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Abstract

Emotions play an important role in our day-to-day life in various ways, including, but not

limited to, how we humans communicate and behave. Machines can interact with humans

more naturally and intelligently if they are able to recognise and understand humans’ emotions

and express their own emotions. To achieve this goal, in the past two decades, researchers

have been paying a lot of attention to the analysis of affective states, which has been studied

extensively across various fields, such as neuroscience, psychology, cognitive science, and

computer science. Most of the existing works focus on affect analysis in individual settings,

where there is one person in an image or in a video. However, in the real world, people

are very often with others, or interact in group settings. In this thesis, we will focus on

affect analysis in group settings. Affect analysis in group settings is different from that in

individual settings and provides more challenges due to dynamic interactions between the

group members, various occlusions among people in the scene, and the complex context,

e.g., who people are with, where people are staying and the mutual influences among people

in the group. Because of these challenges, there are still a number of open issues that need

further investigation in order to advance the state of the art, and explore the methodologies

for affect analysis in group settings. These open topics include but are not limited to (1) is

it possible to transfer the methods used for the affect recognition of a person in individual

settings to the affect recognition of each individual in group settings? (2) is it possible to

recognise the affect of one individual using the expressed behaviours of another member in
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the same group (i.e., cross-subject affect recognition)? (3) can non-verbal behaviours be used

for the recognition of contextual information in group settings?

In this thesis, we investigate the affect analysis in group settings and propose methods to

explore the aforementioned research questions step by step. Firstly, we propose a method for

individual affect recognition in both individual and group videos, which is also used for social

context prediction, i.e., whether a person is alone or within a group. Secondly, we introduce

a novel framework for cross-subject affect analysis in group videos. Specifically, we analyse

the correlation of the affect among group members and investigate the automatic recognition

of the affect of one subject using the behaviours expressed by another subject in the same

group or in a different group. Furthermore, we propose methods for contextual information

prediction in group settings, i.e., group membership recognition - to recognise which group

of the person belongs. Comprehensive experiments are conducted using two datasets that

one contains individual videos and one contains group videos. The experimental results show

that (1) the methods used for affect recognition of a person in individual settings can be

transferred to group settings; (2) the affect of one subject in a group can be better predicted

using the expressive behaviours of another subject within the same group than using that of

a subject from a different group; and (3) contextual information (i.e., whether a person is

staying alone or within a group, and group membership) can be predicted successfully using

non-verbal behaviours.
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Chapter 1

INTRODUCTION

1.1 Motivation of the thesis

“Human behaviour flows from three main sources: desire, emotion, and

knowledge.”

— Plato

Emotions play an important role for humans in how we think, behave and communicate.

The emotions we feel every day can compel us to take action, influence the decisions we

make about our lives, both large and small, as well as can help us communicate with others

more effectively. Interests into human emotions can be dated back to the Golden Age of

Pericles’ Athens, when the philosophical analysis of emotions was introduced by Plato and

developed further by Aristotle (Knuuttila, 2018).

After computers came to our daily life decades ago, in order to advance human-computer

and human-robot interaction, it is important to enable machines to understand and express

emotions. Even though with the development of artificial intelligence and more intelligent

machines are appearing in our daily life, only when these machines can understand feelings

of humans and express their emotions, can they communicate with humans effectively and
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blend into our day-to-day life. To address this challenge, affective computing, proposed by

Professor Rosalind Picard in her seminal paper (Picard, 1995) in 1995, has developed into an

interdisciplinary field spanning computer science, psychology, and cognitive science. It aims

to study and develop systems and devices that can recognise, interpret, process and simulate

human feelings and emotions.

Recognition and analysis of human affects have been attracting increasing interest in the

past two decades and have been applied in very diverse areas (Dautenhahn, 2007; Hernandez

et al., 2012; Kleinsmith and Bianchi-Berthouze, 2013). In addition to the human-computer

interaction (Barros et al., 2015) mentioned above, in assistant driving, vehicle driver’s

attention/engagement level can be detected through emotion analysis (Cai and Lin, 2011); in

the security field, suspicious behaviours can be detected and tracked by analysing human

emotions in surveillance videos (Arunnehru and Geetha, 2017); in healthcare, pain (Sikka

et al., 2013; Bartlett et al., 2014) and depression (Joshi et al., 2012; Jain et al., 2014) can

be detected for monitoring vulnerable people; in education, engagement can be monitored

to track the attention of the student especially for e-learning (Niu et al., 2018; Yang, Wang,

Peng and Qiao, 2018).

As highlighted above, affective computing is a very active research field that has received

a lot of attention and achieved substantial progress over the last two decades. However, in

order to advance the state of the art, and make affective computing research applicable to

everyday applications, there are still a number of open issues that need further investigation.

The majority of existing works focus on affect analysis in individual settings where there

is only a single person in the image or video. In contrast, in the real world people are

often being with others and interacting with each other in a group in their daily social life.

Social psychologists have found that human behaviours are largely dependent on social

context, i.e., the way humans behave alone is different from how humans behave in a group

setting where two or more than two people appear in the scene (Barsade and Gibson, 2012).
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However, little attention has been paid to affect analysis in group settings, either at the overall

group-level emotion displayed by the whole group collectively or at the individual-level

emotion displayed by each individual within a group.

Affect recognition in group settings has great potential to be used in various applications

in the real world. For instance, in education, to assist teachers in obtaining a better insight of

the students and how the learning taking place, the analysis of the emotions and engagement

of each student in the class and the whole class is needed. In marketing, when analysing the

expressions of customers, there are usually multiple customers in a scene (McColl-Kennedy

et al., 2009). In human-robot interaction, to advance the collaboration and communication

between robots and humans, robots need to identify humans’ emotion in complex environ-

ments in which multiple people exist (Dautenhahn, 2007). In sports and entertainment events,

to profile the mood of the audience in concerts and Olympics, the overall group-level or

collective emotion displayed by the audience can be important for telecast audience ratings

of such events (Sintsovaa and Musata, 2013).

As mentioned before, most of the existing methods for automatic emotion recognition

focus on the analysis in individual settings, that is when a single person is in an image

or in a video. One could consider transferring the models developed in such literature to

solve the problems of automatic affect analysis in group settings directly 1. However, there

are many differences between the individual and group settings that make such attempts

challenging. Compared to individual settings, group settings are more complex due to the

group dynamics that are difficult to capture and can change (Lehmann-Willenbrock et al.,

2017). The challenges on affect analysis in group settings include but not limited to these

listed below.

1. Due to the differences between individual and group settings, individuals in group

settings may express behaviours differently from being in individual settings, so that it

1Note that the group setting in this thesis refers to the audience setting with four people sitting together
watching movies. A group refers to the group formed by the four people who are watching movies together.
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is interesting to investigate whether the method used for affect recognition in individual

settings can be transferred to group settings.

2. Context information in group settings is complex, but may have an effect on or even

be used for affect recognition. The affect of an individual in group settings may not

only be determined by what he/she is doing or where he/she is, but also what the other

people in the group are doing and feeling (Barsade, 2002).

3. Context information is important but difficult to recognise, e.g., who individuals are

being with, whether an individual is alone or in a group, what task people are engaged

in, and acquaintanceship of the group members.

Not all challenges can be studied in this thesis, but we focus on the following research

questions:

1. Is it possible to transfer the method used for the affect recognition of individuals in

individual settings to group settings?

This research question aims to investigate the aspects of Challenge 1.

2. Is it possible to recognise the affect of one individual using the expressed behaviours

of another member in the same group?

This research question aims to investigate the aspects of Challenge 2.

3. Can non-verbal behaviours be used for the context recognition (i.e., (1) whether an

individual is alone or in a group, and (2) group membership of an individual - which

group the individual is in)?

This research question aims to investigate the aspects of Challenge 3.

To address the aforementioned research questions, in this thesis we concentrate on

creating efficient approaches for affect analysis in group settings. The main contributions of

this thesis are listed as follows.
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1. Firstly, a framework is introduced to investigate whether the method used for affect

recognition of a person in individual settings can be transferred to group settings, by

utilising and systematically comparing different face and body features (Mou et al.,

2019a).

2. Secondly, a novel framework is proposed to investigate whether it is possible to

recognise the affect of one individual using the non-verbal behaviours of another group

member. We first analyse the correlation of the affect among group members and then

investigate the automatic recognition of the affect of one subject using the expressive

behaviours of another subject in the same group (Mou et al., 2019b).

3. Thirdly, methodologies are presented for contextual information prediction using non-

verbal behaviours, i.e., (1) whether a person is being alone or within a group and

(2) if an individual is within a group, which group the individual belongs to (group

membership recognition) (Mou et al., 2019a; 2018).

With the above investigations, the conclusions are summarised below.

1. The experiments show that the methods used for affect recognition of a person in

individual settings can be transferred to group settings. Both face and body behaviours

that are commonly used for affect recognition in individual settings are also shown

efficient in affect recognition in group settings.

This is corresponding to the contribution 1.

2. The experiments show that (1) the affect of people in the same group do correlate more

than that of people in different groups; and (2) the affect of one subject in a group can

be better predicted using the expressive behaviours of another subject within the same

group than using that of a subject from a different group. These results are different

from the findings of Hess, Banse and Kappas (Hess et al., 1995). Firstly, (Hess et al.,

1995) did not perform automatic affect recognition, but in this thesis we do recognise



6 INTRODUCTION

the affect automatically along arousal and valence dimensions. Secondly, in (Hess

et al., 1995), the intensity of emotions is compared between a person being alone

and being with another person; in this thesis the correlation of the affect is compared

between people in the same group and people in different groups.

This is corresponding to the contribution 2.

3. A set of experiments show that it is possible to predict the context information using

non-verbal behaviours, i.e., (1) whether an individual is alone or in a group and (2)

group membership of an individual who is in group settings.

This is corresponding to the contribution 3.

1.2 List of publications

The works presented and discussed in this thesis has resulted in the following peer reviewed

publications:

Journal articles

• W. Mou, H. Gunes and I. Patras, "Alone vs In-a-group: A Multi-modal Framework for Au-

tomatic Affect Recognition.", submitted to ACM Transactions on Multimedia Computing,

Communications, and Applications.

• W. Mou, C. Tzelepis, H. Gunes, V. Mezaris and I. Patras, "A Deep Generic to Specific

Recognition Model for Group Membership Analysis using Non-verbal Cues." Image and

Vision Computing, 2018.

Conference & workshop papers

• W. Mou, H. Gunes and I. Patras, "Your Fellows Matter: Affect Analysis across Subjects in

Group Videos." submitted to Proceedings of IEEE International Conference on Automatic

Face and Gesture Recognition (FG), 2019.
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• W. Mou, C. Tzelepis, H. Gunes, V. Mezaris and I. Patras, "Generic to Specific Recognition

Models for Membership Analysis in Group Videos." Proceedings of IEEE International

Conference on Automatic Face and Gesture Recognition (FG), 2017.

• W. Mou, H. Gunes and I. Patras, "Alone versus In-a-group: A Comparative Analysis

of Facial Affect Recognition." Proceedings of ACM Multimedia Conference (ACMMM),

2016.

• W. Mou, H. Gunes and I. Patras, "Automatic Recognition of Emotions and Membership in

Group Videos." Proceedings of International Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops, 2016.

1.3 Outline of the thesis

The thesis consists of seven chapters and an overview of each chapter of the thesis is shown

as follows:

• Chapter 1 introduces the motivation of the research, lists the main contributions, and

outlines the thesis.

• Chapter 2 presents the commonly used definitions and models in affective computing,

introduces the most widely used datasets in affective computing and presents the details of

the AMIGOS dataset that is used in this thesis.

• Chapter 3 introduces the rapid development of affective computing; describes the com-

monly methods in both individual and group settings; and reviews the existing works in

automatic analysis of group dynamics and other social dimensions in group settings, e.g.,

group cohesion and engagement.
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• Chapter 4 presents a framework for affect analysis in both individual and group videos. It

describes the extraction of face and body features; and reports the experimental results of

affect recognition along both arousal and valence dimensions.

• Chapter 5 presents a novel framework for affect analysis across subjects in group videos. It

analyses the correlation of the affect among group members and presents affect recognition

results of one subject using the behaviours expressed by another subject in the same group.

• Chapter 6 presents a novel framework for group membership recognition. That is to recog-

nise which group an individual belongs to using body behaviours. Extensive experimental

results are provided and discussed.

• Chapter 7 concludes the thesis; discussions together with recommendations for future

research and practical applications are also provided in this chapter.



Chapter 2

EMOTION THEORY & DATABASES

2.1 Definitions of emotion

As we aim to detect and recognize affect automatically, it is important to define how to

represent affect in affective computing. Note that in this thesis, we use the terms emotion,

affect and affective state interchangeably. We review the two approaches to define and model

emotions, i.e., categorical approach and dimensional approach 1 (Gunes and Schuller, 2013).

2.1.1 Categorical approach to represent affect

Categorical approaches are the most commonly used approaches for computational analysis

of affect. Categorical approaches enable representation of affective states and emotions using

a predefined set of categories (or classes) such as neutral, fear, happiness, sadness, surprise,

anger, and disgust. In the current literature the most widely used emotion classes are the

basic emotions defined by Ekman and his colleagues (Ekman and Friesen, 2003). These basic

emotions are modelled with six classes, namely, happiness, fear, surprise, sadness, anger and

disgust as shown in Figure 2.1. To date, basic emotion categories proposed by Ekman have
1Both the categorical and dimensional approach here refer to the methods used for decoding the emotions

from the expressive behaviours, such as facial behaviours, body gestures and vocal information (Mendolia,
2007; Scherer et al., 1991).
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(a) Happiness. (b) Sadness. (c) Anger.

(d) Fear. (e) Disgust. (f) Surprise.

Figure 2.1 An illustrative figure to show the six basic emotions, i.e., happiness, sadness,
anger, fear, disgust and surprise (Lucey et al., 2010).

been the most commonly adopted approach in research on automatic affect recognition (Tian

et al., 2001; Mollahosseini et al., 2017; Dhall et al., 2012). However, in our real life, there are

a number of non-basic, non-typical but more subtle and complex emotions, such as nervous,

confused and excited. It is even found that there are more such emotions in daily life than

so-called basic six emotions (Junek, 2007). Therefore, it is obvious that it is far from enough

to represent emotions in our day to day life with these six basic ones. Under this situation,

more recently researchers considered some alternative ways to model non-basic emotions.

One approach is to add a limited number of emotion classes, such as relief and contempt, in

addition to the six basic emotions (Bänziger et al., 2012).

2.1.2 Dimensional approach to represent affect

Dimensional approach refers to affect representation in a multi-dimensional space rather than

using discrete labels like in the categorical approach. By employing a dimensional space, the

dimensional approach can represent a wider range of emotions and continuously model the
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affect dimensions. Compared to the categorical approach, the dimensional approach is easier

to describe more subtle and complex emotions that are difficult to describe by using a limited

number of discrete emotions because of that emotions can be expressed in one or two or more

continuous scales. For this practical reason, there are an increasing number of researchers

paying attention to defining emotions based on dimensional approaches. Russell (Russell,

1980) defined the circumplex model to represent emotions into a 2D continuous space, i.e.,

<valence, arousal>. As shown in Figure 2.2, the dimensional approach is used to represent

emotions in a 2D space, i.e., <valence, arousal>, and the discrete emotions are labelled in

the 2D space. Here, valence is used to express how positive or negative people’s emotions

are. In this manner, for instance, “happiness” is one type of emotions in the “positive valence”

region and “anger” is one type of emotions in the “negative valence” region, as shown in

Figure 2.2. Arousal is used to express how active people are, being various from very calm

to very excited. As can be observed in Figure 2.2, sleepiness is placed in the low arousal

space whereas surprise and alarm appear on the other end of the arousal space.

One dimension and 3D space are also commonly used to represent affect. For example,

only the dimension of valence is used to describe the emotion from negative to positive in

(Sneddon et al., 2011). 3D space, <arousal, valence, dominance>, is often used (Poria et al.,

2017). Here dominance is used to express how people’s emotions are under control and it can

be different from being overwhelmed to totally in control. The three dimensions can also be

<evaluation, activation, power> and <pleasure, arousal, dominance> in the literature (Poria

et al., 2017). In addition to categorical and dimensional approaches, Facial Action Coding

System (FACS) model (Friesen and Ekman, 1978) is also widely used. FACS is a system

describing all visually discernible facial movement and breaks down facial expressions into

individual components of muscle movement, i.e., Action Units (AUs) (Friesen and Ekman,

1978). Based on FACS, a facial expression can be decomposed into one or more AUs. As
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Active

Pleasant

Inactive

Unpleasant

Active

Figure 2.2 An illustration of 2D space to represent emotions, i.e., <valence, arousal>
(Russell, 1980). The discrete emotions are also labelled in the space (Correa, 2018).

FACS or AUs are not the focus of this thesis, we will not discuss in details, but there are

many works on facial AUs (Lucey et al., 2010; Valstar and Pantic, 2006).

2.2 Definitions of a group

A group. A collection of people is called a group (Forsyth, 2018). There is no doubt that a

group always consists more than one person, however, there have been debates about whether

dyads that consist two people should be called as a group (Moreland, 2010; Williams, 2010).

It is argued that dyads have properties that are different from typical group process and some
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certain social phenomena cannot be studied in dyads, such as forming coalitions and any

phenomena that require the study of subgroups (Moreland, 2010; Lehmann-Willenbrock

et al., 2017). In addition, it is claimed that studying dyads is easier than studying larger

groups that consist three or more people, but the results obtained from studying dyads cannot

directly be used for groups containing three or more people (Lehmann-Willenbrock et al.,

2017). In contrast, it is argued by some other researchers that the smallest group consists of

two people (Williams, 2010; Chung et al., 2018). Williams (Williams, 2010) believes that

‘the list of instances in which dyads are groups far exceeds the occasions when they are not’.

One important argument is that the two fundamental aspects of group behaviours, i.e., social

facilitation 2 and social loafing3, can occur and can be studied in dyads. For more details, the

readers are referred to (Moreland, 2010; Williams, 2010; Forsyth, 2018).

Small group. The size of a group varies a lot, from a few people to huge crowds, mobs,

and assemblies (Forsyth, 2018). The size of a group has an effect on the other features

or dynamics of a group. For example, people in a smaller group are linked with a strong

emotional bond, while people in a larger group are rarely directly connected to all other

members (Forsyth, 2018). There are many works focusing on the study of small groups

(Sapru and Bourlard, 2015; Aran et al., 2010; Kelly and Barsade, 2001; Sanchez-Cortes et al.,

2012; Hung and Gatica-Perez, 2010; Avci and Aran, 2014; Pai et al., 2015; Gatica-Perez,

2009). The number of people to form a small group varies in the literature. For example,

a small group is defined as the group that consists of three to six people in (Gatica-Perez,

2009), while it is mentioned a small group usually consists of two to five people in (Pai et al.,

2015). In this thesis, we focus on the study of small groups of four people.

Connections of group members. In a group, individuals are connected by and within

social relationships (Forsyth, 2018). Every individual of the group does not need to be

2Social facilitation refers to that we behave differently in groups than we do when alone, and it tells us how
we behave differently (Williams, 2010).

3Social loafing is defined as a reduction of individual effort when combining one’s input with others
(Williams, 2010).
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always directly linked to every other individual in the group (Forsyth, 2018). There are

different relations that link the individuals to be a group. For example, in families, the

relationships are based on kinship, while in a football team, they are based on the task-related

inter-dependencies4. Group members usually need to interact with each other to accomplish

one or more goals. These interactions can be task-related or relational (Lehmann-Willenbrock

et al., 2017; Forsyth, 2018). For task-related interaction, in most of the cases, group members

coordinate their skills, resources and motivations to make a decision, produce a result, or

make a product etc. The other interaction is the relational interaction, where creating and

sustaining relationships is an outcome of groups (Lehmann-Willenbrock et al., 2017), such

as providing support and suggestions to group members that need help (Forsyth, 2018). Both

task and relational outcomes are accomplished by group members working interdependently,

i.e., the group members depend on one another to get the outcomes of the group and the

actions, thoughts and feelings of one group member are influenced by others in the group

(Lehmann-Willenbrock et al., 2017; Forsyth, 2018).

Group dynamics. When anthropology, psychology, sociology, and the other social

sciences emerged as unique disciplines in the late 1800s, the dynamics of groups became

a topic of critical concern for all of them. Group dynamics refers to the behaviours and

psychological processes that occur in a group or between groups over time (Lehmann-

Willenbrock et al., 2017; Forsyth, 2018). For instance, groups tend to become more cohesive

over time (Forsyth, 2018); larger groups may break down into smaller groups (Forsyth, 2018);

the emotions of group members tend to converge with others (Barsade, 2002). Nowadays,

with the development of the computational methods, researchers in computer science have

been working on automatic analysis of group dynamics (especially for small groups) (Gatica-

Perez, 2009), such as group cohesion (Hung and Gatica-Perez, 2010) and dominance in small

groups (Aran et al., 2010; Hung and Gatica-Perez, 2010).

4The inter-dependence means that group members depend on one another; their outcomes, actions, thoughts,
feelings and experiences are partially determined by others in the group (Forsyth, 2018).
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2.3 Evaluation of affect analysis models

Affect recognition results obtained from different recognition systems are not always compa-

rable against each other due to the fact that the implementation details of different works are

quite different in terms of datasets (posed or non-posed data), the validation procedure, labels

(e.g., discrete basic emotions, discrete non-basic emotions and continuous emotions) and

evaluation metrics (e.g., mean squared error or Pearson Correlation Coefficient). However,

there are still a number of commonly used evaluation methods for affect analysis, and we

will review these methods in this section.

In order to train a generic model that can be used for an unseen subject, it is necessary to

avoid the subject-dependence problem. In this case, a widely adopted validation procedure

is leave-one-subject-out cross validation, which refers to using the data of one subject as

validation set and data of all the other subjects as training data. Lucey et al. (Lucey et al.,

2010) used leave-one-subject-out cross validation for both facial action unit and emotion

recognition. The leave-one-subject-out cross validation was also used in (Bartlett et al.,

2003) for the recognition of six basic emotions plus neutral. At a further step, cross-dataset

validation, which trains the recognition model on one dataset and tests the learned model

on another dataset, evaluates the generalisation ability of the recognition model (Sariyanidi

et al., 2015). In addition to subject-independent validation, some works also adopted cross

validation of affect analysis within each subject, i.e., subject-specific cross validation. In this

case, the commonly used method is to do leave-one-sample-out cross validation for each

subject (Abadi et al., 2015; Correa et al., 2018). To some extent, affect is subject specific,

therefore, subject-specific cross validation can generate a better model for the target subject

than using subject-independent cross validation method, i.e., leave-one-subject-out cross

validation. Thus, in the case that an affect recognition model for a certain subject is needed,

subject-specific cross validation can be used.
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There are different evaluation metrics for discrete emotions and continuous emotions.

For discrete emotion recognition, it is a classification problem and the evaluation methods

include accuracy of the recognition, F1-score (Koelstra et al., 2012), Receiver Operating

Characteristic (ROC) curve and the area under the curve (Lucey et al., 2010), and confusion

matrix (Kotsia and Pitas, 2007; Happy and Routray, 2015).

The accuracy of the recognition refers to the percentage of the correctly classified

instances defined as follows:

Accuracy =
T P+T N

T P+T N +FP+FN
(2.1)

where TP = True Positive, FP = False Positive, TN = True Negative and FN = False Negative.

The F1 score is commonly used for the statistical analysis of binary classification. It

measures the accuracy by considering both the precision ρ and the recall r, i.e., the harmonic

mean of the precision and recall as shown in Equation 2.2. The best value of the F1 score is 1

and the worst is 0. The F1-score itself does not take the true negatives into account, therefore,

the average of F1 score of the positive class and F1 score of negative class is usually used as

the final evaluation metric.

F1 = (
recall−1 + precision−1

2
)−1 = 2

precision∗ recall
precision+ recall

(2.2)

Confusion matrix is a specific table layout that allows visualisation of the performance of

an algorithm, where each row of the matrix represents the instances in a predicted class while

each column represents the instances in an actual class (or vice versa). A typical problem

encountered when evaluating the recognition results of affect recognition is the imbalanced

data, which occurs when more samples are in one/several certain class(es) than the other

class(es). The accuracy is not a reliable metric for evaluating the real performance of a

classifier when the dataset is unbalanced, while confusion matrix is a good option in such

cases.



2.3 Evaluation of affect analysis models 17

Continuous emotion recognition is formulated as a regression problem and therefore is

usually evaluated using Mean Absolute Error (MAE), Mean Squared Error (MSE) (Kollias

et al., 2017), Pearson Correlation Coefficient (PCC) (Ringeval et al., 2015), and Concordance

Correlation Coefficient (CCC) (Ringeval et al., 2015; Kollias et al., 2017; 2018).

MAE is a measure of differences between two continuous variables as shown in Equa-

tion 2.3, i.e., between estimated affective levels and the ground truth of the affective levels.

MAE =
1
n

n

∑
i=1
|Xi− X̂i| (2.3)

where X̂ is a vector of n predictions generated from a sample of n data points, and X is the

ground truth values of the n data points.

MSE is used to measure the average of the squares of the errors as shown in Equation 2.4,

which is the average squared difference between the estimated affective levels and the ground

truth of the affective levels.

MSE =
1
n

n

∑
i=1

(Xi− X̂i)
2 (2.4)

The PCC (ρ) is a correlation measure between two variables, which is illustrated in

Equation 2.5. It has a value between +1 and -1, where 1 is total positive linear correlation, 0

is no linear correlation, and -1 is total negative linear correlation.

ρ =
cov(x,y)

σxσy
(2.5)

where cov is the covariance, σx is the standard deviation of x and σy is the standard deviation

of y.

The CCC is also a correlation measurement between two variables, which combines the

PCC with the square difference between the means of two compared variables as illustrated

in Equation 2.6.
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ρc =
2ρσxσy

σ2
x +σ2

y +(µx−µy)2 (2.6)

where ρ is the PCC between the ground truth and prediction, σ2
x and σ2

y are the variances,

and µx and µy are the means of ground truth and prediction respectively.

2.4 Databases for affect analysis

2.4.1 Databases for affect analysis in individual settings

Most of the early databases for affect analysis in individual settings contain only posed

expressions, which are usually collected in the controlled lab environment by asking the

participants to pose different emotions. One of them is the Cohn-Kanade (CK) database

(Kanade et al., 2000), published in 2001, and some example images of the posed emotions

from this dataset are illustrated in Figure 2.3. Arguably, the CK database is one of the first

and widely used datasets in the field of affect recognition (Kanade et al., 2000; Tian et al.,

2001) and it contains 1,917 image sequences of only frontal faces and posed emotions with

182 subjects involved. The CK database was later extended to a database called CK+ (Lucey

et al., 2010) by adding more posed emotions, some spontaneous emotions and some new

subjects. One similar dataset to the CK database is the Japanese Female Facial Expression

(JAFFE, published in 1999) database (Lyons et al., 1999), however, the database contains

only 213 images of 7 facial expressions (6 basic facial expressions + 1 neutral) posed by

10 Japanese female models. In addition to CK and CK+ databases, another important early

database in affect analysis is the MMI Facial Expression Database (Pantic et al., 2005),

which includes more than 1,500 samples of both static images and image sequences of

faces displaying various facial expressions. It introduces some major improvements, such

as adding profile views and temporal labelling of onset, apex and offset of emotions. The
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(a) Disgust. (b) Happy. (c) Surprise. (d) Fear.

Figure 2.3 Examples of the posed emotions from the CK database (Kanade et al., 2000). The
corresponding emotions of the images are: (a) Disgust, (b) Happy, (c) Surprise, (d) Fear.

Multi-PIE (Gross et al., 2010) dataset further increases the data variability by including a

very large number of views at different angles and various illumination conditions.

The aforementioned databases mainly contain posed emotions, however, the emotions

humans display in the daily life can be very distinct from the posed emotions. Currently, it

is widely accepted that the recognition of posed expressions, even though is an interesting

research problem, is not very relevant for real world settings, where more subtle and complex

emotions are usually displayed. Therefore, it is necessary to collect data for affect analysis

in more naturalistic settings. To this end, a number of databases that include non-posed

emotions and more spontaneous emotions have been collected in the past few years such as

the FER-2013 (Goodfellow et al., 2013), Affectiva-MIT (McDuff et al., 2013) and AffectNet

(Mollahosseini et al., 2017) databases. Some example images from the AffectNet database

are shown in Figure 2.4. Compared to the posed emotions shown in Figure 2.3, the ones

shown in Figure 2.4 can be seen as more naturalistic.

In addition, most of the early databases contain only unimodal signals, such as Multi-PIE

(Gross et al., 2010), which has only visual images of faces. However, humans express

emotions via various channels, e.g., facial expressions, speech and body gestures. Later on,

some multi-modal datasets are available for the public, such as RECOLA (Ringeval et al.,

2013) and DEAP (Koelstra et al., 2012). In the following sections, we will review various

databases widely used in affect recognition from the posed to spontaneous ones and from
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(a) Neutral (b) Happy (c) Sad (d) Surprise

Figure 2.4 Examples of the spontaneous emotions from the AffectNet database (Mollahosseini
et al., 2017). The corresponding emotions of the images are: (a) Neutral, (b) Happy, (c) Sad,
(d) Surprise.

unimodal to multi-modal ones. Table 2.1 reviews the widely used databases for automatic

affect recognition.

AFEW and SFEW. The Acted Facial Expressions in the Wild (AFEW) and Static Facial

Expressions in the Wild (SFEW) were collected from 54 movies by Dhall and colleagues

(Dhall et al., 2012). The movie clips were selected based on the subtitles and then six basic

emotions plus neutral were labeled by human annotators. AFEW contains 1,426 video

sequences, while SFEW is a static subset of AFEW, i.e., SFEW consists of the selected

frames from AFEW. SFEW aims to cover different head poses, various illuminations and

occlusions while selecting frames from AFEW.

FER-2013. The Facial Expression Recognition 2013 (FER-2013) database was intro-

duced in the ICML 2013 Challenges (Goodfellow et al., 2013). The database was created

using the Google image search API that matched a set of 184 emotion-related keywords to

capture the six basic expressions as well as the neutral expression.

EmotioNet. The EmotioNet dataset (Fabian Benitez-Quiroz et al., 2016) consists of

one million images of facial expressions downloaded from the Internet by selecting all the

words derived from the word “feeling” in the lexical database for English Word-Net (Miller,
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Table 2.1 Databases used for affect analysis in individual settings

Database
Images/
videos

Posed/
Non-posed

Labels
Multi-modal
or not

CK+ (Lucey
et al., 2010)

Videos Posed
-Basic emotions +
contempt
-30 AUs

No

Multi-PIE
(Gross et al.,
2010)

Images Posed
Basic emotions +
neutral

No

MMI (Pantic
et al., 2005)

Images &
videos

Posed &
non-posed

Basic emotions +
neutral

No

SFEW (Dhall
et al., 2012)

Images Non-posed
Basic emotions +
neutral

No

AFEW (Dhall
et al., 2012)

Videos Non-posed
Basic emotions +
neutral

No

RECOLA
(Ringeval et al.,
2013)

Videos Non-posed
Valence-arousal
(continuous)

-Yes
-Video, audio,
ECG and EDA

DEAP (Koel-
stra et al.,
2012)

Videos Non-posed
Valence-arousal
(continuous)

-Yes
-Videos and EEG
signals

FER-2013
(Goodfellow
et al., 2013)

Images Non-posed
Basic emotions +
neutral

No

Aff-Wild
(images)
(Zafeiriou et al.,
2016)

Images Non-posed
Basic emotions
+ neutral

No

Aff-Wild
(videos)
(Zafeiriou et al.,
2016)

Videos Non-posed
Basic emotions
+ neutral

No

Emotionet
(Fabian
Benitez-
Quiroz et al.,
2016)

Images Non-posed

-12 AUs
-23 emotion cat-
egories annotated
based on AUs

No

AffectNet
(Mollahosseini
et al., 2017)

Images Non-posed

-8 emotion cate-
gories
-Valence-arousal
(continuous)

No

Note: In the table, basic emotions refer to the six basic emotions defined by Ekman (Ekman and
Friesen, 2003), i.e., “anger, disgust, fear, happiness, sadness, and surprise”.
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1995). A total of 100,000 images were manually annotated with Action Units (AUs) 5 by

experienced coders and the other images were automatically annotated with AUs and AU

intensities. In total 23 categorical emotions were labelled based on AUs according to (Du

et al., 2014), in which the emotion categories were defined based on AUs. EmotioNet is

a large database with a large number of subjects of great variations. However, it lacks the

dimensional model of affect, and the emotion categories are defined based on annotated AUs

and not manually validated.

The aforementioned databases contain only categorical emotions. In addition to these

datasets, a number of researchers collected databases with continuous dimensional annota-

tions, such as Belfast (Sneddon et al., 2012), Aff-Wild (Zafeiriou et al., 2016) and AffectNet

(Mollahosseini et al., 2017). Below we provide some details of the databases with continuous

annotations.

DEAP. The Database for Emotion Analysis using Physiological Signals (DEAP) (Koel-

stra et al., 2012) collected spontaneous reactions of 32 participants in response to one-minute

music videos. Both biological signals, i.e., electroencephalogram (EEG) and peripheral

physiological signals, and frontal face videos of participants were recorded. Both valence

and arousal annotations are provided in the DEAP dataset. Even though DEAP has a limited

number of subjects and the videos were captured in lab controlled settings, it is a great

database for affect analysis using different modalities.

Aff-Wild. Aff-Wild dataset (Zafeiriou et al., 2016) has two subsets for affect analysis,

i.e., one subset of image data and one subset of video data. Aff-Wild dataset of videos is by

far one of the largest databases for measuring continuous affect in the valence-arousal space

“in-the-wild” in which more than 500 videos were collected. These videos were downloaded

from YouTube and subjects in the videos displayed a number of spontaneous emotions while

watching a particular video, performing an activity or reacting to a practical joke. The videos

5AUs are the atomic facial muscle actions defined by the Facial Action Coding System (FACS) (Friesen and
Ekman, 1978). FACS is a system describing all visually discernible facial movement and breaks down facial
expressions into individual components of muscle movement, i.e., AUs (Friesen and Ekman, 1978).
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were annotated by three human annotators, utilising a joystick-based tool to rate along two

continuous dimensions, i.e., valence and arousal.

AffectNet. By far, AffectNet (Mollahosseini et al., 2017) is the largest database for

affect analysis in static images in the wild with both of the categorical and dimensional

annotations. The database was created by querying emotion related keywords online and

450,000 images were manually annotated for the presence of eight emotion categories, i.e.,

six basic emotions, neutral and contempt, and the intensity of valence and arousal. As the

aforementioned datasets in this subsection, there is only one person in each image in the

AffectNet.

2.4.2 Databases for affect analysis in group settings

In this section, we will review currently available datasets for affect analysis in group settings.

Compared to affect analysis in individual settings, affect analysis in group settings started

later and there are a smaller number of databases available. We provide the details of each

dataset in the following part of this section.

HAPPEI. The first database for group-level emotion analysis, named as HAPpy PEople

Images (HAPPEI), was collected by Dhall et al. (Dhall, Joshi, Radwan and Goecke, 2012).

This database contains 4,886 images that were collected from Flickr using key words, such as

“party + people” and “graduation + ceremony”. Each image was labelled with a group-level

happiness intensity, face level happiness intensity, occlusion intensity and pose by four human

annotators. The happiness intensity is categorised into six levels of happiness (0-5), i.e.,

neutral, small smile, large smile, small laugh, large laugh and thrilled. As the database name

implies, the database only contains images of people with happy facial expressions, which

are particularly useful for group happiness intensity analysis (Dhall, Goecke and Gedeon,

2015).
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Figure 2.5 Examples of images from GAF dataset (Dhall, Joshi, Sikka, Goecke and Sebe,
2015). The upper, middle and lower rows show images with the a group of people display a
positive, neutral and negative affect, respectively.

Group Affect Database. Dhall et al. also (Dhall, Joshi, Sikka, Goecke and Sebe, 2015)

collected another database called Group Affect Database (GAF) containing 504 images,

which extended the HAPPEI database from positive affect only (Dhall, Goecke and Gedeon,

2015) to other emotion categories, i.e., “positive, neutral and negative”, but only along

valence dimensions. Examples of images from the GAF database are shown in Figure 2.5. In

the EmotiW challenge 2017 (Dhall et al., 2017), the GAF database was extended to GAF 2.0

that contains 6,471 images, which was labelled in the same way as Group Affect Database.

In the EmotiW challenge 2018 (Dhall et al., 2018), GAF 2.0 was further extended to GAF

3.0 to contain 17,172 images and was labelled in the same way, i.e., “positive, neutral and

negative”.

MultiEmoVA. The aforementioned databases are either limited to happy emotions or

limited to valence dimensions, i.e., “positive, neutral and negative”. In contrast, Mou et al.

(Mou et al., 2015) collected a dataset for group-level emotion analysis along both arousal

and valence dimensions, which is named as MultiEmoVA. The MultiEmoVA database was

collected using the key words, “meeting”, “party”, “conference”, “group/people”, “graduate

ceremony”, “crowd”, “sports event” and “movies”, from Flickr and Google Image. In

total, 250 images with varying number of faces were selected after applying a face detector

developed in (Xiong and De la Torre, 2013). Each image was annotated by 15 annotators and

each annotator was asked to select one label from “low, medium, high” for arousal and one

from “negative, neutral, positive” for valence, that best described the group-level emotion

expressed by people in each image.
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2.4.3 AMIGOS database

The AMIGOS database is used in this thesis, which was collected for multi-modal research of

affect, personality traits and mood on individuals and groups (Correa et al., 2018). Different

from the aforementioned databases, (1) it contains data in both individual and group settings

and (2) it consists of dynamic videos, which have more information of group dynamics

to explore than static images. In this thesis, the individual database (IndividualDB) and

group database (GroupDB) belonging to AMIGOS dataset are used. In IndividualDB, the

participant watches movies alone, while in GroupDB, participants watch movies in groups.

Data collection of AMIGOS. Before data collection, ethical approval was first obtained

from the University, Queen Mary University of London. Then the advertisement of the exper-

iment was sent to all of the residents in the university using the email list. Participants were

recorded using a JVC GY-HM150E camera while watching emotional videos. Additionally,

both RGB and depth body videos were recorded using a Microsoft’s Kinect V15 placed

at the top of the screen. In addition, the participants’ physiological signals were recorded

using wearable sensors. Electroencephalogram (EEG) signal was recorded using Emotiv

EPOC Neuroheadset 6, Electrocardiogram (ECG) singal was recorded using the Shimmer

2R platform 7 and Galvanic Skin Response (GSR) was recorded using the Shimmer 2R

platform. In this thesis, as we focus on vision-based affect analysis, only videos are used in

the research. Further details about the database are provided in (Correa et al., 2018). In the

individual setting, 17 participants performed the experiment alone. In the group setting, 16

participants performed the experiment in 4 groups with 4 people in each group. During the

recording sessions, the participant(s) was(were) led to the recording room. Experimenters

first explained the protocol and then the participants read and signed the information sheet

and the consent forms. Experimenters avoided to mention whether the participants could talk

6http://www.emotiv.com/
7http://www.shimmersensing.com/
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Table 2.2 The stimuli of long movies / videos are presented with their sources, movie types,
durations, and IDs. In the remaining part of the thesis, the video IDs are used to refer to
movies / videos.

Movie / Video Movie type
Duration/
min

ID

The Descent. Dir. Neil Marshall. Lionsgate,
2005.

Horror 23:30 N1

Back to School Mr. Bean. Dir. John Birkin.
Tiger Aspect Productions, 1994.

Comedy 18:38 P1

The Dark Knight. Dir. Christopher Nolan.
Warner Bross, 2008.

Action 23:25 B1

Up. Dirs. Pete Docter and Bob Peterson. Walt
Disney Pictures and Pixar Animation Studios,
2009.

Adventure 14:01 U1

during the experiment, for the interactions to be spontaneous. Once the sensors had been

tested, the experimenters left the room and the recording session started.

During the recordings, the participants were asked to watch stimuli of different affective

nature. In both databases, four long movie segments (14-24 mins) were used as movie stimuli,

details of which are listed in Table 2.2 and snapshots from the four movies are shown in

Figure 2.6. In IndividualDB, seventeen participants who were different from the sixteen

participants in GroupDB, watched these four movies individually. Videos were recorded at

1280×720 resolution, 25fps.

Annotation of AMIGOS. The annotation was conducted by human labelers, three

researchers whose research is focusing on affect analysis. Independent observer annotations

were obtained by using one in-house affect annotation interface that requires the labelers to

scroll a bar between a range of continuous values from -0.5 to 0.5. The labelers were asked

to give one label for valence and one label for arousal for every 20 seconds starting from

the beginning of each recording (e.g., the interval for 00:00∼00:20 min, and 00:21∼00:40

min.). The labeler annotated arousal and valence separately to avoid the confusion between

these two dimensions; the 20-second recordings were played in a random order to each

labeler; each labeler was asked to observe the visual behaviours without hearing any audio
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(a) The snapshot from movie N1. (b) The snapshot from movie P1.

(c) The snapshot from movie B1. (d) The snapshot from movie U1.

Figure 2.6 Snapshots from the four movies used as stimuli in the AMIGOS dataset (Correa
et al., 2018).
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and rate a single annotation for each 20-second recording along either arousal or valence

dimension. Each of the labelers annotated all of the video segments, which means that each

video segment obtained three annotations from all of the three labelers.

The 2D graph of the annotated arousal-valence are shown in Figure 2.7 and 2.8 for both

GroupDB and IndividualDB, where the blue ones represent GroupDB, while the red ones

represent the IndividualDB. Figure 2.7 is for all of the clips from GroupDB and IndividualDB,

while Figure 2.8 shows all groups for all videos (i.e., movies) separately. From Figure 2.7

and Figure 2.8, we can see that the distribution of emotions people express are different

in IndividualDB and GroupDB. This is consistent with the findings of Hess, Banse and

Kappas (Hess et al., 1995), i.e., watching multimedia content alone or together with others

influences the intensity of people’s emotions. In addition, we can also see that the variances

of emotions expressed by people in group settings are larger than that of individual settings

along both arousal (0.1152 for group settings and 0.0973 for individual settings in terms of

standard deviation across all videos) and valence (0.0917 for group settings and 0.0781 for

individual settings in terms of standard deviation across all videos) dimensions. The standard

deviations of the annotated arousal and valence levels of different videos for individual and

group settings are provided in Table 2.3. From Table 2.3, we can see that under all videos,

the standard deviations of emotions expressed by people in group settings are larger than that

of individual settings along both arousal and valence dimensions. From Figure 2.7, we can

also see that both the high and low areas of the arousal and valence dimensions are covered.

Figure 2.9 and 2.10 illustrate the emotions of different groups along time. From Figure 2.9

and 2.10, we can see that the emotions expressed by people in different groups have some

differences.

In order to assess the inter-labeler agreement, Cronbach’s α (Cronbach, 1951), that has

been widely used in the literature for agreement assessment on continuous scale (Ringeval

et al., 2013; Celiktutan and Gunes, 2014; Ringeval et al., 2015; Celiktutan and Gunes,
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Table 2.3 Standard deviations of emotions in individual and group settings along arousal and
valence for different videos.

Dimensions Arousal Valence
N1 P1 B1 U1 N1 P1 B1 U1

GroupDB 0.112 0.124 0.064 0.096 0.082 0.106 0.033 0.077
IndividualDB 0.077 0.120 0.042 0.066 0.046 0.098 0.026 0.048

Table 2.4 The results of the measurement of inter-labeler agreement in terms of Cronbach’s α

on the annotations are reported in terms of arousal and valence dimensions among 3 labelers.

Dimension Arousal Valence
Methods Cronbach’s α Cronbach’s α

GroupDB 0.80 0.89
IndividualDB 0.75 0.88

2017), were computed. Mean Cronbach’s α over all participants for both GroupDB and

IndividualDB are listed in Table 2.4. In the literature, the value of Cronbach’s α > 0.7 is

considered as an acceptable agreement level and α > 0.8 as a good agreement level (Ringeval

et al., 2013; Celiktutan and Gunes, 2017).

To give an overview of the existing databases for affect analysis in group settings, the

datasets mentioned above and AMIGOS are listed in Table 2.5 with their data sources, data

types, number of images/frames, labels, number of external annotators and data collection

settings.
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Figure 2.7 The affect annotation results for both GroupDB and IndividualDB along arousal
and valence dimensions.
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Figure 2.8 The affect annotation results for both GroupDB and IndividualDB along arousal
and valence dimensions for all participants while watching different videos.
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Figure 2.9 The annotated arousal levels for the four groups, one sub-figure for each group.
The annotated arousal levels of four subjects in each group are plotted. The subject IDs, S1
to S16, are the same as those shown in Figure 2.11.



2.4 Databases for affect analysis 33

0 50 100 150 200 250

time

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

V
a
le

n
c
e

Group 1

S1

S2

S3

S4

0 50 100 150 200 250

time

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

V
a
le

n
c
e

Group 2

S5

S6

S7

S8

0 50 100 150 200 250

time

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

V
a
le

n
c
e

Group 3

S9

S10

S11

S12

0 20 40 60 80 100 120 140 160 180 200

time

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

V
a
le

n
c
e

Group 4

S13

S14

S15

S16

Figure 2.10 The annotated valence levels for the four groups, one sub-figure for each group.
The annotated valence levels of four subjects in each group are plotted. The subject IDs, S1
to S16, are the same as those shown in Figure 2.11.
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Table 2.5 An overview of databases on affect analysis in group settings

Database

HAPPEI
(Dhall, Goecke
and Gedeon,
2015)

GAF
(Dhall,
Joshi,
Sikka,
Goecke
and Sebe,
2015)

GAF 2.0
(Dhall
et al.,
2017)

GAF 3.0
(Dhall
et al.,
2018)

MultiEmoVA
(Mou et al.,
2015)

AMIGOS (Cor-
rea et al., 2018)

Data
Source

Web Web Web Web Web Recordings

Data Type Static Static Static Static Static Dynamic

Num of
images/
frames

4,886 (note
that 3,134
images were
used in the
EmotiW 2016
challenges
(Dhall et al.,
2016))

504 6,471 17,172 250

More than
6,000,000
frames (12,580
short clips after
segmentation)

Labels

6 stages of
happiness
(neutral, small
smile, large
smile, small
laugh, large
laugh and
thrilled)

3 cate-
gories for
valence
(negative,
neutral
and
positive)

3 cate-
gories for
valence
(negative,
neutral
and
positive)

3 cate-
gories for
valence
(negative,
neutral
and
positive)

3 categories
for valence
(negative,
neutral and
positive) and 3
categories for
arousal (low,
medium and
high)

Self-
assessment
of valence,
arousal, dom-
inance and
basic emotions.
External an-
notation of
continuous
valence and
arousal

Number of
external an-
notators

4 3 —— —— 15 3

Settings Group Group Group Group Group
Individual &
group
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          (a) Group 1 

          (c) Group 3

     (b) Group 2

      (d) Group 4

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 7 Subject 8Subject 6

Subject 9     Subject 10        Subject 11      Subject 12 Subject 13 Subject 14    Subject 15 Subject 16

Figure 2.11 Four illustrative frames from four groups of data and the ID of each subject.





Chapter 3

RELATED WORK

Automatic affect recognition has received a lot of attention in recent years with various

applications in very diverse areas such as human-computer interaction (Dautenhahn, 2007),

security (Hernandez et al., 2012), healthcare (Kaltwang et al., 2012) and education (Klein-

smith and Bianchi-Berthouze, 2013). Most of the existing works on affect analysis have been

carried out in individual settings where each individual stays alone (Poria et al., 2017; Gunes

and Pantic, 2010). However, in the real world, people often stay with others, interacting

in group settings. More recently an increasing number of works have started focusing on

affect analysis in group settings and there are challenge events organised in this field since

2016 (Dhall et al., 2016; 2017; 2018). The literature review below introduces various feature

representations in emotion recognition and works in affect analysis especially in group

settings.

3.1 Features for affect analysis

Humans perceive and express emotions through many different channels such as visual,

auditory and touching sensing. As this thesis focuses on affect analysis using visual signals,

in this section, only the vision-based features are reviewed.
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Vision-based information is the major one utilised for affect analysis (Zeng et al., 2009).

Within these visual modalities, face is one of the most important channels of non-verbal com-

munication and facial expressions have been one of the most prominent features in research

for almost every aspect of emotion analysis. In the affective computing community, most

of the research in vision-based emotion recognition has centred around facial expressions

(Sariyanidi et al., 2015; Cohn and De la Torre, 2014; Karg et al., 2013; Kleinsmith and

Bianchi-Berthouze, 2013). In addition, bodily expressions are also important for affect analy-

sis (Kleinsmith and Bianchi-Berthouze, 2013; Gunes and Piccardi, 2007; Gunes et al., 2015;

Huang et al., 2018). Even though we cannot find a unique relationship between a discrete

emotion and a body expression, in the survey paper (Kleinsmith and Bianchi-Berthouze,

2013) it has been concluded that body information can be used for recognition of both

continuous affective dimensions and discrete emotion categories. In this section, we will

review the commonly used facial and body feature representations for affect analysis.

On one hand, the predesigned features for affect recognition can be divided into geometric

and appearance features. Geometric features can represent the shape of the facial components,

e.g., eyes and mouth, and the location of facial salient points, e.g., corners of the eyes

and mouth (Pantic and Patras, 2006). For body, the geometric feature (i.e., body form)

is also important for analysing affect (Kleinsmith and Bianchi-Berthouze, 2013). The

postural configuration of arms and legs are geometric information of the body used for

affect analysis (Kleinsmith and Bianchi-Berthouze, 2007). Appearance features represent the

texture information (Sariyanidi et al., 2015). On the other hand, features can be split into

static and dynamic features. The static features describe a single frame or image, while the

dynamic features are able to encode the temporal information of videos or image sequences.
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Figure 3.1 An illustration of how the standard LBP descriptor is extracted.

3.1.1 Appearance features for affect analysis

Some representative appearance features include Local Binary Patterns (LBP) (Ahonen

et al., 2006), Local Phase Quantization (LPQ) (Ojansivu and Heikkilä, 2008), Histograms of

Oriented Gradient (HOG) (Dalal and Triggs, 2005), and Quantized Local Zernike Moment

(QLZM) (Sariyanidi et al., 2013). LBP was utilized by the winner of 2012 Audio-visual

Emotion Challenge (AVEC) (Savran et al., 2012) and Facial Expression Recognition and

Analysis (FERA) challenge (Yang and Bhanu, 2011); LPQ was used by prominent systems

in FERA (Yang and Bhanu, 2011) and AVEC (Cruz et al., 2011); HOG based features are

used to extract body features for affect recognition (Chen et al., 2013).

LBP operator (Ojala et al., 1996) is one of the best performing texture features and has

been widely utilized in different applications. The standard LBP operator assigns a label to

every pixel of an image by thresholding the 3×3-neighborhood of each pixel with the center

pixel value and considering the result as a binary number. Then, the histogram of the labels

can be used as a texture descriptor. Figure 3.1 illustrated how the standard LBP descriptor is

extracted. The main advantages of LBP descriptor are its computational efficiency and its

robustness to illumination changes, but it is not invariant to rotations. Since LBP descriptor

is proposed, many variants of the LBP descriptor have been developed, such as uniform LBP

(Ojala et al., 2002; Huang et al., 2011).

LPQ descriptor (Ojansivu and Heikkilä, 2008) utilizes local phase information by

operating the Fourier phase locally over a M-by-M window at each image pixel. LPQ is a
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spatial blurring method and robust to image blurring. In digital image processing, it is well

known that a convolution between the image and a point spread function (PSF) can be used

to describe the spatial blurring. When it comes to the Fourier (i.e., frequency) domain, it

results in:

G(u) = F(u) ·H(u) (3.1)

where G(u) is the Fourier transforms of the blurred image, F(u) is the Fourier transforms of

the original image and H(u) is the Fourier transforms of the PSF. The phase information is a

sum:

∠G(u) = ∠F(u)+∠|H(u)| (3.2)

where ∠G(u), ∠F(u) and ∠H(u) denotes the phase angle of G(u), F(u) and H(u) respec-

tively. If we assume PSF, h(x) is centrally symmetric, i.e., h(x) = h(−x), the Fourier

transform H(u) is real valued and as a result ∠H(u) can be represented using a two-valued

function:

∠H(u) =


0 if H(u)⩾ 0

π if H(u)< 0

This means that for all H(u)>= 0, ∠G(u) = ∠F(u).

A short-term Fourier transform (STFT) is computed over a local M ×M neighbourhood

Nx at each pixel position x of the image f (x):

F(u,x) = ∑
y∈Nx

f (x− y)e− j2πuT y (3.3)

In LPQ, only 4 complex coefficients are used, u1 = [a,0]T , u2 = [0,a]T , u3 = [a,a]T , u4 =

[a,−a]T , where a is a scalar to satisfy H(ui)>= 0. For each pixel x, we have:

F(x) = [Re{F(u1,x)}, Im{F(u1,x)}, ...Re{F(u4,x)}, Im{F(u4,x)}] (3.4)
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The phase information in the Fourier coefficients is recorded by observing the signs of the

real and imaginary parts of each component in F(x) using a simple scalar quantizer:

q j =


1 if f j ⩾ 0

0 if otherwise

where f j is the jth component of F(x). In this way, the eight binary coefficients q j can be

converted to an integer value between 0-255 using binary coding:

fLPQ =
8

∑
j=1

q j2 j−1 (3.5)

HOG descriptor represents images using the directions of the edges that the images

contain. To extract HOG features, first, the image of face or body is divided into a number of

blocks containing cells, where gradient magnitude and angle are extracted for each pixel. The

local histogram of each cell is calculated using the gradient magnitude and angle/direction.

A bin is selected based on the gradient angle/direction, and the vote (i.e., the value that goes

into the bin) is selected based on the gradient magnitude. Then the local histograms from

the cells are combined across the blocks to form the histogram representation of the image.

It is possible that the blocks have overlaps with each others. The details are illustrated in

Figure 3.2. In this manner, the dimensionality of the HOG descriptor for the image equals

to Nblocks×Ncells×Nbins, where Nblocks refers to the number of blocks of each image; Ncells

denotes the number of cells of each block; and Nbins denotes the number of bins of the

histogram of one cell.

In addition, Quantised Local Zernike Moments (QLZM) is another low-level appearance

feature in a histogram representation. It describes a neighbourhood by using its Local Zernike

Moments (Sariyanidi et al., 2013). Each moment coefficient provides information of the

variation at a unique scale and orientation, and there are no overlaps for the information



42 RELATED WORK

Block

Cell

Gradient at each pixel Histogram of one cell

Hist of cell 1 Hist of cell 4...

Hist of block 1 Hist of block 2 ...

      Histogram of the image

Figure 3.2 An illustration of how HOG descriptor is extracted.

conveyed by different moment coefficients (Sariyanidi et al., 2015). The QLZM descriptor

is obtained by quantising all moment coefficients into an integer, and then converting to

histograms.

Zernike Moments. The Zernike moment(ZM) consists of a complete orthogonal system

in a unit circle, and is characterised by having size invariant to rotation. In addition, compared

to the other moment quantities, it is also reported as being robust with respect to noise.

Let I(x,y) be the input image of size X ×Y . Zernike Moments (ZMs) are computed by

decomposing I(x,y) onto ZM basis matrices, a set of complex matrices that are orthogonal

on the unit disk. Let the basis matrices be denoted with Vnm and defined through the radial

polynomials Rnm as (Sariyanidi et al., 2013):

Vnm(ρ,θ) = Rnm(ρ)eimθ (3.6)

where ρ and θ are the radial coordinates, n is the order of the polynomial that controls the

number of coefficients and m is the number of iterations, which can be set to any value so

that |m|< n and n−|m| is even. Rnm are the radial polynomials, defined as (Sariyanidi et al.,

2013):

Rnm =

n−|m|
2

∑
s=0

(−1)sρn−2s(n− s)!

s!(n+|m|
2 − s)!(n−|m|

2 − s)!
(3.7)
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where x and y are the image coordinates mapped to the range [−1,+1], ρxy =
√

x̄2 + ȳ2,

and θxy = tan−1 ȳ
x̄ . A ZM coefficient of I(x,y), ZI

nm, consists of a real and an imaginary

component and can be computed as follows:

ZI
nm =

n+1
π

X−1

∑
x=0

Y−1

∑
y=0

I(x,y)V ∗nm(ρxy,θxy)∆x̄∆ȳ (3.8)

Note that the basis matrices Vnm are generic and do not depend on the input image. Local ZMs

are computed from N local blocks, IN , rather than the entire image I(x,y). ZM coefficients

are scattered in a wide range when computed globally but can be concentrated in a short

range when computed locally.

Since a local descriptor represents the discontinuities and texture of an image effectively,

QLZM is proposed in (Sariyanidi et al., 2013) using non-linear encoding, which facilitates

the relevance of low-level features by increasing their robustness against image noise.

Non-linear encoding is carried out on complex-valued local ZMs using binary quantisa-

tion, which converts the real and imaginary parts of each ZM coefficient into binary values

using signum() functions. Specifically, let ZIN = [ZIN
p1q1, ...,Z

IK
pKq1

] be a vector of K complex

ZMs of IN , and the complex notation of each coefficient be ZIN
pq = ZIN ,ℜ

pq + iZIN ,ℑ
pq . We compute

QIN , the vector of quantised local ZM coefficients as follows:

QIN = [QIN ,ℜ
p1q1

,QIN ,ℑ
p1q1

, ...,QIN ,ℜ
pKqK

,QIN ,ℑ
pKqK

]1×2K′ (3.9)

where QIN ,ℜ
piqi = signum(ZIN ,ℜ

piqi ). However, the basis matrices Vnm must be zero-mean to ensure

that the output of sgn() applied to coefficients computed through equation 3.8 is not biased.

For any m ̸= 0, this can be easily shown by computing the integral of Vnm over ρ and θ . For

the continuous case (θ ∈Θ,ρ ∈ P;Θ = [π,π],P = [0,1]), it can be shown that:
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∫∫
Θ,P

Vnm(ρ,θ)dρdθ =
∫
Θ

eimθ

C(P)︷ ︸︸ ︷∫
P

Rnm(ρ)dρ dθ =C(P)
π∫
−π

eimθ dθ

=
C(P)

im
[eimθ ]π−π =

C(P)
im

[(cosθ + isinθ)m]π−π

(3.10)

On the other hand, for m = 0 it can be shown that
∫∫

Θ,P
Vnm(ρ,θ)dρdθ = 2πC(P), i.e., the

mean of basis matrices is not zero for C(P) ̸= 0. Therefore, we neglect the ZM coefficients

with m = 0 while extracting local ZMs. Following the general rule of ZMs (|m|< n and n|m|),

we select local ZM coefficients such as ZIN = [ZIN
11,Z

IN
22,Z

IN
31,Z

IN
33, ...]1×K and the QLZM vector

becomes QIN = [QIN ,ℜ
11 ,QIN ,ℑ

11 ,QIN ,ℜ
22 ,ZIN ,ℑ

22 , ...]1×2K . The number of moment coefficients, K,

can be considered as a function of n and is computed as shown in equation 3.11. The size of

each local histogram is 22K , and the length of the final vector for each image will depend on

how many local blocks the image is divided into, where K is from equation 3.11.

K(n) =


(n+1)2

4 if n is odd

n(n+2)
4 if n is even

(3.11)

In addition, a partitioning is also applied as shown in Figure 3.3. The final QLZM feature

is constructed by concatenating all local histograms, and the length of extracted correspond to

two parameters, i.e., the number of moment coefficient K (K is computed using the function

of moment order n as shown in equation 3.11.) and the size of the grid M, computed as:

22K× [M2 +(M+1)2] (3.12)

Compared to LBP and LPQ, QLZM can be tuned to obtain lower-dimensional histograms.

For example, LBP is in a dimension of 2478 (Shan and Gritti, 2008; Shan et al., 2009),

and LPQ is in a dimension of 2048 (Jiang et al., 2011), while QLZM in a dimension of

656 showed very good performance in terms of facial expression recognition (Sariyanidi
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Figure 3.3 Illustration of the extraction of QLZM based facial representation framework
(Sariyanidi et al., 2013).

et al., 2013). As QLZM achieved the state-of-the-art for affect recognition at the time of

publication (Sariyanidi et al., 2013) and has a relatively lower dimension, in this thesis, we

extend the static QLZM to volume representation to encode spatio-temporal information.

3.1.2 Geometric features for affect analysis

In addition to appearance features, geometric features that preserve the geometric information

of the face or body are also used for affect recognition.

Geometric features can describe faces and bodies through distances and shapes, which can

be distances between facial landmarks points (Kaya et al., 2015) or deformation parameters

of a mash model (Kotsia and Pitas, 2006) and distances between body joints (Piana et al.,

2013). How the geometric properties of the faces or bodies changing over time is also one

of the important dynamic cues. To encode the dynamic information of the face and body,

motion information are often estimated from color or intensity information, which can be

extracted through optical flow (Wöllmer et al., 2013), which is described in Subsection 3.1.3.

In (Afshar and Ali Salah, 2016; Kaya et al., 2015), after the facial landmark points are

detected, geometric features are extracted by calculating the distances and angles between

certain landmark points. For example, the distance between mouth points is used to show the

mouth opening and the angle between the points of eyebrow is used to show the eyebrow

slope.
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In (Jung et al., 2015), to use the geometry information for affect recognition, the facial

landmarks are first detected and then the normalized facial landmarks are taken as descriptors

and fed into a deep neural network. The facial landmarks for one face at frame t are shown

here:

X (t) = [x(t)1 ,y(t)1 ,x(t)2 ,y(t)2 , ...,x(t)n ,y(t)n ] (3.13)

where n denotes the number of facial landmarks at frame t, (x(t)i ,y(t)i ) denotes the coordinate

of the i-th facial landmarks at frame t. Then (x(t)i ,y(t)i ) is normalized by first subtracting the

nose position and then divided by the standard deviations of all facial landmarks in each

frame as follows:

x̄i
t =

(xt
i− xt

nose)

σ t
x

, ȳi
t =

(yt
i− yt

nose)

σ t
y

(3.14)

Therefore, the final descriptor that is fed into the network is:

X̄ (t) = [x̄(t)1 , ȳ(t)1 , x̄(t)2 , ȳ(t)2 , ..., x̄(t)n , ȳ(t)n ] (3.15)

Geometric features are effective for affect recognition and not sensitive to the illumination

changes, however, compared to appearance features, geometric features are not good at

capturing the subtle textures, such as wrinkles and frowns on the face. In this thesis, we

explore both geometric features and appearance features.

3.1.3 Temporal features for affect analysis

By now we have discussed various feature representations for affect recognition, both

facial features and body features. However, the aforementioned representations are all

features extracted from static images or standalone frames and do not contain any temporal

information. Most of these methods are not working well with dynamic videos due to the

lack of temporal information (Poria et al., 2017). In order to address this issue, researchers

have proposed various methods to encode temporal information into the extracted features.
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Figure 3.4 An illustration of one spatio-temporal feature, LBP-TOP (Zhao and Pietikainen,
2007). (a) Three orthogonal planes, i.e., XY, XT, and YT. (b) LBP histogram extracted from
each plane. (c) Concatenate feature histograms from the three orthogonal planes.

Three Orthogonal Planes (TOP) methods. One of the important approaches is to

extract low-level features from Three Orthogonal Planes (TOP) and then concatenate features

of these three planes to form one representation for a video sequence. This approach was first

proposed by Zhao et al. (Zhao and Pietikainen, 2007), which extended the static LBP feature

to LBP-TOP feature for extracting spatial-temporal information. Figure 3.4 illustrates how

LBP-TOP is extracted from three orthogonal planes, i.e., XY, XT and YT. LBP-TOP is used

for discrete emotion recognition and shows good performance (Zhao and Pietikainen, 2007;

Zhao and Pietikäinen, 2009). Following the success of LBP-TOP, the LPQ feature is also

extended in the same way to the LPQ-TOP feature that has been used for AU detection and

temporal segment recognition (Jiang et al., 2011; 2014; Afshar and Ali Salah, 2016).

Volume-based methods. The other way to encode spatio-temporal information is to

extend the static features to volume representations, such as HOG 3D (Klaser et al., 2008).

Given an interest region rs as shown in Figure 3.5 (a), a descriptor ds is used to represent

the region by a feature vector. The interest region rs is first divided into a set of M×M×N

cells, where one cell is denoted as ci as shown in Figure 3.5 (a). For each ci, it is divided

into S×S×S = S3 sub-blocks, b j. The histogram for each cell is obtained by summing the
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histograms of all sub-blocks:

hi =
S3

∑
j=1

q j (3.16)

q j is a n-bin histogram of gradient orientations for a sub-block, b j. If it is in 2D space, a n-bin

histogram of gradient orientation can be seen as approximation of a circle with a regular

n-sided polygon, where each side of the polygon corresponds to a histogram bin. In a similar

manner, when it comes to the 3D space, the polygon in 2D space becomes a polyhedron as

shown in Figure 3.5 (c). There are only five regular polyhedrons with congruent faces (these

kind of polyhedrons are called platonic solids), i.e., the tetrahedron (4-sided), cube (6- sided),

octahedron (8-sided), dodecahedron (12-sided), and icosahedron (20-sided). The authors of

HOG 3D considered dodecahedron, and icosahedron for 3D gradient quantization as shown in

Figure 3.5. The dimensionality of q j, i.e., the number of orientations (nOrientation), depends

on the option of the quantization. For example, if dodecahedron is used, nOrientation= 12,

while if icosahedron is used, nOrientation= 20. In this manner, the dimensionality of the

final descriptor, ds is M×M×N×nOrientation. HOG 3D is originally proposed for action

recognition (Klaser et al., 2008), but applied to emotion recognition later on and the recent

published papers on affect recognition still compare the results with that obtained using HOG

3D (Jung et al., 2015; Yang, Ciftci and Yin, 2018). HOG 3D is also used in our experiments

for affect recognition and compared with other features.

Motion-based methods. As emotions are displayed over time, motion based features

have been used to obtain temporal information from both the face and body. The optical

flow method (Horn and Schunck, 1981) is one of the most important techniques that have

been successfully applied to emotion recognition to extract dynamic movement in image

sequences (Sidavong et al., 2019; Gunes and Piccardi, 2005). Optical flow is defined as an

apparent motion of image brightness. If I(x,y, t) is the intensity of a pixel at location (x,y)

on frame I1 at time t and it is offset by the flow (u,v) at time t + 1 on frame I2. Then the
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M

N
M

(a) (b) (c)

Figure 3.5 An illustration of how the HOG 3D descriptors are extracted (Klaser et al., 2008).

brightness constancy is given by:

I(x,y, t) = I(x+u,y+ v, t +1) (3.17)

I(x,y, t) = I(x,y, t)+u
δ I
δx

+ v
δ I
δy

+
δ I
δ t

(3.18)

0 = u
δ I
δx

+ v
δ I
δy

+
δ I
δ t

(3.19)

Ix =
δ I
δx

, Iy =
δ I
δy

, It =
δ I
δ t

(3.20)

Ixu+ Iyv+ It = 0 (3.21)

The above equation can be rewritten as:

∆I ·−→V =−It (3.22)

Where ∆I is the spatial intensity gradient and
−→
V is optical flow of pixel (x,y) at time t.

The brightness constancy equation only defines the gradient of the moving pixels, but the
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boundaries of motion remain obscure, therefore, to estimate the actual flow, additional

constrains are needed, e.g, Lucas-Kanade method (Lucas et al., 1981).

Mase was one of the first to start using optical flow for recognising facial expressions,

where optical flow is used to determine the main direction of the movement of facial muscles.

In (Otsuka and Ohya, 1997), optical flow is first obtained and then the 2D Fourier Transform

coefficients of the optical flow are computed and used as the descriptors for facial expression

recognition. It is not only for faces, optical flow is also used to extract body motion

information for affect analysis (Gunes and Piccardi, 2008). Recently, dense trajectories are

proposed for action recognition and achieved the-state-of-the-art recognition results before

the use of deep learning based methods (Wang et al., 2013), where the trajectories are tracked

using an optical flow method. As dense trajectories based methods achieved the-state-of-

the-art performance for action recognition (Wang et al., 2013) due to the good capability of

encoding spatio-temporal information, it is explored to be used for affect recognition in this

thesis.

3.2 Affect analysis in group settings

Until now, we have discussed the different aspects of affect analysis, including datasets,

features, and evaluation metrics, that can be applied to both individual settings and group

settings. We also discussed some perspectives on the differences of these in both settings. In

this subsection, we will focus on further discussions and insights into affect analysis in group

settings, highlighting new challenges brought by the dynamic interactions between group

members, approaches carefully designed for the scenarios with multiple persons involved

and other related topics in group settings.



3.2 Affect analysis in group settings 51

3.2.1 An overview of affect analysis in group settings

In the early years of affect analysis, most of the works focused on individual settings.

However, social psychologists have shown that groups hold attributes that go beyond and

exist in addition to the individual attributes of group members, and therefore a group is more

than the sum of its parts (Bon, 1896; Sandelands and Clair, 1993). Preliminary works also

showed that the social context (watching videos alone or in a group) affects the Quality

of the Viewing Experience (QoVE) in terms of five aspects, i.e., enjoyment, endurability,

satisfaction, involvement in the viewing experience and perceived visual quality (Zhu et al.,

2014). In terms of emotions displayed in group settings, on one hand, individuals contribute

their own individual feelings to the group and thus shape the emotion of the whole group; and

on the other hand, the emotion of the group affect the individuals within a group and infuse

them with distinct feelings (Menges and Kilduff, 2015; Barsade and Gibson, 2012). People

reported both quantitatively and qualitatively different emotions in terms of joy, fear, anger

and so forth while they were in different settings, i.e., in an individual setting or in a group

setting (Mackie and Smith, 2017). Miranda-Correa et al. (Correa et al., 2018) have shown

that the affect expressed by individuals heavily depends on the social context, i.e., whether

an individual is alone or in a group. Consequently, emotions of each individual displayed in

a group setting may differ from that of an individual expressed in an individual setting due to

the influences of various factors in group settings. Therefore, we can investigate emotions in

group settings from two perspectives: (1) emotion analysis of the whole group, i.e., group-

level emotion analysis and (2) emotion analysis of each individual in group settings, i.e.,

individual-level emotion analysis.

Group-level affect refers to the affect displayed by the whole group of people collectively

in an image or in a video, which has attracted a number of researchers to investigate in recent

years. Group-level affect analysis in group settings can be conceptualised into two different

ways, using a bottom-up approach and a top-down approach (Barsäde and Gibson, 1998). The
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bottom-up approach uses the affect of each individual in the group to obtain the group-level

affect of the whole group (Dhall, Goecke and Gedeon, 2015). Hernandez et al. (Hernandez

et al., 2012) conducted an interesting experiment, wherein the facial expression of the people

passing through the corridor was analysed for the presence of smile. The number of smiles

was averaged at a given point to decide the group-level mood. The top-down approach

states that group-level emotions may arise from social identity or group membership, and are

socially shared within a group and influence the emotions of each individual group member.

Dhall et al. proposed a framework to infer the overall happiness mood intensities conveyed

by a group of people in static images in (Dhall, Goecke and Gedeon, 2015) by combining the

top-down and the bottom-up approaches. The winner papers (Li et al., 2016; Tan et al., 2017;

Guo et al., 2018) of group affect sub-challenge in EmotiW challenges series (Dhall et al.,

2016; 2018; 2017) also used both top-down and bottom-up approaches. In addition, Dhall

et.al introduced a framework to predict the collective valence level of a group (i.e., positive,

neutral and negative) in (Dhall, Joshi, Sikka, Goecke and Sebe, 2015) using both top-down

and bottom-up approaches.

Individual-level affect analysis in group settings has been paid less attention to, com-

pared to group-level affect analysis. To the best of our knowledge, the only work centers on

individual-level affect recognition along valence and arousal dimensions in group settings

is by Miranda-Correa et al. (Correa et al., 2018). They explored the individual-level affect

recognition in group settings using physiological signals, i.e., EEG, ECG and GSR, along

valence and arousal dimensions. A Gaussian Naïve Bayes classifier was used and in addition

to the single modality, the fusion of the three types of signals were also reported. However,

they only investigated how to recognise individual affect in group settings using physiological

signals without considering any visual information. To fill this research gap, in this thesis we

propose methodologies for individual-level affect analysis in group settings along valence

and arousal dimensions based on visual information, as detailed in Chapter 4 and Chapter 5.
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Table 3.1 provides an overview of the works on affect analysis in group settings, both

in group-level and in individual-level, in terms of the utilised features, modalities, and

methodologies etc.

3.2.2 Multi-modal affect analysis in group settings

Humans understand and express emotions through various channels, including faces, body

gestures, audio etc., therefore, in terms of automatic affect recognition, it is important

to investigate multi-modal frameworks. It has been demonstrated that the multi-modal

framework can outperform a uni-modal approach for affect analysis in both individual and

group settings (Poria et al., 2017; Dhall, Joshi, Sikka, Goecke and Sebe, 2015; Mou et al.,

2015; Kahou et al., 2016). Compared to individual settings, multi-modal framework is more

important in group settings due to the complex situations that involve multiple people and

various dynamics. For example, as there are multiple people in an image or in a video, it

is very common to have occlusions due to moving people. In this case, single modality,

e.g., face or body, may not be always visible, thereby, it is important to utilise both face and

body information. Studies have shown that the displayed affect heavily depends on context,

such as where the person is and what the person is doing at that time (Vlachostergiou et al.,

2014). Therefore, in addition to the face and body information, using context information

is becoming increasingly popular for automatic affect recognition (Morency, 2013). The

context information can be of great importance especially for group settings with multiple

people that inherently involve complex contextual situations. In group settings, the context

refers to not only each individual’s identity, location and task but also their interpersonal

dynamics, e.g., who the person is with and what others are doing at that time. The contextual

information based on the group structure was used to infer group-level affect in (Mou et al.,

2015) and individual gender and age in (Gallagher and Chen, 2009); and scene contextual
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Table 3.1 Representative works on affect analysis in group settings

Refs Data Task Channels
Hand-crafted /
Deep-based features

Features

(Dhall,
Goecke
and
Gedeon,
2015)

HAPPEI
Group-level hap-
piness intensity
recognition

-Face Hand-crafted PHOG

(Huang
et al.,
2015)

HAPPEI Same as above -Face Hand-crafted RVLBP

(Li et al.,
2016)

HAPPEI Same as above
-Face
-Scene

Deep-based &
Hand-crafted

-Face: ResNet-18
-Scene: CENTRIST

(Mou
et al.,
2015)

MultiEmoVA
Group-level affect
recognition

-Face
-Body
-Context

Hand-crafted

-Face: QLZM
-Body: HOG
-Context: relative loca-
tion and scale of each
face to the image

(Dhall,
Joshi,
Sikka,
Goecke
and
Sebe,
2015)

GAF

Group-level affect
recognition of
positive, neutral
and negative

- Face
- Scene

Hand-crafted

-Face: low-level LPQ
and PHOG; higher-level
action units
-Scene: CENTRIST de-
scriptor

(Tan
et al.,
2017)

GAF Same as above
-Face
-Scene

Deep-based
-Face: CNN based
-Scene: CNN based

(Guo
et al.,
2018)

GAF Same as above
-Face
-Scene
-Skeleton

Deep-based

-Face: VGG model
-Scene: Inception-V2 &
SE-ResNet-50
-Skeleton: SE-ResNet-
50

(Huang
et al.,
2018)

HAPPEI &
GAF

Group-level hap-
piness intensity
and affect

-Face
-Upper
body
-Scene

Hand-crafted
-Face: RVLBP
-Body: PHOG & LBP

(Ghosh
et al.,
2018)

HAPPEI &
GAF

Group-level hap-
piness intensity
and affect

-Face
-Scene

Deep-based

-Face: (1) Facial expres-
sion obtained from a
capsule network and (2)
Facial attributes trained
based on VGG-face
-Scene: scene features
extracted using a cap-
sule network from the
whole image

(Correa
et al.,
2018)

AMIGOS
Individual-level
affect analysis

-EEG
-ECG
-GSR

-
Various features ex-
tracted from EEG, ECG
and GSR signals
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features were utilised to predict group-level affect information in (Dhall, Goecke and Gedeon,

2015).

For group-level affect analysis, a multi-modal framework can be used to combine bottom-

up and top-down approaches. For example, Dhall et al. (Dhall, Joshi, Sikka, Goecke and

Sebe, 2015) used facial features, i.e., the facial action unit and low-level facial features, as the

bottom-up component, and they considered scene information as the top-down component.

Similar works that combine both face-centred information and image-based context/scene

information have also been conducted in (Li et al., 2016; Tan et al., 2017). In addition to face

and context information, Mou et al. (Mou et al., 2015) also used body features to predict the

valence and arousal of a group of people, but this method is limited to experiment on specific

groups based on the fixed number of faces and bodies. A similar work was conducted by

Huang et al. (Huang et al., 2018), where a multi-modal framework for group affect prediction

using face, upper body and scene information was introduced and an information aggregation

method was proposed for generating feature descriptions of face, upper body, and scene. At

a further step, the winner of EmotiW 2018 (Dhall et al., 2018) (Guo et al., 2018) introduced

a hybrid framework for the recognition of group-level emotion in an image, which include

more cues, i.e., faces, scenes, skeletons and salient regions, and features that are extracted

based on deep neural networks, and finally all of them are combined to classify the emotions.

Miranda-Correa et al. (Correa et al., 2018) integrated different neuro-physiological signals,

i.e., EEG, ECG and GSR, for personality and individual-level affect recognition in both

group and individual settings.

Even though a lot of works have conducted multi-modal affect analysis and show that

multi-modal frameworks outperform uni-modal frameworks, it still needs to be further

investigated to encode more complementary information among different modalities, while

removing redundant information. In addition, when it comes to group settings, we know that

emotion expressed by a person can impact other persons in the scene or in the interaction,
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therefore it is also important to find a way to model the inter personal emotion dependency

in a multi-modal system.

3.2.3 Analysis of other attributes in group settings

In addition to affect, a number of works focus on group analysis from some other perspectives,

such as emergent leader recognition (Sanchez-Cortes et al., 2012), dominant person detection

(Aran and Gatica-Perez, 2010), social role recognition (Zancanaro et al., 2006; Pianesi et al.,

2007; Sapru and Bourlard, 2015), group cohesion analysis (Hung and Gatica-Perez, 2010),

and group satisfaction (Lai and Murray, 2018), which are closely connected to the affect

analysis in group settings.

Gallagher and Chen (Gallagher and Chen, 2009) proposed a method to recognise the

age and gender of individuals in group images using a type of contextual features, the

structure and distribution of people in group images. In (Zhu et al., 2014), the authors

introduced a framework to analyse the the Quality of the Viewing Experience in terms of five

aspects, namely enjoyment, endurability, satisfaction, involvement in the viewing experience

and perceived visual quality in both individual and group settings. Sanchez-Cortes et al.

(Sanchez-Cortes et al., 2012) presented a computational framework to identify emergent

leaders in small groups using nonverbal behaviours, where a new Emergent LEAdership

(ELEA) dataset was collected and annotated. ELEA consists of 40 recorded videos with a

group of people (3 or 4) discuss a hypothetical survival, which has also been used for group

decision-making performance (Avci and Aran, 2016) and personality analysis (Aran and

Gatica-Perez, 2013). Avci et al. (Avci and Aran, 2014) studied the relationship of a group’s

performance with the interaction between group members and the individuals’ personality

traits using the audio and visual nonverbal behaviours. Hung et al. (Hung and Gatica-Perez,

2010) investigated group cohesion estimation by utilising audio, visual, and audio-visual

cues, such as activity of each person and motion information. Leite et al. (Leite et al., 2015)
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studied the individual engagement estimation in group settings in the context of human-robot

interaction. In addition, some previous works on group-level analysis focused on group

activity recognition (Lan, Sigal and Mori, 2012; Lan, Wang, Yang, Robinovitch and Mori,

2012). Most of the aforementioned works analyse what is happening within the group. Only

recently, works focusing on automatic analysis of the relationship between the members of

different groups have emerged. Correa et al. (Mioranda-Correa and Patras, 2018) predicted

the social context, i.e., whether a person is alone or in a group, using neuro-physiological

signals. In this thesis, we present a novel framework for social context prediction of (1)

whether a person is being alone or in a group and (2) group membership recognition, i.e.,

recognition of which group each individual belongs to, using non-verbal behaviours. In

Chapter 4 and Chapter 6 we will introduce the frameworks for the prediction of whether a

person is alone or in a group, and the recognition of group membership respectively.

3.3 Summary

In this chapter, we review the related works in affect analysis and stress the differences and

challenges for the affect analysis in group settings.

From static to dynamic. Emotion is a continuous process rather than a static status,

therefore, it is obvious that the affects of individuals can be better analysed by investigating

the cues demonstrated in dynamic videos but this also brings challenges due to the complex

dynamics of affective states in videos. To encode the spatio-temporal information in dynamic

videos, temporal models either using the hand-crafted features or deep learning based

approaches can be employed. For the hand-crafted features, the static features from single

image can be extended to represent a sequence of frames using Three Orthogonal Planes,

such as extending LBP to LBP-TOP, or dense trajectories can be used to extract the temporal

information. For deep learning based methods, 3D convolution operations can be used instead

of 2D ones to extract representations for a video. The temporal modelling method RNN is
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also popular for encoding temporal information and has shown good performance for affect

analysis.

From individual to group settings. Affect analysis has moved from individual settings,

i.e., one person in an image or in a video, to group settings, where there are multiple people

in a scene. Compared to the databases for affect analysis in individual settings, there are a

small number of databases for affect analysis in group settings. HAPPEI (Dhall, Goecke

and Gedeon, 2015), GAF (Dhall, Joshi, Sikka, Goecke and Sebe, 2015) and MultiEmoVA

(Mou et al., 2015) are all static images and labelled with only a small number of categorical

emotions. AMIGOS consists of dynamic videos and is labelled with continuous valence and

arousal dimensions, but limited to the scenario of watching multimedia content. To further

advance the investigation into affect analysis in group settings, it is important to collect and

annotate more diverse datasets in different scenarios.

From uni-modal to multi-modal analysis. Face has been the most prominent cue for

affect analysis, both in individual settings and group settings. The facial features can be

divided into appearance and geometric representations to represent the texture information,

e.g., wrinkles and bulges on the faces, and the shape of different parts of faces, e.g., eyes and

mouth, respectively. They are both important and complimentary to each other. As humans

express and understand emotions using multiple channels, including facial expressions, hand

and body gestures etc., it is also important to utilise features out of other cues in addition to

facial information, especially for group settings. In group settings, there are always multiple

people appearing in a scene or in an interaction, the face of one person may be occluded by

the other person or may be far from the camera due to the motion, when body information is

important for affect analysis. In addition, context is also important for affect analysis, whom

a person is staying with, where she/he is and what she/he is doing. Therefore, it is important

to explore how to do affect analysis efficiently in a multi-modal manner especially in group

settings.



Chapter 4

AFFECT RECOGNITION IN

INDIVIDUAL AND GROUP VIDEOS

4.1 Introduction

Over the last decades, various methodologies have been proposed to automate the analysis of

affect and emotions. The majority of the existing works focus on individual settings and so far

little attention has been paid to the analysis in group settings, either at the overall group-level

emotion displayed by the entire group or at the individual-level emotion displayed by each

individual within that group. However, in the real world, people are very often with others,

interacting in group settings, such as in a meeting and in a party. To this end, it is important

to study the affect expressed by people in group settings.

In this chapter, we focus on affect recognition in both individual and group settings,

which paves the way for the further analysis in the following chapters. In details, we aim

to investigate the following questions: (1) whether the method used for affect recognition

of individuals in individual settings can be transferred to group settings. That is whether it

is possible to recognise the affect expressed by each individual while presented with movie

stimuli in both individual and group settings using body and facial features; (2) making use
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of the affective behavioural cues exhibited in different settings, whether it is possible to

predict a person is in an individual setting or in a group setting.

To investigate the above mentioned questions, we introduce a framework for affect

recognition using different facial and body features for both individual and group settings. A

set of experiments is carried out on databases containing both individual and group videos.

From the experiments, we (1) find the method used for affect recognition of a person in

individual settings (facial or body behaviours with classifier or regressor) can be transferred

to the affect recognition of individuals in group settings for AMIGOS dataset; (2) confirm

body information can support affect recognition not only in individual settings but also in

group settings; (3) find that facial and body behaviours can be used to predict whether a

person is in an individual setting or in a group setting, i.e., being alone or in a group.

The remaining part of this chapter is structured as follows: the proposed methods for

affect and context recognition in individual and group videos are stated in Section 4.2;

the databases, both individual and group videos, are introduced in Subsection 2.4.3; the

experimental results and analysis are presented and discussed in Section 4.4; and finally in

Section 4.5 conclusion and future work are presented.

4.2 The proposed framework

We propose frameworks to recognise (1) the affect of individuals in different settings, i.e.,

individual and group videos and (2) the prediction of contextual information, i.e., whether a

person is in an individual setting or in a group setting by using non-verbal behavioural cues,

i.e., face and body cues.

We first adopt an SVM-based multi-modal method using dynamic features and conduct

experiments on both individual and group videos. The proposed framework is illustrated

in Figure 4.1. To represent faces, we use geometric and appearance representations. The

geometric feature we utilize is facial landmark trajectory, while appearance feature we use is
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(a) Input videos (b) Face and body feature extraction      (c) Recognition models (d) Recognition results
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Figure 4.1 Description of the proposed framework. (a) Input videos, individual videos from
IndividualDB and group videos from GroupDB, the details of the databases are provided
in Subsection 2.4.3; (b) Feature extraction - face and body features extracted; (c) Different
recognition models are trained, i.e., affect recognition models and contextual information
recognition models.

the extended volume Quantised Local Zernike Moments (QLZM) (Sariyanidi et al., 2013;

2015) extracted along facial landmark trajectories. In light of the body representations, we

first extract dense trajectories and then we extract Histogram of Oriented Gradients (HOG)

and Histograms of Optical Flow (HOF) descriptors along each trajectory (Wang et al., 2013).

Before feeding the features to different classifiers and regressors, we encode the different face

and body low-level descriptors into Fisher Vectors (FV). Multiple experiments are carried

out for affect analysis using unimodal and multi-modal cues.

In a further step, we use a temporal learning model, Long Short-Term Memory (LSTM)

Networks (Hochreiter and Schmidhuber, 1997) for affect recognition. LSTM is one of the
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state-of-the-art sequence modeling approaches and has been successfully applied to affect

analysis (Li et al., 2016; Chen et al., 2017).

Details of LSTM. Long Short Term Memory networks (LSTMs) (Hochreiter and Schmid-

huber, 1997) is a special type of Recurrent Neural Networks (RNNs). LSTMs has repeating

modules of neural network in the form of a chain as shown in Figure 4.2. Each of the module

is also called an LSTM unit, which is composed of a cell state, an input gate, a forget gate

and an output gate.

Here we will explain the cell and all of the gates using the example shown in Figure 4.2.

Firstly, LSTM can decide what information to forget/throw away from the cell state (ct−1)

using the "forget gate" achieved by a sigmoid layer. This sigmoid layer takes ht−1 and xt as

input and outputs ft as shown in Equation 4.1.

ft = σ(Wf ht−1 +Wf xt +b f ) (4.1)

Secondly, an "input gate" and a c̃t will decide what new information will be stored into the

cell state. This is achieved using a sigmoid layer and a tanh layer as shown in Equation 4.2

and Equation 4.3. The sigmoid layer takes ht−1 and xt as input and outputs it . The tanh layer

also takes ht−1 and xt as inputs and generates a vector of new candidate values, i.e., c̃t .

it = σ(Wiht−1 +Wixt +bi) (4.2)

c̃t = tanh(Wcht−1 +Wcxt +bc) (4.3)

The next step is to update the cell state as shown in Equation 4.4. it decides how much of c̃t

will be used and ft from Equation 4.1 decides how much to forget the earlier state.

ct = ft ∗ ct−1 + it ∗ c̃t (4.4)
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Figure 4.2 Illustration of the repeating modules in an LSTM containing sigmoid layers and
one tanh layer. The green rectangle represents neural network layer; the red circle represents
point-wise plus or multiplication; an arrow refers to the vector transfer; arrows getting
together denotes the concatenation of the vectors; and a line forking refers to the copy of the
content.

Finally, it is the output, which is based on the cell state, ct , and the output gate, ot . The

output gate is with a sigmoid layer and takes ht−1 and xt as inputs as shown in Equation 4.5.

Then, the cell state, ct , passes a tanh layer and multiply ot to get the output ht as shown in

Equation 4.6.

ot = σ(Woht−1 +Woxt +bo) (4.5)

ht = ot ∗ tanh(ct) (4.6)

In this manner, a cell state, an input gate, a forget gate and an output gate together decide the

output and keep the parts that are needed. Note that all of the W and b from Equation 4.1 to

Equation 4.6 denote weights and bias respectively.

The framework with LSTM used for affect recognition is illustrated in Figure 4.3. Frame-

level static features are first extracted from the input sequences. The static features extracted

from each frame are then fed into a one-layer LSTM. After fully connected layers, the affect

recognition results are obtained.
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Figure 4.3 Illustration of the approach for affect analysis using LSTM. (a) Input sequence.
(b) Frame-level features are extracted. (c) Features extracted from every frame are fed into
a one-layer LSTM with 128 hidden states. (d) Affect prediction results obtained for either
classification or regression.

4.3 Feature extraction for affect analysis

4.3.1 Face features

Before extracting facial features, we first utilise Intraface (Xiong and De la Torre, 2013) to

detect facial landmarks of each face in the video. After applying Intraface, each face obtains

49 facial points. However, not all faces are detected due to illumination, occlusion, and

pose variations in such a naturalistic scenario. In order to make the facial feature extraction

consistent among all frames, when the face detection fails in a current frame, the position of

the last detected face is used.

In terms of facial geometric features, let Xt = [ (x1
t , y1

t ), (x
2
t , y2

t ) ... (x
n
t , yn

t ) ] denote the

positions of n landmark points of the face at the current frame t. The number of landmark

points on each face n = 49. xk
t and yk

t refer to the coordinates of the k-th landmark point

at the current frame t. Then landmark points of the subsequent frames are concatenated

to generate the facial landmark trajectories. In this way, the representation of the facial

landmark trajectory encodes the motion patterns of the facial points as the body trajectories

used in (Wang et al., 2013). The k-th facial landmark point is described by a sequence

(∆Xk
t , ∆Xk

t+1 ... ∆Xk
t+L−1) of displacement vectors, where ∆Xk

t = (Xk
t+1−Xk

t ) = (xk
t+1−
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xk
t ,y

k
t+1− yk

t ) and L is the length of the facial landmark trajectories. The obtained vector is

then normalised by the sum of the displacement vector magnitudes:

Y k =
(∆Xk

t ,∆Xk
t+1...∆Xk

t+L−1)

t+L−1
∑
j=t
||∆Xk

j ||
. (4.7)

Y k is referred as Facial Landmarks in the remaining part of this chapter. The length of the

facial landmark trajectories is fixed as L = 15 frames based on (Wang et al., 2013). In this

way, a 30 (30 = 2×L, where L = 15) dimensional feature is generated around each landmark

point of the face. And for each face, the dimensionality of the descriptor is 49×30 as 49

landmark points are detected for each face.

After extracting the geometric features, Quantised Local Zernike Moments (QLZM)

(Sariyanidi et al., 2013) obtained from the local patch around each facial landmark point

are extracted as the facial appearance representation. QLZM is one of the state-of-art facial

features for affect recognition and were originally designed for static images (Sariyanidi

et al., 2013).

However, as we are focusing on video information processing, temporal information

is important. Therefore, it is extended to a volume representation to embed both spatial

and temporal information, as described in Figure 4.4. We refer to the facial appearance

feature, volume based Quantised Local Zernike Moments, as vQLZM in the remaining part

of the thesis. The size of the volume is N×N pixels, while the length is L = 15 frames,

the same volume size with the Facial Landmarks. The volume is then subdivided into a

nτ ×nσ ×nσ sub-volumes. To get the vQLZM features, firstly the static QLZM descriptor is

computed in each cell, which is in size of N/nσ as shown in Figure 4.4b. The dimension

of the descriptor is 4. Secondly, the descriptors in a sub-volume are averaged to be one

descriptor, which is still in a dimension of 4. Then the final descriptor is generated by

concatenating these descriptors of each sub-volume, therefore, the final descriptor of each
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volume is 4×nτ×nσ ×nσ . nτ = 3, nσ = 2 and L = 15 are used, which is the same as (Wang

et al., 2013). Thus the final dimension of the descriptor of each volume is 4×3×2×2 = 48.

4.3.2 Body features

Body feature extraction is a type of person-based representation, therefore, the first step

is to apply a person detector. Constrained by our experimental setups - a fixed number of

people in the video (either one in individual videos or four in group videos) and a static

camera, we use an ad-hoc scheme that is to use only the central part where the person is

in individual videos and equally divide the frame in four parts in group videos. In order to

avoid the overlap between the participants that are neighbouring each other, we leave a space

between every two neighbours. The space size is equal to the average size of the faces across

all videos, i.e., 64. Then, dense trajectories (Wang et al., 2013) are extracted. Trajectories

capture the local motion information of the video and dense representation guarantees a good

coverage of foreground motion as well as of the surrounding context. Subsequently, HOG

and HOF features are obtained along each extracted trajectory. They are computed in the

spatio-temporal volume aligned with the trajectories as shown in Figure 4.5. HOG and HOF

orientations are quantized into eight bins with full orientations. However, as an additional

zero bin is added for HOF for pixels with optical flow magnitudes lower than the threshold

(i.e., nine bins in total), the final representation size of HOG is 96 and that of HOF is 108

with the trajectory length L = 15 frames. We refer to these two body related representations

as body HOG and body HOF respectively in the rest of the thesis.

4.3.3 Fisher vector encoding

Fisher Vector (FV) representation (Sánchez et al., 2013) has been widely utilised in traditional

computer vision problems (e.g., action recognition (Wang et al., 2013; Wang and Schmid,

2013)) and affect analysis (e.g., depression analysis (Jain et al., 2014; Dhall and Goecke,
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(b) Volume QLZM extraction.

Figure 4.4 Details of the approach to extract the vQLZM facial appearance feature. Figure
(a) shows the detection of facial landmark points. Figure (b) illustrates the tracking of facial
landmark point over L frames. QLZM is extracted over a local neighbourhood of N×N
pixels along each landmark point. To encode the structure information, the local volume
is subdivided into nτ ×nσ ×nσ sub-volumes. nτ = 3, nσ = 2 and L = 15 as used in (Wang
et al., 2013).
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t+L-1 

(a) Dense trajectories (b) Body feature extraction 

Figure 4.5 Description of the method of body HOG/HOF feature extraction. (a) shows
the detected dense trajectories. (b) illustrates the HOG/HOF feature extraction along the
trajectories in the spatial scale over L frames. Motion information over a local neighbourhood
of N×N pixels along each trajectory point are extracted. In order to encode the structure
information, the local volume is divided into small spatio-temporal grid of size nτ × nσ .
Based on (Wang et al., 2013), nτ = 3, nσ = 2 and L = 15.

2015)). The first work that applied Fisher Vector descriptors for the problem of action

recognition in videos used local features extracted along dense trajectories (Wang et al.,

2011). The trajectories are extracted by defining a dense grid of points which are then

tracked using optical flow that was estimated offline to include motion information in the

pipeline. By encoding the extracted trajectory features with the Fisher Vector descriptor, this

approach and its improved version (Wang et al., 2013; Wang and Schmid, 2013) achieved

the state-of-the-art results for the action recognition before deep neural networks are widely

utilised. It encodes both the first and second order statistics between the low-level (local)

video/image descriptors and a Gaussian Mixture Model (GMM). To obtain the Fisher Vector,

firstly, Principal Component Analysis (PCA) is applied to the descriptors to decrease the

dimensionality. Secondly, the low-level descriptors (i.e., face and body descriptors in our

case) is fitted to a GMM. The covariance matrices used for GMM here are diagonal. As
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suggested by (Wang et al., 2013; Wang and Schmid, 2013), the number of Gaussians is

set to K = 256 and randomly selected 256,000 descriptors are used to fit a GMM. The

dimensionality of the Fisher Vector is (2D+ 1)K (D refers to the dimensionality of the

descriptor before feeding to GMM, i.e., after applying PCA), which is used to represent

one clip. Four different types of Fisher Vectors (FVs) are generated based on face and body

features, namely, Facial Landmarks-FV, vQLZM-FV, body HOG-FV and body HOF-FV.

Dynamic features utilized in this thesis refer to these four features, i.e., Facial Landmarks-FV,

vQLZM-FV, body HOG-FV and body HOF-FV, while the static features refer to features

extracted from static frames, e.g., QLZM extracted from each frame.

4.4 Experiments and discussions

The experiments are carried out using IndividualDB and GroupDB, two databases for

studying affect analysis from multi-modal cues in different settings, i.e., individual settings

and group settings respectively.

4.4.1 Implementation details

Data

For GroupDB, group videos from four groups are used in the experiments, i.e., three groups

(twelve subjects) with recordings of people watching four movies (N1, P1, B1 and U1) and

one group (four subjects) with recordings of people watching three movies (B1, N1 and U1).

In this case, we have data from sixteen subjects and fifteen sessions in total used in the experi-

ments. One session refers to the recording of one group watching one movie. For each session,

20-second clips in line with the annotations labelled are utilised. The number of the 20-second

clips from different sessions varies with the length of the movies, i.e., 70 clips for N1, 70

clips for B1, 56 clips for P1 and 42 clips for U1. As a result, the total number of clips we use
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in our experiments is (70(B1)× 4(4sub jects)× 4(4groups))+ (70(N1)× 4(4sub jects)×

4(4groups))+(56(P1)×4(4sub jects)×3(3groups))+(42(U1)×4(4sub jects)×4(4gr−

oups)) = 3,584. In terms of IndividualDB, videos from 17 participants are used in the

experiments. Each participant was recorded while watching 4 movies (N1, P1, B1 and U1).

We also use 20-second clips. Therefore, the total number of clips we use in the experiments

is (70+70+56+42)×17 = 4,046.

Experimental setup

Classification and regression models are built with different cross-validation setups, such

as subject-specific and leave-one-subject-out. The parameters of each model are optimized

over the training-validation data. Subject-specific refers to training the model using leave-

one-sample-out cross-validation for the data of each subject separately. Namely, in each fold,

one sample from a certain subject is used as testing data and all the other samples from the

same subject are used as training data. In order to avoid the subject-dependency problem

caused by the subject-specific model, leave-one-subject-out cross-validation is also applied.

Leave-one-subject-out means that we use one subject’s data for testing and all other subjects’

data for training-validation in each fold. For GroupDB, leave-one-group-out cross-validation

is also applied. Leave-one-group-out validation means that we use data from three groups

out of four groups as training data, and data from the left one group as the testing data.

For affect analysis, we did both classification and regression. Classification is formulated

as a binary classification problem by quantizing both arousal and valence annotations into

two classes using the median of all of the annotations as thresholds. In this way, arousal

is quantized into high and low arousal and valence is quantized into positive and negative

valence. The distribution of samples for GroupDB and IndividualDB along both arousal

and valence dimensions after quantization is shown in Table 4.2. For contextual information

prediction, it is formulated as a binary classification problem. We conduct experiments to
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Table 4.1 The dimensionality of different features.

Raw features extracted
along the trajectories

After PCA Fisher Vec-
tors

PCA

GroupDB
QLZM 48 30 15616 672
Landmarks 30 26 13568 2542
HOG3D 48 17 8960 608
HOG-face 96 34 17664 36
HOG-body 96 48 24832 115
HOF-body 108 54 27604 870

IndividualDB
QLZM 48 30 15616 44
Landmarks 30 26 13568 1777
HOG-body 96 48 24832 234
HOF-body 108 54 27904 1567

Table 4.2 The distribution of samples for IndividualDB and GroupDB after quantizing the
continuous annotations into two classes along both arousal and valence dimensions. Using
the median of all of the annotations as thresholds, arousal is quantized into high and low
arousal and valence is quantized into positive and negative valence.

Dimensions Arousal Valence
Labels High Low Positive Negative
GroupDB 1,792 1,792 1,792 1,792
IndividualDB 2,023 2,023 2,023 2,023

predict whether a person is being alone or in a group based on face and body behavioural

cues using leave-one-subject-out cross-validation.

Classifier used for affect recognition

In the first session of affect analysis, we conduct experiments using Support Vector Machines

(SVM) (Chang and Lin, 2011) for classification and Support Vector Regression (SVR) for

regression, with all extracted face and body features. In the second step of affect analysis, we

conduct experiments on affect analysis using Long Short-Term Memory (LSTM) Networks

(Hochreiter and Schmidhuber, 1997) with the best performing feature obtained from the first

session.
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Affect analysis is divided into two parts, i.e., affect classification and regression along

arousal and valence dimensions. The first part of the experiments is affect recognition that is

conducted using (1) different unimodal cues and (2) decision-level fusion of four different

features, i.e., vQLZM-FV, Facial Landmarks-FV, body HOG-FV and body HOF-FV. As we

use SVM as the classifier, decision-fusion is applied on the soft outputs of the single-modality

classifiers. We utilise the publicly available SVM library LibSVM (Chang and Lin, 2011) for

training and testing. Before the face and body features are fed to any classifier or regressor,

we first apply PCA to reduce the dimensionality by preserving 99% of the variance. The

second part of the affect recognition is carried out on the best performed unimodal feature

QLZM using LSTM implemented on PyTorch platform (Paszke et al., 2017).

4.4.2 Experimental results and analysis

In this section, the affect recognition results are provided and discussed based on the two

databases, IndividualDB and GroupDB separately. In addition, the context recognition results

are reported in terms of prediction of whether a person is in an individual setting or in a

group setting, i.e., alone or in a group.

Affect recognition in group settings

We utilised linear Support Vector Machine (SVM) to do classification and regression w.r.t.

the dimensions along arousal and valence. The classification results obtained using unimodal

features and decision-level fusion are illustrated in Table 4.3. Firstly, we can see that different

types of features perform differently. Generally, vQLZM shows the best performance in both

leave-one-subject-out and subject-specific cross-validation. It indicates that the proposed

vQLZM descriptors are informative for tasks of affect analysis. Secondly, to compare with

other features, one of representative handcrafted spatio-temporal features, HOG 3D (Klaser

et al., 2008; Jung et al., 2015; Yang, Ciftci and Yin, 2018) is used. As listed in Table 4.3,
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the classification results obtained using HOG 3D with leave-one-subject-out setup are 0.64

along arousal and 0.60 along valence in terms of F1 score, which are not as good as that

obtained using vQLZM (0.68 for arousal and 0.68 for valence). Thirdly, generally we can

see that face features performing better than body features, for example, HOG features

are used both for face and body, i.e., face HOG and body HOG respectively. From results

shown in Table 4.3, we can see that face HOG performs slightly better than body HOG.

For instance, in leave-one-subject-out setup, 0.61 and 0.60 are obtained for face HOG in

terms of F1 score along arousal and valence respectively, while that for body are 0.57 and

0.58. However, we can confirm that body features individually are capable of recognising

affect in group settings. Therefore, while facial information is lost in group settings due to

occlusion etc., body information can be used for affect recognition. In addition, we can see

that compared to leave-one-subject-out models, subject-specific models perform better due

to the subject-dependency. The best results obtained in leave-one-subject-out setup are 0.69

along arousal and 0.68 along valence in terms of F1 score, while the best results obtained in

subject-specific setup are 0.80 along arousal and 0.80 along valence. Therefore, if we have

enough data, it will be good to have a specific model for affect recognition for each person as

the person specific model is more accurate.

In terms of decision-level fusion, the decision values that are the obtained probabilities for

all classes from individual features are given as input to an SVM. The results show that the

classification performance using decision-fusion of four face and body features is generally

better than or equal to the best results obtained with unimodal features for most of the time.

In leave-one-subject-out setup, the best affect classification results obtained using unimodal

cues are 0.68 along arousal and 0.68 along valence using the F1 score as our evaluation

method; and those classification results of affect analysis obtained using decision fusion are

0.69 in terms of arousal and 0.68 in terms of valence. In subject-specific setup, the best affect

classification results obtained using unimodal cues and decision fusion are the same, i.e.,
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0.80 in terms of arousal and 0.80 in terms of valence using the F1 score as our evaluation

method.

For the regression of the affect analysis, we utilise Support Vector Regression (SVR) with

a radial basis function (RBF) kernel. The results obtained with unimodal and multi-modal

features are presented in Table 4.5. For the unimodal results, we can see that the regression

results are quite similar to the classification ones, i.e., vQLZM generally performs best among

all unimodal features. As to the decision-level fusion, we proceed in a similar way to the

fusion in affect classification. Specifically, we fuse the ratings predicted from unimodal

features in an SVR. In most of the cases, the performance of decision-fusion is better than or

equal to the performance of the unimodal features. For example, in subject-specific setup,

the best results in terms of CCC obtained using unimodal cues are 0.54 along arousal and

0.56 along valence, while those results obtained using decision-level fusion of face and body

cues are 0.57 along arousal and 0.62 along valence. In leave-one-subject-out setup, the best

results in terms of CCC obtained using unimodal cues and decision fusion are the same along

arousal, i.e., 0.44.

Subsequently, we utilize LSTM and facial QLZM feature for affect classification and

regression. LSTM is one of the state-of-the-art temporal modelling methods and facial

QLZM feature is the best performed unimodal representation as shown in Table 4.3 and 4.5.

The classification and regression results are reported in Table 4.4 and 4.6 respectively. We

can see that compared to vQLZM with SVM and even the decision-fusion with SVM, LSTM is

more powerful for arousal and valence recognition in dynamic videos. For example, the best

regression results obtained with dynamic features with SVR are 0.44 along arousal and 0.53

along valence in terms of CCC, while these obtained with LSTM are 0.65 along arousal and

0.70 along valence. To show the results clearly, we compare the classification and regression

results obtained with vQLZM with SVM, decision-fusion with SVM and QLZM with LSTM
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Figure 4.6 Illustration of the affect classification results in terms of F1 score using different
features and classifiers for individual and group settings along arousal and valence dimensions
in leave-one-subject-out setup.
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Figure 4.7 Illustration of the affect regression results in terms of CCC using different
features and regression methods for individual and group settings along arousal and valence
dimensions in leave-one-subject-out setup.

in Figure 4.6 and 4.7. The results clearly show that LSTM improves affect recognition

performance as has previously been reported in single-person videos in (Chen et al., 2017).

Affect recognition in individual settings

Similar to affect recognition in GroupDB, Support Vector Machine (SVM) is utilised to

do classification and regression w.r.t. the dimensions along arousal and valence. The

classification and regression results using four different unimodal features and decision-level

fusion are illustrated in Table 4.7 and Table 4.9 respectively. It can be seen that the results are

consistent with the results obtained using GroupDB: (1) different features provide different

classification/regression results and vQLZM outperforms all the other unimodal features in
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Table 4.3 The affect classification results in terms of F1 score for GroupDB using
SVM with unimodal face and body features and the decision-level fusion of vQLZM-
FV, Facial Landmarks-FV, body HOG-FV and body HOF-FV. The standard deviation
(std) is also presented (bold for the best results).

Dimensions Arousal Valence
F1(std) F1(std)

Chance level 0.5 0.5
Leave-one-subject-out
Face
vQLZM-FV 0.68 (0.12) 0.68 (0.14)
HOG3D-FV 0.64 (0.12) 0.60 (0.11)
face HOG-FV 0.61 (0.09) 0.60 (0.12)
Landmarks-FV 0.61 (0.08) 0.58 (0.07)
Body
body TRA-FV 0.55 (0.09) 0.60 (0.07)
body HOG-FV 0.57 (0.12) 0.58 (0.07)
body HOF-FV 0.61 (0.07) 0.59 (0.08)
Decision-fusion
of four features

0.69 (0.14) 0.68 (0.15)

Subject-specific
Face
vQLZM-FV 0.80 (0.07) 0.80 (0.06)
HOG 3D-FV 0.79 (0.09) 0.79 (0.06)
face HOG-FV 0.76 (0.12) 0.71 (0.11)
Landmarks-FV 0.69 (0.13) 0.64 (0.09)
Body
body TRA-FV 0.70 (0.11) 0.69 (0.10)
body HOG-FV 0.70 (0.12) 0.68 (0.11)
body HOF-FV 0.70 (0.12) 0.67 (0.13)
Decision-fusion
of four features

0.80 (0.07) 0.80 (0.06)

Table 4.4 The affect classification results in terms of F1 score for GroupDB with
static QLZM features using LSTM. The standard deviation (std) is also presented in
parentheses.

Dimensions Arousal Valence
F1(std) F1(std)

Chance level 0.5 0.5
Leave-one-subject-out
GroupDB 0.71 (0.09) 0.79 (0.11)
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Table 4.5 The affect regression results in terms of PCC and CCC for GroupDB using
SVR with unimodal face and body features and the decision-level fusion. The standard
deviations(std) are also reported (bold for the best results).

Dimensions Arousal Valence
PCC (std) CCC (std) PCC (std) CCC (std)

Leave-one-subject-out
Face
vQLZM-FV 0.58 (0.08) 0.44 (0.08) 0.57 (0.13) 0.52 (0.07)
HOG 3D-FV 0.46 (0.13) 0.28 (0.07) 0.51 (0.12) 0.30 (0.06)
face HOG-FV 0.42 (0.16) 0.24 (0.07) 0.43 (0.16) 0.25 (.07)
Landmarks-FV 0.44 (0.12) 0.23 (0.06) 0.39 (0.17) 0.25 (0.04)
Body
body TRA-FV 0.38 (0.18) 0.20 (0.04) 0.36 (0.19) 0.25 (0.06)
body HOG-FV 0.27 (0.25) 0.21 (0.05) 0.29 (0.22) 0.26 (0.06)
body HOF-FV 0.42 (0.20) 0.27 (0.05) 0.31 (0.18) 0.25 (0.05)
Decision-fusion
of four features

0.61 (0.08) 0.44 (0.10) 0.58 (0.12) 0.53 (0.08)

Subject-specific
Face
vQLZM-FV 0.71 (0.12) 0.54 (0.08) 0.67 (0.16) 0.56 (0.17)
HOG 3D-FV 0.62 (0.12) 0.48 (0.08) 0.60 (0.19) 0.39 (0.17)
face HOG-FV 0.61 (0.11) 0.53 (0.08) 0.59 (0.16) 0.45 (0.18)
Landmarks-FV 0.54 (0.17 ) 0.30 (0.12) 0.46 (0.26) 0.32 (0.11)
Body
body TRA-FV 0.52 (0.16) 0.27 (0.10) 0.45 (0.28) 0.31 (0.12)
body HOG-FV 0.58 (0.17) 0.45 (0.11) 0.56 (0.24) 0.47 (0.16)
body HOF-FV 0.53 (0.18) 0.32 (0.10) 0.48 (0.27) 0.35 (0.13)
Decision-fusion
of four features

0.70 (0.11) 0.57 (0.09) 0.69 (0.25) 0.62 (0.22)

Table 4.6 The affect regression results in terms of PCC and CCC for GroupDB with static
QLZM features using LSTM. The standard deviations(std) are also reported.

Dimensions Arousal Valence
PCC (std) CCC (std) PCC (std) CCC (std)

Leave-one-subject-out
GroupDB 0.66 (0.09) 0.65 (0.10) 0.72 (0.11) 0.70 (0.15)
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Table 4.7 The affect classification results in terms of F1 score for IndividualDB using SVM
with unimodal face and body features and the decision-level fusion. The standard deviation
(std) is also presented in parentheses (bold for the best results).

Dimensions Arousal Valence
F1(std) F1(std)

Chance level 0.5 0.5
Leave-one-subject-out
Face
vQLZM-FV 0.56 (0.12) 0.59 (0.12)
Landmarks-FV 0.55 (0.07) 0.57 (0.07)
Body
body HOG-FV 0.55 (0.12) 0.54 (0.09)
body HOF-FV 0.55 (0.07) 0.52 (0.07)
Decision-fusion
of four features

0.57 (0.13) 0.60 (0.11)

Subject-specific
Face
vQLZM-FV 0.70 (0.15) 0.73 (0.12)
Landmarks-FV 0.66 (0.14) 0.66 (0.09)
Body
body HOG-FV 0.70 (0.13) 0.69 (0.15)
body HOF-FV 0.66 (0.13) 0.66 (0.11)
Decision-fusion
of four features

0.72 (0.14) 0.75 (0.09)

both classification and regression models; and (2) the results obtained with fusion of the

facial and body features are generally better than or equal to those obtained with unimodal

features. For example, in subject-specific setup, the best results in terms of CCC obtained

using unimodal cues are 0.62 along arousal, while those results obtained using decision-level

fusion of face and body cues are 0.66 along arousal. However, in leave-one-subject-out setup,

the best result in terms of CCC obtained using unimodal cues for arousal is 0.29, while that

for decision-fusion is 0.34. In addition, in Section 4.4.2 we propose a method that attempts to

predict whether a person is in an individual setting or in a group setting using their non-verbal

behaviours.
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Table 4.8 The affect classification results in terms of F1 score for IndividualDB with static
QLZM features using LSTM. The standard deviation (std) is also presented in parentheses.

Dimensions Arousal Valence
F1(std) F1(std)

Chance level 0.5 0.5
Leave-one-subject-out
IndividualDB 0.60 (0.12) 0.61 (0.15)

Table 4.9 The affect regression results in terms of PCC and CCC for IndividualDB using
SVR with unimodal face and body features and the decision-level fusion. The standard
deviations (std) are also reported (bold for the best results).

Dimensions Arousal Valence
PCC (std) CCC (std) PCC (std) CCC (std)

Leave-one-subject-out
Face
vQLZM-FV 0.34 (0.27) 0.29 (0.08) 0.34 (0.26) 0.33 (0.08)
Landmarks-FV 0.29 (0.22) 0.15 (0.04) 0.25 (0.20) 0.19 (0.05)
Body
body HOG-FV 0.27 (0.25) 0.23 (0.05) 0.13 (0.11) 0.12 (0.03)
body HOF-FV 0.30 (0.22) 0.18 (0.04) 0.26 (0.21) 0.21 (0.05)
Decision-fusion
of four features

0.44 (0.29) 0.34 (0.09) 0.47 (0.25) 0.32 (0.09)

Subject-specific
Face
vQLZM-FV 0.76 (0.24) 0.62 (0.17) 0.69 (0.41) 0.60 (0.23)
Facial Landmarks-FV 0.59 (0.25) 0.39 (0.12) 0.48 (0.34) 0.36 (0.20)
Body
body HOG-FV 0.66 (0.29) 0.53 (0.19) 0.58 (0.38) 0.52 (0.19)
body HOF-FV 0.59 (0.24) 0.40 (0.13) 0.46 (0.34) 0.35 (0.14)
Decision-fusion
of four features

0.75 (0.33) 0.66 (0.19) 0.69 (0.41) 0.67 (0.24)

Table 4.10 The affect regression results in terms of PCC and CCC for IndividualDB with
static QLZM features using LSTM. The standard deviations(std) are also reported.

Dimensions Arousal Valence
PCC (std) CCC (std) PCC (std) CCC (std)

Leave-one-subject-out
IndividualDB 0.60 (0.18) 0.59 (0.20) 0.62 (0.18) 0.61 (0.23)
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Table 4.11 The contextual recognition (whether a person is alone or in a group) results
obtained with different face and body features. The table reports the average recognition
accuracy over all subjects. The standard deviation of all subjects is also presented in
parentheses. The chance level (50%) is also provided.

Leave-one-subject-out
Chance level 50%
vQLZM 85% (32.0%)
Facial Landmarks 90% (24.5%)
body HOG 93% (23.2%)
body HOF 91% (23.6%)

Contextual information recognition

In addition, we investigate contextual information prediction using non-verbal behavioural

cues. We conduct experiments to recognise whether a person is alone or in a group using the

extracted face and body features described in Section 4.3. The results are shown in Table

4.11. We can see that the results we obtained, all above 85%, are significantly better than the

chance level of 50%. In addition, it can be seen that body features perform slightly better

than face features. It is possibly due to the fact that it is relatively difficult to utilise the facial

information in this case as facial information is more subtle than body motion and gestures.

Predicting whether a person is alone or in a group successfully indicates that people behave

distinctly while they are alone compared to being within a group.

4.5 Discussion and conclusion

In this chapter, a framework is introduced for automatic affect recognition in both individual

settings (i.e., IndividualDB) and group settings (i.e., GroupDB). To this end, different face

and body features are extracted to analyse the affective states of individuals in terms of

valence and arousal dimensions; and decision-level fusion was utilised to combine different

facial and body features. A set of experiments on affect recognition is carried out on both

individual and group videos and the results can be are concluded as follows. Firstly, the
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individual affect can be recognised using facial or body behaviours for both individual and

group dataset; the proposed vQLZM descriptor outperforms the other unimodal features

for the task of affect recognition for AMIGOS dateset. Secondly, we confirm that body

features can be utilized for affect recognition both in individual settings and in group settings.

Therefore, body features can be used for affect recognition while face information is not

available due to occlusions etc, which often happens in group settings. Finally, we find that

the contextual information of being alone or in a group can be successfully recognized using

facial and body cues.

The current works presented in this chapter only utilize hand-crafted features. Methods

using hand-crafted features can be easily implemented but they can restrict the representation

capability of facial or body expressions to serve different applications in affect analysis and

may only capture insignificant characteristics for a task when using hand-crafted features.

In contrast, there is no need to define the feature representation format a-priori when using

deep architecture methods but instead to learn features from raw image/video data. Deep

learning based methods have achieved the-state-of-the-art performance in various challenging

computer vision problems, with no exception in affective computing tasks (Li and Deng,

2018). However, to the best of the author’s knowledge, there has been no works focusing on

investigating affect analysis in group settings using end-to-end deep learning based methods.

It would be interesting to have the deep leaning frameworks to learn the affective features

directly from the raw images or videos to arrive at the affective states prediction in group

settings in an end-to-end manner. On the other hand, though deep learning shows tremendous

promise for the object recognition tasks, the deep learning methods can be restricted due to

the limited amount of data, which is common for the datasets for affect analysis in group

settings, whereas transfer learning and data augmentation methodologies can be used to

address this problem.
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In this chapter, we present a framework that utilises different face and body features for

predicting affect and contextual information, however, we only use vision-based signals,

not any physiological signals that are also provided in the dataset. It was shown that the

combination of physiological signals and facial expressions can improve the recognition

results for the generation of affective tags along valence-arousal space compared to single

modality (Koelstra and Patras, 2013). It would be interesting to combine both visual and

physiological information for affect analysis in group settings and investigate how different

signals influence the affect recognition results, whereas this topic is out of the scope of this

thesis as we only focus on visual based affect analysis.



Chapter 5

AFFECT ANALYSIS ACROSS

SUBJECTS

5.1 Introduction

In a group setting, there are always multiple people in a scene and individuals in the scene

interact with each other in different ways, e.g., communicate verbally, demonstrate facial

expressions and make physical contact. Due to the complex dynamics of these interactions, it

is very often that one certain person may be occluded by others, which makes direct analysis

of his or her affective states (like what we did in Chapter 4) hard or impossible. Instead of

direct analysis of one’s affective states, in these cases, we can infer and analyse his or her

affective states using the information of the other members within the same group. Taking

a classroom as one example, when the instructor tells an interesting story, one particular

student’s facial expression can be inferred as happy from the smiles shown on other students’

faces. We term the emotion analysis of one group member using the affective states of other

members within the same group as “cross-subject affect analysis” or “affect analysis across

subjects”.
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Individuals tend to adapt their behaviours with the other individuals in the same group

or in an interaction (Barsade, 2002). The shared information or behaviours among group

members provides the possibility of predicting one’s affective states using the information

of the other group members. In a particular case, we assume that the affect of each subject

in a group is synchronised most of the time, i.e., showing similar behaviours. To be more

specific, we hypothesise that

• The affect of subjects in the same group are more correlated than that of subjects across

different groups.

• It is possible to predict the affect of a subject automatically using the behaviours

expressed by the other subject(s) in the same group.

To validate the above hypotheses, in this chapter, we firstly compare the correlation of

emotions between subjects from the same group with that between subjects from different

groups, and then we conduct experiments to automatically recognise the emotions of one

subject using expressive behaviours of the other subject(s) in the same group.

The rest of this chapter is organised as follows: the proposed framework for cross-subject

affect analysis in group settings is illustrated in Section 5.2; the experiments and results are

presented and discussed in Section 5.3; and conclusions and future work are described in

Section 5.4.

5.2 The proposed framework

To investigate how one’s affect can be correlated with and predicted from others’, we propose

frameworks for cross-subject affect analysis along valence and arousal in group videos. An

illustration of the motivation of the proposed framework can be seen in Figure 5.1a, which

is one of the frames from the GroupDB database detailed in Chapter 4, taken from the

AMIGOS dataset (Correa et al., 2018). In this image, we can see that four subjects are
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watching movies and at this moment all of them are displaying very similar emotion, i.e.,

positive along valence dimension and high along arousal dimension. In this case, if the

information of someone is lost or someone is not willing to share his/her information, the

information of the other subject(s) can be utilised to predict the emotion of the lost person,

that is the cross-subject affect recognition.

To conceptualise the cross-subject affect analysis, we illustrate the proposed framework

in Figure 5.1b. Same as in Figure 5.1a, we take a group of four subjects as an example. In this

work, we investigate the cross-subject affect analysis in a pairwise manner, i.e., calculating

the correlation of the emotions between two subjects, and predicting the emotion of one

individual using the behaviours of only one another. It results into two cases:

• Cross-subject affect analysis of two subjects in the same group. For correlation

analysis in this case, the correlation between each two subjects within the same group is

calculated. For automatic affect recognition in this case, the emotion of the individual

is predicted by using another subject in the same group. For example, as shown in

Figure 5.1, the facial behaviours expressed by subject 2 (S2), subject 3 (S3) and subject

4 (S4) are separately used to predict the affect of Subject 1 (S1).

• Cross-subject affect analysis of two subjects in two different groups. For correla-

tion analysis in this case, one subject is paired by another subject from another group

and then the correlation of emotions between these two subjects is calculated. For

automatic affect recognition in this case, the emotion of one individual is predicted

by using the facial behaviours of another subject from a different group. All of the

possible pairs are counted. For example, for subject 1 (S1) from group 1, it is paired

with the other 12 subjects from group 2, 3 and 4 separately.

By comparing the correlation and prediction results of these two cases, we can investigate

whether the affect of subjects in the same group are more correlated than that of subjects

across different groups, whether we can use the information of one subject to predict the
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Subject 1(S1) Subject 2(S2) Subject 3(S3) Subject 4(S4)

(a) An example of one of the four groups with four subjects watching movies. From this image, we
can see that at this moment all of the four subjects are displaying very similar emotion, i.e., positive
along valence dimension and high along arousal dimension.

Behavior of S1

Emotion of S1

Behavior of S2 Behavior of S3 Behavior of S4

Emotion of S2 Emotion of S3 Emotion of S4

(b) An illustration of the framework for cross-subject affect prediction. For example, while predicting
the emotion of Subject 1 (S1) the behaviour of the S2, S3 and S4 is utilised separately; while predicting
the emotion of S2, the behaviour of the other three subjects, i.e., S1, S2 or S3, is utilised.

Figure 5.1 An example image from the dataset and an illustration of the proposed framework
for cross-subject affect analysis. (a) shows an example image from the group videos and (b)
illustrates the framework of the cross-subject affect analysis.
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emotion of other subject(s) within the same group, and whether the physical distance between

two subjects in the same group has an effect on the affect correlation and affect recognition.

The details of the proposed framework are presented as follows.

5.2.1 Correlation analysis of the affect across subjects

To investigate whether the affect of subjects in the same group is more correlated than that of

subjects across different groups, we start our analysis from the ground truth level, i.e., the

emotion level. There are two cases for analysing the correlation of the affects of two subjects:

• The correlation of subject s and subject m in the group i is calculated and denoted as

Cisim . Here i denotes the group ID that the subject is from, and i = 1,2,3,4, while s

and m denote two subjects from group i.

• The correlation of subjects across different groups is denoted as Cis jm , where i, j denote

the group IDs that the subjects are from and i, j = 1,2,3,4, and i ̸= j. s denotes the

subject ID of the subject from group i, while m denotes the subject ID of the subject

from group j.

We utilise Pearson’s Correlation Coefficient (PCC) and Concordance Correlation Coeffi-

cient (CCC) (Ringeval et al., 2015) as the evaluation methods.

5.2.2 Automatic affect prediction across subjects in group settings

As in the correlation analysis, the automatic affect prediction across subjects is also divided

into two parts:

• To predict the affect of one subject using the facial behaviours expressed by another

subject in the same group. The predicted affect in this case is referred as fisim , where i

denotes the group of the subject from, and i = 1,2,3,4. s and m denote the subject ID.
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• To predict the affect of one subject using the facial behaviours of another subject from

a different group. The predicted affect in this case is referred as fis jm , where i, j denote

the group of the subject from and i, j = 1,2,3,4, i ̸= j, and s and m denote the subject

ID.

Following the features and temporal models used in Chapter 4, we utilise Long Short-Term

Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and facial QLZM feature for cross-

subject affect regression as shown in Figure 5.2. In the experimental results obtained in

Chapter 4, we can see that facial appearance features perform the best for affect analysis

among all face and body features that were used, therefore, we utilize facial appearance

features, i.e., QLZM, for affect analysis across subjects. We also see in Chapter 4 that the

temporal modelling method LSTM outperforms the static learning method SVM. To this

end, LSTM plus facial QLZM features are utilised in this chapter. QLZM is extracted from

each frame and LSTM is trained using these frame-level facial features, which takes each

20-second clip as a sequence as shown in Figure 5.2. From this figure, we can clearly see that

in the cross-subject affect recognition the input sequence is from a subject, but the output is

to predict the affect of another subject utilising the information of the input subject. This

framework is implemented on PyTorch platform (Paszke et al., 2017).

5.3 Experiments

5.3.1 Experimental data

GroupDB as illustrated in Chapter 4 is used in the experiments in this chapter. Specifically,

group videos from four groups are used in the experiments, i.e., three groups (twelve subjects)

with recordings of people watching four movies (N1, P1, B1 and U1) and one group (four

subjects) with recordings of people watching three movies (B1, N1 and U1). In this case, we

have data from sixteen subjects and fifteen sessions in total used in the experiments. One
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Figure 5.2 Illustration of the approach for cross-subject affect recognition using QLZM with
LSTM. There are input sequences from a subject, which are always 20-second clips. Then
frame-level QLZM features are extracted. After that, QLZM features extracted from every
frame are fed into a one-layer LSTM with 128 hidden states. Finally, affect prediction results
can be obtained for the paired subject using the information of the displayed subject in the
sequence.

session refers to the recording of one group watching one movie. For each session, 20-second

clips in line with the annotations labelled are utilised. The number of the 20-second clips from

different sessions varies with the length of the movies, i.e., 70 clips for N1, 70 clips for B1,

56 clips for P1 and 42 clips for U1. As a result, the total number of clips we use in our experi-

ments is (70(B1)×4(4sub jects)×4(4movies))+(70(N1)×4(4sub jects)×4(4groups))+

(56(P1)×4(4sub jects)×3(3groups))+(42(U1)×4(4sub jects)×4(4groups)) = 3,584.

5.3.2 Experimental results and analysis

Correlation analysis of the affect across subjects

We first conduct the correction analysis of emotions across subjects. The correlation between

the emotion levels of two subjects from one group and across different groups are calculated.

These emotion levels are the values annotated by the labelers, i.e., the ground truth levels.
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These correlation results for the average of all pairs of Cisim and the average of all pairs of

Cis jm along arousal and valence dimensions are represented in Table 5.1. While calculating

the correlations along each dimension between a subject s from group i and a subject m from

group j, we use the corresponding ground truth affect when the subject watching the same

video segment (i.e., same video, same time). Take the Cis jm in terms of PCC along arousal

dimension as an example, it can be calculated as follows:

Cis jm =
cov(Xis,X jm)

σXis
σX jm

, (5.1)

cov(Xis,X jm) =
1
N

4

∑
v=1

tv

∑
t=1

((Xis)vt−µXis
)((X jm)vt−µX jm

), (5.2)

where Xis denotes the arousal level of a subject s from group i, while X jm denotes the arousal

level of a subject m from group j, where i ̸= j and X jm . v refers to the videos/movies and

v = 1,2,3,4, corresponding to the four movies people watched. t refers to the 20-second

segments along time and the number of segments from video v is denoted as tv. N is the

number of all segments for each subject and N = ∑
4
v=1tv.

As we mentioned before, the correlation of subjects across different groups is calculated

for all pairs: for each subject, it needs to pair with all of the subjects from the other three

groups (each time it is paired with one of the subjects from the other three groups). Therefore,

in total for one subject, it will get twelve different pairs across three different groups as there

are four people in each group. The averages and standard deviations of the correlation results

of all these pairs for all subjects are reported in Table 5.1.

From Table 5.1, we can see that the affect of subjects in the same group is much more

correlated than that of subjects across different groups. In more details, the affect correlation

of subjects in the same group has an average PCC of 0.516 and 0.545 along arousal and

valence dimensions respectively, while the affect correlation of subjects across different

groups is 0.388 for arousal and 0.390 for valence in terms of PCC. The affect correlation
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Table 5.1 The average and the standard deviations of PCC and CCC of all paired subjects
in the same group, i.e., all Cisim; and the average and the standard deviations of PCC and
CCC of all paired subjects across different groups, i.e., all Cis jm . And the significance tests
(p-values) are also reported between Cisim and Cis jm .

Dimensions Arousal Valence
PCC CCC PCC CCC

Cisim 0.516(0.115) 0.468 (0.130) 0.545 (0.159) 0.498 (0.161)

Cis jm 0.388(0.154) 0.336(0.152) 0.390(0.203) 0.353(0.194)
Cisim >Cis jm p < 0.01 p < 0.01 p < 0.01 p < 0.01

of subjects in the same group has an average of 0.468 and 0.498 in terms of CCC along

arousal and valence respectively, compared to 0.336 and 0.353 for the affect correlation of

subjects across different groups. The statistically significant test show that the correlation

results of subjects in the same group are significantly higher than those of the subjects across

different groups in terms of PCC and CCC along both arousal and valence dimensions, with

p value < 0.01. Taking this finding, we can move forwards to predict the emotion of one

subject using the facial behaviours of other members in the same group.

In a further step, we investigate whether the physical distance between two subjects has

an effect on the correlation of the affect, where the affect refers to the annotated arousal and

valence levels. We present the correlation results of the affect separately for the paired subjects

with different physical distances. AMIGOS is in an audience setting, where participants

always sit together facing the screen to watch movies. The distance between two subjects

in a group g, Sg,i and Sg, j, is defined as n = |i− j| and n ∈ {1,2,3}, where g ∈ {1,2,3,4}

refers to 4 different groups, and i, j ∈ {1,2,3,4} refer to the IDs of each subject in a group

from left to right as shown in Figure 5.3. For example, the distance between S1,1 and S1,2 is

1, while the distance between S1,1 and S1,3 is 2. The affect correlation between two subjects

in a group g, Sg,i and Sg, j, is defined as Correlation(ASg,i,ASg, j). The average of the affect
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S1,1 S1,2 S1,3 S1,4

S2,1 S2,2 S2,3 S2,4

S3,1 S3,2 S3,3 S3,4

S4,1 S4,2 S4,3 S4,4

Group 1

Group 2

Group 3

Group 4

Figure 5.3 All subjects in four groups.

correlation Corrn of two subjects with the same distance n is defined as:

Corrn =
1
Zn

4

∑
g=1

4

∑
i=1

4

∑
j=1

Correlation(ASg,i,ASg, j)

subject to |i− j|= n (5.3)

where Zn is a normalisation factor equal to the number of pairs with distance n and is defined

as:

Zn =
4

∑
g=1

4

∑
i=1

4

∑
j=1

1, subject to |i− j|= n (5.4)

The results obtained for Corr1, Corr2 and Corr3 in terms of PCC and CCC along both arousal

and valence dimensions are shown in Table 5.2. From Table 5.2, we can see that the closer

the two subjects are staying, the more correlated the affect in terms of arousal and valence

is. For example, for arousal dimension the correlation in terms of CCC is 0.500 for Corr1,

0.460 for Corr2, and 0.391 for Corr3; for valence dimension the correlation in terms of CCC

is 0.531 for Corr1, 0.501 for Corr2, and 0.391 for Corr3.
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Based on these results obtained in Table 5.2, we can see that the physical distance

between two subjects has an effect on the correlation of their affect along arousal and valence

dimensions. We discuss the results from the following perspectives: seating arrangement,

relationship status and the generalisability of the obtained results to different group settings.

Seating arrangement. From the GroupDB, we see that participants sometimes talk to

their neighbours making remarks about a movie, and sometimes they look at their neighbours

while watching the movie, which communicates their feelings and may explain why two

participants seated closer show higher correlations in terms of affect.

Relationship status. During the experiments for the data collection of GroupDB, four

participants in each group were self-organised to get seated, therefore, it is possible that

participants who know each other well chose to sit closer. There is not enough information to

validate the acquaintance between all subjects using GroupDB, but this potentially contributes

to the results, i.e., the closer the two participants are, the higher the affect correlation is.

Generalisability to different group settings. The results of the proximity influences

we obtained with GroupDB may not be generalisable to other group settings and/or other

tasks. For example, (Gedik et al., 2018) did not report that the proximity between people was

a factor that triggers synchronous motion for the audience in a live dance performance. Such

difference in findings could also be due to our study being an in-lab study with a much smaller

group. Their study took place in more “naturalistic” settings and the audience, as well as the

room, were much larger. Another practical reason for the difference in findings could be due

to the “offline” versus “online” aspect of the stimulus. In our study the movies are recordings,

while in theirs the performance is “live”. In the literature, it is reported the audience react

differently when they are in a live performance as compared to watching a recorded one. For

example, live music engages listeners to a greater extent than pre-recorded music (Swarbrick

et al., 2019), and the audience responses to live theatre performance are more cognitive and

communicatively effective than the recorded theatre performance (Shrader, 2015). Therefore
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Table 5.2 The average and standard deviations (in parentheses) of the affect correlation for
two subjects with the same distances n = {1,2,3} in terms of PCC and CCC are shown here.

Dimensions Arousal Valence
PCC CCC PCC CCC

Corr1 0.537(0.109) 0.500(0.125) 0.578(0.136) 0.531(0.137)

Corr2 0.512(0.125) 0.460(0.130) 0.543(0.192) 0.501(0.188)

Corr3 0.462(0.107) 0.391(0.127) 0.452(0.133) 0.391(0.143)

audience behaviour in live performances might potentially be less externalised as compared

to watching a recorded one.

Automatic affect prediction across subjects

For the automatic affect recognition, it is also divided into two cases, one is to predict the

affect of one subject using the behaviours of another subject in the same group and one is to

predict the affect of one subject using the behaviours of one subject from a different group,

which is in a similar manner to the correlation analysis.

For the cross-subject affect recognition in the same group, the affect of a subject s in

group i is predicted using the facial behaviours expressed by another subject m in group

i, fisim . Each subject has been paired with all of the other subjects in the same group. For

that across different groups, the affect of a subject s in group i is predicted using the facial

behaviours expressed by another subject m in group j, fis jm . Each subject has been paired

with all the subjects in the other three groups. The average and standard deviations of the

recognition results of all fisim and fis jm are represented in Table 5.3 in terms of PCC and CCC

along both arousal and valence dimensions. As we can clearly see from Table 5.3, the average

results of cross-subject affect recognition for subjects in the same group, i.e., fisim , are much

better than that of subjects in different groups, i.e., fis jm , in terms of bother PCC and CCC
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Table 5.3 The recognition results in terms of PCC and CCC along both arousal and valence
dimensions for subjects in the same group (the average and standard deviations of all pairs of
fisim) and all paired subjects across different groups (the average and standard deviations of
all fis jm). And the significance tests (p-values) are also reported between fisim and fis jm .

Dimensions Arousal Valence
PCC CCC PCC CCC

fisim 0.454(0.133) 0.362(0.140) 0.509(0.146) 0.410(0.150)

fis jm 0.259(0.136) 0.194(0.115) 0.243(0.143) 0.190(0.128)
fisim > fis jm p < 0.01 p < 0.01 p < 0.01 p < 0.01

along arousal and valence dimensions. For example, the average PCC between the predicted

affect and the ground truth affect obtained with fisim are 0.454 and 0.509 along arousal and

valence dimensions respectively, while that for fis jm is 0.259 and 0.243 corresponding to

arousal and valence dimensions. The average CCC obtained with fisim is 0.362 along arousal

dimension and 0.410 along valence dimension, while that for fis jm is 0.194 along arousal

dimension and 0.190 along valence dimension. The statistically significant test shows that all

the affect recognition results obtained with the subjects in the same group are significantly

better than those of the paired subjects across different groups.

The possible reason is that people in the same group share some facial behaviours, that

contributes to the affect prediction as we hypothesised. As a result, while the expressive

behaviours of a subject is not available due to occlusion or head poses which is one of the

main challenges for affect analysis in group settings, the behaviours expressed by the other

subject(s) can be used for the affect prediction of that subject.

5.4 Discussion and conclusion

In this chapter, we propose a framework to investigate the cross-subject affect analysis in

group videos. We conduct a set of experiments using the GroupDB in AMIGOS database
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that aims to study affect analysis with a group of people watching stimuli movies. The

experimental results show that (1) the affect of subjects in the same group is more correlated

than that of subjects across different groups; (2) the affect of a subject predicted using facial

behaviours expressed by the other subject in the same group is significantly better than that

predicted using the behaviours of a subject in a different group; and (3) the distances between

two subjects in the same group have an effect on the emotion correlation. With the above

findings, we further validate that people in the same group share some information and are

influenced by each other in terms of facial behaviours and emotions. As a result, it is potential

to help address one of the main challenges for affect analysis in group settings, i.e., inability

to predict facial affect due to occlusion among subjects or due to head pose variations. For

example, when the information of one subject is unavailable, we can predict the affect of that

subject based on the expressive behaviours of the other subject(s).

In this chapter, we mainly focus on the analysis in a pair-wised manner, i.e., only

investigating the influences between two subjects either in the same group or in different

groups. It would be interesting to investigate the influences of emotions among more than

two people. It would also be interesting to investigate whether it is possible to predict the

emotion of one subject using the information of all the other subjects within the same group.

How will the results of cross-subject affect analysis with all subjects in one group considered

be compared to those obtained by using only one subject? In this manner, we can investigate

whether more people will provide complementary information or only redundant information,

which will help the analysis of not only the affect but also other social dimensions in group

settings.



Chapter 6

GROUP MEMBERSHIP

RECOGNITION IN GROUP VIDEOS

6.1 Introduction

In Chapter 4 and Chapter 5, we have been focusing on investigating the affect recognition in

group videos. In addition to affect analysis, nowadays automatic analysis of a group of people

from other perspectives has also received much attention in computer vision community for

different research purposes. Gallagher et al. (Gallagher and Chen, 2009) propose a framework

to predict ages and genders of individuals in group images; and Ibrahim et al. (Ibrahim et al.,

2016) focus on group activity recognition. Research works focusing on the analysis of social

dimensions, such as engagement and rapport in group settings have also been reported in

(Leite et al., 2015) and (Hagad et al., 2011). Hung et al. (Vascon et al., 2016; Zhang and

Hung, 2016) proposed methodologies for the detection of free standing conversational groups

(also known as F-formation) and for the analysis of social involvement in free standing

conversational groups. Most of the aforementioned works analyze what is happening within

the group. Recently, works on automatic analysis of the relationship between the members

of different groups have emerged and one example is (Mioranda-Correa and Patras, 2018),
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where Mioranda-Correa et al. predict social context, i.e., whether a person is being alone or

in a group utilising neuro-physiological signals.

In this chapter we investigate the prediction of group membership for each individual,

using vision-based non-verbal behaviours, when they are part of a group of four participants

sitting together and watching four movies, i.e., GroupDB presented in Subsection 2.4.3.

We form four groups, each of which contains four participants, with no overlaps between

the group members (sixteen participants in total). The sixteen participants and the labels

of their membership are shown in Figure 6.1. Even though they are performing the same

task, individuals in different groups may behave very distinctly due to differences in group

composition and dynamics. According to research in cognitive and behavioural science

(Barsade, 2002), individuals in a particular group tend to affect the behaviours of each other,

i.e., mimic one another or exhibit similarities in non-verbal behaviours. In addition, based

on our research in Chapter 4 and Chapter 5, we also found that people in a group influence

the behaviours of each other and share some common information. Such shared behaviours

within the group, and possible differences among different groups, allow the automatic

recognition of group membership (Mou et al., 2016).

Towards this direction, we propose a novel approach to the group membership recognition

by introducing a novel specific recognition model that is built on the top of a generic

recognition model. The generic recognition model refers to the model that is trained using all

data across all different conditions. These conditions can be subjects watching different types

of movies, e.g., “horror”, “comedy”, “action”, or “adventure” movies as stated in Table 2.2 in

Subsection 2.4.3 and illustrated in 6.1, where different groups are under different conditions.

The performance of generic recognition model may be significantly limited due to the fact

that group members may behave distinctly in different conditions. For example, individuals

exhibit very distinct behaviours while watching horror movies compared to the case while

watching comedies. To address this issue, one option is to use an independent recognition
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Group 1             Group 1              Group 1                Group 1

(a) Group 1 in condition 2, “comedy” movie.

Group 2             Group 2              Group 2               Group 2

(b) Group 2 in condition 1, “horror” movie.
Group 3             Group 3              Group 3               Group 3

(c) Group 3 in condition 4, “adventure” movie.

Group 4             Group 4              Group 4              Group 4

(d) Group 4 in condition 3, “action” movie..

Figure 6.1 Example images for four different groups under different conditions, i.e., watching
different movies. The group membership of each subject is corresponding to the group the
subject belongs to. For example, the four subjects from (a) group 1, are all labelled as group 1.
(a) Group 1, (b) Group 2, (c) Group 3, (d) Group 4. The four groups from (a) to (d) are under
conditions, watching “comedy”, “horror”, “adventure”, and“action” movies respectively.
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model, i.e., using solely the data from the same condition, but the performance of independent

recognition model may be restricted due to the limited number of samples available from

each condition. To avoid these issues with the generic recognition model and the independent

recognition model, the specific recognition model built upon the generic recognition model is

proposed. The specific recognition model is specific to a certain condition, i.e., a certain type

of movie, “horror”, “comedy”, “action”, or “adventure”. When the group members are in

different conditions, they may react differently; however, they are still part of the same setting

performing the same task, i.e., sitting in front of the screen watching movies, which allows

them to share some common behavioural characteristics. In light of these, we hypothesise

that the generic recognition model can provide a useful baseline for the optimisation of the

specific recognition model. To this end, we propose the specific recognition model for each

condition specifically, but also we learn it on the top of the generic recognition model.

The remaining part of this chapter is organised as follows. The proposed framework for

group membership recognition is introduced in Section 6.2; the experiments and results are

provided and discussed in Section 6.3; and conclusions and future work are presented in

Section 6.4.

6.2 The proposed framework

To solve the problem of group membership recognition, we first propose a two-phase learning

framework, where we first train a generic recognition model using all videos across all

conditions and, then optimise the specific recognition model for each specific condition based

on the optimisation results obtained from the generic recognition model. In the rest part of

this thesis, we refer to this two-phase Specific Recognition Model as two-phase SRM. At a

further step, we unify the generic recognition model and the specific recognition model under

a single joint framework. Specifically, we optimise the generic recognition model and the

specific recognition model jointly. In this way, the framework is converted to an end-to-end
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structure, which is easier for both training and testing. In the rest of the thesis, we refer to

the unified model, Joint Specific Recognition Model, as the JointSRM.

6.2.1 The two-phase learning framework

The proposed two-phase learning framework is illustrated in Figure 6.2, which aims to learn

a specific recognition model upon a generic recognition model. The first step is to learn a

generic recognition model using all data across all conditions (videos). The second step is to

learn the specific recognition model using data from only one specific condition based on the

optimised generic recognition model. As the data across different conditions are all under

the same scenario, that is sitting in front of the screen watching movies, we hypothesise

that, the two recognition models share some common knowledge and therefore the generic

recognition model can provide a baseline for optimising the specific recognition model.

The generic recognition model

Our recognition models are based on linear Support Vector Machine (SVM). For training each

of the linear models we use a Stochastic Gradient Descent (SGD) algorithm (Shalev-Shwartz

et al., 2007).

The first step of the proposed framework is to learn the generic recognition model using

the standard linear SVM. The generic recognition model is not taking the different conditions

into consideration, but uses all of the available training samples across all conditions. A

condition mentioned here refers to a certain movie/video. In this model, we use all of the

available training samples, which are from all subjects across all conditions. We denote

this training set as X = {(xi,zi), i = 1, . . . , ℓ}, where xi denotes the i-th training sample and

zi is the corresponding ground truth label, being equal to +1 if the sample belongs to the

respective positive class, or −1 otherwise.
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Generic
Model

Pgeneric

Video 1 Video 2 Video 3 Video 4

Group 3

Group 2

Group 1
Subject 1
Subject 2
Subject 3
Subject 4
Subject 5
Subject 6
Subject 7
Subject 8

Subject 9
Subject 10
Subject 11
Subject 12

represents the subject that is left out for cross-validation 

represents all the other subjects that are used to train the model 

(a) Generic recognition model (b) Specific recognition model 

Specific
Model

Specific
Model

Specific
Model

Specific
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Figure 6.2 An illustration of the proposed two-phase SRM. It is divided into two learning
phases, i.e., (a) learning the generic recognition model and (b) learning the specific recog-
nition model. As we apply leave-one-subject-out cross-validation, for generic recognition
model, we leave all of the samples of one subject (blue) out and train the model with all the
other samples (green). For the specific recognition model, as we have four different videos,
we have n = 4 specific problems and optimise them based on the optimised weights obtained
from the generic recognition model. For the specific model, we also do leave-one-subject-out
cross-validation.
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The generic optimisation problem, which we denote as Pgeneric, can be cast as follows:

Pgeneric : min
w0,b0

λ

2
∥w0∥2 +

1
ℓ

ℓ

∑
i=1

L (w0,b0;(xi,zi)), (6.1)

where λ is the regularisation parameter and w0, b0 are the optimisation parameters. L

denotes the loss function and is given by the hinge-loss, as follows

L (w0,b0;(xi,zi)) = max(0,1− zi(w⊤0 xi +b0)). (6.2)

We use the Pegasos (Shalev-Shwartz et al., 2007) SGD algorithm for solving the above

optimisation problem and we arrive at the optimal solution (w0,b0), which describes the

optimal hyper-plane H0 : w0
⊤x+ b0 = 0. Then, we use the optimal w0 to construct the

specific recognition model, as described below.

The specific recognition model

A specific recognition model is specific to a certain condition, i.e., “horror”, “comedy”,

“action”, or “adventure”, which is denoted by j in Equation 6.3. The specific recognition

model is learned utilising the optimisation results obtained from the generic recognition

model. That is, we use the optimal value for w0 (by solving the optimisation problem in

Equation 6.1) in order to construct the specific optimisation problem.The j-th condition is

denoted as P j
specific and cast as follows

P j
specific : min

w j,b j

µ j

2
∥w j∥2 +

ν j

2
∥w j−w0∥2

+
1
ℓt

∑
(xi,zi)∈Xt

L (w j,b j;(xi,zi)), j = 1, . . . ,4
(6.3)

where Xt is a subset of the original training set, µ j and ν j are regularization parameters, and

L denotes the hinge-loss. The term ν j
2 ∥w j−w0∥2 is used to bias w j to be close to w0. When



104 GROUP MEMBERSHIP RECOGNITION IN GROUP VIDEOS

ν is equal to 0, the model becomes the standard linear SVM, while when ν tends to infinity,

w tends to be equal to w0. The optimal values for µ j, ν j are obtained using cross-validation.

For solving P j
specific, we use a variant of the Pegasos SGD algorithm. The proposed

algorithm receives two parameters as input: (1) the number of iterations T , and (2) the

number of examples to be used for calculating sub-gradients, k. Initially, we set w(1)
j to any

vector whose norm is at most 1√
ν j

and b(1)j = 0. On the t-th iteration, we randomly choose

a subset of X , of cardinality k, i.e., Xt ⊆X , where |Xt |= k and set the learning rate to

ηt =
1

ν jt
. We approximate the objective function of P j

specific with

P j
specific : J (w j,b j) =

µ j

2
∥w j∥2 +

ν j

2
∥w j−w0∥2

+
1
k ∑
(xi,zi)∈Xt

L (w j,b j;(xi,zi)), j = 1, . . . ,4.
(6.4)

The update rules are given as follows

w(t+1)
j ← w(t)

j −
ηt

k
∂J

∂w j
, b(t+1)

j ← b(t)j −
ηt

k
∂J

∂b j
,

where the first derivatives of J with respect to w j and b j are given respectively as

∂J

∂w j
= µ jw j +ν j(w j−w0)+

1
k ∑
(xi,zi)∈Xt

∂L

∂w j
(6.5)

and
∂J

∂b j
=

1
k ∑
(xi,zi)∈Xt

∂L

∂b j
. (6.6)

The first derivatives of the hinge loss with respect to w j and b j are given respectively as

∂L

∂w j
=


−zixi if 1 > zi(w⊤j xi +b j),

0 if 1 < zi(w⊤j xi +b j).
(6.7)
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and

∂L

∂b j
=


−zi if 1 > zi(w⊤j xi +b j),

0 if 1 < zi(w⊤j xi +b j).
(6.8)

Finally, we project w(t+1)
j onto the ball of radius 1√

ν j
, i.e., the set B = {w j : ∥w j∥ ≤ 1√

ν j
.

The output of the algorithm is the pair of (w(T+1)
j , b(T+1)

j ).

Once the optimal values of the parameters w j and b j are learned, an unseen testing datum,

xt , can be classified to one of the two classes according to the sign of the (signed) distance

between xt and the separating hyper-plane. That is, the predicted label of xt is computed as

yt = sgn(dt), where dt = w⊤j xt +b j.

6.2.2 The joint framework

The two-phase framework presented in the above section includes two stages and has to be

optimized separately. To simplify the problem, we unify the generic recognition model and

the specific recognition model under a single joint framework. Specifically, in this work we

optimize the generic recognition model and the specific recognition model jointly. In this

way, the framework is converted to an end-to-end structure, which is easier for both training

and testing. The framework is illustrated in Figure 6.3.

We present a novel joint specific recognition model built upon a generic recognition

model. The Joint Specific Recognition Model (JointSRM) is shown in Equation 6.9.

Pjoint-specific : min
w0,b0
w j ,b j

λ

2
∥w0∥2 +

4

∑
j=1

(
µ j

2
∥w j∥2 +

ν j

2
∥w j−w0∥2

)

+
1
ℓ

ℓ

∑
i=1

L (w0,b0;(xi,zi))+
1
ℓt

4

∑
j=1

(
∑

(xit ,zit)∈Xt

L (w j,b j;(xit ,zit))

)
,

(6.9)

we denote this training set as X = {(xi,zi), i = 1, . . . , ℓ}, where xi denotes the feature

representation of the i-th training sample and zi, the corresponding ground truth label,
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Speci�c

SVM Layer

Generic

SVM Layer

Input

Input Video Fisher Vectors SVM Layers

Figure 6.3 An illustration of the proposed framework of JointSRM. It consists of three parts,
i.e., input, representations, and prediction. The prediction part contains SVM layers, both
generic SVM layer and the specific SVM layers. In this way, we learn the generic recognition
model in generic SVM layer and learn the specific recognition model in specific SVM layer.
For the specific recognition model, as we have four different conditions, we have n = 4
specific problems and optimise them based on the optimised weight, w0, obtained from the
generic recognition model. More details of the computation of the loss can refer to Figure
6.4.

being equal to +1 if the sample belongs to the respective class, or −1 otherwise. Where

Xt = {(xit ,zit), it = 1, . . . , ℓt} is a subset of the original training set, w0, b0, w j, b j are the

optimisation parameters (for the generic and the j-th specific model, respectively), λ , µ j,

and ν j, j = 1, . . . ,4 are regularisation hyper-parameters, and L denotes the hinge-loss.

For the two-phase SRM presented in Subsection 6.2.1, the generic recognition model

and the various specific recognition models were trained separately. Specifically, we first

trained a generic recognition model, obtaining an optimal value of the parameter w0, and then

we trained a set of specific recognition models based on the optimised generic recognition

model. For the JointSRM, it is an end-to-end approach to train the generic recognition model



6.3 Experiments 107

Generic

SVM Layer

Specific

SVM Layer

Specific

SVM Layer

Specific

SVM Layer

Specific

SVM Layer

Figure 6.4 Illustration of the computation of the loss for the JointSRM model.

and all the specific recognition models simultaneously, simplifying the whole procedure

significantly.

6.3 Experiments

Experiments are conducted using a database collected to study group analysis from multi-

modal cues while each group with four participants were watching a number of long movie

segments (Correa et al., 2018), i.e., GroupDB presented in Subsection 2.4.3. They were

arranged into four groups with four participants in each group watching all of the four

videos listed in Table 2.2 in Subsection 2.4.3 together. This dataset contains data from four

groups with recordings under four different conditions, i.e., “horror”, “comedy”, “action”,

and “adventure”, as illustrated in Table 2.2 in Subsection 2.4.3. Four frames from four

different conditions are shown in Figure 6.1. Group videos from four groups are used

in the experiments, i.e., three groups (twelve subjects) with recordings of people watch-

ing four movies (N1, P1, B1 and U1) and one group (four subjects) with recordings of

people watching three movies (B1, N1 and U1). In this case, we have data from sixteen

subjects and fifteen sessions in total used in the experiments. One session refers to the

recording of one group watching one movie. For each session, 20-second clips in line with

the annotations labelled are utilised. The number of the 20-second clips from different
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sessions varies with the length of the movies, i.e., 70 clips for N1, 70 clips for B1, 56 clips

for P1 and 42 clips for U1. As a result, the total number of clips we use in our experi-

ments is (70(B1)×4(4sub jects)×4(4groups))+(70(N1)×4(4sub jects)×4(4groups))+

(56(P1)×4(4sub jects)×3(3groups))+(42(U1)×4(4sub jects)×4(4gr−

oups)) = 3,584.

6.3.1 Implementation details

The network of JointSRM is implemented using Theano (Theano Development Team, 2016)

and Lasagne (Dieleman et al., 2015) libraries. All the parameters of the network, i.e., for

the generic SVM layer and the four specific SVM layers as shown in Figure 6.3, are learned

using the standard back-propagation technique. In terms of feature representations, we use

the body HOF features for group membership recognition as some pilot experiments showed

that body HOF features outperform the other facial and body features for group membership

recognition.

On one hand, we compare the proposed specific recognition model with two other models,

(1) the generic recognition model that trained across all different conditions and (2) the

independent recognition model that trained directly in each specific condition. We also

compare this JointRSM to the two-phase SRM.

In order to avoid subject-dependency problem, group membership recognition models

are trained by applying leave-one-subject-out cross-validation. Leave-one-subject-out refers

to, in each fold, using eleven subjects for training-validation and the remaining one subject

for testing. Each time the parameters of the model are optimised over the training-validation

samples. The experimental results of the membership recognition are evaluated by the

recognition accuracy. In addition, we perform statistical significance analysis to see the

significance of the results obtained.
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Table 6.1 Group membership recognition results with both two-phase SRM and JointSRM
using different models, the proposed specific recognition model, generic recognition model
and independent recognition model. The average recognition accuracy of all subjects obtained
from leave-one-subject-out cross-validation and the standard deviations among all subjects
are provided.

Different Models
Acc (std)
chance level=25%
SRM

Acc (std)
chance level=25%
JointSRM

Generic recognition model
(ν → ∞)

26% (18%) 26% (18%)

Independent recognition
model (ν = 0)

30% (14%) 30% (14%)

Specific recognition model 38% (20%) 44% (21%)

6.3.2 Results and analysis

The recognition results in terms of recognition accuracy by applying leave-one-subject-

out cross-validation are shown in Table 6.1. From Table 6.1, we can clearly see that the

proposed specific recognition model outperforms the other two models in terms of recognition

accuracy under both two-phase SRM and JointSRM setups. A recognition accuracy of

38% is obtained for the specific recognition model tested on two-phase SRM, while 26%

and 30% are obtained from generic recognition model and independent recognition model

respectively. A recognition accuracy of 44% is obtained for the specific recognition model

tested on two-phase SRM, while 26% and 30% are obtained from generic recognition

model and independent recognition model respectively. A recognition accuracy of 44% is

obtained for the specific recognition model with tested on JointSRM, while 26% and 30%

are obtained from generic recognition model and independent recognition model respectively.

We also perform a t-test to see the statistical significance, which is also listed in Table 6.1.

The statistical significance tests show that the results obtained with the proposed specific

recognition model are significantly better than chance level, but not for generic recognition

model and independent recognition model.



110 GROUP MEMBERSHIP RECOGNITION IN GROUP VIDEOS

We also compared the performance obtained with the specific recognition model between

the two-phase SRM and the JointSRM. we can see that a recognition accuracy of 44% is

obtained for the specific recognition model with JointSRM, while 38% is obtained for the

specific recognition model with two-phase SRM. In addition, the joint framework can be

trained more easily compared to the non-joint framework, which needs to be trained by

two steps, first generic recognition model and then specific recognition model. However,

the joint framework can be trained in one step, which can simplify the problem in terms

of implementation but provide better results. The computational cost for training two-

phase SRM and JointSRM models in terms of time is 28,570 seconds and 4,050 seconds

respectively while implementing on a computer with with 32G RAM and Intel Core i7-4790S

CPU. Although the cost is much lower for JointSRM, we have to bear in mind that they are

not directly comparable as JointSRM has been trained in a GPU mode with a Titan X GPU

used.

6.4 Discussion and conclusion

In this chapter, we propose a novel framework for group membership recognition in group

settings. To achieve it, we propose a novel specific recognition model that is learned jointly

with a generic recognition model. To optimise the specific recognition model, we propose

two different approaches, i.e., the two-phase SRM and the JointSRM. We conduct a set of

experiments for group membership recognition on GroupDB that include different groups,

with each group comprising four participants watching four different types of movies. The

experimental results show that the proposed specific recognition model outperforms the

compared approaches, i.e., generic recognition model. In addition, compared to two-phase

SRM, JointSRM can be trained at once by learning both the generic recognition model and

all the specific recognition models simultaneously, rather than learning them separately. In

this way, the framework for JointSRM is simplified, while at the same time its performance is
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improved. Furthermore, as group membership can be recognised using non-verbal behaviours,

i.e., body behaviours, it indicates that individuals affect each other’s behaviours within

a group and their nonverbal behaviors share commonalities. Our results also show that

capitalising on shared information in a generic recognition problem is important for learning

the specific problem at hand, and this optimisation approach can be possibly transferred to

other recognition domains.

Despite the promising results obtained in the experiments, analysis of group membership

remains a challenging problem. It would be interesting to experiment with other feature

representations for group membership recognition. It is also important to use different

contextual information to assist the recognition process, such as personality, movie preference,

and the personal relationships between group members. In addition, this learning approach

from generic to specific is potential to be applied to other recognition problems, such as

affect recognition and engagement recognition.





Chapter 7

CONCLUSIONS

This chapter concludes this thesis with an overview of the presented research and provides

guidance towards possible future directions.

7.1 Summary of findings and achievements

In this thesis, we have described our research on affect analysis and group membership

recognition in group videos. The detailed contributions are summarized below.

• In Chapter 4, we investigate the affect analysis in individual and group settings. To

this end, a framework is proposed using different facial and body behaviours, which

shows that the method used for affect analysis in individual settings can be transferred

to the affect recognition of individuals in group settings. Among different facial and

body features, the proposed vQLZM features have been found to perform the best

for predicting affective states of individuals among different unimodal features. In

addition, the contextual information of being alone or in-a-group can be successfully

predicted using facial and body cues.
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• In Chapter 5, a novel framework for affect analysis across subjects in group videos is

proposed. It analyses the correlation of the affect among group members and presents

affect recognition results of one subject using the behaviours expressed by another

subject in the same group. A set of experiments are conducted using group videos, i.e.,

GroupDB. The experimental results show that (1) the affect of subjects in the same

group is more correlated than that of subjects across different groups and (2) the affect

of a subject predicted using facial behaviours expressed by the other subject in the

same group is significantly better than that predicted using the behaviours of a subject

in a different group. The cross-subject emotion recognition is expected to help address

one of the main challenges for affect analysis in group settings, i.e., inability to predict

facial affect due to occlusion among subjects or due to head pose variations. When

the information of one subject is unavailable, we can predict the affect of that subject

based on the expressive behaviours of the other subject(s).

• In Chapter 6, a novel framework for group membership recognition is introduced, i.e.,

the specific recognition model, that is built on the top of a generic recognition model.

For group membership recognition, we use GroupDB that includes four different

groups watching different types of movies, i.e., “horror”, “comedy”, “action”, and

“adventure”, which are taken as four different conditions. The generic recognition

model is trained using all data across all conditions, however, since group members may

behave distinctly in different conditions (while watching different types of movies),

the performance of generic recognition model is limited. To address this, the specific

recognition model is proposed for each specific condition and built on the top of the

generic recognition model, so as to use the generic recognition model to provide a

baseline. For optimisation, a two-phase optimisation method is first proposed, where

the specific recognition model is learned after the generic recognition model. And then

in order to simplify the optimisation procedure, a JointSRM is proposed to learn the
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specific recognition model and the generic recognition model jointly. We conducted

a number of experiments and found that the proposed specific recognition model

outperforms the compared approaches, i.e., generic recognition model. In addition,

compared to two-phase SRM, JointSRM improves the recognition accuracy of group

membership and can be trained more easily learning both the generic recognition

model and all the specific recognition models simultaneously.

7.2 Directions for future works

In the field of affect analysis in group settings, there are still a number of open questions to

address.

• The group dataset used in this thesis is limited to the audience scenario with fixed

number of people in the scene. It is in need to collect group datasets in more naturalistic

scenarios, such as in a group interaction setting, where group members interact with

each other, and there will be new people joining the group and some leaving the

group. The affect analysis in such settings will be more challenging due to the

various dynamics, but provide more research directions and will advance human robot

interaction further.

• It is challenging to collect a large dataset for affect analysis due to that it is expensive

and time consuming to collect and annotate emotions especially in group settings with

multiple people in a scene. Therefore, it will be helpful to use generative models, such

as Generative Adversarial Networks (GANs) (Goodfellow et al., 2014; Karras et al.,

2018) and the flow-based generative models (Kingma and Dhariwal, 2018), to generate

images and videos for affect analysis in group settings. Huang et al. (Huang and Khan,

2017; 2018) propose frameworks using GANs to generate facial expressions in dyadic

scenarios, which may be extended to group settings.
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• Multitask learning (Caruana, 1997) can be utilised to learn arousal and valence dimen-

sions jointly. Related tasks often have inter-dependencies on each other. Multitask

learning aims to utilise the inter-dependencies among the related tasks to help learn

each task better. Currently, all methods used in the thesis are conducting arousal

and valence recognition separately. However, arousal and valence are related to each

other - when people feel more positive or negative, they tend to show higher arousal

in general (Kuppens et al., 2013). In this case, multitask learning that learns the

emotional attributes jointly along arousal and valence dimensions should outperform

the recognition results obtained for arousal and valence dimensions separately.

• As the expression of emotion is influenced by various factors, such as personality

(Keltner, 2003) and cultures (Matsumoto, 1991; 1989), it would be an interesting

question to investigate whether such information can be utilised for the recognition

of affective states. Especially in group settings, people with different personalities

may play different social roles and behave very differently. In the current GroupDB,

personality of the participants are also annotated by self-assessment, which may be

used as a hidden state to help improve the accuracy of affect recognition.

• In this thesis, we present a multi-modal framework that utilises different face and

body features, however, we only use vision-based signals and have never touched

the physiological signals that are provided in the dataset. It has been shown that

the combination of physiological signals and facial expressions can improve the

recognition results for the generation of affective tags along valence-arousal space

compared to single modality (Koelstra and Patras, 2013). It would be interesting to

combine both visual and physiological information for affect analysis in group settings.
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7.3 Closing remarks

As we saw in Plato’s quote at the beginning of the thesis, human behaviour flows from three

main sources: desire, emotion and knowledge. In this thesis, we have discussed how to

analyse one of the sources, i.e., emotion, extensively. However, we have not touched much on

the other two sources, namely, desire and knowledge. These three sources interconnect with

each other. Desire is a sense of longing or hoping for a person, object, or outcome. When

a person desires something or someone, their sense of longing is excited by the enjoyment

or the thought of the item or person. Emotions are the key element in decision making and

gaining knowledge, and central to the process of rational thought (Spence, 1995). Without

emotions to guide one’s intelligence, logical decisions cannot be made and knowledge base

cannot be built (Spence, 1995). As the three sources are all important and closely related to

each other, it is important and interesting to find approaches to investigate them together that

the author believes could advance the human-robot interaction in a further step.
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