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ABSTRACT
We introduce a polydisperse version of the streaming instability, where the dust com-
ponent is treated as a continuum of sizes. We show that its behaviour is remarkably
different from the monodisperse streaming instability. We focus on tightly coupled
particles in the terminal velocity approximation and show that unstable modes that
grow exponentially on a dynamical time scale exist. However, for dust to gas ratios
much smaller than unity they are confined to radial wave numbers that are a factor
∼ 1/St larger than where the monodisperse streaming instability growth rates peak.
Here St � 1 is a suitable average Stokes number for the dust size distribution. For
dust to gas ratios larger than unity, polydisperse modes that grow on a dynamical time
scale are found as well, similar as for the monodisperse streaming instability and at
similarly large wave numbers. At smaller wave numbers, where the classical monodis-
perse streaming instability shows secular growth, no growing polydisperse modes are
found under the terminal velocity approximation. Outside the region of validity for the
terminal velocity approximation, we have found unstable epicyclic modes that grow
on ∼ 104 dynamical time scales.

Key words: hydrodynamics – instabilities – protoplanetary discs – planets and
satellites:formation

1 INTRODUCTION

The focus of this paper is the Streaming Instability (SI,
Youdin & Goodman 2005, hereafter YG05), which we gen-
eralize from the original case of single-size dust to poly-
disperse dust with a continuum of particle sizes. The SI
is a promising mechanism for building km-sized planetes-
imals out of cm-sized pebbles (e.g. Johansen et al. 2007;
Bai & Stone 2010; Simon et al. 2016; Schaffer et al. 2018).
Recently, Krapp et al. (2019), hereafter K+19, presented
results for a discrete polydisperse dust distribution with a
large number of particle sizes, finding in most cases slower
growth compared to the monodisperse case. For many pa-
rameters, they found very slow, but descending growth rates
for instability as the number of discrete dust sizes considered
increased, approaching the continuum limit. In this paper,
we approach the problem from a continuum perspective, a
scenario we will refer to as PSI (Polydispserse Streaming In-
stability). We focus on tightly coupled particles, a case that
lends itself to analytic understanding in addition to numer-
ical calculations. In particular, the well-known terminal ve-
locity (TV) approximation (e.g. Laibe & Price 2014; Lin &

? E-mail: s.j.paardekooper@qmul.ac.uk

Youdin 2017) applies to the PSI, a scenario we refer to as
TV-PSI. We identify regions of parameter space where the
TV-PSI shows exponentially growing modes, and compare
these to the classic monodisperse SI.

The plan of this paper is as follows. In section 2 we
derive the equations governing a gas coupled to a solid com-
ponent with a continuous size distribution. From these we
obtain the linearized equations for the PSI in section 3. In
section 4 we detail the different wave number regimes rel-
evant for the TV-PSI. Numerical results are presented in
section 5, and we conclude in section 6.

2 PHYSICAL MODEL

2.1 Governing equations

We are interested in the evolution of a mixture of solid
particles (dust) and gas, where the two phases are coupled
through a drag force. Consider the distribution function for
dust particles f(x,v, a, t) so that

f(x,v, a, t)dxdvda , (1)

is the number of dust particles in a volume dx around x,
with velocities in a (velocity) volume dv around v and with
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size between a and a + da. The evolution of f is given by
the nonlinear Boltzmann equation

∂tf + v · ∇xf +∇v · (fF) = 0 , (2)

where F is the force per unit mass acting on the dust. Of
particular interest is the drag force, which we take to be in
the Epstein regime:

Fdrag,d = −v − vg

τs(a)
, (3)

where vg is the gas velocity and τs is the particle stopping
time, which is proportional to a/ρg, where ρg is the gas den-
sity. Equation (2) is a simplified version of the spray equa-
tion (Williams 1958) commonly used for dilute polydisperse
particle-gas flows. We do not consider changes in size, heat
transfer, nucleation or collisions between particles.

For our investigation of the PSI we take our domain to
be an unstratified shearing box. By taking velocity moments
of (2) one obtains fluid equations for the dust component:

∂tσ +∇ · (σu) =0 , (4)

∂tu + (u · ∇)u =− 2Ω× u−∇Φ− u− vg

τs(a)
, (5)

where Ω is the angular velocity of the box and Φ = −SΩx2

is the effective potential, with S the shear rate of the disc
(S = 3Ω/2 in a Keplerian disc). The size-density σ and
velocity u are size-dependent and defined in such a way that

ρd =

∫
σda ρdvd =

∫
σuda , (6)

where ρd is the dust volume density and vd is the bulk veloc-
ity of the dust component. The total amount of momentum
transfer between gas and dust is simply

ρdFdrag,d = −
∫
σ

u− vg

τs(a)
da = −ρgFdrag,g , (7)

where the last equality follows from momentum conserva-
tion. Note that the fluid approximation is only valid for
particles for which the coupling to the gas is strong enough
(Garaud et al. 2004; Jacquet et al. 2011). For a fluid treat-
ment of polydisperse dust, we require that this be true for
every particle size present.

The gas component obeys the usual shearing box equa-
tions, but with a drag force that is an integral due to (7):

∂tρg +∇ · (ρgvg) =0 , (8)

∂tvg + (vg · ∇)vg =2ηx̂− ∇p
ρg
− 2Ω× vg −∇Φ + Fdrag,g .

(9)

We take the equation of state for the gas to be isothermal,
p = c2ρg, with sound speed c, and we have included a pa-
rameter η governing the sub-Keplerian nature of the disc.
While in the local model, η is an input parameter effectively
setting the length scale of the streaming instability (YG05),
in a global context it is related to the radial pressure gra-
dient in the disc, 2ηρg = −∂P/∂r, where P is the (global)
pressure1. The equations governing the dynamics of the mix-
ture are then (4), (5), (8) and (9). Discrete versions of these

1 Note that our η is dimensional, and related to the definition of
YG05 by η = rΩ2ηYG, where r is the fiducial orbital radius of

the shearing box. This choice is largely cosmetic: YG05 in the end

equations have been used in a protoplanetary disc context
by Dipierro et al. (2018) and Beńıtez-Llambay et al. (2019).

2.2 Terminal velocity approximation

In the case of a monodisperse dust fluid, for tightly coupled
particles a simplification is possible by assuming that all
particles reach their terminal velocity (YG05). One can then
treat the mixture as a single fluid moving with the centre-
of-mass velocity (Laibe & Price 2014). For a polydisperse
dust fluid, the terminal velocity (TV) equations read (see
Appendix A1 for a detailed derivation):

∂tρ+∇ · (ρv) = 0 , (10)

∂tv + (v · ∇)v =
2pηx̂

c2ρ
− ∇p

ρ
− 2Ω× v −∇Φ , (11)

∂tp+∇ · (pv) = Cg , (12)

∂tσ +∇ · (σv) = Cd , (13)

where ρ = ρg + ρd is the total density of the mixture, v =
(ρgvg + ρdvd)/ρ is the centre-of-mass velocity, and we have
“cooling terms” (Lin & Youdin 2017):

Cg = ∇ ·
((

1− p

c2ρ

)
p

ρ
τ̄s

(
∇p− 2pηx̂

c2

))
, (14)

Cd = ∇ ·
(
σ

ρ
(fdτ̄s − τs(a))

(
∇p− 2pηx̂

c2

))
. (15)

Here τ̄s = ρd
−1
∫
στsda is an average stopping time, and

fd = ρd/ρ denotes the dust mass fraction. Note that com-
pared to the thermodynamic one-fluid TV approximation
(Lin & Youdin 2017), we need an extra equation to track
the evolution of the size-density σ.

3 LINEAR ANALYSIS OF THE PSI

3.1 Equilibrium state

We take the background gas and dust (size-) density to be
constant in space, and all velocities to be independent of y
and z and vgz = uz = 0. Time-independent solutions can
then be found where only the y component of the veloci-
ties vary with x according to dxuy, dxvgy ∝ −S. The four
momentum equations read, under these assumptions:

vgy =− Sx− η

Ω
− 1

2Ωρg

∫
σ
ux − vgx

τs(a)
da , (16)

vgx =
1

(2Ω− S)ρg

∫
σ
uy − vgy

τs(a)
da , (17)

uy =− Sx+
ux − vgx

2Ωτs(a)
, (18)

ux =− uy − vgy

(2Ω− S)τs(a)
, (19)

Combine the two dust momentum equations to obtain an
expression for the relative velocity uy − vgy:

uy − vgy =− κ2τs(a)2(vgy + Sx) + (2Ω− S)vgxτs(a)

1 + κ2τs(a)2
, (20)

non-dimensionalize the problem using a length scale ηYGr, while
we use a length scale η/Ω2. The latter avoids using r, which is

more natural in a purely local context.
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with epicyclic frequency κ2 = 2Ω(2Ω−S). Using this in the
gas y momentum equation (17) yields

vgx =− 2ΩJ1(vgy + Sx)

1 + J0
, (21)

where we have defined the integrals

Jα =
1

ρg

∫
σ(κτs(a))α

1 + κ2τs(a)2
da .

Using (18) and (20) in the gas x momentum equation (16)
yields

vgy =− Sx− η

Ω
− (vgy + Sx)J0 +

vgxJ1

2Ω
, (22)

and finally using (21) we get an explicit expression for vgy:

vgy = −Sx− η

Ω

1 + J0

(1 + J0)2 + J 2
1

, (23)

from which the remaining velocities follow in a straightfor-
ward way from (21), (20) and (19). As a result, we obtain a
local shearing box analog of the equations derived by Tanaka
et al. (2005) and used in Dipierro et al. (2018), but general-
ized to arbitrary κ:

vgx =
2η

κ

J1

(1 + J0)2 + J 2
1

, (24)

vgy = −Sx− η

Ω

1 + J0

(1 + J0)2 + J 2
1

, (25)

ux =
2η

κ

J1 − κτs(a)(1 + J0)

(1 + κ2τs(a)2)((1 + J0)2 + J 2
1 )

, (26)

uy = −Sx− η

Ω

1 + J0 + κτs(a)J1

(1 + κ2τs(a)2)((1 + J0)2 + J 2
1 )

. (27)

In the limit of a single size dust fluid and Keplerian rota-
tion (κ = Ω) we recover the solution of Nakagawa et al.
(1986). In the TV approximation, under the same assump-
tions as above, the equilibrium centre-of-mass velocity is
v = (−Sx − fgη/Ω)ŷ, where fg = ρg/ρ is the gas frac-
tion. In all our numerical results, we take the background
disc to be Keplerian with S = 3Ω/2 and therefore κ = Ω.

3.2 Linear perturbations

Consider small perturbations such that ρg = ρ0
g + ρ̂g exp(ik ·

x − iωt), where ρ0
g is the background state with |ρ̂g| � ρ0

g,
and similarly for other quantities, yielding:

kxv
0
gx
ρ̂g

ρ0
g

+ k · v̂g = ω
ρ̂g

ρ0
g

, (28)

kxv
0
gxv̂g + iSv̂gxŷ + kc2

ρ̂g

ρ0
g

− 2iΩ× v̂g

+
i

ρ0
g

∫
σ̂

∆u0

τs(a)
da+

i

ρ0
g

∫
σ0 û− v̂g

τs(a)
da = ωv̂g , (29)

kxu
0
xσ̂ + σ0k · û = ωσ̂ , (30)

kxu
0
xû + iSûxŷ − 2iΩ× û

−i
û− v̂g

τs(a)
− i

ρ̂g

ρ0
g

∆u0

τs(a)
= ωû. (31)

These equations form an integral equation eigenvalue prob-
lem for the eigenvalue ω.

3.3 Incompressible terminal velocity
approximation

Taking the same form for the perturbations in the TV ap-
proximation, while at the same time assuming the gas to be
incompressible (see Appendix A2 for details), we find:

−iωρ̂+ ik · v̂ =0 , (32)

−iωv̂ − Sv̂xŷ =− gex̂ρ̂− ic2f0
g kp̂− 2Ω× v̂ , (33)

ik · v̂ =− τ̄0
s

(
c2k2f0

df
0
g p̂+ ikxge(f0

g − f0
d )ρ̂
)

− ikxgef
0
d τ̂s , (34)

iωσ̂ − ik · v̂ =
(
f0

d τ̄
0
s − τs(a)

) (
k2c2f0

g p̂+ ikxge [σ̂ − ρ̂]
)

+ ikxge

(
fdτ̂s + f0

g τ̄
0
s ρ̂
)
, (35)

with ge = 2f0
g η and perturbed stopping time

τ̂s =
1

ρ0
d

∫
σ̂σ0(a)τs(a)da− τ̄0

s ρ̂

f0
d

. (36)

Note that in a monodisperse dust fluid τ̂s = 0. These are the
equations for the linear, incompressible polydisperse stream-
ing instability in the terminal velocity approximation, which
for reasons of brevity we will refer to as TV-PSI. We note
that compressibility effects for the SI are known to be small
(Youdin & Johansen 2007).

4 TERMINAL VELOCITY MODES

In this section, we focus exclusively on the TV-PSI, and
make comparisons to its monodisperse counterpart, the SI
in the TV approximation.

4.1 Dispersion relation

Equations (32)–(35) can be combined to give a dispersion
relation (for details see Appendix A2):(
k2

k2
z

ω2 − κ2

)
(ω − f0

d τ̄
0
s kxge) =

τ̄0
s f

0
d

(
i
k2

k2
z

(ω2 − κ2)ω2 − kxgeκ
2

)
(1− I(ν∗)) , (37)

with ν∗ = (ω − f0
d τ̄

0
s kxge)/(kxgeτ̄

0
s ) and integral

I(ν∗) =
1

ρ0
d

∫
σ0(a)

ν∗ + τs(a)

τ̄0s

(
τs(a)

τ̄0
s

)2

da. (38)

Note that ν∗ = −τs(a)/τ̄0
s signals a resonance, where the

mode phase speed matches the (size-dependent) dust ad-
vection speed:

ω

kx
= 2fgη(fdτ − τ(a)) = ux(a) . (39)

Note that the second equality sign assumes the TV limit
of the background velocity. This resonance turns out to be
important when interpreting the results. We note that this
resonance is related but different from another resonance
arising in the theory of classical SI, where the dust advection
speed matches the propagation speed of a wave in the gas,
which gives rise to the theory of Resonant Drag Instabilities
(RDIs, Squire & Hopkins 2018a,b).

The term ∝ ω4 on the right-hand side of the disper-
sion relation leads to spurious modes and therefore should
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be dropped (Lin & Youdin 2017). With the expression for I,
it is straightforward to show that ν∗ = 0, or ω = f0

d τ̄
0
s kxge

is always a solution. This is a neutral mode for which the
perturbation in average stopping time exactly cancels the
pressure perturbation, yielding Ĉg = 0. Dividing out this so-
lution, and taking the limit of a monodisperse dust fluid, for
which I = 1/(1 + ν∗), we obtain the usual cubic dispersion
relation of the SI (YG05, Jacquet et al. 2011). Multiplying
both sides by ν∗ + 1, we find:(
ν2 − K2

z

K2

)(
ν + 2(f0

g )2StKx

)
=

− Stf0
d

(
iν2 + 2f0

gKx
K2
z

K2

)
F(ν∗) , (40)

with ν = ω/Ω, K = ηk/Ω2, F(ν∗) = (1+ν∗)(1−I)/ν∗, and
we have defined an average Stokes number

St = Ωτ̄0
s . (41)

Note that in the monodisperse limit, the average Stokes
number St is equal to the Stokes number of the single sized
dust fluid. It is therefore possible to discuss the SI in terms
of St, remembering that St→ Ωτs(a

∗), where a∗ is the single
dust size under consideration.

4.2 Power law size distributions

We focus on power law size distributions, such that σ0(a) ∝
aβ+3 between a minimum size and a maximum size. Here
β = −3.5 corresponds to the canonical MRN distribution
(Mathis et al. 1977) representative of the grain size distri-
bution in the interstellar medium. Power law size distribu-
tions allow for closed form expressions for I. For example,
for β = −3.5:

I(ν∗) = 1 + ν∗
[ √

w

1−
√
s

tan−1

(
1−
√
s

√
w +

√
s/w

)
− 1

]
, (42)

where s = amin/amax and w = τ̄0
s ν
∗/τs(amax).

4.3 The Long and Short of It2

In this section, we consider three different wave length lim-
its that help us understand the behaviour of the TV-PSI.
Readers not interested in technical details may wish to skip
to section 4.3.4, where the results are summarized.

4.3.1 Growing modes at short radial wave lengths
(StKx � Kz/K)

We first consider large radial wave numbers, formally letting
StKx � Kz/K, and show that we can find exponentially
growing modes for the TV-PSI. Note that these radial wave
numbers are therefore much larger than where the monodis-
perse SI has its maximum growth (YG05, Squire & Hopkins
2018a). If we formally set Kz/K = O(1), we find from (40)
that in this limit

ν2 =
K2
z

K2
(1− µF(ν∗)) , (43)

2 In homage to YG05.

where µ is the dust to gas ratio. For a monodisperse dust
fluid, F = 1, and we recover the high-µ SI for µ > 1 (Squire
& Hopkins 2018a). In the limit KxSt � 1, we have that
ν∗ → −f0

d , so for a polydisperse dust fluid we end up with:

ν2 =
K2
z

K2

(
2− I(−f0

d )
)
. (44)

Interestingly, I(−f0
d ), which is an integral of a real func-

tion over a real interval, is found to pick up an imaginary
part from the residue of the pole at τs(a) = f0

d τ̄
0
s . Unlike for

the monodisperse SI, this means that in principle growth
through this channel is possible for µ < 1 in this wave num-
ber regime if the pole is in the integration domain, which is
the case if the size distribution is wide enough. For the MRN
size distribution, the imaginary part of I(−f0

d ) is found to be
negative, leading to growth according to (43). We comment
that while formally we have assumed Kz/K = O(1), which
is valid in the wavenumber regime we study numerically be-
low, the analysis is equivalent if we set Kz/K = O(St),
indicating that (43) is valid for Kz ∼ StKx � Kx as well.

4.3.2 The absence of secular modes at long radial
wavelengths (Kx � 1/St)

The SI has growing modes for dust to gas ratios µ < 1, where
the SI is a true resonant drag instability (Squire & Hopkins
2018a). These modes were first analyzed in the regime Kx ∼
Kz = O(1) (YG05). In this section, we specifically assume
Kx � 1/St and Kz & Kx. In this case, we develop a series
in St and formally write ν = ν0 + Stν1. Note that when

ν = O(1) (epicyclic mode), ν∗ = O(St
−1

), while if ν = O(St)
(secular mode), ν∗ = O(1). In the former case, one can show
that

F(ν∗) = 1 +O(St) .

For the epicyclic mode, we then find

ν = ±Kz/K − Stf0
d

(
i/2 + f0

gKx

)
+O(St

2
) . (45)

Hence, the epicyclic TV-PSI mode is always damped in this
wave length regime. Looking for a secular mode with ν =
O(St), at lowest order we get

ν1 = 2f0
gKx

(
f0

dF(ν∗1 )− f0
g

)
, (46)

with

ν∗1 =
ν1 − 2f0

g f
0
dKx

2f0
gKx

.

Note that in the limit of a monodisperse dust fluid, which
has F = 1, we recover the secular mode of the SI, which

shows instability at order St
3

(YG05, Jacquet et al. 2011).
In terms of ν∗1 we find that in order for (46) to be satis-

fied and therefore to have a secular TV-PSI mode (growing
or decaying), we need either ν∗1 = −1, which we must discard
as this solution was introduced by multiplying both sides by
1 + ν∗ to get to (40), or:

ν∗1 = f0
d (1− I(ν∗1 )) . (47)

For an MRN size distribution, using the explicit expression
for I (42), we find that we must have:

1

µ
= −

√
w

1−
√
s

tan−1

(
1−
√
s

√
w +

√
s/w

)
. (48)
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In the limit s → 0, the real part of the right hand side is
< 0 for all w, which means the secular SI mode does not
exist for a wide enough size distribution. We have found
this to be qualitatively independent of the power law index
β. Therefore, in the TV approximation, no secular modes
(growing or decaying) exist for the PSI at these wave num-
bers. This means that there is no classical stability boundary
in the sense that upon widening the size distribution, one
can track a growing SI mode to a decaying PSI mode, cross-
ing zero growth at the stability boundary. The mode simply
ceases to exist for wide enough size distributions.

4.3.3 Analysis at intermediate wave lengths

As was noted already in YG05, while the regime Kx � 1/St
is relatively easy to analyze, maximum growth of the SI
is achieved when Kx ∼ 1/St. For classical monodisperse
SI, this is the regime of RDI wave numbers when µ < 1
(Squire & Hopkins 2018a). It is worth noting that there is no
polydisperse RDI theory. In the limit of µ� 1, it was shown
by K+19 that one obtains a superposition of independent
two-fluid instabilities. Here we show that also at RDI wave
numbers defined by St, which is an average over the size
distribution, the TV-PSI at µ < 1 has no growing modes
for wide enough size distributions. Due to the more difficult
nature of the problem at these wave numbers, this analysis
is necessarily less rigorous compared to section 4.3.2.

The low-µ monodisperse SI is a resonant drag insta-
bility (Squire & Hopkins 2018b), which grows fastest if the
wavenumbers Kx and Kz are related by (Squire & Hopkins
2018a):

4St
2
K2
x =

K2
z

K2
(1 + µ)2. (49)

Note that since we are talking about the monodisperse SI,
the average Stokes number equals the Stokes number of the
single particle size under consideration. While there is no
RDI theory for the polydisperse case, we can use (49) with
the average Stokes number as a measure of an intermediate
wave length, in between those considered in sections 4.3.1
and 4.3.2. It is worth noting that the relation K2

x ∝ K2
z/K

2

appears more generally in SI calculations than just the RDI.
Specifically, instability regions for µ > 1, where the SI is not
an RDI (Squire & Hopkins 2018a), have a similar shape.

At the RDI resonance, we find from the non-dimensional
dispersion relation (40) that(
ν2 − K̂2

z

)(
ν + f0

g K̂z

)
= −f0

d

(
iStν2 + K̂3

z

)
F(ν∗) , (50)

with K̂z = |Kz|/K < 1 (we focus on Kz > 0). One can
develop a series up to first order in the small parameter St,
writing ν = ν0 + Stν1:(

(ν0 + Stν1)2 − K̂2
z

)(
ν0 + Stν1 + f0

g K̂z

)
=

− f0
d

(
iStν2

0 + K̂3
z

)
F(ν∗) , (51)

with

F(ν∗) =F(ν∗0 ) + F ′(ν∗0 )(ν∗ − ν∗0 )

=F(ν∗0 ) + F ′(ν∗0 )Stν∗1 . (52)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0
ν *0

−1.5 −1.0 −0.5 0.0 0.5 1.0
ν0

−1.0
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−0.6

−0.4

−0.2

0.0

0.2
Re(rhs)
Im(rhs)
lhs

Figure 1. The left and right hand sides of the zeroth order dis-

persion relation (53), for µ = 0.1 and K̂z = 0.91 and an MRN

size distribution with stopping time range Ωτs ∈ [0.008, 0.01].

At lowest order in St, (51) reads:(
ν2

0 − K̂2
z

)(
ν0 + f0

g K̂z

)
= −f0

dK̂
3
zF(ν∗0 ) , (53)

while at first order we get that(
3ν2

0 + 2ν0f
0
g K̂z − K̂2

z + f0
dK̂

2
zF ′(ν∗0 )

)
ν1 =

f0
d

(
f0

dK̂
3
zF ′(ν∗0 )− iν2

0F(ν∗0 )
)
. (54)

For the low-µ SI, we are looking for growth rates of order
St at the resonant wave numbers (Squire & Hopkins 2018a,
YG05). For a monodisperse dust component, F = 1, so that
(53) gives the mode oscillation frequency (ν0 is real), while
(54) determines the growth rate (ν1 is imaginary). While the
solution of the cubic in (53) is unwieldy, simple expressions
can be derived by considering f0

d � 1 (Squire & Hopkins
2018a). For the TV-PSI, we face the additional difficulty
that F involves an integral. Nevertheless, by inspecting the
function F we can provide some approximate bounds on the
width of the size distribution that allows growing modes in
this regime.

In Figure 1 we show the left hand side and right hand
side of (53) as a function of ν0. The left hand side is a cubic,
while the right hand side is a constant times F . The region
around ν∗0 = −1 where F has an imaginary part denotes
the region where the resonance ν∗0 = −τs(a)/τ̄0

s is inside the
integration domain. It is therefore bound by

−τs,max

τ̄0
s

< ν∗0 < −
τs,min

τ̄0
s

, (55)

or, in terms of ν0 and St:

−Stmax

St
<
ν0 − f0

dK̂z

K̂z

< −Stmin

St
. (56)

Roots, whenever they are located in this region are always
found to be either neutral or damped. This is consistent
with the observation that growth in this region of parame-
ter space is first order in Stokes number. Note that in this
instance, the size resonance does not promote growth. The
two main differences between the current situation and that
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of section 4.3.1 are (i) F now depends on ν (which leads
to a change in sign of the imaginary part, as is clear from
Figure 1) and (ii) the dispersion relation is different, so that
a positive imaginary part of F no longer directly translates
into a growing mode. The growing mode is therefore found
to exist if it is located to the right of the ‘imaginary region’
as seen in Figure 1. That is, for growth we need

ν0 > −K̂z

(
Stmin

St
+ f0

d

)
. (57)

A simple estimate for when this happens can be obtained by
approximating F by unity outside the ’imaginary region’.
This means that ν0 is found from the cubic(
ν2

0 − K̂2
z

)(
ν0 + f0

g K̂z

)
= −f0

dK̂
3
z . (58)

Roots of cubic equations are unwieldy. A simple estimate can
be obtained by considering the limit of small f0

d (Squire &
Hopkins 2018a). First, for ease of notation defineX = ν0/K̂z

and δ = f0
d :(

X2 − 1
)

(X + 1− δ) + δ = 0 . (59)

Look for a solution of the form X = X0 + δ1/2X1:(
(X0 + δ1/2X1)2 − 1

)(
X0 + δ1/2X1 + 1− δ

)
+ δ = 0 .

(60)

At lowest order we find for the relevant mode X0 = −1. At
order δ1 we find that

−2X2
1 + δ = 0 , (61)

and hence that X1 = ±1/
√

2. The relevant root can then
be approximated by X = −1 +

√
f0

d/2, or ν0 = −K̂z +

K̂z

√
f0

d/2. Note that a similar approximation in terms of
dust to gas ratio was found by Squire & Hopkins (2018a).
There is no value in going to higher orders in δ since the
main error now stems from the approximation that F is
constant. Using this approximation for ν0 in (57) we find
that in order to have a growing mode we need

Stmin

St
&

1−
√
f0

d/2

1− f0
d

− f0
d . (62)

For the parameters of the runs depicted in Figure 1, this
estimate predicts growth is possible for Stmin/St & 0.77.
Numerically, we find growth is possible for Stmin/St > 0.68.
Therefore, for wide enough size distributions there are no
growing TV-PSI modes at RDI wave numbers for µ < 1.
This is indicated by the yellow region in figure 2. Below, we
show that there are also no growing modes in a finite region
around the exact RDI wavenumbers. It is worth noting that,
similar to the long wavelength regime of section 4.3.2, there
is no classical stability boundary where the mode crosses the
zero growth line: widening the size distribution leads to the
mode disappearing altogether.

While only at µ < 1 is the SI an RDI, it is worth briefly
considering a similar wave number range for µ > 1, as the
basic relation between Kx and Kz (49) is still relevant for
µ > 1 as well as the TV-PSI. In particular, consider the
wave number relation

4a2St
2
K2
x = K̂2

z (1 + µ)2, (63)

which has the effect of shifting the wave numbers to higher

Kx compared to RDI wave numbers for a < 13. We can

then ask whether any growing modes at order St
0

exist for
a given value of µ. The dispersion relation at zeroth order
(59) now reads

b2Y 3 + b2Y 2 − Y − 1 + µ = 0 , (64)

with Y = X/f0
g and b = af0

g . The discriminant ∆ of this
cubic signals the transition between three real roots (∆ > 0)
and one real root and two complex conjugate roots (∆ < 0).
In the latter case, one of the complex roots is growing, and
for the monodisperse case we have entered the domain of the
high-µ SI (Squire & Hopkins 2018a). We have that ∆ = 0
when

4b4(µ− 1) +
[
18(µ− 1)− 1 + 27(µ− 1)2] b2 − 4 = 0 . (65)

It is straightforward to see that real solutions for b exist
when µ > 1, the high-µ SI. For higher radial wave num-
bers than the boundary determined by (63), growth rates at

order St
0

exist for the SI in the TV approximation. Since
for the relevant root we can approximate F = 1 (as was
done above), we expect the high-µ TV-PSI to give growing

modes at order St
0

for similar wave number combinations
as the high-µ SI. Note, however, that while the SI has grow-
ing modes at order St for radial wave numbers smaller than
given by (63), for the high-µ TV-PSI we expect an abrupt
transition between fast growth and no growth at all.

As a corollary, there are no real solutions for b when µ <
1. This means that it is not possible in this case to shift the
RDI curve so that it falls in a region with growing modes in
this wavelength regime. Therefore, for µ < 1 not only do we
not get any growing modes at the exact RDI wavenumbers
(defined by the average Stokes number), but there are also
no growing modes to be found in the vicinity. For smaller
values of µ, the region of growing modes as identified in
section 4.3.1 will be further away from the RDI wavenumbers
based on St.

4.3.4 Summary

In Figure 2 we show schematically the three wave number
regimes considered previously in this section. The wave num-
ber ranges are chosen to match those of the numerical sim-
ulations presented in section 5, and for definitiveness we
have taken µ = 0.5, 10−8 < Ωτs < 10−2, and therefore
St = 0.00334 to calculate the position of the RDI wavenum-
bers, again in order to match the numerical results below.
While in the TV approximation, the SI has growing modes
for all Kx and Kz in the range depicted in Figure 2, the TV-
PSI only has growing modes in the green region for all values
of µ. In the red region, defined by Kx � 1/St and Kz & Kx,
the secular mode responsible for SI growth as identified by
YG05 and further studied by Jacquet et al. (2011) does not
exist for wide enough size distributions (section 4.3.2). We
stress again that this mode does not cross the zero growth
line and becomes damped: it ceases to exist. In the yellow
region, centered around the RDI wave number range, the
SI grows fastest, but the TV-PSI has no growing modes for
sufficiently wide size distributions for µ < 1 (section 4.3.3).

3 Note that we require a = O(1) in order for the ordering in St

to remain valid.
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Figure 2. Schematic overview of the wave number ranges con-

sidered in section 4.3. In the red region, no secular modes exist,

see section 4.3.2. In the yellow region (RDI wave numbers), no
growing modes exist for µ < 1, see section 4.3.3. In the green

region, growing PSI modes were found, see section 4.3.1. Specific
parameters used for this plot were µ = 0.5, 10−8 < Ωτs < 10−2,

and therefore St = 0.0034.

For µ > 1, both SI and TV-PSI have growing modes in the
yellow region (section 4.3.3). The green region, defined by
StKx � Kz/K, is where growing TV-PSI modes can occur
for all values of µ (section 4.3.1). We should stress that this
section deals exclusively with modes that exist under the TV
approximation. When solving the full system in section 5,
additional growing modes show in the red region but with
growth rates a few orders of magnitude lower than those
found in the green region.

4.4 SI versus TV-PSI

In this section, we highlight the main differences between
the monodisperse streaming instability and the PSI in the
terminal velocity approximation.

SI: The three wavelength regimes discussed in the sec-
tion 4.3 highlight the different character of the SI for dust
to gas ratios µ < 1 compared to µ > 1. In the former case,
growth at order St is possible at the RDI resonant wavenum-
ber (Squire & Hopkins 2018a). For the high-µ SI, on the
other hand, much larger growth rates are observed that are
independent of St (Squire & Hopkins 2018a, 2020). In the
thermodynamic (Lin & Youdin 2017) interpretation of the
one fluid model, for µ > 1 cooling Ĉg and density pertur-
bations are exactly in phase leading to instability, while for
µ < 1, the cooling perturbation is exactly out of phase with
the density perturbation, leading to stable epicyclic oscilla-
tions and growth at higher order (Squire & Hopkins 2018a).
Short wave length TV-PSI: While for the SI in the TV
approximation there is a sharp dividing line for fast growth
at µ = 1 (equation (43) with F = 1), for the TV-PSI at
wavelengths much shorter than the RDI wave length based
on St there is always a phase difference between density
and cooling if the resonance condition ν∗ = −τs(a)/τ̄0

s is
met, which in the short wave length limit translates into
τs(a) = f0

d τ̄
0
s (see section 4.3.1). The resonance triggers a

strong response at a specific τs that is different from τ̄0
s ,

which therefore leads to a phase difference in cooling (con-
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100
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(ω

) [
Ω

]

TV

μ = 0.4
μ = 0.5
μ = 0.8
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τs, min [Ω−1]

10−4
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(ω

) [
Ω

]

Full

Figure 3. Demonstration of the onset of the size resonance in

PSI. Top: Growth rates for the TV limit of PSI, using an MRN

size distribution in stopping time range [τs,min, 0.01Ω−1] for three
different dust to gas ratios, all at Kx = 102.75, Kz = 500. The

vertical dashed lines indicate the position of the resonance. Bot-

tom: Results for the same parameters in the full PSI eigenprob-
lem. Note that the monodisperse SI for µ = 0.4, Ωτs = 10−2

and Kz = 500 is stable when Kx > 102.29, as is the case for the

monodisperse limit of these plots.

tribution from resonant size) and density (contribution from

τ̄0
s ). Growth at order St

0
is possible only for a size distribu-

tion that is wide enough to include the resonance. This is
illustrated in the top panel of Figure 3, where in the single
size limit (right-hand side of the figure), only slow growth
of the secular mode is found because µ < 1. If the mini-
mum stopping time is decreased so that the resonance (ver-
tical dashed lines) is included, growth rates are substantial.
Thus, it appears that the instability abruptly changes char-
acter when the size resonance is included. Intuitively this
makes sense: a formally infinite perturbation at a specific
size is communicated to the gas through an integral over
size, which in turn makes all sizes feel the effect of the reso-
nance. We note that K+19 also found faster growth for size
distributions compared to the monodisperse limit in some
cases. The bottom panel of Figure 3 shows that this feature
is not specific to the TV approximation: the full PSI model
also shows an abrupt rise in growth rates once the size res-
onance is inside the integration domain. Note that the full
model has no growth in the single size limit at these large
wave numbers; a well-known characteristic of the monodis-
perse SI (e.g. YG05, Youdin & Johansen 2007).
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Table 1. Numerical results for an MRN size distribution with Ωτs = [10−4, 10−1] and µ = 1. Wave numbers and mode frequency νK+19

were produced from digitized versions of Figure 1 and 2 of K+19. ν is the result from our eigensolver, while νTV is the result from our

terminal velocity solver.

Kx Kz ν νK+19 νTV

20.6819 6.40829 0.221331 + 0.015918i 0.227234 + 0.0161574i 0.22147394 + 0.03665379i

Long wave length TV-PSI: In the long radial wavelength
regime (much longer than RDI wave lengths), the lack of
growing modes for wide size distributions is due to the dis-
appearance of the secular mode (section 4.3.2). This mode
was interpreted in the monodisperse case by Jacquet et al.
(2011) as due to a buoyancy force arising in two-fluid sys-
tems. We find that a polydisperse dust fluid does not seem
to be able to provide a coherent buoyancy restoring force,
which means the SI secular mode is effectively replaced by
the neutral mode ν∗ = 0 for wide enough size distributions.
At intermediate wave lengths for µ < 1, where the SI has its
maximum growth at the RDI resonance, the TV-PSI has no
growing modes (section 4.3.3).

5 NUMERICAL RESULTS

We solve the TV dispersion relation (40) using Newton’s
method in the complex plane, using the fastest growing
mode in the single size case as an initial guess. We solve the
full eigenvalue problem (28)–(31) by discretizing (30)–(31)
in τs(a) by collocation on a Chebyshev grid, and computing
the integral terms in (29) via trapezoid rule. The resulting
matrix representation of the eigenproblem is solved with the
Python numpy.linalg.eig routine. Details on the numerical
method are presented in Appendix B.

While the TV solver can treat a size continuum with-
out the need for any discretization, the eigenvalue solver
uses numerical quadrature to compute the integral terms in
the perturbation equations. It is important to contrast our
numerical approach to the eigenvalue problem with that of
K+19. Both numerical methods aim at studying a size con-
tinuum, but have different ways of getting there. One impor-
tant difference is that our equilibrium state is always set by
the continuous size distribution (see (24)-(27)), independent
of the number of collocation points used in discretizing (30)–
(31). In contrast, in K+19 the equilibrium state depends on
the number of dust fluids considered (see Beńıtez-Llambay
et al. 2019, in particular their equations (79)-(82)). This
means that while both methods should give similar4 results
in the limit of an infinite number of dust fluids (in the case
of K+19) and an infinite number of collocation points (in
our case), at finite resolution differences can be expected
because the underlying physical model is different. At finite
resolution, K+19 compute the exact growth rates for a finite
set of single-sized fluids, while we compute the approximate
growth rates for a continuous size distribution. Meaningful
comparisons can therefore only be made in the continuum

4 Similar, not exactly equal because K+19 use a different drag

law, with a stopping time that is independent of gas density. Since
gas density variations are typically very small, the resulting dif-

ference should be small (Youdin & Johansen 2007).

limit, which means that for comparisons we are limited to
results of K+19 that converge with number of dust fluids5.
They present one such case in their Figure 2. We have ex-
tracted the relevant wave numbers from a digitized version
of their Figure 1 (the position of the white triangle in the
top middle panel) and compare our result to their converged
result presented in the orange curve of their Figure 2 (again
from a digitized version) in Table 1. The eigenvalues agree
to within 3%. Further details and more comparisons are pre-
sented in Appendix C. We also quote the result of the TV
solver in Table 1, which yields a growth rate that is a factor
of 2 too large. This could signal that the maximum Stokes
number considered in the size distribution (Stmax = 0.1)
is too large for the TV approximation to apply, but as we
will see below the TV approximation also breaks down for
smaller Stokes numbers towards large Kx (as was also ob-
served in Squire & Hopkins 2018a).

Our main results are displayed in Figure 4, where we
compare the PSI to the SI for µ = 0.5 (top panels) and
µ = 3 (bottom panels). We note that for the PSI results,
an MRN size distribution with 10−8 < Ωτs < 10−2 gives
St = 0.00334. While in the TV equations, the gas sound
speed does not appear, for the full solver we have used the
canonical value of η/(cΩ) = 0.05 (e.g. Youdin & Johansen
2007). The gas-dominated SI (top left for TV, top right for
full two-fluid) has to rely mostly on the secular mode, yield-
ing growth rates of ∼ St. The PSI (top middle panels: left
for TV, right for the full model) shows larger growth rates
for StKx � Kz/K, which is the short wavelength limit of
section 4.3.1. We found these growth rates to be indepen-
dent of maximum stopping time, but going to smaller values
of µ pushes these modes to even larger wave numbers. For
smaller Kx, no growing modes were found, as the secular
SI mode does not exist for this wide size distribution (see
section 4.3.2). In particular, we note that at the RDI wave
numbers for St = 0.00334, which for Kz →∞ has Kx ≈ 200
the PSI was found to have no growing modes, consistent
with the analysis of section 4.3.3. This is further explored
in Figure 5 below. For vertical wave numbers smaller than
shown in Figure 4, TV PSI growth rates in the unstable
band steadily decrease.

The dust-dominated regime (bottom panels of Figure
4) shows large growth rates in the SI limit (bottom left and
right), which is the high-µ SI. For the PSI, growth rates are
moderately reduced but again found to be confined to large
wave numbers. The full model PSI (lower row, middle right)
displays an island of very small growth rates along the Kz

axis. This is due to instability of the epicyclic mode, which
was dropped from the TV model at these wave numbers.

5 A lack of convergence in the continuum limit would also be a

meaningful comparison, but is hard to obtain in practice.
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Figure 4. Growth rates (in units of Ω) of the PSI with an MRN size distribution for 10−8 < Ωτs < 10−2 compared to the SI with

Ωτs = 10−2. From left to right: TV monodisperse SI, TV-PSI, full model PSI, full model monodisperse SI. Top panels: µ = 0.5, bottom
panels: µ = 3.

Towards smaller Kx, outside the range of Figure 4, these
growth rates decay until they drop below 2 · 10−7 at Kx ∼
0.1. In both gas and dust dominated regimes, although the
TV approximation predicts the low Kx cutoff of instability
well, it does not capture the high-Kx cutoff for growth rates
found in the full model. For the SI, this is known to be due to
the neglect of higher order terms in St in TV. The wider the
instability strip in the full model, the better agreement with
the analytic limit (43), varying from ∼ 20% in the bottom
panels to a factor of ∼ 3 in the very narrow instability strip
in the upper panels. Further discussion on the validity of TV
is presented in Appendix A3.

We compare the predictions of section 4.3 with the nu-
merical TV-PSI results in Figure 5. Note that these are the
same panels as shown in the left middle panels of Figure
4, but with the RDI resonance condition (49) shown in the
black curve in the top panel, while the limit for TV-PSI
growth for µ > 1 as obtained from (63) and (65) is shown
with the dashed black curve in the bottom panel. From the
top panel, it is clear that we did not find any growing TV-
PSI modes at RDI wave numbers, in agreement with section
4.3.3. We note that when µ approaches unity, the unstable
region and the black curve move closer together. This is con-
sistent with our findings in section 4.3.3, since we took the
limit µ � 1 in order to show that there are no growing
modes at RDI wave numbers. The dividing line for having
growth at these wave numbers is µ ≈ 1. In addition, we also
did not find any growing modes at smaller radial wave num-
bers, in agreement with section 4.3.2. The hatched region
indicates the wave number range where any single size in
the size distribution would have its RDI. Since we consider
six orders of magnitude in stopping time, this region extends
beyond the edge of the plot on the right hand side.

In the bottom panel of Figure 5 we revisit the case µ = 3
of Figure 4. The boundary of the unstable region as found
from (63) and (65), depicted by the dashed black curve,
matches the numerical boundary quite well. We note again
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Figure 5. Growth rates (in units of Ω) of the TV-PSI with
an MRN size distribution for 10−8 < Ωτs < 10−2. Top panel:
µ = 0.5, solid black: RDI resonance condition for St (section
4.3.3), demonstrating no growth at the RDI condition applied
to the mean Stokes number, hatched region: wavenumber range

where any single size in the size distribution would have its RDI.

Bottom panel: µ = 3, dashed black: limit for TV-PSI growth for
µ > 1 (section 4.3.3), showing agreement with the onset of fast

growth.

that this is not a stability boundary in the sense that to the
left of the boundary the relevant mode becomes damped: the
mode ceases to exist. It is worth noting that while the bound-
ary of the unstable region has a similar shape to the RDI
curve shown in the top panel, the specific form of the bound-
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ary is merely an indication that the TV-PSI involves unsta-
ble epicycles, as does the monodisperse SI (YG05, Squire &
Hopkins 2018a, Jaupart & Laibe 2020). Finally, we note that
while we only show TV results in Figure 5, the TV approxi-
mation and the full model always agree very well on the left
edge of this instability region, as is clear from Figure 4.

6 DISCUSSION AND CONCLUSIONS

We have presented the first analysis of the PSI, which is
a version of the SI with a dust component that is a true
continuum of sizes. We have focused on the St � 1 regime
in the TV approximation and MRN dust distributions, and
found that exponentially growing modes exist but are con-
fined to very high radial wave numbers (StKx � Kz/K) for
µ� 1. For µ > 1, the TV-PSI shares its wavenumber regime
where fastest growth (on a dynamical time scale, O(Ω)) oc-
curs with the high-µ SI. Our analysis was conducted through
application of the TV approximation to the continuum equa-
tions yielding a simple scalar eigenproblem, and checked by
discretizing the unapproximated equations and then con-
ducting a convergence study on the resulting eigenproblem.
The high wave number nature of the PSI regime explored
in this paper (StKx � Kz/K, which, for η ∼ rh2Ω2 and
Kz/K = O(1), where h is the aspect ratio of the disc and r
the fiducial orbital radius of the shearing box, translates into

rkx � h−2St
−1

) raises two concerns. First, at sufficiently
high wavenumbers the total masses of solids involved in the
growing mode become small, which could in turn impact the
sizes of resulting solid clumps, ostensibly the seeds of planet
formation, in the nonlinear outcome. Second, the dissipative
effects of turbulence and particle diffusion more easily damp
instability at high wavenumber (YG05, Umurhan et al. 2020,
Chen & Lin 2020). In addition, turbulence is driven by, and
strongly affects the nonlinear phase and planetesimal for-
mation (Johansen et al. 2007, 2011; Yang et al. 2018; Gole
et al. 2020). We will study the effect of turbulence on the
PSI in a forthcoming paper.

We have limited the scope of this paper to the MRN
dust distribution and St � 1, and it served well for eluci-
dating the fundamentals of the PSI. The power law slope is
well motivated by observations of the ISM, but is likely less
appropriate for the midplane regions of an evolved proto-
planetary disc where planet formation occurs. At the same
time, the SI is often invoked in planet formation models with
St ∼ 10−1–1. These conditions exceed the validity of TV. In
an upcoming paper we will release these restrictions.

The high-µ SI is likely the most relevant to the most
common scenario for interest in the SI, that of planetesimal
formation (Squire & Hopkins 2020). The similarity of un-
stable parameters and growth rates of the PSI gives hope of
similar outcomes.

In conclusion, generalising monodisperse SI to include a
continuous dust distribution in the form of PSI changes the
parameters for instability. For tightly coupled particles to
which the TV approximation applies, growth is only possible
for µ � 1 at radial wavenumbers that are a factor 1/St
larger than where the SI has its maximum growth. For µ >
1, the PSI has maximum growth rates comparable to the
high-µ SI at similar wave numbers. At these large radial
wave numbers, growth time scales can be of the order of a

dynamical time scale, while at smaller radial wave numbers,
modes that are not part of the TV approximation were found
that grow on ∼ 104 dynamical time scales.
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APPENDIX A: PSI IN THE TERMINAL
VELOCITY APPROXIMATION

A1 Polydisperse terminal velocity approximation

The TV approximation is widely used to study monodis-
perse gas-dust mixtures in the limit where the coupling
is strong. In this context, it first appeared in Youdin &
Goodman (2005) as a tool to study the behaviour of the
SI for well-coupled particles. Subsequently, it was extended
to a full nonlinear system of evolution equations that could
be studied in their own right (Laibe & Price 2014; Lin &
Youdin 2017). It makes the analysis of well-coupled two-
fluid systems considerably easier, both analytically (Youdin
& Goodman (2005), Lin & Youdin 2017) as well as numer-
ically (Laibe & Price 2014). Fortunately, the polydisperse
equations allow for a similar approximation.

The full governing equations consist of gas and dust
continuity and momentum equations:

∂tρg+∇ · (ρgvg) = 0 , (A1)

∂tvg+(vg · ∇)vg = 2ηx̂

− ∇p
ρg
− 2Ω× vg −∇Φ +

1

ρg

∫
σ

u− vg

τs(a)
da , (A2)

∂tσ+∇ · (σu) = 0 , (A3)

∂tu+(u · ∇)u = −2Ω× u−∇Φ− u− vg

τs(a)
. (A4)

Using the fact that the size density and size momentum
integrate to the dust density and dust momentum:

ρd =

∫
σ(a)da, (A5)

ρdvd =

∫
σ(a)u(a)da, (A6)

we obtain the size-integrated dust continuity and momen-
tum equations by integrating over dust size a:

∂tρd+∇ · (ρdvd) = 0, (A7)

∂tvd+(vd · ∇)vd = −2Ω× vd

−∇Φ− 1

ρd

∫
σ

u− vg

τs(a)
da− 1

ρd
∇ · S, (A8)

with stress tensor

S =

∫
σuuda− ρdvdvd =

∫
σ(u− vd)(u + vd)da. (A9)

In the limit of a monodisperse dust fluid with σ = ρdδ(a −
a0), where δ is the Dirac delta function, the integrals become
trivial and the stress tensor vanishes, leaving us with the
usual dust fluid equations for a single size a0.

Subtract the gas momentum equation (A2) from the
dust momentum equation (A4) to obtain an evolution equa-
tion for the size-dependent relative velocity between gas and
dust:

∂t∆u+(u · ∇)u− (vg · ∇)vg =
∇p
ρg
− 2ηx̂

− 2Ω×∆u− ∆u

τs(a)
+

1

ρg

∫
σ

∆u

τs(a)
da. (A10)

In the TV approximation, we assume ∆u = O(St) and keep
only the lowest order contribution in St, so that drag forces
adjust quasi-statically to pressure forces (Youdin & Good-
man 2005):

∆u(a) = τs(a)

(
∇p
ρg
− 2ηx̂

)
+
τs(a)

ρg

∫
σ(r)

∆u(r)

τs(r)
dr, (A11)

where we have explicitly listed the dependencies on dust
size a. This is a Fredholm equation of the second kind with
separable kernel, which can be solved explicitly:

∆u(a) =
τs(a)

ρ
(∇p− 2ρgηx̂) , (A12)

with total density ρ = ρd + ρg. Multiplying by σ/ρd and
integrating the equation for ∆u over size we obtain a size-
integrated relative velocity

∆v = vd − vg =
τ̄s
ρ

(∇p− 2ρgηx̂) , (A13)

with average stopping time

τ̄s =
1

ρd

∫
στs(a)da. (A14)

The evolution of the total momentum ρv = ρdvd +ρgvg

necessarily does not involve the drag force, while the stress
tensor appearing in (A8) is:

S =

∫
σ(u− vd)(u + vd)da

=

∫
σ(∆u−∆v)

(
2v + ∆u +

ρg − ρd

ρ
∆v

)
da. (A15)

To lowest order in St, the second factor in parenthesis is 2v,
so that the TV approximation to the stress tensor is

S = 2v

(∫
σ∆uda− ρd∆v

)
= 0. (A16)

This, together with the fact that the drag force cannot ap-
pear in the total momentum equation, means that the total
momentum equation is exactly the same as in the monodis-
perse case, and reads, in the TV approximation, and there-
fore ignoring terms that are quadratic and higher in the
relative velocity:

∂t (ρv) +∇ · (ρvv) =

2ηρgx̂−∇p− 2ρΩ× v − ρ∇Φ. (A17)

The evolution of the total density can be found by adding
up (A1) and (A7):

∂tρ+∇ · (ρv) = 0. (A18)

In addition, we need an equation for the pressure, which, in
the case of an isothermal gas component, is set exclusively
by the gas density and therefore the gas continuity equation
(A1):

∂tp+∇ · (pvg) = 0. (A19)

In terms of v and ∆v, we have that vg = v− ρd∆v/ρ. This
gives rise to a ’cooling term’ on the right hand side (Lin &
Youdin 2017):

∂tp+∇ · (pv) = ∇ ·
(
pρd∆v

ρ

)
. (A20)

MNRAS 000, 000–000 (0000)

http://dx.doi.org/10.3847/1538-4357/aae7d4
https://ui.adsabs.harvard.edu/abs/2018ApJ...868...27Y
http://dx.doi.org/10.1086/426895
https://ui.adsabs.harvard.edu/abs/2005ApJ...620..459Y
http://dx.doi.org/10.1086/516729
https://ui.adsabs.harvard.edu/abs/2007ApJ...662..613Y


12 S.-J. Paardekooper et al.

Using our expression (A13) for ∆v, we obtain

∂tp+∇ · (pv) =

∇ ·
((

1− p

c2ρ

)
pτ̄s (∇p− 2ρgηx̂)

ρ

)
. (A21)

If we set η = 0 and take the monodisperse limit so that
τ̄s = τs(a0) the right hand side is equivalent to equation
(16) of Lin & Youdin (2017) if we recognize their definition
of the relative stopping time ts = ρgτs/ρ.

For a polydisperse dust fluid, the cooling term depends
on the size-averaged stopping time τ̄s, which depends on σ.
We therefore need to include the dust continuity equation
(A3), which reads, when inserting u = ∆u+vg = ∆u+v−
ρd∆v/ρ:

∂tσ +∇ · (σv) = −∇ · (σ (∆u− ρd∆v/ρ)). (A22)

With the expressions for the relative velocities (A12) and
(A13) we find

∂tσ+∇ · (σv) =

∇ ·
[
σ

ρ
(∇p− 2ρgηx̂)

(
ρd

ρ
τ̄s − τs(a)

)]
. (A23)

The TV equations are then given by (A18), (A17),
(A21) and (A23):

∂tρ+∇ · (ρv) = 0 , (A24)

∂tv + (v · ∇)v =
2pηx̂

c2ρ
− ∇p

ρ
− 2Ω× v −∇Φ , (A25)

∂tp+∇ · (pv) = Cg , (A26)

∂tσ +∇ · (σv) = Cd , (A27)

where the cooling terms (Lin & Youdin 2017) are given by:

Cg = ∇ ·
((

1− p

c2ρ

)
p

ρ
τ̄s

(
∇p− 2pηx̂

c2

))
, (A28)

Cd = ∇ ·
(
σ

ρ
(fdτ̄s − τs(a))

(
∇p− 2pηx̂

c2

))
. (A29)

A2 The TV PSI dispersion relation

The equilibrium background state in our unstratified shear-
ing box consists of constant gas and dust (size-) densi-
ties, and an equilibrium centre-of-mass velocity is v =
(−Sx− fgη/Ω)ŷ, where fg = ρg/ρ is the gas fraction. Con-
sider small perturbations to equations (A24)–(A27) such
that ρg = ρ0

g + ρ̂g exp(ik · x − iωt), where ρ0
g is the back-

ground state with |ρ̂g| � ρ0
g, and similarly for other quanti-

ties, yielding:

−iωρ̂+ik · v̂ = 0, (A30)

−iωv̂−Sv̂xŷ = gex̂ (p̂− ρ̂)− ic2f0
g kp̂− 2Ω× v̂, (A31)

−iωp̂+ik · v̂ = −τ̄0
s c

2k2f0
df

0
g p̂

−τ̄0
s

(
ikxge

[
(2f0

d − f0
g )p̂+ (f0

g − f0
d )ρ̂+ f0

d τ̂s
])
, (A32)

iωσ̂−ik · v̂ =
(
f0
d τ̄

0
s − τs(a)

) (
k2c2f0

g p̂+ ikxge [p̂+ σ̂ − ρ̂]
)

+ ikxgeτ̄
0
s

(
f0

d τ̂s + f0
g (ρ̂− p̂)

)
, (A33)

with ge = 2f0
g η and perturbed stopping time

τ̂s =
τ̄1
s

τ̄0
s

=
1

τ̄0
s ρd

0

∫
σ̂σ0(a)τs(a)da−

ρ̂− f0
g p̂

f0
d

. (A34)

A further simplification is possible if we consider the gas
to be incompressible, which is a good approximation for
monodisperse SI modes (Youdin & Johansen 2007). We ar-
rive at the incompressible limit by neglecting all pressure
perturbations unless they are multiplied by the sound speed
(Lin & Youdin 2017):

−iωρ̂+ ik · v̂ =0 , (A35)

−iωv̂ − Sv̂xŷ =− gex̂ρ̂− ic2f0
g kp̂− 2Ω× v̂ , (A36)

ik · v̂ =− τ̄0
s

(
c2k2f0

df
0
g p̂+ ikxge(f0

g − f0
d )ρ̂
)

− ikxgef
0
d τ̂s , (A37)

iωσ̂ − ik · v̂ =
(
f0

d τ̄
0
s − τs(a)

) (
k2c2f0

g p̂+ ikxge [σ̂ − ρ̂]
)

+ ikxge

(
fdτ̂s + f0

g τ̄
0
s ρ̂
)
, (A38)

and

τ̂s =
1

ρ0
d

∫
σ̂σ0(a)τs(a)da− τ̄0

s ρ̂

f0
d

. (A39)

Note that in a monodisperse dust fluid τ̂s = 0.
Adding up equations (A37) and (A38) to eliminate τ̂s

we obtain an expression for σ̂:(
ν∗ +

τs(a)

τ̄0
s

)
σ̂ =

τs(a)

τ̄0
s

(
ik2c2f0

g p̂

kxge
+ ρ̂

)
, (A40)

with ν∗ = (ω − f0
d τ̄

0
s kxge)/(kxgeτ̄

0
s ). Use (A40) in (A39) to

find

τ̂s = τ̄0
s

(
ik2c2f0

g p̂

kxge
+ ρ̂

)
I(ν∗)− τ̄0

s ρ̂

f0
d

, (A41)

with integral

I(ν∗) =
1

ρ0
d

∫
σ0(a)

ν∗ + τs(a)

τ̄0s

(
τs(a)

τ̄0
s

)2

da. (A42)

Equations (A35)-(A38) can then be combined to yield a dis-
persion relation(
k2

k2
z

ω2 − κ2

)
(ω − f0

d τ̄
0
s kxge) =

τ̄0
s f

0
d

(
i
k2

k2
z

(ω2 − κ2)ω2 − kxgeκ
2

)
(1− I(ν∗)) . (A43)

A3 Validity of the terminal velocity
approximation

The TV approximation holds if the perturbation and dy-
namical time scales are longer than the relative stopping
time ts and the length scales under consideration are longer
than the stopping length ηt2s (Jacquet et al. 2011). For-
mally, one requires the Stokes number St � 1 (Lovascio
& Paardekooper 2019), although good results have been
reported on the monodisperse streaming instability up to
St = 0.1 (Lin & Youdin 2017). In this work, we stick to a
conservative limit of St < 0.01 in order to remain well in-
side the TV regime. The wave number under consideration

should satisfy K <
(
f0

g St
)−2

, so that the wave length of
the perturbation is longer than the stopping length. While
technically this makes the TV approximation a long wave-
length approximation, in practice the main limitation usu-
ally comes from neglecting higher order terms in St.

This is illustrated in Figure A1, where we show the
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Figure A1. Variation of the growth rates with wave number of

the monodisperse SI at stopping time 10−2Ω−1 (blue curves) and

the PSI, using an MRN size distribution in stopping time range
[10−8, 10−2] Ω−1 (orange curves), all for a dust to gas ratio µ = 3

with Kz = Kx. Shown are results for the full equations (dashed
curves), the TV approximation (solid curves), and the analytical

high wavenumber limit (dotted lines).

growth rate of the PSI as a function of wave number
Kx = Kz both for the full model and the TV approxi-
mation for the case with µ = 3 and stopping time range
[10−8, 10−2] Ω−1. For comparison, we also show the growth
rates of the monodisperse SI at stopping time 10−2 Ω−1 for
the same dust to gas ratio. We are clearly in the high-µ
parameter range, where the unstable wave numbers have
KxSt � 1, while the low-µ SI is known to peak around
KxSt ∼ 1 (Youdin & Goodman 2005). The TV approxi-
mation does a good job reproducing the full model up to
Kx ≈ 103, after which the full model shows a decline while
the TV growth rate approaches the analytic estimate. The
maximum Kx so that the wavelength is longer than the stop-
ping length is ∼ 105, which means that based on this crite-
rion the TV approximation should be valid across the whole
domain shown in Figure A1. It was shown in Squire & Hop-
kins (2018a) for the monodisperse SI that the failure of the
TV model is due to the neglect of higher order terms in St.
Nevertheless, the analytic limit does a decent job of predict-
ing the maximum growth rate of the full model to within
∼ 20%. The prediction gets better when the range of unsta-
ble wave numbers gets wider.

APPENDIX B: NUMERICAL METHODS FOR
FULL EIGENPROBLEM

To solve the full eigenproblem for the PSI, first, we choose
the equilibrium gas and dust densities ρ0

g, σ0(τs). Then,
Equations (17)–(20) can be solved for the background state
gas velocity v0

gx, v0
gy, v0

gz, and the dust velocity u0
x(τs),

u0
y(τs), u

0
z(τs) by numerical quadrature. To solve the eigen-

value problem (21)–(24) for eigenvalues ω we discretize the
dust eigenfunctions σ̂(τs) and û(τs) by sampling at points
on a Chebyshev grid (Boyd 2000, eq. A.19) in the interval
[τs,min, τs,max] on L points. This transforms Equations (23)–
(24) into 4L scalar equations. In the monodisperse case, the
Fourier analyzed compressible SI problem produces a ma-
trix eigenvalue problem in six scalar variables which can be

101 102 103 104
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Convergence Limit Extrapolated Limit Convergence Criteria Extrapolated

Figure B1. Large scale single panel demonstrating the presen-

tation used in Figures B2–B3 of detailed results of numerical
calculations of the PSI growth rate. This instance for µ = 0.5,

τs = [10−8, 10−2] at a range of vertical wavenumbers Kz . Lines:

Numerical results at resolutions of 2[7,...,12] + 1 points in τs(a).
Symbols: Marks denoting the convergence decision for each Kx
parameter as per legend.

solved for six eigenvalues and eigenvectors of length 6. In
contrast, this discretization of the PSI eigenproblem pro-
duces 4 + 4L eigenvalues ωL,0...4+4L and eigenvectors of the
corresponding length. Many of these are numerically spuri-
ous, meaning that they do not correspond to an eigenvalue
of the continuous problem, and have decay rates which grow
with L (Boyd 2000). The eigenvectors in turn contain the
Fourier coefficients of the gas density and velocity eigen-
functions, and discretized coefficients as a function of τs of
the dust density eigenfunctions σ̂L,i(τs) and dust velocity
eigenfunctions ûL,i(τs). As L is increased, these successive
approximations to the physical eigenfunctions, of which we
are concerned with the fastest growing, converge towards
the exact result,

lim
L→∞

σ̂L(τs) = σ̂(τs) . (B1)

We discretize all the integral terms in Equation 22 over τs(a)
with a trapezoid rule quadrature which allows the entire dis-
cretized eigenproblem to be expressed in a single 4 + 4L by
4 + 4L matrix. The convergence properties of trapezoid rule
quadrature means that when the dust eigenfunctions σ̂(τs)
and û(τs) are smooth functions of τs, the asymptotic conver-
gence rate of the approximation for the eigenvalues ω will
be second order. However, when any of these eigenfunctions
are non-smooth, the method will converge at only first or-
der. Thus, when convergence is slow, we exploit a series of
results to obtain a more precise one.

In essence, Richardson extrapolation consists of fitting
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Figure B2. Detailed results of numerical calculations of the PSI growth rate for µ = 0.5, τs = [10−8, 10−2] at a range of vertical
wavenumbers Kz . Lines: Numerical results at resolutions of 2[7,...,12] + 1 points in τs(a). Symbols: Marks denoting the convergence

decision for each Kx parameter as per legend.

a polynomial to the partial sums of a series to produced a
transformed series with accelerated convergence properties.
It underlies some common numerical procedures, such as
Romberg integration, where it is used to accelerate the con-
vergence of trapezoid rule quadrature, and as a general tool
for uncertainty quantification in the verification of numer-

ical simulations with PDEs (Roache 1998). We employ the
N-step algorithm for Richardson extrapolation described by
Bender & Orszag (1978, p. 375) applying it to the imag-
inary components of the fastest growing eigenvalues, the
set gL = {maxi(I(ωL,i))} for L ∈ 2[7,...,12] + 1. Applied
to the latter half of the series the polynomial is expression
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Figure B3. Detailed results of numerical calculations of the PSI growth rate for µ = 3, τs = [10−8, 10−2]. Lines: Numerical results at
resolutions of 2[7,...,12] + 1 points in τs(a). Symbols: Marks denoting the convergence descision for each Kx parameter as per legend.

Where both a symbol denoting that the two highest resolutions meet the convergence criteria and a mark for an extrapolated value

appear, the value satisfying the convergence criteria is used.

for the extrapolated value gR is gR = 2g513−9g1025 +8g2049,
involving a zero weight on the highest resolution result
g4097, facilitating comparison between the extrapolated and
highest resolution result as another indication of the resid-

ual error. The eigenvalue computations are performed with
numpy.linalg.eig from the Intel Python Distribution.

Finally, we report only growing modes with a well de-
fined sense of convergence, and only upper limits on growth
for other cases. Detailed sections of the parameter grids,
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the raw computations, and annotations about the conver-
gence criteria are presented as an larger scale example key
to the symbols in Figure B1 and for more cross sections
in Figures B2–B3. In general, the physically most relevant
growing modes converge quickly, while convergence in cases
where no significant growth is found is much slower, but reg-
ular. From inspection of the results in Figures B2 and B3, a
typical value below which floating point accuracy corrupts
results is a growth rate of 2×10−7. We conservatively choose
to present a reasonably well converged directly computed
value over those results employing Richardson extrapolation
to accelerate convergence. This convergence criteria is a rel-
ative error between the two highest resolution computations
of 5% in imaginary part, and 10% in real part.

For the series of computations with varying τs resolu-
tions L ∈ 2[7,...,12] + 1 at a fixed wavevector k the sequence
of criteria used to determine the result shown is:

(i) Are the growth rates at any resolution < 2 × 10−7?
Decision: Accept upper limit 2× 10−7.

(ii) Are the two highest resolution results within the error
tolerance? Decision: Accept highest resolution result.

(iii) Is the Richardson extrapolation of the converging se-
ries of results ≥ 2 × 10−7? Descision: Accept Richardson
extrapolated value.

(iv) Is the Richardson extrapolation < 2 × 10−7? Desci-
sion: Accept upper limit 2× 10−7.

Each of these criteria is evaluated in order until a decision
is accepted.

APPENDIX C: COMPARISON TO
KRAPP ET AL. (2019)

A similar problem to the one studied in this paper was pre-
sented in K+19. We have outlined the differences in the
numerical approaches in section 5. To reiterate: both K+19
and the present work aim at studying a continuous size dis-
tribution, but the underlying physical model is different at
finite resolution. At finite resolution, K+19 solve for the ex-
act growth rates for a system consisting of a finite number of
single-sized dust fluids, while in this work we calculate the
approximate growth rates for a continuous size distribution.
Both methods should give the same answer in the limit of
infinite resolution in size space (modulo the different drag
law used in K+19, the effect of which should be small). How-
ever, at finite resolution, differences are to be expected, for
example due to the different equilibrium states (see section
5). Meaningful comparisons of growth rates can therefore
only be made in the continuum limit. We note that since
both methods solve for the eigenvalues of a dense matrix,
the computational effort should be similar for the same N
(number of species/collocation points).

In this Appendix, we provide additional comparisons
and convergence results. We do note first of all that our
results agree qualitatively (compare the top right panel of
Figure 1 of K+19 with the middle right panels of Figure 4),
but a more detailed comparison over all wave numbers is
not meaningful because differences between the middle and
right columns of their Figure 1 show that parts of K-space
have not converged.

The one point in K-space depicted in Figure 1 of K+19
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Figure C1. Convergence study on the mode we label Kfast,128.

Top panel: growth rate (imaginary part of ω in our notation),
middle panel: oscillation frequency (real part of ω in our nota-

tion), bottom panel: relative error compared to the N = 1024

result, showing the second order convergence of the direct solver
to an eigenvalue with growth.

where we do know for certain that they obtain a result that
converges in the continuum limit, and therefore lends it-
self to detailed comparison, is at the location of the white
triangle in the top middle panel of their Figure 1. Let us
call the wave number of the triangle Kfast,128. The con-
vergence history of the fastest growing mode is depicted in
their Figure 2, and it appears that at a number of species
Nspec = 128 the mode frequency is converged enough so
that the wave number of the fastest growing mode is likely
to be Kfast,128 for Nspec ≥ 128. Note that this is proba-
bly not the case for Nspec < 64, and definitely not the case
for Nspec = 16, as apparent from Kfast,16, indicated by the
position of the white triangle in the top left panel of their
Figure 1. It seems that the mode at Kfast,16 does not reach a
converged value for Nspec = 512, which means no meaning-
ful comparison can be done. We therefore have to limit our
comparison to Kfast,128. We have extracted Kfast,128 from
a digitized version of the top middle panel of Figure 1 of
K+19, and obtained the mode frequency from a digitized
version of the left two panels of their Figure 2, obtaining
Kfast,128 = (20.6819, 6.40829). We compare our results with
theirs in Table 1, showing agreement to 3%. We show the
convergence history for the growth rate and oscillation fre-
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Table C1. Numerical results for the maximum growth rate in the range 0.1 ≤ Kx,Kz ≤ 1000 for an MRN size distribution. Columns

from left to right: dust to gas ratio, stopping time range, wavenumber x, wavenumber z, mode frequency as found from the eigensolver,

and the mode frequency as found from the terminal velocity solver.

µ Ωτs Kx Kz ν νTV

1
[
10−4, 10−3

]
1000 195.13 0.1208 + 0.04277i 0.1208 + 0.04281i

1
[
10−4, 10−2

]
666.91 1000 0.6181 + 0.1190i 0.6194 + 0.1414i

0.5
[
10−4, 10−3

]
1000 96.154 0.06565 + 0.01331i 0.06566 + 0.01338i

0.5
[
10−4, 10−2

]
631.52 981.70 0.6809 + 0.03178i 0.6819 + 0.06040i

quency in the top two panels of Figure C1. It should be
stressed that these are at fixed wave number, while it is
likely that the wave numbers in Figure 2 of K+19 vary with
the number of species. In the bottom panel of Figure C1 we
show that the relative error decreases with of the number
of collocation points as N−2, as would be expected for the
trapeziod rule quadrature.

We also report that, while outside the TV regime which
is the scope of this paper, our eigensolver does not yield a
growing mode at the position of the white triangle in the
bottom middle panel of Figure 1 of K+19, which is consis-
tent with their results.

In addition, in Table C1 we provide additional bench-
marks for the fastest growing modes for 4 of the columns
shown in Figure 4 of K+19 (left two columns of the top
right and top right middle panels of the top row of their
Figure 4). These results were obtained by using the dual
annealing method (Xiang et al. 1997) as implemented in
scipy.optimize.minimize on our eigensolver to find the
maximum growth rate in the domain 0.1 ≤ Kx,Kz ≤ 1000,
the same domain as considered in K+19. The values quoted
are the digits which do not change between N = 512 and
N = 1024, and the growth rates appear to be consistent with
the colors shown in Figure 4 of K+19. We also quote the re-
sults of the TV solver, which gives good agreement except
in the bottom row of Table C1, where it is off by a factor of
∼ 2. A similar discrepancy can be observed in the top row,
middle two panels of Figure 4 towards the maximum Kz,
and is probably due to the neglect of higher order terms in
St in the TV approximation (Squire & Hopkins 2018a).

We therefore conclude that our results are consistent
with those of K+19 in all cases we have considered.
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