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(p, q)-Hermite-Hadamard inequality is removed. A new identity for the right-hand part of (p, q)-
Hermite-Hadamard inequality is proved. By using established identity, some (p, q)-trapezoid integral
inequalities for convex and quasi-convex functions are obtained. The presented results in this work
extend some results from the earlier research.
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1. Introduction

Quantum calculus or briefly q-calculus is a study of calculus without limits. Post-quantum or
(p, q)-calculus is a generalization of q-calculus and it is the next step ahead of the q-calculus.
Quantum Calculus is considered an incorporative subject between mathematics and physics, and
many researchers have a particular interest in this subject. Quantum calculus has many applications in
various mathematical fields such as orthogonal polynomials, combinatorics, hypergeometric
functions, number theory and theory of differential equations etc. Many scholars researching in the
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field of inequalities have started to take interest in quantum calculus during the recent years and the
active readers are referred to the articles [2, 3, 7–9, 11, 12, 16, 17, 21, 24, 25, 27–29] and the references
cited in them for more information on this topic. The authors explore various integral inequalities in
all of the papers mentioned above by using q-calculus and (p, q)-calculus for certain classes of convex
functions.

In this paper, the main motivation is to study trapezoid type (p, q)-integral inequalities for convex
and quasi-convex functions. In fact, we prove that the assumption of the differentiability of the
mapping in the (p, q)-Hermite-Hadamard type integral inequalities given in [12] can be eliminated.
The relaxation of the differentiability of the mapping in the (p, q)-Hermite-Hadamard type integral
inequalities proved in [12] also indicates the originality of results established in our research and these
findings have some relationships with those results proved in earlier works.

2. Preliminaries

The basic concepts and findings which will be used in order to prove our results are addressed in
this section.

Let I ⊂ R be an interval of the set of real numbers. A function f : I → R is called as a convex on I,
if the inequality

f (tx + (1 − t) y) ≤ t f (x) + (1 − t) f (y)

holds for every x, y ∈ I and t ∈ [0, 1].
A f : I → R known to be a quasi-convex function, if the inequality

f (tx + (1 − t) y) ≤ sup { f (x) , f (y)}

holds for every x, y ∈ I and t ∈ [0, 1].
The following properties of convex functions are very useful to obtain our results.

Definition 2.1. [19] A function f defined on I has a support at x0 ∈ I if there exists an affine function
A (x) = f (x0) + m (x − x0) such that A (x) ≤ f (x) for all x ∈ I. The graph of the support function A is
called a line of support for f at x0.

Theorem 2.1. [19] A function f : (a, b) → R is a convex function if and only if there is at least one
line of support for f at each x0 ∈ (a, b).

Theorem 2.2. [4] If f : [a, b]→ R is a convex function, then f is continuous on (a, b).

Perhaps the most famous integral inequalities for convex functions are known as Hermite-Hadamard
inequalities and are expressed as follows:

f
(
a + b

2

)
≤

1
b − a

b∫
a

f (t) dt ≤
f (a) + f (b)

2
, (2.1)

where the function f : I → R is convex and a, b ∈ I with a < b.
By using the following identity, Pearce and Pečarić proved trapezoid type inequalities related to the

convex functions in [18] and [6]. Some trapezoid type inequalities related to quasi-convex functions
are proved in [1] and [9].
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Lemma 2.3. [6] Let f : I◦ ⊂ R→ R be a differentiable mapping on I◦ (I◦ is the interior of I), a, b ∈ I◦

with a < b. If f ′ ∈ L [a, b], then the following equality holds:

f (a) + f (b)
2

−
1

b − a

b∫
a

f (t) dt =
b − a

2

1∫
0

(1 − 2t) f ′ (ta + (1 − t) b) dt. (2.2)

Some definitions and results for (p, q)-differentiation and (p, q)-integration of the function
f : [a, b]→ R in the papers [12, 22, 23].

Definition 2.2. Let f : [a, b] → R be a continuous function and 0 < q < p ≤ 1, then (p, q)-derivative
of f at t ∈ [a, b] is characterized by the expression

aDp,q f (t) =
f (pt + (1 − p) a) − f (qt + (1 − q) a)

(p − q) (t − a)
, t , a. (2.3)

The function f is said to be (p, q)-differentiable on [a, b], if aDp,q f (t) exists for all t ∈ [a, b]. It should
be noted that

aDp,q f (a) = lim
t→a

aDp,q f (t) .

It is clear that if p = 1 in (2.3), then

aDq f (t) =
f (t) − f (qt + (1 − q) a)

(1 − q) (t − a)
, t , a. (2.4)

aDq f (a) = lim
t→a

aDq f (t)

the q-derivative of the function f defined on [a, b] (see [16, 21, 25, 26]).

Remark 2.1. If one takes a = 0 in (2.3), then 0Dp,q f (t) = Dp,q f (t) , where Dp,q f (t) is the (p, q)-
derivative of f at t ∈ [0, b] (see [5, 10, 20]) defined by the expression

Dp,q f (t) =
f (pt) − f (qt)

(p − q) t
, t , 0. (2.5)

Remark 2.2. If for a = 0 and p = 1 in (2.3), then 0Dq f (x) = Dq f (t) , where Dq f (t) is the
q-derivative of f at t ∈ [0, b] (see [15]) given by the expression

Dq f (t) =
f (t) − f (qt)

(1 − q) t
, t , 0. (2.6)

Definition 2.3. Let f : [a, b] → R be a continuous function and 0 < q < p ≤ 1. The definite
(p, q)-integral of the function f on [a, b] is defined as

b∫
a

f (t) adp,qt = (p − q) (b − a)
∞∑

n=0

qn

pn+1 f
(

qn

pn+1 b +

(
1 −

qn

pn+1

)
a
)

(2.7)

If c ∈ (a, b), then the definite (p, q)-integral of the function f on [c, b] is defined as

b∫
c

f (t) adp,qt =

b∫
a

f (t) adp,qt −

c∫
a

f (t) adp,qt . (2.8)
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Remark 2.3. Let p = 1 be in (2.7), then

b∫
a

f (t) adqt = (1 − q) (b − a)
∞∑

n=0

qn f (qnb + (1 − qn) a) (2.9)

the definite q-integral of the function f defined on [a, b] (see [16, 21, 25, 26]).

Remark 2.4. Suppose that a = 0 in (2.7), then

b∫
0

f (t) 0dp,qt =

b∫
0

f (t) dp,qt = (p − q) b
∞∑

n=0

qn

pn+1 f
(

qn

pn+1 b
)

(2.10)

the definite (p, q)-integral of f on [0, b] (see [20, 22, 23]). We notice that for a = 0 and p = 1 in (2.7),
then

b∫
0

f (t) 0dqt =

b∫
0

f (t) dqt = (1 − q) b
∞∑

n=0

qn f (qnb) (2.11)

is the definite q-integral of f over the interval [0, b] (see [15]).

Remark 2.5. When we take a = 0 and p = 1, then the existing definitions in the literature are obtained,
hence the Definition 2.2 and Definition 2.3 are well defined.

Quantum trapezoid type inequalities are obtained by Noor et al. [16] and Sudsutad [21] by applying
the definition convex and quasi-convex functions on the absolute values of the q-derivative over the
finite interval of the set of real numbers.

Lemma 2.4. Let f : [a, b] ⊂ R → R be a continuous function and 0 < q < 1. If aDq f is a
q-integrable function on (a, b), then the equality holds:

1
b − a

b∫
a

f (t) adqt −
q f (a) + f (b)

1 + q
(2.12)

=
q (b − a)

1 + q

1∫
0

(1 − (1 + q) t) aDq f (tb + (1 − t) b) 0dqt .

The (p, q)-Hermite-Hadamard type inequalities were proved in [12].

Theorem 2.5. Let f : [a, b]→ R be a convex differentiable function on [a, b] and 0 < q < p ≤ 1. Then
we have

f
(
qa + pb

p + q

)
≤

1
p (b − a)

pb+(1−p)a∫
a

f (x) adp,qx ≤
q f (a) + p f (b)

p + q
. (2.13)

In this paper, we remove the (p, q)-differentiability assumption of the function f in Theorem 2.5
and establish (p, q)-analog of the Lemma 2.4 and Lemma 2.3. We obtain (p, q)-analog of the trapezoid
type integral inequalities by applying the established identity, which generalize the inequalities given
in [1, 6, 9, 16, 18, 21].
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3. Main results

Throughout this section let I ⊂ R be an interval, a, b ∈ I◦ (I◦ is the interior of I) with a < b (in other
words [a, b] ⊂ I◦) and 0 < q < p ≤ 1 are constants. Let us start proving the inequalities (2.13), with
the lighter conditions for the function f .

Theorem 3.1. Let f : I → R be a convex function on I and a, b ∈ I◦ with a < b, then the following
inequalities hold:

f
(
qa + pb

p + q

)
≤

1
p (b − a)

pb+(1−p)a∫
a

f (x) adp,qx ≤
q f (a) + p f (b)

p + q
. (3.1)

Proof. Since f is convex function on the interval I, by Theorem 2.2 f is continuous on I◦ and [a, b] ⊂
I◦, the function f is continuous on [a, b]. By using Theorem 2.1, there is at least one line of support
for f at each x0 ∈ (a, b). Since x0 =

qa+pb
p+q ∈ (a, b), using Definition 2.1

A (x) = f
(
qa + pb

p + q

)
+ m

(
x −

qa + pb
p + q

)
≤ f (x) (3.2)

For all x ∈ [a, b] and some m ∈
[
f ′−

(
qa+pb

p+q

)
, f ′+

(
qa+pb

p+q

)]
. In the proof of the Theorem 2.5 the authors

used the tangent line at the point of x0 =
qa+pb

p+q . Similarly, using the inequality (3.2) and a similar
method with the proof of the Theorem 2.5 we have (3.1) but we omit the details. Thus the proof is
accomplished. �

We will use the following identity to prove trapezoid type (p, q)-integral inequalities for convex and
quasi-convex functions.

Lemma 3.2. Let f : I◦ ⊂ R → R be a continuous function on I◦ and a, b ∈ I◦ with a < b. If aDp,q f
is continuous on [a, b], then the equality:

1
p (b − a)

pb+(1−p)a∫
a

f (x) adp,qx −
p f (b) + q f (a)

p + q
(3.3)

=
q (b − a)

p + q

1∫
0

(1 − (p + q) t) aDp,q f (tb + (1 − t) a) 0dp,qt

holds.

Proof. Since f is continuous on I◦ and a, b ∈ I◦, the function f is continuous on [a, b]. Hence, clearly
a < pb + (1 − p) a ≤ b for 0 < p ≤ 1 and

[
a, pb + (1 − p) a

]
⊂ [a, b]. Hence f is continuous on[

a, pb + (1 − p) a
]

and hence according to the condition of the Definition 2.3, the function f is (p, q)-
integrable on

[
a, pb + (1 − p) a

]
. This means that the (p, q)-integral

pb+(1−p)a∫
a

f (x) adp,qx
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is well defined and exists.
Since f is continuous on [a, b]. Hence from Definition 2.2, f is (p, q)-differentiable on [a, b]. Thus

the (p, q)-derivative of f given by the expression

aDp,q f (tb + (1 − t) a) =

[
f (p [tb + (1 − t) a] + (1 − p) a) − f (q [tb + (1 − t) a] + (1 − q) a)

]
(p − q) [tb + (1 − t) a − a]

(3.4)

=
f (ptb + (1 − pt) a) − f (qtb + (1 − qt) a)

t (p − q) (b − a)
, t , 0

is well defined and exists.
Since (1 − (p + q) t) is continuous on [0, 1] and aDp,q f is continuous on [a, b], then

(1 − (p + q) t) aDp,q f (tb + (1 − t) a)

is continuous on [0, 1] and from Definition 2.3. Thus (1 − (p + q) t) aDp,q f (tb + (1 − t) a) is (p, q)-
integrable on [0, 1] and the (p, q)-integral

1∫
0

(1 − (p + q) t) aDp,q f (tb + (1 − t) a) 0dp,qt

is well defined and exists.
By using (2.7) and (3.4), we get

q (b − a)
p + q

1∫
0

(1 − (p + q) t) aDp,q f (tb + (1 − t) a) 0dp,qt

=
q (b − a)

p + q

1∫
0

(1 − (p + q) t)
f (ptb + (1 − pt) a) − f (qtb + (1 − qt) a)

t (p − q) (b − a) 0dp,qt

=
q

p + q

 1
(p − q)

1∫
0

f (ptb + (1 − pt) a) − f (qtb + (1 − qt) a)
t 0dp,qt

−
(p + q)
(p − q)

1∫
0

f (ptb + (1 − pt) a) − f (qtb + (1 − qt) a) 0dp,qt


=

q
(p + q) (p − q)


1∫

0

f (ptb+(1−pt)a)
t 0dp,qt −

1∫
0

f (qtb+(1−qt)a)
t 0dp,qt

− (p + q)
1∫

0
f (ptb + (1 − pt) a) 0dp,qt + (p + q)

1∫
0

f (qtb + (1 − qt) a) 0dp,qt


=

q
(p + q)


∑∞

n=0 f
(

qn

pn b +
(
1 − qn

pn

)
a
)
−

∑∞
n=0 f

(
qn+1

pn+1 b +
(
1 − qn+1

pn+1

)
a
)

− (p + q)
∑∞

n=0
qn

pn+1 f
(

qn

pn b +
(
1 − qn

pn

)
a
)

+ (p + q)
∑∞

n=0
qn

pn+1 f
(

qn+1

pn+1 b +
(
1 − qn+1

pn+1

)
a
)
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=
q

(p + q)

 f (b) − f (a) − (p+q)
p

∑∞
n=0

qn

pn f
(

qn

pn b +
(
1 − qn

pn

)
a
)

+
(p+q)

q

∑∞
n=0

qn+1

pn+1 f
(

qn+1

pn+1 b +
(
1 − qn+1

pn+1

)
a
) 

=
q

(p + q)

 f (b) − f (a) −
(p + q)

q
f (b) −

(p + q)
p

∞∑
n=0

qn

pn f
(

qn

pn b +

(
1 −

qn

pn

)
a
)

+
(p + q)

q

∞∑
n=−1

qn+1

pn+1 f
(

qn+1

pn+1 b +

(
1 −

qn+1

pn+1

)
a
)

=
q

(p + q)

 − f (a) − p
q f (b) − (p+q)

p

∑∞
n=0

qn

pn f
(

qn

pn b +
(
1 − qn

pn

)
a
)

+
(p+q)

q

∑∞
n=0

qn

pn f
(

qn

pn b +
(
1 − qn

pn

)
a
) 

=
q

(p + q)

− f (a) −
p
q

f (b) −
(
(p + q)

p
−

(p + q)
q

) ∞∑
n=0

qn

pn f
(

qn

pn b +

(
1 −

qn

pn

)
a
)

=
q

(p + q)

− f (a) −
p
q

f (b) −
(
(p + q)

p
−

(p + q)
q

)
1

(p − q) (b − a)

pb+(1−p)a∫
a

f (x) adp,qx


=

1
p (b − q)

pb+(1−p)a∫
a

f (x) adp,qx −
p f (b) + q f (a)

p + q
.

This completes the proof. �

Remark 3.1. The subsequent observations are important to note from the result of Lemma 3.2:

1. If p = 1, we recapture Lemma 2.4,
2. If p = 1 and q→ 1−, we recapture Lemma 2.3.

We can now prove some quantum estimates of (p, q)-trapezoidal integral inequalities by using
convexity and quasi-convexity of the absolute values of the (p, q)-derivatives.

Theorem 3.3. Let f : I◦ ⊂ R → R be a continuous function on I◦ and a, b ∈ I◦ with a < b such that
aDp,q f is continuous on [a, b] and 0 < q < p ≤ 1. If

∣∣∣ aDp,q f
∣∣∣r is a convex function on [a, b] for

r ≥ 1, then ∣∣∣∣∣∣∣∣∣
1

p (b − a)

pb+(1−p)a∫
a

f (x) adp,qx −
p f (b) + q f (a)

p + q

∣∣∣∣∣∣∣∣∣ (3.5)

≤
q (b − a)

p + q

[
2 (p + q − 1)

(p + q)2

]1− 1
r [
γ1 (p, q)

∣∣∣ aDp,q f (b)
∣∣∣r + γ2 (p, q)

∣∣∣ aDp,q f (a)
∣∣∣r] 1

r

holds, where

γ1 (p, q) =
q
[(

p3 − 2 + 2p
)

+
(
2p2 + 2

)
q + pq2

]
+ 2p2 − 2p

(p + q)3 (
p2 + pq + q2)

and

γ2 (p, q) =
q
[(

5p3 − 4p2 − 2p + 2
)

+
(
6p2 − 4p − 2

)
q + (5p − 2) q2 + 2q3

]
+

(
2p4 − 2p3 − 2p2 + 2p

)
(p + q)3 (

p2 + pq + q2) .
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Proof. Taking absolute value on both sides of (3.3), applying the power-mean inequality and by using
the convexity of

∣∣∣aDp,q f
∣∣∣r for r ≥ 1, we obtain∣∣∣∣∣∣∣∣∣

1
p (b − a)

pb+(1−p)a∫
a

f (x) adp,qx −
p f (b) + q f (a)

p + q

∣∣∣∣∣∣∣∣∣ (3.6)

≤
q (b − a)

p + q

1∫
0

|1 − (p + q) t|
∣∣∣ aDp,q f (tb + (1 − t) a)

∣∣∣ 0dp,qt

≤
q (b − a)

p + q


1∫

0

|1 − (p + q) t| 0dp,qt


1− 1

r


1∫
0

|1 − (p + q) t|
∣∣∣ aDp,q f (tb + (1 − t) a)

∣∣∣r 0dp,qt


1
r

≤
q (b − a)

p + q


1∫

0

|1 − (p + q) t| 0dp,qt


1− 1

r

×

∣∣∣ aDp,q f (b)
∣∣∣r 1∫

0

t |1 − (p + q) t| 0dp,qt +
∣∣∣ aDp,q f (a)

∣∣∣r 1∫
0

(1 − t) |1 − (p + q) t| 0dp,qt


1
r

.

We evaluate the definite (p, q)-integrals as follows

1∫
0

|1 − (p + q) t| 0dp,qt =

1
p+q∫

0

(1 − (p + q) t) 0dp,qt −

1∫
1

p+q

(1 − (p + q) t) 0dp,qt (3.7)

= 2

1
p+q∫

0

(1 − (p + q) t) 0dp,qt −

1∫
0

(1 − (p + q) t) 0dp,qt =
2 (p + q − 1)

(p + q)2 ,

1∫
0

t |1 − (p + q) t| 0dp,qt = 2
∫ 1

p+q

0
t (1 − (p + q) t) 0dp,qt −

1∫
0

t (1 − (p + q) t) 0dp,qt (3.8)

=
2p2 + 2pq + 2q2 − 2p − 2q

(p + q)3 (
p2 + pq + q2) −

−pq
(p + q)

(
p2 + pq + q2)

=
p3q + 2p2q2 + pq3 + 2p2 + 2pq + 2q2 − 2p − 2q

(p + q)3 (
p2 + pq + q2)

=
q
[(

p3 − 2 + 2p
)

+
(
2p2 + 2

)
q + pq2

]
+ 2p2 − 2p

(p + q)3 (
p2 + pq + q2) = γ1 (p, q)
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and
1∫

0

(1 − t) |1 − (p + q) t| 0dp,qt =

1∫
0

|1 − (p + q) t| 0dp,qt −

1∫
0

t |1 − (p + q) t| 0dp,qt (3.9)

=
2 (p + q − 1)

(p + q)2 −

[
p3q + 2p2q2 + pq3 + 2p2 + 2pq + 2q2 − 2p − 2q

]
(p + q)3 (

p2 + pq + q2)
=

q
[(

5p3 − 4p2 − 2p + 2
)

+
(
6p2 − 4p − 2

)
q + (5p − 2) q2 + 2q3

]
+

(
2p4 − 2p3 − 2p2 + 2p

)
(p + q)3 (

p2 + pq + q2)
= γ2 (p, q) .

Making use of (3.7), (3.8) and (3.9) in (3.6), gives us the desired result (3.5). The proof is thus
accomplished. �

Corollary 3.1. We can get the following subsequent results from (3.5) proved in Theorem 3.3:

(1). Suppose p = 1 and r = 1, then we acquire the inequality proved in [21, Theorem 4.1] (see
also [13, inequality (5)]): ∣∣∣∣∣∣∣∣ 1

(b − a)

b∫
a

f (x) adqx −
q f (a) + f (b)

1 + q

∣∣∣∣∣∣∣∣ (3.10)

≤
q2 (b − a)

(1 + q)4 (
1 + q + q2) [[

1 + 4q + q2
] ∣∣∣ aDq f (b)

∣∣∣ +
[
1 + 3q2 + 2q3

] ∣∣∣ aDq f (a)
∣∣∣] .

(2). Letting p = 1, provides the inequality established in [16, Theorem 3.2] (see
also [14], [21, Theorem 4.2] and [13]):∣∣∣∣∣∣∣∣ 1

(b − a)

b∫
a

f (x) adqx −
q f (a) + f (b)

1 + q

∣∣∣∣∣∣∣∣ ≤ q (b − a)
1 + q

[
2q

(1 + q)2

]1− 1
r

(3.11)

×

 q
[
1 + 4q + q2

]
(1 + q)3 (

1 + q + q2) ∣∣∣ aDq f (b)
∣∣∣r +

q
[
1 + 3q2 + 2q3

]
(1 + q)3 (

1 + q + q2) ∣∣∣ aDq f (a)
∣∣∣r

1
r

.

(3). Taking p = 1 and letting q→ 1−, gives the inequality proved in [18, Theorem 1]:∣∣∣∣∣∣∣∣ 1
(b − a)

b∫
a

f (x) dx −
f (a) + f (b)

2

∣∣∣∣∣∣∣∣ ≤ (b − a)
4

[
| f ′ (a)|r + | f ′ (b)|r

2

] 1
r

. (3.12)

(4). Suppose r = 1, p = 1 and letting q→ 1−, we obtain the inequality proved in [6, Theorem 2.2]:∣∣∣∣∣∣∣∣ 1
(b − a)

b∫
a

f (x) dx −
f (a) + f (b)

2

∣∣∣∣∣∣∣∣ ≤ (b − a)
[
| f ′ (a)| + | f ′ (b)|

]
8

. (3.13)
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Theorem 3.4. Let f : I◦ ⊂ R→ R be a continuous function on I◦ and a, b ∈ I◦ with a < b. If aDp,q f
is continuous on [a, b], 0 < q < p ≤ 1 and

∣∣∣ aDp,q f
∣∣∣r is a convex function on [a, b] for r > 1, then∣∣∣∣∣∣∣∣∣

1
p (b − a)

pb+(1−p)a∫
a

f (x) adp,qx −
p f (b) + q f (a)

p + q

∣∣∣∣∣∣∣∣∣ (3.14)

≤
q (b − a)

p + q
[
γ3 (p, q; s)

] 1
s


∣∣∣ aDp,q f (b)

∣∣∣r + (p + q − 1)
∣∣∣ aDp,q f (a)

∣∣∣r
p + q


1
r

,

where

γ3 (p, q; s) =

1∫
0

|1 − (p + q) t|s 0dp,qt

and 1
r + 1

s = 1.

Proof. Taking absolute value on both sides of (3.3), applying the Hölder inequality and using the
convexity of

∣∣∣ aDp,q f
∣∣∣r for r > 1, we get∣∣∣∣∣∣∣∣∣

1
p (b − a)

pb+(1−p)a∫
a

f (x) adp,qx −
p f (b) + q f (a)

p + q

∣∣∣∣∣∣∣∣∣ (3.15)

≤
q (b − a)

p + q


1∫

0

|1 − (p + q) t|s 0dp,qt


1
s

×

∣∣∣ aDp,q f (b)
∣∣∣r 1∫

0

t 0dp,qt +
∣∣∣ aDp,q f (a)

∣∣∣r 1∫
0

(1 − t) 0dp,qt


1
r

=
q (b − a)

p + q
(γ3 (p, q; s))

1
s

∣∣∣ aDp,q f (b)
∣∣∣r 1∫

0

t 0dp,qt +
∣∣∣ aDp,q f (a)

∣∣∣r 1∫
0

(1 − t) 0dp,qt


1
r

.

We evaluate the definite (p, q)-integrals as follows

1∫
0

t 0dp,qt =
1

p + q

and
1∫

0

(1 − t) 0dp,qt =
p + q − 1

p + q
.

By using the values of the above definite (p, q)-integrals in (3.15), we get what is required. �
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Corollary 3.2. In Theorem 3.4;

(1). If we take p = 1, then ∣∣∣∣∣∣∣∣ 1
(b − a)

b∫
a

f (x) adqx −
q f (a) + f (b)

1 + q

∣∣∣∣∣∣∣∣ (3.16)

≤
q (b − a)

1 + q
[
γ3 (1, q; s)

] 1
s


∣∣∣ aDq f (b)

∣∣∣r + q
∣∣∣ aDq f (a)

∣∣∣r
1 + q


1
r

.

(2). If we take p = 1 and letting q→ 1−, then∣∣∣∣∣∣∣∣ 1
(b − a)

b∫
a

f (x) dx −
f (a) + f (b)

2

∣∣∣∣∣∣∣∣ ≤ (b − a)

2 (s + 1)
1
s

[
| f ′ (a)|r + | f ′ (b)|r

2

] 1
r

. (3.17)

Remark 3.2. The inequality (3.17) has been established in [6, Theorem 2.3].

Theorem 3.5. Let f : I◦ ⊂ R → R be a continuous function on I◦ and a, b ∈ I◦ with a < b. Suppose
that aDp,q f is continuous on [a, b], 0 < q < p ≤ 1 and

∣∣∣ aDp,q f
∣∣∣r is a convex function on [a, b] for

r > 1, then ∣∣∣∣∣∣∣∣∣
1

p (b − a)

pb+(1−p)a∫
a

f (x) adp,qx −
p f (b) + q f (a)

p + q

∣∣∣∣∣∣∣∣∣ (3.18)

≤
q (b − a)

p + q

[
2 (p + q − 1)

(p + q)2

] 1
s [
γ1 (p, q)

∣∣∣ aDp,q f (b)
∣∣∣r + γ2 (p, q)

∣∣∣ aDp,q f (a)
∣∣∣r] 1

r
,

where γ1 (p, q), γ2 (p, q) are defined as in Theorem 3.3 and 1
r + 1

s = 1.

Proof. Taking absolute value on both sides of (3.3), applying the Hölder inequality and using the
convexity of

∣∣∣ aDp,q f
∣∣∣r for r > 1, we have that∣∣∣∣∣∣∣∣∣

1
p (b − a)

pb+(1−p)a∫
a

f (x) adp,qx −
p f (b) + q f (a)

p + q

∣∣∣∣∣∣∣∣∣ (3.19)

=
q (b − a)

p + q

∣∣∣∣∣∣∣∣
1∫

0

(1 − (p + q) t) aDp,q f (tb + (1 − t) a) 0dp,qt

∣∣∣∣∣∣∣∣
=

q (b − a)
p + q

∣∣∣∣∣∣∣∣
1∫

0

(1 − (p + q) t)
1
s (1 − (p + q) t)

1
r aDp,q f (tb + (1 − t) a) 0dp,qt

∣∣∣∣∣∣∣∣
≤

q (b − a)
p + q


1∫

0

|1 − (p + q) t| 0dp,qt


1
s


1∫
0

|1 − (p + q) t|
∣∣∣ aDp,q f (tb + (1 − t) a)

∣∣∣r 0dp,qt


1
r

AIMS Mathematics Volume 5, Issue 4, 4011–4026.



4022

≤
q (b − a)

p + q


1∫

0

|1 − (p + q) t| 0dp,qt


1
s

×

∣∣∣ aDp,q f (b)
∣∣∣r 1∫

0

t |1 − (p + q) t| 0dp,qt +
∣∣∣ aDp,q f (a)

∣∣∣r 1∫
0

(1 − t) |1 − (p + q) t| 0dp,qt


1
r

.

Making use of (3.7), (3.8) and (3.9) in (3.19), gives us the desired result (3.18). The proof is thus
accomplished. �

Corollary 3.3. The following results are the consequences of Theorem 3.5:

(1). Taking p = 1, we obtain the inequality proved in [16, Theorem 3.3] (see also [14, inequality (8)]):∣∣∣∣∣∣∣∣ 1
(b − a)

b∫
a

f (x) adqx −
q f (a) + f (b)

1 + q

∣∣∣∣∣∣∣∣ ≤ q (b − a)
1 + q

[
2q

(1 + q)2

] 1
s

(3.20)

×

 q
[
1 + 4q + q2

]
(1 + q)3 (

1 + q + q2) ∣∣∣ aDq f (b)
∣∣∣r +

q
[
1 + 3q2 + 2q3

]
(1 + q)3 (

1 + q + q2) ∣∣∣ aDq f (a)
∣∣∣r

1
r

,

(2). Taking p = 1 and letting q→ 1−, we obtain the inequality proved in [18, Theorem 1]:∣∣∣∣∣∣∣∣ 1
(b − a)

b∫
a

f (x) dx −
f (a) + f (b)

2

∣∣∣∣∣∣∣∣ ≤ (b − a)
2s+1

[
| f ′ (b)|r + | f ′ (a)|r

4

] 1
r

. (3.21)

Some results related for quasi-convexity are presented in the following theorems.

Theorem 3.6. Let f : I◦ ⊂ R→ R be a continuous function on I◦ and a, b ∈ I◦ with a < b. If aDp,q f
is continuous on [a, b], where 0 < q < p ≤ 1 and

∣∣∣ aDp,q f
∣∣∣r is a quasi-convex function on [a, b] r ≥ 1,

then ∣∣∣∣∣∣∣∣∣
1

p (b − a)

pb+(1−p)a∫
a

f (x) adp,qx −
p f (b) + q f (a)

p + q

∣∣∣∣∣∣∣∣∣ (3.22)

≤
q (b − a)

p + q

[
2 (p + q − 1)

(p + q)2

]
sup

{∣∣∣ aDp,q f (a)
∣∣∣ , ∣∣∣ aDp,q f (b)

∣∣∣} .
Proof. Taking absolute value on both sides of (3.3), applying the power mean inequality and using the
quasi-convexity of

∣∣∣aDp,q f
∣∣∣r on [a, b] for r ≥ 1, we have that∣∣∣∣∣∣∣∣∣

1
p (b − a)

pb+(1−p)a∫
a

f (x) adp,qx −
p f (b) + q f (a)

p + q

∣∣∣∣∣∣∣∣∣
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≤
q (b − a)

p + q

1∫
0

|1 − (p + q) t|
∣∣∣ aDp,q f (tb + (1 − t) a)

∣∣∣ 0dp,qt

≤
q (b − a)

p + q


1∫

0

|1 − (p + q) t| 0dp,qt


1− 1

r

×


1∫

0

|1 − (p + q) t| 0dp,qt sup
{∣∣∣ aDp,q f (a)

∣∣∣r , ∣∣∣ aDp,q f (b)
∣∣∣r}

1
r

=
q (b − a)

p + q


1∫

0

|1 − (p + q) t| 0dp,qt

 sup
{∣∣∣ aDp,q f (a)

∣∣∣ , ∣∣∣ aDp,q f (b)
∣∣∣} .

From (3.7), we have ∫ 1

0
|1 − (p + q) t|0 dp,qt =

2 (p + q − 1)
(p + q)2 .

Hence the inequality (3.22) is established. �

Corollary 3.4. In Theorem 3.6

(1). If we let p = 1, then: ∣∣∣∣∣∣∣∣ 1
(b − a)

b∫
a

f (x) adqx −
q f (a) + f (b)

1 + q

∣∣∣∣∣∣∣∣ (3.23)

≤
q (b − a)

1 + q

[
2q

(1 + q)2

]
sup

{∣∣∣ aDq f (a)
∣∣∣ , ∣∣∣ aDq f (b)

∣∣∣} .
(2). If we take p = 1 and letting q→ 1−, then:∣∣∣∣∣∣∣∣ 1

(b − a)

b∫
a

f (x) dx −
f (a) + f (b)

2

∣∣∣∣∣∣∣∣ ≤ (b − a)
4

sup {| f ′ (a)| , | f ′ (b)|} . (3.24)

Remark 3.3. From the results of Corollary 3.4, we can observe the following consequences

(1). The result of the inequality (3.23) has also been obtained in [16, Theorem 3.4] (see also [14,
inequality (9)]),

(2). The result of the inequality (3.24) was established in [1, Theorem 6] and [9, Theorem 1].

Theorem 3.7. Let f : I◦ ⊂ R→ R be a continuous function on I◦ and a, b ∈ I◦ with a < b. If aDp,q f
is continuous on [a, b], where 0 < q < p ≤ 1 and

∣∣∣ aDp,q f
∣∣∣r is a quasi-convex function on [a, b] for

r > 1, then: ∣∣∣∣∣∣∣∣∣
1

p (b − a)

pb+(1−p)a∫
a

f (x) adp,qx −
p f (b) + q f (a)

p + q

∣∣∣∣∣∣∣∣∣ (3.25)
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≤
q (b − a)

p + q
[
γ3 (p, q; s)

] 1
s
(
sup

{∣∣∣aDp,q f (a)
∣∣∣ , ∣∣∣aDp,q f (b)

∣∣∣}) ,
where γ3 (p, q; s) is as defined in Theorem 3.4 and 1

r + 1
s = 1.

Proof. Taking absolute value on both sides of (3.3), applying the Hölder inequality and using the
quasi-convexity of

∣∣∣aDp,q f
∣∣∣r on [a, b] for r > 1, we have that∣∣∣∣∣∣∣∣∣

1
p (b − a)

pb+(1−p)a∫
a

f (x) adp,qx −
p f (b) + q f (a)

p + q

∣∣∣∣∣∣∣∣∣
≤

q (b − a)
p + q

1∫
0

|1 − (p + q) t|
∣∣∣ aDp,q f (tb + (1 − t) a)

∣∣∣ 0dp,qt

≤
q (b − a)

p + q


1∫

0

|1 − (p + q) t|s 0dp,qt


1
s

×


1∫

0

∣∣∣ aDp,q f (tb + (1 − t) a)
∣∣∣r 0dp,qt


1
r

≤
q (b − a)

p + q


1∫

0

|1 − (p + q) t|s 0dp,qt


1
s

sup
{∣∣∣aDp,q f (b)

∣∣∣ , ∣∣∣aDp,q f (a)
∣∣∣} .

=
q (b − a)

p + q
[
γ3 (p, q; s)

] 1
s
(
sup

{∣∣∣aDp,q f (a)
∣∣∣ , ∣∣∣aDp,q f (b)

∣∣∣})
The inequality (3.25) is proved. �

Corollary 3.5. In Theorem 3.7;

(1). If p = 1, then we obtain the inequality proved in [9, Theorem 2]:∣∣∣∣∣∣∣∣ 1
(b − a)

b∫
a

f (x) adqx −
q f (a) + f (b)

1 + q

∣∣∣∣∣∣∣∣ (3.26)

≤
q (b − a)

1 + q
[
γ3 (1, q; s)

] 1
s
(
sup

{∣∣∣aDq f (a)
∣∣∣ , ∣∣∣aDq f (b)

∣∣∣}) ,
(2). If p = 1 and letting q→ 1−, then:∣∣∣∣∣∣∣∣ 1

(b − a)

b∫
a

f (x) dx −
f (a) + f (b)

2

∣∣∣∣∣∣∣∣ ≤ (b − a)

2 (s + 1)
1
s

sup {| f ′ (a)| , | f ′ (b)|} . (3.27)

AIMS Mathematics Volume 5, Issue 4, 4011–4026.



4025

acknowledgement

The authors would like to thank the referee for his/her careful reading of the manuscript and for
making valuable suggestions.

Conflict of interest

The authors declare to have no conflict of interest.

References

1. M. Alomari, M. Darus, S. S. Dragomir, Inequalities of Hermite-Hadamard’s type for functions
whose derivatives absolute values are quasi-convex, RGMIA Res. Rep. Coll., 12 (2009), 1–11.

2. N. Alp, M. Z. Sarıkaya, M. Kunt, et al. q-Hermite Hadamard inequalities and quantum estimates
for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 30
(2018), 193–203.

3. N. Alp, M. Z. Sarıkaya, A new definition and properties of quantum integral which calls q-integral,
Konuralp J. Math., 5 (2017), 146–159.

4. A. G. Azpetitia, Convex functions and the Hadamard inequality, Rev. Colombiana Mat., 28 (1994),
7–12.

5. J. D. Bukweli-Kyemba, M. N. Hounkonnou, Quantum deformed algebras: Coherent states and
special functions, 2013, arXiv:1301.0116v1.

6. S. S. Dragomir, R. P. Agarwal, Two inequalities for diferentiable mappings and applications to
special means fo real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95.

7. T. Ernst, A Comprehensive Treatment of q-Calculus, Springer, Basel, 2012.

8. H. Gauchman, Integral inequalities in q-calculus, Comput. Math. Appl., 47 (2004), 281–300.

9. D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions,
Annals of University of Craiova, Math. Comp. Sci. Ser., 34 (2007), 82–87.

10. R. Jagannathan, K. S, Rao, Tow-parameter quantum algebras, twin-basic numbers, and associated
generalized hypergeometric series, 2006, arXiv:math/0602613v.

11. F. H. Jackson, On a q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203.
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