in part via an anti-inflammatory pathway(193, 194). During systemic 

inflammation, the CNS is activated by vagal afferents.  Following input integration, the 

coeliac ganglion activates the vagal efferent, which acts to modulate the immune 

response in the spleen, leading to a triggering of splenic adrenergic neurons which in 

turn cause a release of noradrenaline and subsequently acetylcholine (ACh(194)).  ACh 

binds to the alfa-7nACh receptor localised to macrophages, which in turn decreases the 

release of inflammatory cytokines, including tumour necrosis factor. Thus, it is thought 

that the vagal nerve is a key modulator of inflammation.  Furthermore, during GI 

inflammation or pain, the vagal afferent fires to the CNS, which in turn leads to the 

activation of the vagal efferent which targets myenteric neurons of the intestinal wall.  

This leads to the subsequent release of ACh from enteric neurons, serving a similar 

immunomodulatory pathway as to when systemic inflammation occurs(194). 

The articular branch of the vagal nerve stimulated in this study, is a pure afferent nerve 

(195); thus, most likely, the anti-nociceptive effect seen in this study is centrally 

mediated. The anti-inflammatory effect of vagal activation require efferent modulation 

which is not seen in this study.  

 Functional neuroimaging studies suggest that t-VNS modulates areas of the brain 

associated with central pain neuromatrix such as the thalamus, orbitofrontal cortex, 

cerebellum, hypothalamus, medulla and the limbic system (196, 197). For instance, 
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implanted VNS has been shown to result in the insula and cortical activation. Those areas 

have been observed to be important in mediating acid-induced oesophageal pain in 

healthy participants and in patients with gastro-oesophageal reflux disease (198-200). 

Moreover, t-VNS is associated with an increase in insula activity and a reduction in the 

amygdala and hippocampal activity (201). It has been recently illustrated how higher 

resting parasympathetic CVT conveys greater network connectivity in several subcortical 

regions implicated in descending analgesia, including the anterior insula, amygdala and 

hypothalamus, suggesting a prospective neural mechanism for t-VNS induced anti-

nociception (202).  

 

In previous studies, our group has demonstrated that the oesophageal hyperalgesia that 

develops in the non-acid exposed proximal oesophagus most likely occurs due to central 

sensitisation at the dorsal horn of spinal cord (203). Central sensitisation reflects 

enhanced nociception through three broad mechanisms, namely, temporal summation, 

increased activation of nociceptive facilitatory pathways or impairment of descending 

pain inhibitory pathways. Dysfunction within the descending pathways may particularly 

promote and maintain central sensitisation (204). Within the brainstem, primary afferent 

vagal fibres terminate in the nucleus tractus solitarius, which also contributes to  

descending inhibitory pathways which form a spinal-bulbo-spinal anti-nociceptive circuit 

(205). The central analgesic effect of VNS has been proposed to increase such 

descending pain modulatory pathways (206). However, other studies have shown that 

the vagus nerve modulates nociceptive processing in both the spinal cord and the brain. 
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For instance, nociceptive transmission at the spinal dorsal horn can be inhibited by the 

electrical stimulation of abdominal vagal afferents (207, 208).  

 

The antinociceptive effect could also be in part mediated via a local anti-inflammatory 

effect. The vagus nerve effect on inflammation is mediated by acetylcholine or 

noradrenaline, also known as the cholinergic anti-inflammatory pathway (209-211). In 

the context of t-VNS, several studies have shown short term stimulation exerts an anti-

inflammatory effect (212, 213). Besides, the vagus nerve interacts with the 

hypothalamic-pituitary-adrenal axis, which results in the release of cortisol inhibiting the 

proliferation of pro-inflammatory cells (194). Following acid-induced oesophageal cell 

injury, there is an influx of inflammatory mediators whose function is to repair squamous 

epithelium.  

 

 

Our findings have several therapeutic implications. Heartburn and chest pain are 

common symptoms in functional oesophageal disorders which are mediated, in part, by 

oesophageal hypersensitivity (214, 215). Although proton pump inhibitors (PPIs) are the 

gold standard for the treatment of gastro-oesophageal reflux disease, a substantial 

proportion of such patients fail to respond (216). Non-pharmacological interventions are 

increasingly being sought to treat chronic pain disorders. Coupled with the data from our 

study, and an established favourable safety profile, t-VNS could represent an attractive 

non-invasive neuromodulatory intervention that warrants further study in this group. 
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This is particularly important given that we demonstrated that t-VNS could reverse 

established oesophageal hypersensitivity.  

 

Our study is subject to several limitations. Within any cross-over design, there is potential 

for a carryover effect, although we attempted to ameliorate this by using at least two 

weeks between study visits (217). We used electrical stimulation to investigate visceral 

oesophageal pain which may be considered non-physiological. The main aim of this study 

is to investigate pain hypersensitivity caused by central sensitisation. An electric stimulus 

can bypass the several types of nociceptive receptors to initiate an afferent signal 

transmitted to the dorsal horn of the spinal cord, where central sensitisation is thought 

to take place which makes it a convenient stimulus modality to use and the model used 

in our study has been well validated to induce secondary hyperalgesia most likely due 

central sensitisation.  Finally, this is a study in young, healthy volunteers. Further studies 

are needed to see if this applies to patients with evidence of oesophageal pain 

hypersensitivity.  

 

In conclusion, non-invasive vagal nerve stimulation could reverse an experimentally 

induced oesophageal hypersensitivity in healthy volunteers, under strict laboratory 

settings. Further studies are needed to see if the effect is significant in patients with 

clinical manifestations of oesophageal pain hypersensitivity, such as those with 

hypersensitive oesophagus as defined by the Rome IV classification (214).   
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Chapter 7:  

Summary of findings and future directions 

 

Summary of findings  

Pain hypersensitivity is a common finding in functional gastrointestinal disorders. It 

represents a challenge for several reasons. Firstly, it is a common finding that reduces 

the quality of life, drives anxiety and causes health care seeking visits (9, 218).  One 

example is oesophageal pain in patients who are adequately treated with acid-reducing 

medications that may persist in 10- 40 % depending on the study (9). When taking into 

consideration the prevalence of gastroesophageal reflux disease, ten per cent can add 

an important burden to the healthcare system and can cause an important reduction in 

the quality of life.   

Functional gastrointestinal disorders are benign in nature; thus, a treatment designed to 

treat such disorders should have a good safety profile to be justified.  Given the chronicity 

of such conditions and the large prevalence, a proposed treatment should also be 

reasonably cheap and preferably self-applied.  

Another challenge is that functional gastrointestinal disorders are grouped based on 

clinical symptoms and not by well explained physiopathological mechanisms. Such 

classification will inevitably result in a large heterogeneity within this group.  
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This thesis aims to contribute to a better understanding of visceral pain hypersensitivity 

and to propose feasible interventions to be developed further.  

 

In the 1st chapter, I tried to present a relevant overview of the biology of pain. I 

introduced concepts such as the pain network, definitions of peripheral and central 

sensitisation. There are notable observations that are likely to facilitate understanding 

of pain hypersensitivity. The important role of descending pathways in regulating pain is 

also discussed. Descending pathways are complex and influenced by several factors 

ranging from local spinal mechanisms to complex interactions of multiple inputs from 

emotional, autonomic, hormonal and cortical regions.  We also observe an 

interconnected pain and autonomic network that shares many of its key structures.  

Such a complex pain network likely means that several pathways that can override each 

other depending on the context.  This will inevitably mean that there is a heterogeneous 

group of patients with a similar final complaint e.g. pain. 

There are peripheral and central causes of pain hypersensitivity. However, the role of 

peripheral causes is less evident in functional gastrointestinal disorders. For example, 

Guy Boeckxstaens and colleagues studied the effect of the mast cell stabiliser / H1 

receptor antagonist ketotifen on rectal pain hypersensitivity in IBS. The medication was 

superior to placebo in abdominal pain reduction in a controlled study; however, there 

was no difference in the spontaneous histamine and tryptase release measured in the 

supernatant of rectal biopsies before and after treatment(219). One interpretation is 

that the effect of ketotifen on pain hypersensitivity was centrally mediated via H1 

receptor antagonism.  
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Descending pain inhibition can be very pronounced, for example, the within-group 

difference in pain threshold in gunshot wounds in soldiers. This observation highlights 

the potential of descending pathways in controlling pain that we could potentially target 

as a therapeutic pathway.  

The overall pain experience is complex. It is a result of complex and intricate interaction 

between the primary stimulus (if there is one), the central pain network, autonomic 

network, emotional and cognitive centres.  

Emotions have an important influence on descending regulation of pain (220). Several 

emotions express clear autonomic responses. James and Lange suggested that emotions 

are the by-products of biological feedback from the periphery (63, 64). They argue that 

for example, an increased heart rate, sweaty hands and shallow breathing will produce 

emotions consistent with this physical status, such as fear.  Regardless of the 

directionality of the cause and effect between emotion and autonomic response, the 

association is clearly there. One could suggest that a conditioned reflex is formed 

between specific emotional responses and physiological status. If this line of thinking is 

sound, then inducing a physiological state that is consistent with relaxation, will likely 

induce relaxation. For example, slow deep breathing causes reliable parasympathetic 

nervous system activation with slowing down of breathing and heart rate. This, in turn, 

can activate descending pathways to increase the pain threshold.  This mechanism of 

action will also contribute to other non-pharmacological analgesic interventions such as 

massage therapy. Muscle tone feedback likely contributes to the emotional status; one 

example on that is benzodiazepines that are both anxiolytics and muscle relaxants.  
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In chapter 2, I investigate the autonomic effect of two interventions used successfully 

previously by our group to reduce experimental oesophageal pain. Those are attention 

or distraction (30)and slow deep breathing(188). In this study, I demonstrated that there 

is a distinct autonomic pattern between the two interventions. 

 Slow deep breathing increased the parasympathetic tone; however, this effect was 

short-lived and ceased immediately after returning to normal breathing. Several 

plausible mechanisms could mediate the effect of slow deep breathing on pain. First, the 

explanation proposed by Botha and colleagues suggested that the effect is mediated by 

an efferent vagal mechanism. This conclusion was supported by diminishing the anti-

nociceptive effect of slow deep breathing with concomitant use of atropine. Atropine is 

known to inhibit the action of acetylcholine that is the main neurotransmitter on the 

efferent vagal. Although this explanation has its merits, there is one limitation. Atropine 

is also known to increase heart rate and possibility respiratory rate by an antimuscarinic 

action. This antimuscarinic action could have increased sensitisation in the atropine 

group making them more sensitised than the slow deep breathing group. There was no 

control group to see if the use of atropine alone could increase sensitisation.  

The other possible mechanism is by distraction. Slow deep breathing could have a 

distractive effect on participants. The control group were asked to count their breathing 

frequency, which could act as a control for distraction. It is not known if the two 

interventions had the same distractive effect.  

Another possible mechanism is an afferent one. Slow deep breathing has well described 

effects on autonomic reflexes such as the cardiopulmonary coupling which is mediated 

via the vagal nerve. It is plausible that parasympathetic activation induced by slow deep 
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breathing may trigger autonomic influence on descending pathway acting on pain 

receptive filed in the spinal cord, this action will be therefore independent of the efferent 

vagus.  

The other intervention studied in chapter two is attention. This has previously shown to 

reduce oesophageal pain. The mechanism is likely cognitive and related to diverting 

attention away from the pain stimulus (30). Some studies suggest that cognitive tasks, 

such as placebo analgesia could trigger descending pain inhibition(221).  However, it is 

not clear if attention directly triggers descending inhibitory pathways.  

 

Although it appears that slow deep breathing and attention produce distinct autonomic 

signatures, it is still possible that both can trigger descending inhibition of pain. For that 

reason, it plausible to suggest a synergistic effect when combining the two interventions. 

Such a combined action is likely achieved by meditation exercises that combine both 

breathing techniques and distraction.  

 

In chapter 3, I studied the top-down control of pain. Admittedly, there is no precise way 

of pinpointing the exact central structure that contributes the most of descending pain 

modulation. As previously mentioned, the control over descending pathways is intricate. 

It involves multiple structures that can tap into the system to inhibit or facilitate pain. As 

a general rule, higher structures can alter the overall balance depending on the situation. 

For example, chronic anxiety and physically intense sports share similar autonomic 
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profile, which is a sympathetic nervous system activation. However, the pain threshold 

set by descending modulation is likely to be different in those two situations (220). 

I hypothesised that in functional gastrointestinal disorder, the descending inhibition of 

pain is impaired. Conditioned pain modulation is a way of measuring this pathway(222).  

We showed that there is a statistically significant and clinically important difference in 

descending inhibition between patients with irritable bowel syndrome and healthy 

controls. Patients were five times more likely to have an impaired conditioned pain 

modulation than healthy control. This level of significant separation between IBS patients 

and healthy controls is rarely seen in clinical studies. This odd’s ratio is very similar to 

that of post-infectious IBS, which is now accepted as a distinct entity in IBS (223). These 

findings have several implications. First, they emphasise the descending pain pathways 

role in functional pain. Secondly, conditioned pain modulation can help to classify 

patients by physio pathological factors. Such classification aims to reduce heterogeneity 

in clinical trials and mechanistic studies.  Third, those findings suggest that descending 

pain modulatory pathways are potential targets in functional visceral pain; this may be 

achieved by using centrally acting medications such as antidepressants active via the 

noradrenergic pathways (tapentadol, duloxetine, reboxetine and nortriptyline in low 

doses) . Finally, conditioned pain modulation can also act as an objective endpoint in 

clinical trials. Based on the highly significant difference between patients and healthy 

control, further studies are warranted to better understand the relationship between 

conditioned pain modulation and pain hypersensitivity.  
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In chapter 4, I elaborated on the relationship between descending pain modulation and 

experimental oesophageal hypersensitivity. The main finding was that baseline 

conditioned pain modulation was a strong predictor of sensitisation to experimental acid 

infusion.  Those findings are in line with the observations of Wider-Smith and colleagues 

who demonstrated that baseline conditioned pain modulation can predict postsurgical 

pain (148). Another observation in this study was that participants who sensitised the 

most also increased conditioned pain modulation the most in percentage terms. 

However, they had a low baseline; thus, the overall magnitude of descending pain 

inhibition was low in absolute terms. This suggests a ceiling effect of conditioned pain 

modulation in those participants.  

 In chapter 5, I performed a systematic review, to gather information regarding the use 

of vagal nerve stimulation in pain. There was a small but significant overall effect. This 

small effect size was predicted because of the important heterogeneity of the studies. 

Noticeably, there was an important variation in stimulation periods and parameters. 

There was a positive effect despite the variability of stimulation parameters, site of 

stimulation, conditioned studied, this suggest a non-specific mechanism. The effect is 

most likely afferent because of the anatomy of the stimulated nerves. The auricular 

branch of the vagal is a pure afferent nerve(195). Reassuringly, there was no important 

side effect reported with the use of this intervention.  

In chapter 6, I studied the effect of non-invasive vagal nerve stimulation in a validated 

human model of oesophageal pain hypersensitivity. I used a device designed to stimulate 

the auricular branch of the vagal nerve. My results suggest that vagal nerve stimulation 
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could reverse temporarily acid-induced oesophageal pain hypersensitivity faster than 

sham stimulation. This effect was independent of the efferent vagal effect.  

I suggest that the effect of vagal nerve stimulation is mediated at the level of the central 

nervous system. Despite a careful review of the published literature on the anti-

nociceptive effect of vagal nerve stimulation, the exact mechanism remains elusive.  

From published literature, we notice a positive effect of vagal nerve stimulation on 

nociception despite stark variation in stimulation parameters. In my opinion, one 

possible mechanism of how non-invasive vagal nerve stimulation could exert an anti-

nociceptive effect would be through competition of afferent stimulation with ascending 

pain signals. This conceptual theory would resemble, to some extent, what has been 

suggested by Melzack and Wall(41). Melzack and Wall suggested a gate-like effect at the 

level of the spinal cord where non-painful stimuli compete with painful ones resulting in 

reduced pain transmissions. Several interconnecting steps explain this phenomenon, 

such as interneurons at the level of the dorsal horn. It is plausible that a similar 

mechanism may exist at the level of the brainstem where stimulation of the auricular 

branch of the vagal nerve is transmitted. Non-painful stimuli generated by vagal nerve 

stimulation may compete with the painful stimuli resulting in reduced transmission. Such 

a mechanism will explain the non-specific nature of this intervention. Another possibility 

is that the non-specific nature of vagal nerve stimulation at the level of the brain stem 

triggers descending pain inhibition, narrowing the receptive field at the level of the spinal 

cord.  
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Future directions  

Based on the results of my program of the research described in this thesis, there are 

several studies warranted. 

Based on the study in chapter one, we suggest a clinical trial to investigate a combined 

intervention with distraction and slow deep breathing in patients with evidence of 

oesophageal reflux hypersensitivity. If effective, this is a safe and low-cost intervention 

that is likely to improve the quality of life of those patients and reduce costs for 

healthcare providers.  This will be a 6-weeks randomised study. The active group will be 

assigned to once-daily protein pump inhibitor and specially designed mindfulness 

exercise with slow deep breathing paradigm using a telephone application for 30 

minutes twice daily. Focusing on the present or focusing of breathing can act as a form 

of distraction.  The other group will be assigned to double dose of protein pump 

inhibitors for six weeks (common clinical practice).  The outcome measure will be specific 

gastroesophageal reflux disease validated questioners and quality of life questioners.  

Based on the studies in the third and fourth chapters, there is a need to investigate 

conditioning pain modulation in patients with visceral pain hypersensitivity to see if 

simple baseline conditioned pain modulation test can predict patients with oesophageal 

pain hypersensitivity proved by reflux monitoring (214). This will have a prognostic value 

in those patients when choosing the appropriate treatment.  

It is feasible to investigate the effect of centrally acting medications such as several 

classes of antidepressants, anxiolytic and muscle relaxants on conditioned pain 

modulation in patients with oesophageal pain hypersensitivity. Condition pain 

modulation can be used to predict the success of therapy of medications with a potential 
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effect of descending pain inhibition. For example,   in diabetic neuropathy, conditioned 

pain modulation could predict response to the serotonin and norepinephrine reuptake 

inhibitor duloxetine and the mu-opioid receptor agonist and noradrenaline reuptake 

inhibitor tapentadol(151, 152). 

Another future study will aim to investigate the effect of vagal nerve stimulation on 

conditioned pain modulation in patients with oesophageal reflux hypersensitivity in a 

sham-controlled trial. We will measure conditioned pain modulation at baseline, then 

randomise patients to either active transcutaneous vagal nerve stimulation or sham 

stimulation for 30 min twice per day for six weeks. The main outcome measure will be 

conditioned pain modulation after active or sham treatment.  

 

Limitations  

Applicability to the clinical population  

All experimental studies were performed on healthy volunteers that may limit 

applicability to patients. The reason for choosing healthy volunteers was to avoid the 

multiple confounders usually found in patients with visceral hypersensitivity. Those 

patients usually display several concomitant functional pain syndromes which makes it 

very challenging to interpret data. Controlling confounders in disease population such as 

the intensity of symptoms, psychological and social factors, medications and other 

medical conditions would not have been feasible within the timeline of this PhD thesis.   

To understand the temporal relationship between conditioned pain modulation at 

baseline and pain hypersensitivity, it is necessary to measure conditioned pain 

modulation before and after the disease. In clinical settings, pain hypersensitivity is a 
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chronic condition; thus, it is not possible to measure conditioned pain modulation before 

the onset of the disease. Studying conditioned pain modulation in healthy volunteers 

before and after experimentally induced pain hypersensitivity may help to establish a 

temporal relationship.  

 

Limitations of selected methods 

The acid-induced oesophageal pain hypersensitivity model 

 This model uses a defined noxious stimulus to induce oesophageal pain hypersensitivity. 

However, the module is relatively invasive and creates unpleasantness and anxiety. 

Anxiety and unpleasantness could contribute to sensitisation or hypervigilance to the 

painful stimulus. A locally defined noxious stimulus may contribute to pain in many 

diseases such as non-erosive reflux disease, where there is an increased acid exposure 

in the lower oesophagus. However, most functional gastrointestinal disorders lack a 

defined sensitising stimulus. This may also affect the applicability of this model to all 

functional pain conditions.  

Electric oesophageal pain as a testing stimulus in Conditioned Pain Modulation paradigm 

The use of electric oesophageal pain stimulus has not been previously used in a 

conditioned pain modulation paradigm.  Electrical pain stimulus is separately validated 

in both the acid-induced oesophageal model and in Conditioned pain modulation 

paradigm (55, 224). The choice of oesophageal location of the stimulus was chosen for 

several reasons: 1) Participants had an inserted catheter for acid infusion, which also 

contain a stimulation electrode. 2) The location is relevant to our clinical question that is 
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concerned with visceral pain. 3) Choosing another stimulus would have prolonged the 

study and added another unpleasant experience that is not necessary.  

Using transcutaneous vagal nerve stimulation 

Then devise used in chapter 6 is the NEMOS device. This device has an electrode that is 

attached to the concha of the ear. As per chapter 5, there are no robust data to favour 

specific stimulation parameter. The stimulation was set at the lowest tactile sensation 

felt by participants. This meant different intensities for different participants. There is 

marked variability in the subjective experience of the stimulus in between individuals, a 

tactile sensation for some can be painful for others. We set the intensity at the sensory 

threshold to avoid an unpleasant sensation. A painful sensation caused by stimulation 

would have confounded the degree of sensitisation in between individuals.  

  

 

Conclusions  

Studies in this thesis explored the relationship between the central modulation of pain 

and visceral pain hypersensitivity. I have presented evidence that central control of pain 

is inhibited in conditions with visceral pain hypersensitivity such as irritable bowel 

syndrome. I have also demonstrated that baseline top-down control of pain could predict 

the degree of developing pain hypersensitivity in healthy individuals. I then 

demonstrated that non-invasive vagal nerve stimulation could reverse experimental pain 

hypersensitivity, likely by a central mechanism. These studies may be helpful in planning 

future studies in patients with visceral pain hypersensitivity which may be helpful in 

understanding underlying pathophysiology and may also have therapeutic implications.  
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