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Prognostic association of routinely measured biomarkers in patients 

admitted to critical care: a systematic review 

 

Abstract 

Purpose: To examine reported prognostic associations of routine blood measurements in the 

intensive care unit. 

Materials and Methods: We searched PubMed, EMBASE through 28th May 2020 to identify 

all studies in adult critical care investigating associations between parameters measured 

routinely in whole blood, plasma or serum, and length of stay or mortality. Registration: 

PROSPERO; CRD42019122058. 

Results: A total of 128 studies, reporting 28 different putative prognostic biomarkers, met 

eligibility criteria. Those most frequently examined were red cell distribution width, 

neutrophil-to-lymphocyte ratio, C-reactive protein, and platelet count. A higher red cell 

distribution width, a lower platelet count, and a higher neutrophil-to-lymphocyte ratio were 

consistently associated with both increased mortality and length of stay. A lower level of 

albumin was consistently associated with greater mortality. C-reactive protein was 

inconsistent. Most studies (n=110) used regression modelling with wide variation in variable 

selection and covariate-adjustment; none externally validated the proposed predictive models. 

Conclusions: Simple regression models have so far proved inadequate for the complexity of 

data available from routine blood sampling in critical care. Adoption of a direct causal 

framework may help better assess mechanistic processes, aid design of future studies, and 

guide clinical decision making using routine data. 
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Introduction 

Panels of laboratory blood tests are routinely used for diagnosis and assessment of hospitalized 

patients (Badrick, 2013). In patients admitted to critical care, blood samples are frequently 

taken throughout the course of admission generating a large quantity of repeated measures data 

in every patient, only a little of which is directly utilized in clinical decision making (Ezzie et 

al., 2007). Large numbers of observational studies have investigated the association of routine 

laboratory test results to clinical outcomes within different subgroups of critically ill patients, 

including sepsis, acute kidney injury, and acute respiratory distress syndrome (Gerlach, 2018, 

Heilmann et al., 2019, Kelly et al., 2018, Opal and Wittebole, 2020, Vincent and Teixeira, 

2014, Koyner et al., 2019, Srisawat and Kellum, 2020, Ware et al., 2010). Furthermore, there 

has been a growing number of studies examining less frequently used indices in routine blood 

panels, or measures derived from combinations of routinely measured blood tests, including 

red cell distribution width and neutrophil-to-lymphocyte ratio which have been proposed as 

novel surrogate measures of pathophysiological pathways (Gluck et al., 2018, Hwang et al., 

2017, Güell et al., 2019, Bazick et al., 2011, Kim et al., 2013, Purtle et al., 2014). 

 

There is a long history of including haematological and biochemical parameters in models to 

estimate expected mortality and morbidity in critically ill patients (Vincent and Moreno, 2010, 

Breslow and Badawi, 2012a, Breslow and Badawi, 2012b). As mortality from critical illness 

continues to reduce, identification of high risk subgroups may be important to enable continued 

improvement in outcomes (Sjoding and Cooke, 2015). Furthermore, it is becoming accepted 

that simple survival does not constitute intensive care unit (ICU) success. An increasingly 

recognized syndrome of persistent critical illness is associated with significant ongoing 

morbidity, and poor post-ICU outcomes (Hermans et al., 2019, Jeffcote et al., 2019). However 

these phenotypes are poorly understood (Viglianti et al., 2019). Consequently, while there is 
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considerable interest in understanding biological signatures of critical illness phenotypes from 

routine blood investigations, interpretation and clinical application of these potential 

biomarkers remains ambiguous.  

 

Newer approaches using routinely collected data have used machine learning techniques for 

prediction of ICU morbidity and mortality with the aim of improving prognostic models and 

classifying sub-populations (Shillan et al., 2019). Studies have most commonly used 

supervized methods such as support vector machines, random forests, and neural networks. 

However, such hypotheses driven approaches may tend to reinforce pre-existing concepts 

rather than identifying novel groups. Furthermore, the majority of published studies have 

analysed data on relatively small patient populations, have no external validation, and lack 

complete reporting of predictive accuracy. There is currently limited statistical literature on 

how to evaluate the performance of these methods in clinical practice, particularly when more 

than one biomarker is involved or when outcome variables are classified using more than two 

categories. In these cases, traditional measures such as receiver operating characteristic (ROC) 

curves and the area under the ROC curve (AUC) are not applicable (Li et al., 2019). Thus, 

despite an apparent wealth of information, it is difficult to clearly determine true clinical 

associations and clinical implications of these models (Ware, 2017, Tyler et al., 2018). In this 

systematic review, we aimed to examine and collate reported associations between routine 

blood test results carried out in critical care and outcomes using ICU length of stay and 

mortality up to 90 days to identify useful candidates for future large-scale outcomes modelling 

either alone or in combination. 
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Materials and methods 

This systematic review was conducted in accordance with the Preferred Reporting Items for 

Systematic Reviews and Meta-analyses (PRISMA) reporting guidelines (Moher et al., 2009). 

The study protocol was registered with the International Prospective Register of Systematic 

Reviews (PROSPERO; CRD42019122058). 

 

Study selection 

A study was eligible if it aimed to test the association between one or more routinely measured 

biomarker(s) and length of stay, and/or mortality. These outcomes were defined as 1) ICU or 

hospital length of stay, 2) mortality on the ICU or in hospital or within 90 days of ICU 

admission. Candidate biomarkers were any indices available from blood tests measured as part 

of a routine daily panel in international ICUs. Studies were restricted to those carried out in 

adults. Prospective and retrospective studies were included. Case reports and case series, as 

well as non-research publications such as literature reviews, editorials and correspondences 

were excluded. Only full text articles in English were included. 

 

Search strategy 

Searches were carried out using two separate databases MEDLINE (PubMed) and Excerpta 

Medica dataBASE (EMBASE) from inception through 28th May 2020. Search strategies are 

detailed in the online supplement, briefly these involved combinations of blood test name or 

terms for abnormalities in the measured parameter, terms indicative of critical illness and terms 

indicative of outcomes of relevance. Reference lists from prior systematic reviews were 

searched manually for additional publications of relevance. 

 

Data extraction 
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Data extraction was performed independently by three independent investigators (YW, AB, 

RH) and in duplicate using predefined data abstraction forms. A random check of 10% of cases 

were performed to ensure accuracy and any disagreements were resolved by a fourth 

investigator (JP). Abstracted data included study characteristics, demographic data, biomarker 

data and outcome data.  

 

Quality of evidence and risk of bias 

Quality of evidence and individual study risk of bias within studies was assessed using the 

Newcastle-Ottawa Scale (NOS) criteria (Wells et al., 2013). Scores were given based on 

selection of study groups (four points), comparability of groups (two points), and ascertainment 

of exposure and outcomes (three points). Statistical methods and models were assessed 

including statistical model type, method for variable selection for adjustment, and model 

performance metrics. In addition, we recorded studies that used an a priori statistical analysis 

plan and those that adhered to the appropriate STROBE reporting guidelines. We assessed 

citations and geographical location of studies. Study citations were reviewed using Pubmed, 

Crossrefs, and Google Scholar. 

 

Data synthesis 

As we anticipated insufficient methodological heterogeneity between study cohorts due to large 

variations in biomarker measurements and outcome measurements, calculating overall 

measures of effect was not considered appropriate. Consequently, a number of summary 

assessments were undertaken to critically appraise studies and collate the best available 

evidence. For biomarkers showing consistent effects across multiple studies, we reviewed 

proposed mechanisms and underlying hypotheses reported in manuscripts. We then developed 

a directed acyclic graph (DAG) using current evidence and scientific reasoning to examine the 
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causal association between reported biomarkers and outcomes (Textor et al., 2016). We used 

the DAGitty R package and website (http://dagitty.net) to inspect the DAG and identify 

suggested variables to adjust for in future modelling. 
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Results 

Search results and study characteristics 

Results of the literature search are shown in Figure 1, of 799 records we included 128 studies 

meeting our eligibility criteria for qualitative synthesis. Identified studies analysed different 

biomarkers either individually or using a composite measure of two related biomarkers (Table 

1). The majority of study populations were focused within mixed ICU admissions (n=74), 

followed by medical admissions (n=33) then surgical admissions (n=21) (online E2). Study 

designs were a combination of cohort studies (n=112) and case-control studies (n=16). All 

studies described a retrospective method of data collection. 

[Figure 1 near here] [Table 1 near here] 

 

Biomarker associations 

There was a total of 28 routinely measured parameters examined within identified studies, 20 

with one to four records, 3 with five to nine records, and 5 with ten or more records. Red cell 

distribution width (RDW) was the biomarker most frequently described (Table 1). Definitions 

of biomarker varied in terms of timing and frequency of measurements used. Single measures 

within 72 hours of admission were most common (68%) followed by 26% of studies using 

repeated measurements, and 6% of studies not clearly reporting when measures were taken. As 

studies used different biomarker cut offs, we were unable to compare size of associations 

between studies. Data reporting differed in using continuous variables (41.9%), categorical 

variables (46.0%), and 12.1% utilized increases between selected time-points. 

 

[Table 2 near here] 

For studies reporting the most frequently examined 5 biomarkers, relevant data extractions are 

summarized in Table 2 (remaining biomarkers are presented in online E1). Amongst defined 
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primary outcome variables, 10.5% of studies reported length of stay either on ICU and/or in 

hospital, the remaining 89.5% reported mortality. The majority of studies reported either death 

in ICU or in-hospital or mortality at 28 or 30-days. Seventeen studies reported mortality to 90 

days and two studies also reported longer term mortality to 1 and 5-years respectively. Patient 

inclusion criteria varied widely including sub-groups of patients admitted with intra-abdominal 

sepsis, sub-arachnoid haemorrhage, cardiac surgery, pneumonia, and renal failure. We were 

able to report overall trends for the most commonly investigated biomarkers. The biomarkers 

showing most consistently reported effects were RDW, platelet count, neutrophil-to-

lymphocyte ratio (NLR), and albumin. A higher RDW, a lower platelet count, and a higher 

NLR was associated with both mortality and increased ICU length of stay (Figure 2). A lower 

level of albumin was associated with mortality. All other reported biomarkers showed opposing 

directions of effect between different studies. 

[Figure 2 near here] 

 

Study impact 

Using maximum number of citations, 23.4% of studies were cited by ten or fewer other studies, 

20.2% of studies were cited by more than 50 other studies (Table 1). Within only the 128 

studies assessed in this review, 26 studies were cited by another study included in this review 

providing evidence of knowledge accumulation (online E5). However, of the top 5 cited papers, 

none were cited by a prospective study or randomized controlled trial.  

 

Study methodology 

All studies used a retrospective methodology and the chosen diagnostic test accuracy varied 

per study and target biomarker. Of studies reporting methods of statistical analysis, the majority 

(n=110) used logistic or linear regression, Cox proportional hazards survival modelling, or 
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both. Of 110 studies which adjusted for confounders, covariates were selected based on 

bivariate screening (n=41), stepwise selection (n=21), author based decision based on 

plausibility (n=26), Akaike information criterion (AIC) model fitting (n=1), and univariate p 

value threshold (n=1), the rest used unclear selection criteria (n=20).  

 

The most common method reported for model selection and performance was the Area under 

the ROC Curve (AUC) (n=61, 49.2%) and ranged from 0.57 to 0.91. Risk thresholds were not 

clearly reported. When multiple variables were included in a model, four studies reported 

criteria-based methods to guide model selection (2 used the log-likelihood and 2 used AIC). 

None of the studies reported pre-specified statistical analysis plans. None of the studies used 

an external validation cohort to test the finalized model. Only one followed STROBE reporting 

guidelines. 

 

Exploratory analysis 

In an exploratory approach we constructed a directed acyclic graph (DAG) for RDW and CRP, 

two of the most consistently reported biomarkers (Figure 3). For RDW, the DAG suggested 

three adjustment sets to test the direct effect of reactive erythropoeisis in response to the effects 

of prolonged critical illness. These comprised nutritional intake, cell hypoxia, and 

inflammation, which might be approximated using surrogate markers, respectively 

Malnutrition Universal Screening Tool (MUST) score, lactate, and CRP. Similarly, for CRP, 

an adjustment set to test the direct effect of prolonged inflammation on prolonged ICU stay 

included severity of illness and catabolism which could be approximated using admission 

SOFA/APACHE II scoring and urea-to-creatine ratio. Full code and methods for DAG 

construction including references to mechanistic pathways are detailed in the online 

supplement. 
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[Figure 3 near here]  
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Discussion 

Summary of results 

We performed a systematic review on routinely collected biomarkers and associations with 

prolonged length of stay and mortality following critical illness. Despite identifying a large 

number of independent studies constituting a significant amount of data, due to non-uniformity 

in variable definition, collection and reporting, interpretation was limited. Consequently, we 

were unable to increase the utility of these biomarkers by establishing consistent cut-offs in 

homogenous patient-groups. Strength of evidence for any reported biomarker remains low 

precluding the use of specific algorithms to guide clinical decision making, which remains 

based on heuristic interpretation of multiple data points by clinicians at the bedside. 

 

For the majority of reported biomarkers, the certainty of evidence for associations with 

outcomes was low or moderate, primarily due to imprecision in effect size and risk of bias. 

There was no evidence of pre-specification of statistical analyses, conversely there was 

evidence of selective reporting, two important standards suggesting low-quality evidence. 

There was limited use of longitudinal data despite the potential to greatly enrich predictions 

with appropriate analysis. Failure to consider longitudinal effects may account for reports of 

opposing directions of association for the same biomarker even within similar study 

populations.  

 

Some biologically plausible biomarkers have shown consistent effect in determining poor 

outcomes following critical illness. However, despite generating interest, citations and having 

coherent pathophysiological hypotheses, there has been little clinical uptake of decision models 

based on these parameters. All the studies we identified focused on determining statistical 

significance without evaluating underlying mechanisms or formally assessing utility of the 
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measured parameter in altering clinical practice. However, populations, cut-offs, outcomes 

measures, and adjustment for confounders varied considerably between studies. As a result, 

clear interpretation and meaningful application of these reported association remains lacking.  

 

Biological frameworks for prospective justification of variable selection 

In an exploratory analysis, we used a DAG methodology to explore RDW and CRP as 

examples of formalising variable selection for inclusion into a study model a priori, as an 

alternative more powerful technique to simple baseline characteristic adjustments in 

multivariable analysis. This method allows examination of proposed casual pathways. For 

example, a potential link between reactive erythropoiesis to low baseline levels and prolonged 

inflammation with prolonged duration of critical illness and increased mortality is pre-

specified. Visualisation of multiple variables which are likely to be inter-related allows 

investigators to pre-specify an adjustment set, reducing both inadequate correction for 

confounding and collider bias, both of which may mask real effects (Wunsch et al., 2006). This 

also gives an explicit statement of proposed mechanisms and avoids variable selection by bias-

prone methods (Lederer et al., 2019). Not all biomarkers follow the same trajectory and likely 

demonstrate different predictive value at different time points of disease. Improved 

understanding of underlying biological mechanisms will also strengthen the basis for setting 

biomarker thresholds and time of assessment thus improving the ability to detect true effects if 

present (Leisman et al., 2020). 

 

Strengths and limitations 

To our knowledge, this is the first systematic review evaluating routine blood tests as 

biomarkers within critical care populations. The strengths of this review include a 

comprehensive literature search, adherence to our pre-registered protocol, and focus on studies 
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which have specifically tested one or more biomarker(s) as their primary objective. However, 

we lacked sufficient data to explore subgroup effects, and significant study heterogeneity 

prevented formal meta-analysis and restricted further quantitative analysis of data. There may 

be some variation in which biomarkers are routinely measured between ICUs. Significant 

potential for publication bias exists, as evidenced by serial citation patterns and timescale of 

publications. Due to the breadth of our search terms, variations in the structure of study 

reporting, and exclusions of non-English articles, it is possible that some studies were missed.  

 

Recommendations 

In order to improve the quality and utility of future research, we propose three methodological 

recommendations for biomarker studies examining cohorts in critical illness. These are, to 

identify a prospective causal framework facilitating adequate selection of covariates and 

adjustment variables (Grimes and Schulz, 2002), use of a prospective analysis plan to reduce 

bias and multiple testing (Berger et al., 2012), and use of an external validation cohort to test 

accuracy and generalisability of proposed predictive models (Altman and Royston, 2000). 

Studies should also adhere to structured reporting guidelines such as STROBE or TRIPOD to 

improve comparability and transparency (von Elm et al., 2008, Collins et al., 2015). It should 

also be noted that many studies were carried out in similar populations, in particular a number 

used the freely accessible, single centre, MIMIC database. This highlights the need to increase 

diversity of study populations across different centres and countries to ensure generalizability. 

Where possible, patient level data sharing should be facilitated to increase power to assess 

association across multiple studies and allow validation of findings between studies. These 

principles are of key importance with increasing use of machine learning approaches, as 

findings will still require ongoing prospective evaluation to elucidate mechanistic 

understanding. 
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Conclusions 

Simple regression models with imprecise variable selection and adjustment have so far proved 

inadequate to derive consistent clinically applicable models from the complexity of routine 

blood test data. Previous research has had limited applicability, compounded by a lack of 

external validation. Machine learning approaches continue to face similar methodological 

challenges. Adoption of a direct causal framework may be needed a priori to better assess 

causal associations, increase biological understanding, and maximize learning from these 

studies. Improving current methodology in observational biomarker research in this field may 

help to identify candidates for use in predictive modelling and guide clinical decision making 

using routine data. 
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Figure legends 

 

Figure 1. PRISMA flowchart for the systematic review and meta-analysis. 

Figure 2. Summary of studies for biomarkers with 5 or more records. RDW: red cell 

distribution width, NLR: neutrophil-to-lymphocyte ratio, CRP: C-reactive protein, Na: sodium. 

Effect on outcomes defined as positive if increased and negative if decreased mortality or 

increased length of stay. See online supplement E7 for references and E8 for key to study 

names. 

Figure 3. Proposed directed acyclic graphs relating red cell distribution with (RDW) and C-

reactive protein (CRP) to mechanisms underlying prolonged critical illness. See online 

supplement E4 for full code and references to mechanistic pathways. 


