
Framework for universal NMR
quantum computing using Heisenberg

spin interaction

Master’s thesis by
Maximilian Schwetz 1

Work Group Many-Body-Physics 2

Phillips-Universität Marburg

August 6, 2020

1maximilian.schwetz@physik.uni-marburg.de
2supervisor: Prof. Dr. R. M. Noack

mailto:maximilian.schwetz@physik.uni-marburg.de

Abstract

Quantum computing using the control techniques of nuclear magnetic resonance
(NMR) has been one of the first experimental implementations of quantum informa-
tion processing. By rotating nuclear spins inside molecules with magnetic fields, it
is possible to implement any unitary operation on a set of spin-1/2-qubits. Since
published work has so far been limited to the Ising spin interaction, this thesis extends
the framework of NMR quantum computing to the Heisenberg interaction. In order to
find NMR pulse sequences that represent quantum gates in the machine language of
NMR quantum computing, magnetic and radio-frequency fields, an algorithm was
implemented to examine billions of possible sequences for a universal set of quantum
gates. The Python program was optimized to avoid the numerically most expensive
calculations so that sequences up to nine pulses could be investigated. The search
yielded an NMR pulse sequence for the anisotropic Heisenberg interaction that im-
plements the CNOT quantum gate on an arbitrary input state. However, no such
sequence was found for the isotropic Heisenberg interaction for a sequence of up to
nine pulses in length and while restricting the single-qubit rotations to a finite set of
rotation angles. The framework of NMR quantum computing can thus be extended to
the Heisenberg interaction although it is not clear if universal quantum computing is
possible using only the isotropic Heisenberg interaction to entangle two qubits.

ii

German Abstract / Deutsche Zusammenfassung

Quantencomputer, die auf Methoden der Kernspinresonanz (NMR) basieren, bildeten
die ersten experimentellen Umsetzungen der Quanteninformationstheorie. Durch
Drehungen der Kernspins in Molekülen, die durch magnetische Felder verursacht
werden, kann man jede mögliche unitäre Operation auf Qubits mit Spin 1/2 ausführen.
Da sich bisherige Veröffentlichungen auf die Ising Wechselwirkung zwischen Spins
konzentrieren, wird die Theorie von NMR Quantencomputern in dieser Arbeit auf
die Heisenberg Wechselwirkung übertragen. Um Pulsfolgen für Quantengatter in
der Maschinensprache der NMR Quantencomputer (magnetische Felder) zu finden,
wurde eine Methode entwickelt, die Milliarden von möglichen Pulssequenzen auf
universelle Sätze von Quantengattern überprüft. Dieses Python Programm wurde
optimiert um die kostspieligsten Berechnungen zu vermeiden und somit Folgen bis
zu einer Länge von neun Pulsen zu untersuchen. Es wurde eine Pulsfolge gefun-
den, die das CNOT Quantengatter mit der anisotropen Heisenberg Wechselwirkung
implementiert. Bis zur Länge von neun Pulsen und unter der Annahme, dass nur
einige diskrete Rotationswinkel möglich sind, wurde jedoch keine Pulsfolge für die
isotrope Heisenberg Wechselwirkung gefunden. Es ist also möglich, das Konzept von
NMR Quantencomputern auf die Heisenberg Wechselwirkung zu erweitern. Jedoch
ist weiterhin unklar, ob man einen universellen Satz von Quantengattern auch im
isotropen Falle implementieren kann.

iii

Contents

1. Introduction 1
1.1. Historical development of NMR quantum computing 1
1.2. Choosing a spin-interaction model . 4
1.3. Finding a protocol for quantum computing in the Heisenberg model . 5

2. Theoretical Framework for NMR quantum computing 7
2.1. Interaction of spin-1/2 particles . 7

2.1.1. Ising model . 8
2.1.2. Isotropic Heisenberg model . 9
2.1.3. Anisotropic Heisenberg model 12
2.1.4. Differences . 13

2.2. Summary of Quantum Information Theory 14
2.2.1. Classical information processing 14
2.2.2. Quantum information processing 17

2.3. Principles of nuclear magnetic resonance methods 19
2.3.1. NMR spectroscopy . 19
2.3.2. Manipulation of spins using radio frequency electromagnetic

fields . 21
2.3.3. Rotations with more spins . 22
2.3.4. The coupling dance in the Bloch sphere 24

3. Forming quantum gates from NMR qubit rotations 31
3.1. Elementary single qubit gates . 31
3.2. Two-qubit gates . 33

3.2.1. Ising model . 33
3.2.2. Heisenberg model . 40

3.3. Universal three-qubit-gate . 44

4. Methods 46
4.1. Propagation and visualization of quantum systems using QuTiP 46
4.2. The search for quantum gates in terms of NMR pulse sequences 48

4.2.1. Encoding of sequences . 49
4.2.2. Testing sequences for universal gate application 50
4.2.3. Optimizing the program for performance 50

iv

Contents

5. Discussion 57
5.1. Application in real experiments . 57

5.1.1. Ensemble quantum computing 57
5.1.2. Refocusing . 58
5.1.3. Pulse shaping . 59

5.2. Symmetry considerations . 61
5.3. Further numerical improvement . 62

6. Conclusion 64

Appendices 66

A. Python code for the sequence search 67

B. Personal notes and acknowledgements 76

C. Declaration of originality 77

v

1. Introduction

Quantum computing has the potential to significantly impact the capability of com-
puters. Should scientists succeed in building a sufficiently large quantum computer,
it will be possible to solve problems in a few hours that, using classical computers,
would have taken longer than the lifetime of the universe. Supremacy over classical
computers for some problems, once achieved, will potentially extend to many prob-
lems in computer science, from fields like cryptography to machine-learning methods
in medical research. Having such a powerful device has the potential to change our
lives, just as the development of the first computers in the middle of the 20th century
has.

A quantum computer can be implemented using many different physical systems.
Possible architectures range from trapped ions all the way to topological qubits. One
of these architectures, nuclear magnetic resonance (NMR) quantum computing, has,
arguably, undergone the fastest development of all implementations in the early days
of experimental quantum computing. The earliest implemented quantum algorithms
of relevant size have all been implemented in NMR experiments.

NMR quantum computing is set apart from other quantum computing implementa-
tions by its power to perform coherent quantum computations at room temperature, a
feature almost all other methods lack. On the contrary, quantum computing usually
involves isolating individual quantum-mechanical particles, which is extremely diffi-
cult and energy-intensive. The methods of NMR have been used in material science
and medicine for over half a century. While NMR has long been used as a method for
imaging substances, researchers have, over time, developed NMR from a read-only
sensing method to a method that can read, write, and process information. Since the
methods of manipulating nuclear spins have long been highly developed, only the
ability to implement coherent quantum states on a sample at room temperature had to
be added to make NMR quantum computing possible.

1.1. Historical development of NMR quantum
computing

While magnetic interaction with the nuclei of atoms was first described in 1938 [1],
techniques to actively manipulate and detect nuclear magnetic moments were devel-
oped only about ten years later [2]. This led to the first NMR spectrometers being

1

1. Introduction

available in the early 1950s, which were primarily applied to sensing of atoms and
molecules in chemistry and biology. In the 1970s, combined with computer imaging
technology in order to resolve human tissue structure [3]. This has led to the most
commonly known application of NMR in medical science, which today is known as
Magnetic Resonance Imaging (MRI).

In 1980, Paul Benioff proved that computing on quantum-mechanical particles is
theoretically possible and that it can be at least as powerful as a Turing machine [4].
The Turing machine is a universal mathematical model of a computer; all modern
computers are mathematically equivalent to a Turing machine. Two years later Feyn-
man et al. [5] realized that information processing and computing on quantum bits
(qubits) might be more powerful than classical computing in some cases. In particular,
some algorithmic problems that are in the classical non-polynomial-time complexity
class fall into a polynomial-time quantum complexity class [6]. This means that some
computational problems, like integer factoring [7], experience an exponential speedup
in going from classical to quantum computers. The proposal of quantum supremacy
led to many quantum algorithms being developed for potential quantum computers in
the late 20th century. These algorithms all have the distinct feature of solving problems
with fundamentally fewer operations than classical algorithms would need.

In the last decade of the 20th century, the field of NMR-spectroscopy and the field of
quantum computing were brought together. In 1993, Seth Lloyd proposed a quantum
computer that would use manipulative techniques formerly utilized in NMR imaging
to change the nuclear spins inside molecules [8]. If these nuclei were used to represent
qubits, one could execute quantum computations on them. This includes methods
such as creating superpositions of quantum states, which go beyond the realm of
classical information processing.

Lloyd proposed to use a strong magnetic field to split the spin-energy levels of a
spin-1/2-particle into two distinct levels, thus implementing a qubit [8]. The magnetic
field also causes a precession of the spins magnetic moment. When another magnetic
field, rotating at the precession frequency, is applied, the spin can be rotated along axes
in the rotating frame of reference other than the initial precession axis. This secondary,
manipulative magnetic field oscillates at radio frequency. Using such these techniques,
one can implement any rotation of a particular spin.

A sketch of the sample of an NMR experiment is shown in Fig. 1.1a. Simply speaking,
each of the molecules is a separate small quantum computer in which the nuclear
spins play the role of qubits. The nuclear spins inside the sample must be subjected to
a strong homogeneous magnetic field in order to split up the two states. In addition to
the homogeneous magnetic field, radio-frequency electromagnetic fields are applied
in the transverse direction to manipulate the spins in the sample. A sketch of such an
experimental setup is shown in Fig. 1.1b.

2

1. Introduction

(a) (b)

Figure 1.1.: (a) Schematic sample for an NMR quantum computer. Nuclear spins of the atoms inside
each molecule act as qubits. All molecules are simultaneously manipulated. (b) Sketch
of an NMR quantum computer. A permanent magnet produces a constant homogeneous
horizontal field to enforce Zeeman splitting and precession. An electromagnetic radio-
frequency field is applied perpendicular to the strong field to manipulate individual spins
inside of each molecule via pulses of set length.

3

1. Introduction

1.2. Choosing a spin-interaction model

In published theoretical and experimental work in the field of NMR quantum com-
puting, the interaction between spins in the molecules is simplified. The interaction
is essential because, without it, we would not be able to generate entanglement be-
tween qubits, a necessary property for universal quantum computing. Recent work
treats the interaction between the spins as an Ising interaction. This assumption is
reasonable because the J-coupling, which has the form of the Ising interaction, is the
dominant type of spin-spin interaction in NMR molecules [9]. The Ising model is a
(semi-)classical model that attributes two distinct and discrete possible states to the
spins, i.e., up and down and the interaction assigns different energies if the spins are
aligned or anti-aligned. Within this simplified regime, it is possible to implement a
universal set of quantum gates using a sequence NMR control pulses. This means that
it is theoretically possible to apply an arbitrary unitary operator to quantum states
using only pairwise Ising interactions between the spins in addition to single-qubit
rotations.

The relatively simple Ising model is often suited to model the macroscopic prop-
erties of spin systems. However, the classical nature of the Ising model cannot rep-
resent all properties of a quantum spin system. As an alternative, the quantum-
mechanical Heisenberg model can be a more realistic representation of spin interaction
between spin-1/2 quantum spins. The Heisenberg model represents the spins as
three-dimensional vectors of quantum-mechanical operators in contrast to the classical
interaction of the Ising model. The interaction of spin magnetic moments is then
calculated as the vector product of these spin-magnetic moments in the Hamiltonian.

The main difference between the Ising model and the classical Heisenberg model
is that the Ising model is symmetric to a reflection of all spins while the Heisenberg
model is invariant under simultaneous rotation of all spins. The latter is thus more
suited to describe physical systems with just that symmetry property. On the other
hand, the Ising model is suited to handle systems, where the interaction is strongly
anisotropic. In the quantum-mechanical case, the Heisenberg interaction represents
spin components using non-commuting quantum-mechanical spin operators. On the
other hand, the Ising model does not have any non-commuting operators because it
only consists of one component of the spin.

The quantum versions of the Ising and Heisenberg interactions may lead to different
ways of implementing quantum gates via NMR pulse sequences. This includes the
order, number, and type of pulses that we need to apply to realize a certain operation.
It may be possible to execute transitions between quantum states faster or with fewer
pulses with the Heisenberg interaction rather than with the Ising interaction. The
opposite is also possible. Another interesting question is: Is the Heisenberg model
capable of universal quantum computing at all? After all, the capability to implement
all unitary operations using the Ising interaction might arise from its simplifying
assumptions, which may not be valid for certain physical systems.

4

1. Introduction

In real NMR experiments, the interaction can usually be approximated by the Ising
interaction. This is the case in the weak-coupling regime, where the indirect interaction
through chemical bonds is much stronger than the direct dipole-dipole interaction.
However, if the spins are strongly coupled, the Heisenberg interaction can be a better
description of the physical interaction. In order to fully understand quantum com-
puting with NMR control techniques, we need to know what the consequences of the
choice of the coupling regime, and thus of the spin model, are. Since no publication
known to the author of this thesis has yet tried to implement NMR quantum com-
puting using the Heisenberg interaction, we may be able to gain insight into general
concepts of experimental quantum computing by treating a different spin interaction
model. The concepts may be transferable to other quantum computing architectures
than NMR.

1.3. Finding a protocol for quantum computing in
the Heisenberg model

In order to advance towards a formalism of quantum computing with Heisenberg-
NMR methods, we will start by introducing the underlying theoretical concepts. They
will then lead us to new methods of propagating spin quantum states and an extensive
search of NMR-pulse-sequences. Finally, we will discuss the findings of this search
and give an outlook to future work.

In particular, in Chap. 2, we will review the basic features of the Ising model and the
Heisenberg model. The different symmetry properties of the models shall be outlined
in particular. We will then give a short summary of quantum information processing
and why quantum computing can potentially outperform classical computing. The
difference between universal sets of gates for classical and quantum computing as
well as the scaling of different problems will be discussed. We will then introduce
the basic concepts of nuclear magnetic resonance, focusing on the aspects relevant
for quantum computing. We will observe that we can not only detect the values of
observables with NMR techniques, but also control qubits.

Chap. 3 will then connect the three subjects spin of interaction models, quantum
computing, and NMR to form a theory for carrying out quantum computations on
spins using NMR control techniques. We will first investigate these concepts in the
scope of the Ising model, which is also used in recent published literature. Subse-
quently, we will develop a similar formalism for the Heisenberg interaction. We will
cover both the isotropic and the anisotropic Heisenberg interactions. In particular, we
will search for NMR pulse sequences that implement quantum gates when applied to
spin qubits.

In Chap. 4, we shall investigate the methods used to visualize and compute the
results of the earlier sections, covering the Python modules used for visualization
as well as containing an explanation of the program that is used to find NMR pulse

5

1. Introduction

sequences in the Heisenberg model. The fundamental algorithm is a search, which
grows to be very expensive in time and space for larger problems In order to reduce
the computational cost, several optimizations and shortcuts are presented so that it is
possible to search a larger problem space.

Further potential optimization to the program are mentioned in Chap. 5. After
improvements on the existing program are discussed, the general method of solving
a problem of this kind, quantum optimal control, is presented. Additionally, some
problems that occur in experimental NMR quantum computing are briefly introduced.
Finally, a general discussion about how the theoretical ideas of the previous sections
can be further developed is included. Here we will revisit the issue of to symmetry
considerations and discuss whether or not certain operations can be implemented at
all using the Heisenberg interaction.

6

2. Theoretical Framework for NMR
quantum computing

In this thesis I will assume that the reader has a good working knowledge of advanced
quantum mechanics. Building on that, this section will review how spin interaction is
treated within quantum mechanics. We will derive the two most common models for
spin interaction and investigate their symmetry properties and their relation to each
other. For a more elaborate introduction to this subject, textbooks such as Ref. [10] are
recommended.

We will then give a reasonably short introduction to quantum information theory
and quantum computing. We assume that the reader is already familiar with the basic
concepts of quantum computing, as this thesis skips most of the derivations and only
summarizes the most important statements. For a more thorough treatment of this
subject, the reader is referred to standard textbooks like Ref. [6].

The last part in this chapter will give an introduction to the idea of nuclear magnetic
resonance (NMR) in general. The introduction to NMR will be more elementary than
the other sections. It will be a motivation for the main subject of implementing a
quantum computer on a spin system.

In Chap. 3, we will then combine all three of these concepts. By the means of
NMR, we will use a spin system to implement a theoretical quantum computer. This
computer will be treated with two different forms of spin interactions.

2.1. Interaction of spin-1/2 particles

In this thesis, the interaction of quantum spins will be a key element. We will now
introduce different models to describe the interaction between spins. These models
are utilized mainly to describe lattices of spins. In these lattices, interaction is often
restricted to nearest neighbors because the spin-spin interaction is very weak in mag-
nitude. However, the models can also be extended to cover longer-range interactions.

Since the models each obey different symmetries, they are in terms suited for
different problems that also vary in their symmetry properties. Namely, we will cover
the Ising and the Heisenberg models of spin interaction. The former obeys discrete
symmetry, while the latter is invariant under a continuous transformation. A third
model, which lies in between the two, will be briefly described.

7

2. Theoretical Framework for NMR quantum computing

In Chap. 3 we will characterize computational sequences on nuclear spins in the
Ising and the Heisenberg model. We will see, that the models yield different results.
Changing between the models means that we also have to apply different nuclear mag-
netic resonance methods to implement quantum gates. This can partly be explained
by their symmetry properties.

We consider a general lattice as the generalization of a spin cluster. Here, we
illustrate the lattice as one-dimensional. In general, it may possess any number of
dimensions and may also be finite or infinite in size. If the lattice is finite, we can
apply open or periodic boundary conditions as will fit the physical system under
investigation.

In the main part of this thesis, we will treat a one-dimensional spin chain. Hence,
all content here will concentrate on the one-dimensional case. Higher-dimensional
lattices are generally equivalent in their mathematical treatment. They may, however,
display new effects and properties.

In addition to the aforementioned simplifications, we will restrict this introduction
to particles with spin S = 1

2 as this will be the focus of the algorithms in later chapters.
It is possible to extend these models to higher spins.

2.1.1. Ising model

The positions of the lattice sites are labeled with xi , as depicted in the following sketch:

xi−1 xi xi+1 .

In the Ising model, the spin Si at each site xi can have two possible values. Each spin
is thus discrete. The values of the spins are written as Si ∈ {−1/2,+1/2}, where we set
h̄ = 1. In the sketches we will depict it as ↑ and ↓ because this makes the connection to
the Heisenberg model simpler. We can identify the two states as the eigenstates of the
z-component of the spin operator Sz without loss of generality. An example of a lattice
in this notation may look like

.

This means that we only allow the spins to have discrete values. Hence, the Ising
model treats the spins only (semi-)classically.

We will here restrict ourselves to nearest-neighbor interaction. The Hamiltonian
will then consist of the sum of all pairs of spins that are nearest neighbors. We assume
for our purposes that the interaction strength J is the same between all lattice pairs,

8

2. Theoretical Framework for NMR quantum computing

i.e., Jij = J . Then the Hamiltonian reads

ĤIsing = J
∑
〈i,j〉

SiSj , (2.1.1)

where 〈i, j〉 denotes nearest-neighbor pairs at sites (xi ,xj) = (xi ,xi+1).

For the ground state of this system, we have to distinguish two cases. For the
ferromagnetic case, J < 0, the energy is minimized when all spins point in the same
direction. The spin distribution of the lattice then looks like

.

The axis, along which all the spins point is irrelevant because the system is invariant
with respect to spin reflection. The total magnetization is thus

M =

����� 1
N

∑
i

Si

����� = 1
2

. (2.1.2)

In the antiferromagnetic case, J > 0, the energy is minimized when each of the terms
in the sum of Eq. (2.1.1) is negative. Hence, the two spins of each pair have to point in
opposite directions. The ground state looks like

,

where the total magnetization amounts to

M =
1
N

∑
i

Si = 0 . (2.1.3)

To sum up, the Ising model is a simplified approach to spin lattices. It is invariant
under reflection and treats the quantum-mechanical spin in a (semi-)classical way.

2.1.2. Isotropic Heisenberg model

We will now introduce a model, that treats spin in a more quantum-mechanical manner.
The key difference from the Ising model will be advancing from a discrete symmetry
to a continuous symmetry. Additionally, spin operators do not commute anymore, i.e.,
[Ŝi , Ŝj] = ih̄ϵijkŜk . These attributes not only change the ground state of the respective
Hamiltonian, but also lead to significantly different behavior for certain lattices.

In the Heisenberg model, each spin is identified as a vector of operators ®̂S with three
spatial components. These three components correspond to three spatial dimensions

9

2. Theoretical Framework for NMR quantum computing

in Euclidian space. Hence, we can identify the spin as a magnetic moment, which has

direction ®̂S/
�� ®̂S �� and magnitude

�� ®̂S ��. In general, a lattice in the Heisenberg model may
look like

,

where the circles in this sketch represent spheres in three dimensions.

In any basis, one spin can be expressed as a two-component vector, representing
the projection of the spin onto a particular basis. For example, in the Sz basis, some
representative spinors are

|↑〉 =

(
1
0

)
, |↓〉 =

(
0
1

)
, and |Ψ〉 = 〈z | ↑x〉 |z〉 =

1
√

2

(
1
1

)
. (2.1.4)

They describe the vectors with a spin projection of 1/2 and −1/2 in the +z-direction
and the superposition of these two states. The last vector also is the vector with spin
1/2 in the Sx -basis.

Since the transformation of a normalized state has to result in another normalized
state, the corresponding transformation matrix must be unitary and must have a
determinant of unity according to the basic axioms of quantum mechanics. Operators
thus need to be in the special unitary group

SU(2) =
{
U ∈ C2×2 : U †U = 1 , detU = 1

}
. (2.1.5)

We can now define the commutator

[., .] : SU(2) × SU(2) → SU(2) : [P ,Q] → PQ −QP . (2.1.6)

The commutator vanishes if the two matrices P and Q commute with one another.
The Lie group SU(2) and the commutator together form the Lie algebra su(2). The
generators of this Lie algebra are the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
. (2.1.7)

We can check that they obey the expected commutation relations

[σi ,σj] = 2ϵijkσk . (2.1.8)

Using Cornwell’s Theorem, we can show that there exists a 2-to-1-homomorphism from
su(2) to SO(3), the group of real orthogonal matrices with the same algebra [11]. A
possible mappingm fromU ∈ SU(2) tom(U) ∈ SO(3)withm(U) =m(−U)may be given
as

m(U)ij =
1
2

Tr
(
σiUσjU

†
)

. (2.1.9)

10

2. Theoretical Framework for NMR quantum computing

Through this homomorphism, we can identify the operations of su(2) on the spin states
(spinors) of Eq. (2.1.4) with operators of SO(3). Hence, we may interpret the Pauli
matrices as generators of rotations around the three spatial axes. A finite rotation of a
spinor around an axis ϕ̂ = ®ϕ/ϕ by an angle ϕ can then be calculated as

R(®ϕ) = exp
(
i ®ϕ · ®σ

)
, (2.1.10)

where ®σ = êxσx + êyσy + êzσz is the vector of Pauli matrices and êi are the usual unit
basis vectors in three dimensions.

Now that we have seen that the Pauli matrices are a good choice to represent the Lie
algebra su(2) of spinor operations, it is natural to define the interaction Hamiltonian of
two spins as

ĤHeisenb. =
∑
〈ij〉

Jij ®̂Si · ®̂Sj , (2.1.11)

where the spin operators are defined as ®Sj = 1
2 ®σj in the respective sub-Hilbert-space of

the j-th spin. We have again set h̄ = 1. If

H =
⊗
i

Hi (2.1.12)

is the total Hilbert space of the spin lattice with Hi the subspaces of the j-th spin, then
the operator ®Sj in the full Hilbert space is the tensor product

®Sj =
h̄

2
®σ
⊗
i,j

1Hi . (2.1.13)

As an example, we can give the interaction Hamiltonian for two spin 1/2 particles
with isotropic interaction strength Jij ≡ J :

Ĥ = J ®̂SA
®̂SB = J

(
Ŝx ,AŜx ,B + Ŝy,AŜy,B + Ŝz,AŜz,B

)
=
J

4

©­­­«
1
−1 2
2 −1

1

ª®®®¬ , (2.1.14)

where we have used that Ŝx ,A = h̄
2σx ⊗ 12. With the spin ladder operators Ŝ± =

(Ŝx ± i Ŝy)/
√

2 we can also rewrite the Hamiltonian as

Ĥ = J
(1
2
(
Ŝ+AŜ

−
B + Ŝ

−
AŜ
+
B
)
+ Ŝz,AŜz,B

)
(2.1.15)

and see the matrix structure of Eq. (2.1.14) more easily.

The ground state of the Heisenberg Hamiltonian is split into two regimes. Just as
for the Ising Hamiltonian, we have to distinguish between the ferromagnetic (J < 0)

11

2. Theoretical Framework for NMR quantum computing

and the antiferromagnetic (J > 0) interaction. As for the Ising case, the ferromagnetic
ground state is totally parallel and the antiferromagnetic ground state is totally anti-
parallel. The difference is that the spins can point in any direction in space as long as
they all remain parallel or anti-parallel. The antiferromagnetic ground state may look
like

.

2.1.3. Anisotropic Heisenberg model

Up to now, we have assumed the Heisenberg interaction to be isotropic, i.e., that the
interaction parameters Jαij ≡ J , (α ∈ {x ,y, z}), where i and j are nearest neighbors.
Here we consider two ways of easing that assumption. First we can have a spatial
distribution of the interaction strength. This may be the case if the spins are not equally
spaced inside a lattice. Then, in general, Jij , Jkl , where ij and kl denote different
nearest neighbors.

The second generalization would be to have two spins that do not interact with the
same strength in all spatial directions of the spin. We could have have a direction in
which spins interact more strongly. The case of anisotropy in one interaction parameter
is termed the Heisenberg XXZ model and its Hamiltonian is

ĤXXZ =
∑
ij

J
(
∆Ŝzi Ŝ

z
j + Ŝ

x
i Ŝ

x
j + Ŝ

y
i Ŝ

y
j

)
=

∑
ij

J
(
∆Ŝzi Ŝ

z
j +

1
2
(
Ŝ+i Ŝ

−
j + Ŝ

−
i Ŝ
+
j
))

, (2.1.16)

with ∆ the anisotropic factor.

When ∆ gets large, the limit of this model is the Ising model. Naturally, we need to
introduce some normalization J → J/∆ in order to keep the system at finite energies in
the limit. For the Ising model, it does not matter which one of the spatial components
is taken to be dominant because it does effectively treat the spin as a (classical) bit
without direction. This is only true for the interaction term. Other terms than spin-spin
interaction may destroy the reflection symmetry of the Hamiltonian in the Ising model.

When ∆ becomes small, we arrive at the XY model. In this model, the spin is
characterized by a two dimensional vector. These two degrees of freedom are usually
in a plane perpendicular to the axis that connects two lattice sites. We will not treat
the XZ model in this thesis because it is a rather special model only usable for very
specific problems.

In general, the interaction strength can vary for all spatial directions, i.e., Jx , Jy , Jz .
The general Heisenberg Hamiltonian for the XYZ chain then reads

ĤXYZ =
∑
ij

(
Jxij Ŝ

x
i Ŝ

x
j + J

y
ij Ŝ

y
i Ŝ

y
j + J

z
ij Ŝ

z
i Ŝ

z
j

)
. (2.1.17)

12

2. Theoretical Framework for NMR quantum computing

In this thesis, we will not cover the most general case of XYZ interaction and will stick
to the XXZ model as the most general assumption because we will find a property of
XXZ model and do not have to generalize further as a consequence.

2.1.4. Differences

We have seen that the Ising model and the XY model are both limits of the Heisenberg
model. In the same way, the Heisenberg model is only a simplification of real spin
interaction.

Finally, we will discuss some differences between the Ising and the Heisenberg
model that arise from the different symmetries that each obeys. Recall that the Ising
model is invariant under reflection, while the Heisenberg model is invariant under
rotations.

Since the symmetry for the Heisenberg model is continuous, we will also obtain
continuous excitations. That is, in general, we can excite the system by an arbitrarily
small energy dE. There can, of course, still be macroscopic band gaps in the systems
energy distribution. On the other hand, in the Ising model, we only have discrete
states and thus there is a lowest excitation energy δE with |δE | > 0.

A consequence of the last point is that a Heisenberg lattice does not show sponta-
neous breaking of symmetry in one or two dimensions at finite temperature. This fol-
lows from the Mermin-Wagner theorem [12]. This means that in one or two dimensional
lattices, there cannot be a phase transition from a ferromagnetic to a paramagnetic
phase. The latter has an unordered distribution of spin directions and hence vanishing
magnetization. The Mermin-Wagner theorem does not apply to the Ising model be-
cause it does not have a continuous symmetry. The ferromagnetic-paramagnetic phase
transition at high temperature is thus allowed even for less than three dimensional
lattices.

As we take a look at the structure of the Hamiltonian of the Ising model (Eq. (2.1.1)),
we notice that its matrix is diagonal. Because of its diagonal shape, the eigenstates
in the Sz basis will always be simple. More precisely, they will always be integers
multiplied by the interaction strength J . These facts make the Ising model a very
convenient model to treat mathematically.

On the other hand, the Hamiltonian of the Heisenberg model is clearly not diagonal
in the Sz basis. Also, the terms Ŝx ,y,z that contribute to the Hamiltonian do not com-
mute with each other. The last fact leads to eigenvalues that are not simple, i.e., not
evenly spaced. Since the Hamiltonian contains one of each generator of the su(2) Lie
algebra, any other operator with one of these generators will not commute with the
Hamiltonian because of the commutation relation in Eq. (2.1.8). This non-commuting
property will be of relevance in Chap. 3, when we try to simplify pulse sequences by
permuting pulses. These pulses will be exponentials of spin operators Ŝx ,y,z .

In summary, the Ising model is well-suited to model systems that show a highly

13

2. Theoretical Framework for NMR quantum computing

preferable axis of spin orientation. This is true for systems that are invariant under
reflection. In this sense, one can take the Ising model to be a classical limit of the
Heisenberg model. The latter is well suited for systems that show rotational invariance.
As the reflection symmetry is included in rotational invariance, the Heisenberg model
does encompass the Ising-like problems. The Heisenberg model is thus a generaliza-
tion of the Ising model. The additional degrees of freedom for the spin also lead to
other physical properties, as we have seen in this section.

2.2. Summary of Quantum Information Theory

After having discussed the quantum mechanical interaction of spins, we will now
introduce one of the many areas of application in which quantum-mechanical spins
can be put to use. We will examine ways to represent information in physical systems.

First, we will treat information in a classical way. These are the foundations of
computer science. Then, however, we will change gears and introduce quantum
mechanical systems as carriers of information. The resulting quantum information
theory will lead to a way of computing that is significantly more powerful than classical
computing.

Although it has long been theoretically proven that quantum computing is more
powerful on both the space and the time scale, as of the writing of this thesis, no
real quantum computer has yet been built , that is "supreme" relative to all classical
computers. There are, however, several development efforts that aim to achieve such a
quantum supremacy. For some very specific problems, quantum supremacy has been
demonstrated experimentally.

2.2.1. Classical information processing

If you have any kind of information, be it thoughts, numbers, text, audio, video or
anything else, and want to communicate or store it, you will need some encoding to
map this information onto physical states. For example, this could be text, written
down as a layer of atoms, which reflect in a certain color or the sound of a voice that is
carried by oscillations of the surrounding air.

It is essential for good information processing that this encoding will stay the same
when we use an encoding over and over again. Coming back to the last example, it is
necessary that the sound propagates through air roughly in the same way for all times
and all locations. If sufficient consistency is present, reliable and fast procedures can
be developed to work with that information. They can be standardized to the point
that the main task for a user is the work with the information, not to encode it. An
infinite amount of such encodings can be invented, but here we will only cover the
classical bit encoding and, as an extension to that, the processing of information on

14

2. Theoretical Framework for NMR quantum computing

quantum bits in the next subsection.

Classical bits are a digital or boolean encoding of information. A bit is a physical
system that can be in one of two states. We can label these two states 0 and 1 or as the
boolean values False and True. It is essential for information processing that the two
states are always distinguishable and that we always have the same mapping of the
boolean values to the intrinsic physical properties. This is the condition of consistency
that we just discussed.

Physical manifestations of bits can be, for example, electrical currents or ferromag-
netic solids as used in classical computers. Electrical currents can either be off or
on, representing 0 and 1, while in a ferromagnetic solid, the magnetization in certain
domains can be either up or down relative to some axis. Of course, there are many
more possible implementations of physical bits, but they all share these same mapping
properties.

A basic and easy to understand encoding for numbers is the classical integer bit
representation. An integer k is represented by the bitstring bmbm−2 . . .b1b0 as

k = b0 +b12 +b222 +b323 + · · · =

∞∑
i=0

bi2i , (2.2.1)

where bi ∈ {0, 1}. For example, the integer 5 = 1 × 22 + 0 × 21 + 1 × 20 would be stored
as 101 and needs three bits for its representation. Then, in a ferromagnet, the first
and the third domain may have upwards magnetization, while the second one would
point downwards. These types of sequences bmbm−2 . . .b1b0 are also used to represent
floating point numbers, strings and any other kind of data, albeit in a more elaborate
encoding.

It is important to remember that, even if we write k as k = 5, then we still are
working in a code. In this case, we represent the number in the decimal system rather
than the binary representation of Eq. (2.2.1). From a mathematical point of view, there
is no preferred encoding. However, some encodings might be more natural to certain
physical systems as the binary system is to electronics. Also, of course, the decimal
system has culturally developed as the dominant representation of numbers.

We can manipulate information by flipping the bits. For example, if we flip the third
bit in the representation 101 of the integer 5 from above, we yield the representation
100 of the integer 4. This manipulation already was an example of a NOT gate on the
third bit. Gate is just a name for a manipulative operation that may change the state of
a physical system. A NOT gate simply flips a bit from 0 to 1 or from 1 to 0, depending
on the initial state. More elaborate are two-bit operations. An example for a two-bit
gate is the CNOT gate, which flips the second of two bits if and only if the first bit is in
the 1 state. Mathematically speaking, the CNOT-gate is the XOR logic relation ⊕ of the

15

2. Theoretical Framework for NMR quantum computing

1st bit in 2nd bit in 1st bit out 2nd bit out
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Table 2.1.: Truth table of the CNOT-gate. The output of the second bit will be the XOR relation of both
input bits. Another way of interpretation is that the second bit is flipped if and only if the
first bit is 1.

two bits pasted onto the second bit. It can thus be written as

b1b0
CNOT
−−−−−→ b1(XOR(b1,b2)) = b1(b0 ⊕ b1) , (2.2.2)

where ⊕ denotes the sum modulo 2. The CNOT gate can also be represented as a
truth table, which is shown in Table 2.1. Of course, there are many other operations
and gates on bits. However, a special property of the CNOT gate is its universality.
Universality means that one can implement every n-bit operation using a combination
of 2-bit CNOT gates. The physical manifestation of the XOR operation is the transistor,
which is the key element of all classical computers. A transistor will let an electric
current pass if and only if there is a voltage applied to a third contact. One can even
see the manifestation of the CNOT gate in the component itself.

It shall be mentioned here that in classical information theory, it is not the CNOT
gate, but rather the XOR operation, that is implemented. The difference is that the
XOR gate has two input gates and one output gate (the XOR of the inputs) and is thus
not reversible. The full CNOT gate is reversible, though.

More elaborate algorithms can be composed of sequences of only CNOT gates
because CNOT gates are universal. These Algorithms may range simple arithmetic
such as addition all the way to highly sophisticated search methods on chaotic data
sets.

The more difficult the problem, the longer an algorithm will usually take to solve it.
A similar statement can also be made for the required space in physical memory. The
crucial question is usually, how the time or space needed for a solution scales with
the size of the system, for example, how much longer it takes to add two four-digit
numbers instead of two two-digit numbers. It has always been an important task in
computer science to find new algorithms that can solve problems faster than existing
ones. This means finding algorithms that scale better with the length of the problems
input. Typically, these algorithms are sorted into complexity classes, which classify how
the algorithms scale with the problem size. An example of a complexity class might be
P, that includes all problems which take polynomial time t = P(n) to solve, where n is
the size of the system and P is a polynomial.

On the other hand, there are also many problems that scale less quickly than poly-

16

2. Theoretical Framework for NMR quantum computing

nomially. An example for a more difficult task would be the factoring problem of
finding the prime factors of an integer. For an integer k, we want to find the unique
representation

k =
∏
i

pnii (2.2.3)

for which the pi are prime numbers and ni are integers. For small integers up to a few
digits, this factorization can still be done by hand. Larger integers can be factorized by
a computer. However, if the size of the integer further increases, the amount of time
needed to solve the problem would quickly rise to more than the age of the universe
due to an exponential scaling of the required time to solve this problem, even with the
best existing algorithms.

On the other hand, the factorization of an integer is easily verifiable. Given two or
more prime factors, they only need to be multiplied in order to prove that they are
indeed factors of the given integer, which can be done in a short time. Problems like
the factorization problem lie in the nondeterministic polynomial time (NP) complexity
class. Such problems are hard to solve, but solutions are easy to verify. Such tasks
often used as a basis of cryptography. In the classical public key communication, a key
is openly communicated to every possible sender of a secret message. This key may,
for example, be the product of two primes. A sender then encrypts his or her secret
message with a method that is seeded by the public key. Only the person that knows
the prime factors will be able to decrypt this message. So if the number, that is used as
the key, is large enough, no one will realistically be able to decrypt the message but
the generator of the public key.

A wide variety of problems fall into NP. A subclass of these problems can be proven
to be the hardest problems to solve within NP (NP-hard). It has not yet been proven,
that classical algorithms exist that could solve those problems in polynomial time. If
someone were to find a classical polynomial solver for any NP-hard problem, it has
been proven that all problems that fall into NP could be solved in polynomial time.
This is the famous "P=NP?" problem in computer science.

2.2.2. Quantum information processing

After realizing that there are problems that are hard to solve, one might ask what an
approach for finding a better solver might look like. It turns out that there are already
several algorithms that use randomness to find the solution of an NP-hard problem
with high probability in polynomial time. Although the solution is not correct one
hundred percent of the time, it is still easy to verify if the solution is correct or if the
algorithm has to be run again.

However, there is another approach: adding quantum mechanics to the physical
bits that were so far taken to be classical objects. This could, on the one hand, be done
specifically by using very small and quantum mechanical particles as carriers of infor-

17

2. Theoretical Framework for NMR quantum computing

mation. Approaching from a different angle, we observe the fact that physical memory
for computing is getting smaller and smaller by the year. This means that, in the near
future, we will reach a point where we will have to take quantum mechanical effects
into account anyway. Thus, we will naturally need to include quantum mechanics in
our models for computing. In the present day, the best and smallest electrical circuits
already incorporate quantum effects.

Retaining the analogy to classical information theory, quantum bits (qubits) are
a physical system that can be in one of two possible states. There are a variety of
realizations of qubits, but here we focus on spin systems. If a particle with total spin
1/2 is under the influence of a magnetic field, the initially degenerate eigenenergies
corresponding to spin up or down are split by a small margin (Zeeman splitting).
The two levels then become distinguishable and thus suitable to represent a bit. This
application of a magnetic field for Zeeman splitting will be revised again later in the
context of nuclear magnetic resonance.

In contrast to classical mechanics, the properties of a quantum object are determined
by its (quantum) state or its density operator. Only a measurement of an observable
can retrieve information about the quantum object, but also collapses the state of the
object. So the question is: does making the step to quantum mechanics make any
difference in information processing? After all, we have thus far only introduced
another two-state system acting as a bit.

A classical system of two bits can be in one of the four states, 00, 01, 10, or 11. A
classical measurement will obtain the state that the system is in. A quantum system of
two qubits, however, can be in any superposition

|Ψ〉 = α0 |00〉 + α1 |01〉 + α2 |10〉 + α3 |11〉 (2.2.4)

of the aforementioned four states, where αi ∈ C. A measurement with respect to this
basis will also only yield one of the four results of the classical system, each with
probability |αi |2. Since the measurement is projective, the system will end up in the
state |i〉. As the possible measurement outcomes are the same as in the classical case,
we can ask if we have gained anything?

Indeed, the results can only be discrete eigenvalues of the observable. However, the
state before measurement can be any superposition of basis states. So, as long as we
do not make a measurement, we have a larger space in which we can do computations.
The Hilbert space of the quantum states has dimension 2N , where N is the number
of qubits. If we wanted to pinpoint where the dimensional advantage of quantum
computing lies, we need to look at the amplitudes αi of the states. We notice that these
are complex valued. So, in addition to the mixing of the moduli of the amplitude, in
the quantum case we can also have a relative phase between the components.

In classical computation, a gate can only act on one input state. A quantum gate,
however, can act on a superposition of states and, as such, on all possible states at once.
This is called quantum parallelism. Using this kind of parallel computing on one system,

18

2. Theoretical Framework for NMR quantum computing

one can compute the manipulation of all possible input states simultaneously. The
basic idea behind almost all quantum algorithms is to prepare an initial superposition
state and then do a quantum parallel manipulation on it that represents the problem
to be solved. Finally, one has to amplify the amplitude of the best solution so that a
measurement will yield that result with high probability or with certainty.

To understand the current state of research in the field of quantum computing,
we first need to take a look at the historical development. In 1980, Paul Benioff
showed that computing on quantum particles is theoretically possible and at least as
powerful as a Turing machine [4]. Just two years later, Feynman et al. [5] realized that
information processing and computing on quantum bits might be more powerful in
some cases than classical computing . This led to a number of algorithms that were
adapted to the new quantum architecture. Coming back to the example of factorization
from above, in 1994, Peter Shor proposed an algorithm for factoring integers that is
exponentially faster than the fastest classical factoring algorithms. This is probably the
most prominent instance of quantum supremacy, the ability to solve some problems in
significantly less time on quantum computers than on classical computers.

Since the early 90s, when many new algorithms were developed, the main obstacle
was the experimental implementation of a quantum computer. Since then, the work
space has been gradually improved from a handful of qubits to tens of qubits nowa-
days. This is still far from a dimension, though, with which real quantum supremacy
over classical computers could be achieved. In 2019, for the first time, something at
least close to quantum supremacy was claimed by Google [13]. The problem they
addressed was very specific, though, and currently has not interesting application.
Simply speaking, they verified part of a random number experiment that would take
classical computers orders of magnitude more time to solve. It will still take a long time
until real world applications are dominated in performance by quantum computers.

2.3. Principles of nuclear magnetic resonance
methods

We will now give an introduction to a field of physics that has long been a pillar
of medical imaging procedures. Although this is the most known application, its
methods are important in many fields of material science, predating its use in clinics.
In this thesis, we will not try to image properties of materials, but actively manipulate
a physical system and its information with the same techniques.

2.3.1. NMR spectroscopy

When particles have a non-vanishing spin angular momentum ®S , they also possess
a magnetic moment ®µ = γ ®S , where γ = дq/2m with д the gyromagnetic factor, q the

19

2. Theoretical Framework for NMR quantum computing

charge, and m the mass of the particle. Particles with magnetic moments can be
manipulated and controlled using magnetic fields. This is the method used in nuclear
magnetic resonance spectroscopy.

Consider a particle with spin S and magnetic moment ®µ. If it is placed in a constant
and homogeneous magnetic field with magnetic flux density ®B, its Hamiltonian reads

Ĥ = ®B ®̂µ = ®Bγ ®̂S , (2.3.1)

where ®̂S = h̄
2 (σ̂x , σ̂y , σ̂z) is the vector of Pauli matrices.

To find the evolution of a state |Ψ(t)〉 under the Hamiltonian Ĥ we need to solve the
time dependent Schrödinger equation

d
dt
|Ψ(t)〉 = iĤ (t) |Ψ(t)〉 . (2.3.2)

As the Hamiltonian in Eq. (2.3.1) is not dependent on time, we find the solution to the
Schrödinger equation as

|Ψ(t)〉 = exp iĤt/h̄ |Ψ(t0)〉 . (2.3.3)

We define the time propagator as

Û (t , t0) = exp iĤ (t − t0)/h̄ (2.3.4)

and it gives the time evolution of the state |Ψ(t)〉 = Û (t , t0) |Ψ(t0)〉. The operator Û is
unitary because it is the exponential of a Hermitian matrix Ĥ .

We now investigate how the time propagator Û acts on an arbitrary quantum state.
From this point on, we will set t0 = 0 without loss of generality. Then the propagator
becomes Û (t) ≡ Û (t , 0). Without loss of generality, we choose a direction of the static
magnetic field, say ®B = B®ez = (0, 0,B). The Hamiltonian in Eq. (2.3.1) then simplifies to
Ĥ = γBŜz . With that, the time propagator becomes

Û (t) = exp(iĤt/h̄) = exp
(
− iB0γAtŜ

z
A
)
=

(
e− iB0γAt/2 0

0 e+ iB0γAt/2

)
≡ Rz(θ =−B0γAt) .

(2.3.5)
This operator Rz(θ) ∈ su(2) can directly be mapped to a rotation in SO(3) with the
homomorphism in Eq. (2.1.9). Indeed, the corresponding operator in SO(3) is just a
rotation around the z-axis by an angle θ = B0γAt [14]. In a static magnetic field ®B, the
state vector thus steadily precesses around the z-axis. By applying a magnetic field
along an arbitrary axis ϕ along the unit vector ®ϕ, one can similarly create a precession
Rϕ(θ).

In classical NMR-spectroscopy, this precession is used to detect the type of nuclei
inside a sample. The sample is exposed to a strong and homogeneous magnetic field.

20

2. Theoretical Framework for NMR quantum computing

The ®B-field causes all the nuclei of the atoms to precess that have S , 0, where S is
the total spin of the nucleus. The gyromagnetic ratios γ of the nuclei differ. Hence,
they will precess at different angular velocities. Since the precessing spins each create
their own magnetic field, resonances in the perpendicularly applied rf-field can be
detected with a pickup-coil. With this procedure one can spatially resolve the areas of
concentrated atoms of a certain kind. We know this method most prominently from
medical science in order to image body tissue (MRI). It is also applied in physical,
chemical and biological analysis of materials.

2.3.2. Manipulation of spins using radio frequency
electromagnetic fields

Up to now, we have only discussed the behavior of a spin in a strong homogeneous
magnetic field. We will now try to manipulate the state of such a spin. More precisely,
we want to change the z-projection of the spin. Naturally, if a ®B-field is applied, as
we have just seen, the x and y projections of the spin do change at all times because
the spin precesses around the z-axis. In order to change the z value of the spin, we
need to rotate the Bloch vector of the spin around some axis in the x-y-plane (or at
least not parallel to z). Since the Bloch vector precesses around the z-axis, we need the
second rotation axis to also rotate around the z-axis in resonant frequency. We have
just learned in the previous section that a magnetic field induces a rotation around its
field axis. So we need an additional magnetic field that rotates around the z-axis in the
x-y-plane. The frequency of the rotating field has to be synchronized with the original
precession frequency ωP.

An electromagnetic radio frequency field with its Poynting vector in z-direction has
its electric and magnetic field vectors in the x-y-plane. If the radio frequency field has
frequency ωrf, the electric and magnetic fields rotate around the z-axis with frequency
ωrf. We now apply the rotating wave approximation [15] and change to the rotating
frame. We then obtain the total magnetic field

®B = ®B0 + ®Brf '
©­«
Brf cos(ϕ)
Brf sin(ϕ)
B0 −ω/γ

ª®¬ ' ©­«
Brf cos(ϕ)
Brf sin(ϕ)

0

ª®¬ , (2.3.6)

where ϕ is the phase of the rf-field relative to the precession around ®B0. The z-
component B0 − ω/γ is an expression for the chemical shift and can be neglected
for reasonably large Brf [14]. If we drive the radio frequency field in resonance with the
precession, the phase ϕ thus determines the direction of the effective magnetic field in
the x-y-plane. As we already know, a magnetic field causes a rotation. Hence, the spin
rotates around an effective axis determined by ϕ. In the resting frame of reference, the
axis and the spin precess around the z-axis as well.

Such a rotation by 90◦ is shown in Fig. 2.1. The initial state |↑x〉 = (|↑z〉 + |↓z〉)/
√

2 is

21

2. Theoretical Framework for NMR quantum computing

Time

−
1
2

0

+
1
2

Sp
in

ex
pe

ct
.

va
lu

e
〈S
σ
〉

|↑x 〉

|↑z〉

x

y

z

(a)

|↑x 〉

|↑y〉

|↑z〉

|↓z〉

(b)

Figure 2.1.: Rotation of a spin by 90◦ in a strong homogeneous magnetic field, using a radio-frequency
pulse that is in resonance with the precession frequency. The initial state |↑x 〉 = (|↑〉 + |↓〉)/

√
2

is rotated around the y-axis to the final state |↑〉. (a) Expectation values for the spin in each
of the three directions σ = x , y, z during the rotation. (b) Visualization of the combined
action of constant magnetic field and rf-field in the bloch sphere. In the resting frame, which
is shown here, the Bloch-vector spirals up to the |↑〉 state. In the rotating frame of reference,
which is in resonance with the spin precession, the rotation would look like a constant
rotation in the x − z-plane.

rotated around the y-axis in the rotating frame to reach the final state |↑z〉. In Fig. 2.1a
one can see the expectation values 〈Sσ 〉 for σ = x ,y, z during the time of the rotation. It
is clearly observable that the x- and y-projections are oscillating with a high precession
frequency. Over the period of several revolutions, the state slowly changes towards
the final state |↑z〉. The latter can be seen as the x- and y-projections losing magnitude
and the z projection permanently getting larger. In Fig. 2.1b the same rotation is shown
in the Bloch-sphere representation. The state slowly spirals away from the x-y-plane
towards the north pole which represents the pure state |↑z〉.

2.3.3. Rotations with more spins

If we have two spins that are uncoupled, they are separable for all times. Mathemati-
cally speaking, this means that we can write the state |Ψ〉 of the system as the tensor
product

|Ψ〉 = |ΨA〉 ⊗ |ΨB〉 , (2.3.7)

where |ΨA〉 ∈ HA and |ΨB〉 ∈ HB are states in the sub-Hilbert-spaces of the respective
spins. Another way of looking at separability is to note that the spins are not entangled.
It follows that we can easily adapt Eq. (2.3.5) to the Hilbert space of the two spins,
labeled with A and B, by the tensor products

Rϕ,A(θ) = Rϕ(θ) ⊗ 1 and Rϕ,B(θ) = 1 ⊗ Rϕ(θ) . (2.3.8)

22

2. Theoretical Framework for NMR quantum computing

S

C
Br

C

Br

C

H(2)

C
H(1)

(a)

F(3)

C

F(5)

13C(6)

Fe

CO
H5C5 CO

13C(7)

F(1)

C

F(4)

F(2)

(b)

Figure 2.2.: Two examples of suitable molecules for liquid NMR quantum computing. The atoms of
the qubit nuclei are colored red and labeled with a number in the superscript. (a) (2,3)-
dibromothiophene as proposed by Cory et al. for implementation of a CNOT gate [16]. (b)
A more complex molecule with seven qubits for calculations. This synthetic molecule was
used by Vandersypen et al. to factorize the number 15 using the Shor algorithm [17]. The
two center carbon atoms are 13C isotopes, as the more common 12C has zero nuclear spin.

Mathematically, it is clear how to perform this-sub-Hilbert space rotation, but how
does it work in practice? In order to rotate spins in a combined system individually,
one has to be able to drive individual spins with the radio frequency field but leave
out the other spins. Two concepts are required for that.

The first requirement is the chemical shift. If the spins are in slightly different chemical
environments, then their Zeeman-splitting energies will be differentiated by a tiny shift.
This is the case, for example, in asymmetric molecules like the ones shown in Fig. 2.2.
The hydrogen atoms in Fig. 2.2a have a different set of neighbors, so they are subject
to different chemical potentials. These chemical potentials shift the Zeeman splitting
by a few parts per million [14]. Hence, the two hydrogen atoms are distinguishable
by their precession frequency. Nuclei of different atoms (heteronuclear) are naturally
distinguishable because they have a different magnetic moments.

The second requirement is that we have access monochromatic radio frequency
fields. We can then drive the rotation of only one spin because the two spins have
distinguishable transition energies (chemical shift). This means we can selectively
rotate the spins by a precisely tuned radio frequency, and the rotation is represented
by Eq. (2.3.8). Later, we will loosen up this requirement because pulses of a radio
frequency field with finite length will always contain a bandwidth of frequencies. This
will cause the problem, that spins with similar transition energies will also be driven
to some extend by a pulse that was not intended for them. But for now, let us stick
with the idealization of quantized fields.

23

2. Theoretical Framework for NMR quantum computing

2.3.4. The coupling dance in the Bloch sphere

We will now introduce interaction between the spins in the form of a coupling term
in the Hamiltonian. The two-spin state will then be separated as well as possible by
partially tracing out the respective other subspace. This will lead to a representation
in the Bloch sphere in which we follow the traced-out individual spin states. We have
to keep in mind, though, that the evolution takes place in the full four-dimensional
Hilbert space of the two spins leading to rotations in the two-spin Hilbert space.

We investigate these evolutions for both the Ising and the Heisenberg models. The
Ising model is a good approximation for the spin-spin interaction in NMR experiments
in the weak coupling regime. Weak coupling means that the difference between the
frequencies due to the chemical shift is much larger than the J -coupling strength, i.e.,��� J

2

��� � ���(δA − δB)
ω0

2π

��� , (2.3.9)

where δ are the chemical shifts of spin A and spin B, and ω0 is the Larmor-precession-
frequency of the (homonuclear) spin-pair [9]. If this inequality holds, the dipole-dipole
interaction and the anisotropic part of the J -coupling average out in a liquid NMR
sample due to non-directional inter- and intramolecular motion. The interaction
Hamiltonian is then diagonal in the Sz-basis. The weak-coupling regime can always
be applied for heteronuclear spins-pairs because their precession frequencies differs
greatly.

On the other hand, when the J -coupling and the chemical shift frequency are roughly
of the same magnitude, the off-diagonal elements of the general Hamiltonian do not
vanish. In this strong-coupling regime, the Heisenberg spin model is the better model
for the spin interaction. The strong-coupling regime, and thus the Heisenberg model,
can be applied to homonuclear spins in relatively large molecules that are not as agile
as small molecules.

In both models, the paths of the traced-out subsystems in the Bloch sphere circle
around each other. The paths of the individual subspaces are always dependent on
each other. Thus, one could visualize their behavior as a kind of choreographed dance
in the Bloch sphere.

These rotations are the crucial ingredient for non-trivial two-spin quantum gates.
The non-separable nature of these rotations is essential because they can generate
entanglement between individual spins. We will derive how to construct quantum
gates from these rotations in Chap. 3, where we will make use of the non-separability
of the rotations to form manipulations of spin states that are conditional on other spin
states.

24

2. Theoretical Framework for NMR quantum computing

Ising coupling rotation

The Hamiltonian for the Ising model of two spins is

Ĥ = ĤA + ĤB + J Ŝz,AŜz,B , (2.3.10)

where Ŝz,A and Ŝz,B are the spin operators, and J is the coupling strength. Here ĤA
and ĤB are the local spin Hamiltonians of each spin that arise, for example, due to the
strong homogeneous magnetic field. As described in the last section, these parts of the
Hamiltonian, isolated, lead to free rotations around the axis of the magnetic field in
the time evolution. But what does the coupling term contribute to the time evolution
of the whole system? We calculate the time evolution operator for the interaction term
J Ŝz,AŜz,B in the Sz-basis, obtaining

Û (t) = exp
(
i J Ŝz,AŜz,Bt/h̄

)
= exp

(
i Jt/4 (σz ⊗ 1) · (1 ⊗ σz)

)
= exp

(
i Jt/4 (σz ⊗ σz)

)
= exp

(
i Jt/4

©­­­«
1
−1
−1

1

ª®®®¬
)

= cos
(
Jt/4

)
14 + i sin

(
Jt/4

) ©­­­«
1
−1
−1

1

ª®®®¬
≡ RzAB(αt) ,

(2.3.11)

where α ≡ Jh̄/4. This can be viewed as a rotatio,n as the sinus and cosinus terms
suggest. But what does this operation actually do in the four-dimensional Hilbert
space? If we evaluate this operator matrix for representative values of θ = αt , we find
that

RzAB(0) = 14 , RzAB(180◦) =
1 + i
√

2

©­­­«
1
− i
− i

1

ª®®®¬ , RzAB(360◦) = i
©­­­«
1
−1
−1

1

ª®®®¬ .

(2.3.12)
The operator RzAB(θ) is, in general, not separable into the two subspaces of spins A
and B.

There is no representation like the Bloch sphere for a four-dimensional Hilbert space.
We would need six dimensions to represent the behavior. However, we will separate
the full product space into two single-qubit states by tracing out the rest of the Hilbert
space. For a state |Ψ〉 in the full Hilbert space H = HA ⊗HB, we can then plot the

25

2. Theoretical Framework for NMR quantum computing

traced-out state
|ΨA〉 = TrB |Ψ〉 ∈ HA (2.3.13)

in the Bloch sphere of spin A.

We can now investigate the effect of the operation in Eq. (2.3.11) on the total state,
broken down into two sub-Hilbert-spaces. In Fig. 2.3 this is done for two different
initial states, |↑z〉 ⊗ |↑x〉 = |↑〉 ⊗ (|↑〉 + |↓〉)/

√
2 = (|↑↑〉 + |↑↓〉)

√
2 and |↑x〉 ⊗ (|↑z〉 + |↑z〉)/

√
2.

The operator RzAB(θ) acts as an elliptic rotation of the state of a qubit. That is, both
traced-out substates rotate around an ellipse in their respective Bloch spheres, corre-
sponding to the traced-out sub-Hilbert-space HA or HB. The eccentricity depends on
the z-projection of the other qubits traced-out state. If qubit β ∈ {A,B} is in a projected
state with expectation value Sz

β
= ±1/2, then the other qubit experiences a circular

rotation around the z-axis. For expectation values 0 < Sz
β
< 1/2, the other qubit rotates

on track of an ellipse. For Sz
β
= 0, the "rotation" flattens out to an oscillation on a line

perpendicular to the z-axis. We can already see here the conditional action of this
rotational operator. In Chap. 3 we will learn, why this behavior is essential for creating
a universal set of quantum gates.

In the Bloch sphere representation, it is clear to see why RzAB(θ) is a non-separable
unitary operator. For the general case, 0 < Sz

β
< 1/2, the curve of the projected state

in the Bloch sphere deviates from the surface of the sphere. It can be observed in
Fig. 2.3b. That means that the sub-states are changing to mixed states. Since the full
two-qubit state will stay pure under the action of a unitary operator, if follows that
there is a non-separable action that cannot be resolved by projecting the full state onto
the sub-Hilbert-spaces of the individual qubits.

Heisenberg XXX coupling rotation

So far, we have investigated interaction in the (semi-)classical Ising model. We will
now move on to the more quantum-mechanical case and treat the isotropic Heisenberg
Hamiltonian

Ĥ = ĤA + ĤB + J
®̂SA
®̂SB , (2.3.14)

where, again, the first two terms describe the local Hamiltonians of the respective
spins. Recall that the interaction term can be expressed as the vector product of Pauli
operators:

Ĥc = J
®̂SA
®̂SB = J

(
ŜxAŜxB + ŜyAŜyB + ŜzAŜzB

)
=
J

4

©­­­«
1
−1 2
2 −1

1

ª®®®¬ . (2.3.15)

To derive the evolution of the system under the interaction term, we have to take its

26

2. Theoretical Framework for NMR quantum computing

|↑x 〉

|↑y〉

|↑z〉

|↓z〉

(a) Ising coupling,
|Ψ0〉 = |↑z〉 ⊗ |↑x 〉

|↑x 〉

|↑y〉

|↑z〉

|↓z〉

(b) Ising coupling,
|Ψ0〉 = (|↑z〉 + |↑x 〉)/

√
2 ⊗ |↑x 〉

|↑x 〉

|↑y〉

|↑z〉

|↓z〉

(c) Heisenberg coupling,
|Ψ0〉 = |↑z〉 ⊗ |↑x 〉

|↑x 〉

|↑y〉

|↑z〉

|↓z〉

(d) Heisenberg coupling,
|Ψ0〉 = (|↑z〉 + |↑x 〉)/

√
2 ⊗ |↑x 〉

Figure 2.3.: Action of the coupling rotation (Eq. (2.3.11)) on two different initial states. In the repre-
sentation of separated qubits (red for qubit A, blue for qubit B), the single-qubit states are
rotated on the line of an arc of an ellipse around the z-axis. The eccentricity depends on
the z-projection of the other state. If the z-projection of one qubit is maximal (1/2), then the
other qubit will rotate on a perfect circle on the surface of the Bloch sphere. This is shown
in (a) for the initial state |↑z〉 ⊗ |↑x 〉 = (|↑↑〉 + |↑↓〉)

√
2. The qubit starting in the |↑x 〉 state is

rotated around z with constant radius. In (b), both other cases are shown. If the z-projection
of one qubit (blue) is minimal (0), then the second qubit (red) will oscillate on a straight line
perpendicular to the z-axis. If the z-projection of one qubit (red) is somewhere between 0
and 1/2, then the rotation of the second qubit (blue) will be on an ellipse. From the Bloch
sphere, it can be seen that this evolution is non-separable in the non-extremal cases because
the projected single qubit states evolve over non-pure states (inside of the Bloch sphere).
(c) and (d) show an evolution in the Heisenberg model with the same length and the same
initial states as in (a) and (b). In the Heisenberg model, the Bloch vectors circle around each
other in the shape of an ellipse. The eccentricity is given by the expectation value Sz of the
respective other qubit.

27

2. Theoretical Framework for NMR quantum computing

exponential and form the propagator

ei Ĥct = ei J ®̂SA
®̂SBt = e− i Jt/4

©­­­«
ei Jt/2

cos(Jt/2) i sin(Jt/2)
i sin(Jt/2) cos(Jt/2)

ei Jt/2

ª®®®¬ = RXXZ
AB (Jt) . (2.3.16)

Comparison with Eq. (2.3.11) shows how the propagator changes if we switch from the
Ising to the Heisenberg regime. The structure is no longer diagonal; there are now two
off-diagonal elements. These off-diagonal elements lead to evolution that is no longer
confined to the x-y-plane. In the Heisenberg model, the two Bloch vectors follow a
choreography that forms an ellipse around one common axis. The rotational evolution
is shown in Figs. 2.3c and 2.3d for two different initial states.

If we consider the auxiliary vector |C〉 ≡ (|A〉 + |B〉)/2 that lies in between the starting
vectors |A〉 and |B〉 of the respective subspaces A and B, then this vector |C〉 marks the
center of the ellipse, around which the two subspaces rotate. The eccentricity of the
ellipse depends on the length of the vector |C〉.
The eccentricity is large when the length of the auxiliary vector is small and vice versa.
If the two vectors |A〉 and |B〉 are parallel, then the auxiliary vector has maximum
length (the same as the two vectors), and the path of the two state vectors is a circle. Of
course, when the two vectors and the auxiliary vector are the same, the circle reduces
to a point on the Bloch sphere. Thus, if the two vectors are the same, the propagator is
the identity operator for all times. This is the case when the full system is the tensor
product of two identical states.
On the other hand, when the two initial subspace vectors are antiparallel, then the
eccentricity of the ellipse is maximal. This means that the ellipse has become a straight
line in the Bloch sphere, along which the two traced-out subspace vectors evolve.

Representative propagators at special rotation angles are

RXXX
AB (0) = 14 , RXXX

AB (π/2) =
©­­­«
1 + i

1 i
i 1

1 + i

ª®®®¬ , RXXX
AB (π) =

©­­­«
1

0 1
1 0

1

ª®®®¬ , (2.3.17)

where the overall phase factors were omitted because they are irrelevant for quantum
measurements. We see that the free evolution in the Heisenberg XXX model represents
the swapping of information for the two qubits if Jt = π .

Heisenberg XXZ coupling rotation

If we now assume that the Heisenberg interaction is not isotropic, we then obtain an
extra degree of freedom in the coupling term. First, we investigate the case that the
coupling strength in one of the three spatial coordinates deviates from the two others.

28

2. Theoretical Framework for NMR quantum computing

Without loss of generality, we assume that the z-term of the coupling deviates from
the x- and y-terms by a factor ∆, that is,

Ĥc = J
(
∆ŜzAŜ

z
B +

1
2
(
Ŝ+AŜ

−
B + Ŝ

−
AŜ
−
B
))
=
J

4

©­­­«
∆
−∆ 2
2 −∆

∆

ª®®®¬ , (2.3.18)

with Jz = ∆Jx = ∆Jy and the ladder operators Ŝ± = Ŝx ± i Ŝy . Here, ∆ = 1 represents the
isotropic Heisenberg model. As ∆→∞, we approach the Ising model. Free evolution
under the coupling term in the Heisenberg XXZ model is then given by

ei Ĥct = e− i J∆t
©­­­«
e2 i J∆t

cos(Jt) i sin(Jt)
i sin(Jt) cos(Jt)

e2 i J∆t

ª®®®¬ ≡ RXXZ
AB (Jt) . (2.3.19)

Exemplarily, we can give one special combination of ∆ and Jt that we will use later to
find a sequence for a quantum gate:

RXXZ
AB (π/4,∆ = 2) =

©­­­­«
−1

1√
2

i√
2

i√
2

1√
2
−1

ª®®®®¬
. (2.3.20)

As the final and most complex case, we note that the anisotropy ∆ does not neces-
sarily need to be constant over time. For example, the structure of the molecule and its
environment could change and influence the way two spins interact with each other.
We now want to investigate the case in which the anisotropy ∆ gets larger, starting
from the isotropic Heisenberg model. We assume that the anisotropy increases linearly
as ∆(t) = 1 + t . The Hamiltonian for the coupling then reads

Ĥc(t) = J
(
∆(t)ŜzAŜ

z
B +

1
2
(
Ŝ+AŜ

−
B + Ŝ

−
AŜ
−
B
))
=
J

4

©­­­«
1 + t

−1 − t 2
2 −1 − t

1 + t

ª®®®¬ . (2.3.21)

Solving for the propagator Û (t) generally requires a time-ordered exponential if the
Hamiltonian is time-dependent. However, in the specific case of a linear ramp,
treated here, the Hamiltonians at different times ti commute with each other, namely,
[Ĥc(ti), Ĥc(tj)] = 0 ∀i, j. Because of this, we can omit the time ordering and integrate the

29

2. Theoretical Framework for NMR quantum computing

Hamiltonian directly to yield the propagator

Û (t) = exp
{

i
∫ t

0
dt ′Ĥc(t

′)/h̄
}
'

©­­­­«
ei(t+t

2)/2h̄

cos(t/2h̄) i sin(t/2h̄)
i sin(t/2h̄) cos(t/2h̄)

ei(t+t
2)/2h̄

ª®®®®¬
,

(2.3.22)
where an overall phase factor was discarded because it has no relevance for quantum
measurements. We will not take this case into account in the upcoming search for
quantum gates, but mention it to inspire future work.

This concludes the short introduction into the theoretical aspects on which the work
in the upcoming chapters is based. While we will neither develop the spin interaction
models nor the quantum information theory any further, the theory of NMR quantum
operations will be extended in the next chapter. We will then be at a point where we
will be able to execute quantum computations on the architecture of a molecule inside
and NMR experiment, at least, theoretically.

30

3. Forming quantum gates from
NMR qubit rotations

We will now build on the theoretical introduction of the Chap. 2. The ideas of nuclear
magnetic resonance will be put to use, not in an imaging process, but to manipulate
qubits. We will see that we can choose the manipulations so that we can implement
quantum gate operations. By combining these manipulations to form a sequence of
pulses, we will be able to form more complex gates. Finally, we will show that these
gates are sufficient to carry out universal quantum computing on an NMR architecture,
the quantum gates just need to form a universal set. A key element of such a set is the
CNOT gate. Our goal will thus be to search for NMR pulse sequences that have the
effect of a CNOT gate on an arbitrary initial state. In this work, our primary goal will
be to generalize these sequences from the Ising to the Heisenberg spin model. While
there has been extensive work on sequences based on the Ising interaction, we know
of no known pulse sequences in the literature, that implement a CNOT gate using a
Heisenberg interaction between the two spin qubits.

3.1. Elementary single qubit gates

As a first step to realize quantum computations by applying NMR methods, we will
limit our focus to just one qubit. This qubit would typically be one of the nuclear spins
of a molecules in an NMR sample.

As shown in Chap. 2, if we apply a magnetic field to quantum spins, they will
precess around the axis of the applied B-field. We can use this rotation to implement
single qubit gates if we apply an rf-pulse for the appropriately chosen period of time.
By adjusting the time of the pulse, we can rotate the spin by a set angle θ .

The NOT-gate on a singe qubit is represented by the Pauli matrix σx . It is straight-
forward to prove that the NOT-gate is a rotation around the x-axis by an angle of π .
We compute it by inserting θ = π into Eq. (2.3.5), the operation for rotations around
the x-axis. This means, that in order to negate a qubit, one has to apply a magnetic
field in the x-direction for the time

τ =
θ

B0γ
, (3.1.1)

31

3. Forming quantum gates from NMR qubit rotations

so that the state rotates by θ = π during that time. Then, up to an irrelevant global
phase factor i, the operation is the NOT-gate

UNOT = Rx (π) = i
(
0 1
1 0

)
. (3.1.2)

Similarly, one can define the Y and Z gates (Pauli matrices) for rotations around the y-
and z-axes, respectively, as

UY = Ry(π) , UZ = Rz(π) . (3.1.3)

The generalization of the Z gate is the phase gate, often denoted by P . It is just the
rotation

UP = Rz(θ) =

(
1 0
0 eiθ

)
. (3.1.4)

It adds a set relative phase eiθ to the state.

The NOT gate and its y and z counterparts are operations that we also know from
classical computation. We will now consider a quantum gate that has no classical
counterpart. The Hadamard gate can be viewed as the single-qubit version of the
quantum Fourier transform. Its action is equivalent to the basis transform from the
Sz to the Sx basis. One way of writing the matrix representation is H = (UX +UZ)/

√
2.

In this representation, it is the sum of two rotations around two cartesian axes, but
we can instead rotate around the median axis, i.e., an axis between the x−axis and the
z-axis. This axis has the direction ®ϕ = (1, 0, 1)/

√
2 in cartesian coordinates. Hence, the

Hadamard gate can be implemented by the rotation

UH = Rϕ̂(π) =
1
√

2

(
1 1
1 −1

)
, (3.1.5)

where the rotation axis ϕ̂ = (1, 0, 1)/
√

2 is defined by the polar and azimuthal angles
(θ ,φ) = (π/4, 0◦).

We assume that rf-fields are the source of the magnetic field that rotates the spin. If
we take its mean field vector to be perpendicular to the strong homogeneous B-field,
then the magnetic field vectors will be in the x-y-plane. Because the axis of rotation is
confined to a plane in this image, we need to apply a sequence of rotations instead of
the single rotation around a tilted axis ϕ̂ that does not necessarily lie in that plane. The
sequence for the Hadamard gate can then be formed as

UH = Rx (π)Ry(−π/2) =
(
0 1
1 0

)
·

1
√

2

(
1 1
−1 1

)
=

1
√

2

(
1 1
1 −1

)
. (3.1.6)

However, finding a sequence that is equivalent to some arbitrary quantum gate is,
in general, not easy.This searching difficulty is a clear hint that its problem probably
lies in the complexity class NP, which we have treated in Sec. 2.2.1. We will come to

32

3. Forming quantum gates from NMR qubit rotations

more complex sequence searches later and will discuss the methods of finding such
sequences in Chap. 4.

3.2. Two-qubit gates

One-qubit gates alone are obviously not sufficient to form a universal set of quantum
gates. In order to do this, we need to find at least one gate, that acts on two or more
qubits. The controlled NOT (CNOT) gate the canonical example of such a two-qubit
gate. We will show that we can implement the CNOT gate from rotations of individual
qubits and from a coupling rotation.

As mentioned in Chap. 2, we can investigate implementing two-qubit rotations using
an Ising or a Heisenberg interaction. Which one is experimentally relevant, depends
on the characteristics of the systems spin-arrangement and on the magnitudes of the
different interactions. In the following, we will study pulse sequences to implement
two-qubit gates for both of the aforementioned interaction types. We will begin with
the Ising interaction. We can then build on these results to search for gates in the case
of the Heisenberg interaction.

We will learn that the Ising and Heisenberg models also differ in the way in which
they can be used for quantum computation, that is, the pulse sequences for quantum
gates are, in general, not the same for the two models. For the Ising interaction, it is
rather easy to find a sequence of rotational pulses that implements the CNOT gate.
On the other hand, for the Heisenberg interaction, we will be able to implement the
SWAP gate as a single evolution of the two-qubit coupling.

3.2.1. Ising model

As shown in Chap. 2, the Ising interaction between two quantum spins A and B has
the form

Ĥc = J Ŝ
z
AŜ

z
B , (3.2.1)

where J is the coupling strength, and we choose the z-axis as our preferred axis of spin
angular momentum without loss of generality. We will confine ourselves to a system
of two spins here for the sake of simplicity. Additional qubits can be treated in an
analog manner; one just needs to enlarge the Hilbert space to take into account the
additional spin degrees of freedom.

We now want to find a sequence of rotations that allows us to apply the CNOT
operation to an arbitrary input state. For this, we will incorporate two different types
of evolution: first, the single qubit-gates that we have covered in the last section, and
second, the interaction evolution that arises from Eq. (3.2.1). The propagation rotation

33

3. Forming quantum gates from NMR qubit rotations

for the Ising interaction in matrix form is

RzAB(Jt/h̄) = eiαĤc/h̄ =

©­­­«
ei Jt/2h̄

e− i Jt/2h̄

e− i Jt/2h̄

ei Jt/2h̄

ª®®®¬ , (3.2.2)

where t is the duration time of the pulse, and J is the interaction strength.

We do make a few simplifying assumptions here. Firstly, we assume that either
a single qubit manipulation or an interaction evolution takes place, but never both
at the same time. This is actually not strictly true - we cannot just switch off the
interaction when we want to manipulate single spins. However, the rotation speed
due to interaction is, in general, much slower than for singe-qubit rotations. Hence,
we may assume that, during the time of a single-qubit operation, the interaction does
not cause a significant amount of decoherence. In addition, we assume that the shape
of the pulse amplitudes is rectangular. That is, we switch the magnetic fields on and
off in infinitesimal time. We will discuss these simplifications further in Chap. 5.

CNOT and CPHASE gate

Taking into account the aforementioned restriction, one known sequence for a CNOT
gate is given by

UCNOT = RyB(−π/2)RzA(−π/2)RzB(−π/2)RzAB(π)RyB(π/2) . (3.2.3)

This sequence for the CNOT gate with the Ising interaction can be found in most of
the papers on NMR quantum computing, for example in Ref. [18]. We can calculate
the effect of this expression by applying the matrix representations of the respective
rotations. Note that, as we are working with operators, the first pulses applied
chronologically are on the right side of the sequence. This means that, in Eq. (3.2.3),

34

3. Forming quantum gates from NMR qubit rotations

the first action on the state is RyB(π/2). To apply the sequence, we compute

UCNOT = ξ
©­­­«
1 −1
1 1

1 −1
1 1

ª®®®¬
©­­­«
1 − i

1 − i
1 + i

1 + i

ª®®®¬
©­­­«
1 − i

1 + i
1 − i

1 + i

ª®®®¬
·

©­­­«
1 + i

1 − i
1 − i

1 + i

ª®®®¬
©­­­«

1 1
−1 1

1 1
−1 1

ª®®®¬
= ξ

©­­­«
1

1
0 1
1 0

ª®®®¬ ,

(3.2.4)

which is the CNOT gate up to an irrelevant global phase factor ξ = (1 − i)/
√

2 [14]. The
sequence is a rotation of the target bit B, followed by a free evolution of the coupled
spins and then three consecutive rotations of the target qubit, the control qubit and the
target qubit, respectively. There is no such representation like the Bloch sphere for a
four-dimensional Hilbert space, but we can still trace out and plot the directions of
the two spins over the course of the sequence. In Fig. 3.1, the initial state |↓↓〉 = |11〉 is
transformed to the final state |↓↑〉 = |10〉 via the CNOT gate. For this particular initial
state, spin A does not change at all.

Related to the CNOT gate is the controlled Z gate, which applies a phase flip to the
second qubit if and only if the first qubit value is 1. The CZ gate can be implemented
by changing the first and last operations of the CNOT gate to be z-axis- rather than
y-axis-rotations. The sequence then reads

UCZ = RzB(−π/2)RzA(−π/2)RzB(−π/2)RzAB(π)RzB(π/2) . (3.2.5)

By adjusting the time of interaction-only evolution, we can also implement a more
general controlled-phase gate of the CZ-gate. That is, we are not limited to the full
symmetric phase flip. The sequence for the controlled phase gate (CP) then reads

UCP = RzB(−π/2)RzA(−π/2)RzB(−π/2)RzAB(α)RzB(π/2) , (3.2.6)

where the angle α parameterizes the phase applied, and its matrix representation is

UCP =

©­­­«
1

1
1

eiα/2

ª®®®¬ . (3.2.7)

35

3. Forming quantum gates from NMR qubit rotations

+
1
2

0

−
1
2

Sp
in

ex
pe

ct
at

io
n

va
lu

e
〈S
σ

A
〉

RzAB(180◦) RzA(−90◦)

Spin A

x

y

z

t0 t1 t2 t3 t4 t5

Time

+
1
2

0

−
1
2

Sp
in

ex
pe

ct
at

io
n

va
lu

e
〈S
σ

B
〉

RyB(90◦)

RzAB(180◦) RzB(−90◦) RyB(−90◦)

Spin B

Figure 3.1.: Action of the sequence for the CNOT gate on the initial state |↓↓〉. Shown are the expectation
values for all spatial projections Sσ , σ = x ,y, z, for the two qubits over time. At the end of
the sequence, the second qubit has been flipped so that the product states reads |↓↑〉.

We already know from Chap. 2 that the CNOT gate, combined with all single-qubit
rotations, forms a universal set of quantum gates. This means that, with this sequence
and the implementations of the single qubit gates described in the last subsection, we
can form all possible unitary gates on two qubits. This set is also universal for larger
numbers of qubits. Interactions that extend further than the nearest neighbor can be
simulated by sequences of pairwise two-qubit operations on neighboring sites.

We have noted in Sec. 3.1 that single-qubit rotations cannot form a universal set
of quantum gates because they cannot create or annihilate entanglement for two or
more qubits. Now we will check this requirement for the CNOT gate, as made up of
the operations in Eq. (3.2.3). In Fig. 3.2, the effect of this sequence is shown for the
maximally entangled initial state |Ψ0〉 = |↑↓〉 + |↓↑〉. Only the evolution of the spin B is
shown because the spin A does not change during this operation. This can clearly be
observed in Fig. 3.1. The total state is changed to the final state |↑↓〉 + |↓↓〉 = |↑x〉 ⊗ |↓z〉.

36

3. Forming quantum gates from NMR qubit rotations

−
1
2

0

1
2

a) Spin B

x
y
z

0

log(2)

b) Entropy

Von Neumann entropy
Entanglement entropy

Figure 3.2.: Entropy evolution during the CNOT pulse sequence. The maximally entangled initial state
|Ψ0〉 = |↑↓〉 + |↓↑〉 is changed to the non-entangled final state |↑↓〉 + |↓↓〉 = |↑x 〉 ⊗ |↓z〉. a)
Spin expectation values during the sequence. Only the expectation values of the spatial
components of the second spin are shown here because the first spin only acts as control
qubit. b) Entropy evolution during the sequence. The von Neumann entropy vanishes for
all time; thus, the state remains pure. However, the entanglement entropy changes. Hence,
the interaction between the two spins can create and annihilate entanglement.

The first thing we note is that the Von Neumann entropy

SvN = −Tr
(
ρ log ρ

)
, (3.2.8)

where ρ is the density operator of the two-spin system, vanishes over the full time
of the CNOT operation because the initial state is pure (with ρ = |Ψ0〉 〈Ψ0 |) and only
unitary operations are applied. Hence, the state remains pure over the full length of
the sequence.

The second observation is that the entanglement entropy of the system,

SE = −Tr
(
ρA log ρA

)
= −Tr

(
ρB log ρB

)
, (3.2.9)

which is the Von Neumann entropy of a traced-out single-qubit state, is not constant.

37

3. Forming quantum gates from NMR qubit rotations

Here ρA = TrB ρ. The entanglement entropy is a measurement for the entanglement
between subsystems A and B. For two coupled two-level subsystems, it can range
from 0 to log 2, where the latter value is for maximal entanglement. Indeed, we
observe in Fig. 3.2 that the entanglement entropy of the initial state is maximal. During
the interaction pulse, we see that the entropy oscillates up and down and ends up
in a non-entangled final state. We clearly observe that the inter-qubit interaction is
responsible for creating and annihilating entanglement. So we see that this was the
missing ingredient needed for universal quantum computing.

SWAP gate

Another useful gate is the SWAP gate, which switches the information of the two
qubits. The gate can be constructed as

'
,

where the left side represents the SWAP gate, and the right side consists of three CNOT
gates with alternating orientation [19]. It is easy to prove via matrix multiplication that

USWAP = U
AB
CNOTU

BA
CNOTU

AB
CNOT =

©­­­«
1

0 1
1 0

1

ª®®®¬ , (3.2.10)

where the superscript of UCNOT denotes which qubit is the control bit. The first letter
represents the control qubit and the second letter represents the target qubit. We now
need to translate this into the machine language of NMR quantum computing, which
are rotations caused by magnetic fields. The straightforward way to do this would be
to apply the definition of the sequence for CNOT (Eq. (3.2.3)) three times, resulting in

USWAP =RyB(−π/2)RzA(−π/2)RzB(−π/2)RzAB(π)RyB(π/2)
·RyA(−π/2)RzB(−π/2)RzA(−π/2)RzAB(π)RyA(π/2)
·RyB(−π/2)RzA(−π/2)RzB(−π/2)RzAB(π)RyB(π/2) .

(3.2.11)

This, however, is a long sequence of pulses for a two-qubit gate. After all, the CNOT
gate only needed one third as many pulses. The question arises: can we implement
the SWAP gate with fewer pulses?

In general, this question is the quantum analog of the brachistochrone problem of
classical analytical mechanics [20]. We are given an initial state |Ψi〉 and a final state
|Ψf〉. The task is to find a Hamiltonian operator Ĥ that fulfills two conditions: a) The
time evolution of |Ψi〉 will yield |Ψf〉 after some time t and b) the time t is minimal in

38

3. Forming quantum gates from NMR qubit rotations

−
1
2

0

+
1
2

Sp
in

ex
pe

ct
at

io
n

va
lu

e
〈S
σ

B
〉

Spin A

x

y

z

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Time

−
1
2

0

+
1
2

Sp
in

ex
pe

ct
at

io
n

va
lu

e
〈S
σ

B
〉

Spin B

x

y

z

Figure 3.3.: Action of the SWAP gate pulse sequence Eq. (3.2.12) on the initial state |↑y〉 ⊗ |↓x 〉. Shown
are the expectation values for all spatial projections Sσ , (σ ∈ {x ,y, z}), for the two qubits
over time. At the end of the sequence, the information on the two qubits is swapped and
they form the state |↓x 〉 ⊗ |↑y〉.

the sense that there exists no other Hamiltonian that can connect the two states in less
time. We will discuss quantum optimal control later in Chap. 5 as a method for finding
NMR pulse sequences.

However, there is an easy way of shortening longer sequences. The method is to
sort the pulses so that two pulses that correspond to the same direction and subspace
end up next to each other. We can then join these two operations by carrying out just
one pulse with a longer or shorter application time. In order to sort these sequences,
we have to compute the pairwise commutators of the matrix representation of single
pulses. We can swap two matrices only if they commute. Lee et al. [21] automate this
procedure and show that Eq. (3.2.11) can be reduced to the eleven-pulse sequence

USWAP =RyB(−π/2)RzB(π/2)RzA(π/2)RzAB(π)RyB(π/2)
·RyA(−π/2)RzAB(π)RxA(π/2)
·RxB(−π/2)RzAB(π)RyB(π/2) .

(3.2.12)

39

3. Forming quantum gates from NMR qubit rotations

They find that, for a sequence of this length, this is not the unique solution. Although
this is the shortest-length sequence that they could find, they are not able to prove
that none exists. Both the quantum optimal control variational ansatz and the simpler
method based on commutators are further discussed in Chap. 4 and Chap. 5. The
effect of the given SWAP pulse sequence in Eq. (3.2.12) is shown in Fig. 3.3 for the
initial state

|Ψi〉 = |↑y〉 ⊗ |↓x〉 = |↑↑〉 − |↑↓〉 + i |↓↑〉 − i |↓↓〉 . (3.2.13)

If one traces the expectation values for the three spatial spin projections through the
sequence, one indeed finds that the final state

|Ψf〉 = |↓x〉 ⊗ |↑y〉 = |↑↑〉 + i |↑↓〉 − |↓↑〉 − i |↓↓〉 (3.2.14)

is the initial state with the two qubits swapped, just as expected.

3.2.2. Heisenberg model

Since the Ising interaction is only a limit of the Heisenberg interaction between spins,
we will now try to generalize qubit operations to the more general interaction. When
three spatial components in the spin-spin interaction are included, the pulse sequences
derived in Sec. 3.2.1 no longer hold. Thus, we have to develop a new approach to
implement quantum gates with Heisenberg interaction via NMR control techniques.
The first and simplest interaction model will be the isotropic Heisenberg interaction.
Later, we will treat the more general case including anisotropy.

We remark here that the sequences and pulses based on the Ising interaction are
well known and are documented by a number of authors. However, to the knowledge
of this works author, no one has yet generalized NMR quantum computing pulse
sequences to the Heisenberg interaction or any other, more general, spin interaction.
Thus, this will be the central subject of my thesis. The remaining chapters will concen-
trate on the methods and ideas behind developing NMR quantum computing with a
Heisenberg spin-spin interaction.

Isotropic Heisenberg model

The isotropic Heisenberg model interaction for two spins has the form

Ĥc = J
®̂SA
®̂SB = J

(
ŜxAŜ

x
B + Ŝ

y
AŜ

y
B + Ŝ

z
AŜ

z
B

)
, (3.2.15)

40

3. Forming quantum gates from NMR qubit rotations

where J is the coupling strength as in Chap. 2. It was shown that the evolution of a
two-spin system under this coupling Hamiltonian can be described by the propagator

RXXX
AB (Jt/h̄) = ei Ĥct/h̄ = e− i Jt/4h̄

©­­­«
ei Jt/2h̄

cos(Jt/2h̄) i sin(Jt/2h̄)
i sin(Jt/2h̄) cos(Jt/2h̄)

ei Jt/2h̄

ª®®®¬ . (3.2.16)

We can omit the overall phase factor e− iωt/4 because it has no physical consequences.
We can see immediately that, for Jt/h̄ = π , this matrix is exactly the SWAP gate

RXXX
AB (π) = USWAP =

©­­­«
1

0 1
1 0

1

ª®®®¬ , (3.2.17)

where we have again omitted an overall phase factor eiπ/2 = i on the right side. It is
very convenient that we only need to let the two-spin system freely evolve for a time t =
πh̄/J to implement the SWAP gate. Remember that it took eleven pulses to implement
the same gate using the Ising interaction. Thus, using the Heisenberg interaction looks
very promising at first sight. However, we will soon realize that things are not as
simple as they seem at first sight, as motivated by the simple implementation of the
SWAP gate.

The SWAP gate, alone or combined with single qubit rotations, does not form a
universal set of gates for quantum computing. This is easy to see as neither the SWAP
gate nor single qubit rotations can create entanglement. We have seen in the Sec. 3.1,
that this is a crucial property of a universal set of quantum gates. Thus, the SWAP gate
is not sufficient. While it is trivial to construct the SWAP gate from three CNOT gates,
as shown in Eq. (3.2.10), the inverse operation is not possible. Therefore, we have to
search for a way to find a universal set of quantum gates that can be implemented by
NMR pulse sequences using the Heisenberg interaction.

As mentioned before, the search for such a sequence is a very demanding problem.
Considering the large number of degrees of freedom, the space of possible sequences
increases drastically with the length of the sequence. Even if we restrict the search
to discrete angles of rotation, as seen in Eq. (3.2.3), the possibilities still grow quickly
with the length. Imagine that we limit the rotation angles to ±π and ±π/2. Even then,
for a five-pulse sequence, there are 1.5 million different sequences. For an eight-pulse
sequence, this rises to 20 million. Realizing that, in order to check a sequence for
desired properties, we have to calculate the product of multiple matrices for each
sequence, this amounts to a large amount of effort. We will discuss methods for finding
certain sequences in Chap. 4.

For the time being, it shall just be noted, that I, the author of this work, was not
successful in finding any sequence of length eight or lower that implements the CNOT

41

3. Forming quantum gates from NMR qubit rotations

gate using the Heisenberg interaction. This search was limited to the above-mentioned
discrete angles. Therefore, it cannot be concluded that no such sequences in that
range of length exist. It cannot be ruled out that there might be a sequence with odd
combinations of angles that represents the CNOT gate, or at least some operation that
is sufficiently close to it.

The set of CNOT and single-qubit gates is not the only universal set of quantum
gates in the two-qubit regime. As we have already found, implementing the SWAP
gate is quite trivial using the Heisenberg interaction. It is thus natural to search for a
supplemental gate that can enlarge the set to a universal set. Ramelow et al. [22] show
in their work that there is a set of gates called matchgates that form a universal set of
quantum gates if combined with the SWAP gate. Matchgates are two-qubit unitary
transformations

M =
©­­­«
a11 0 0 a12
0 b11 b12 0
0 b21 b22 0
a21 0 0 a22

ª®®®¬ , (3.2.18)

where the singe-qubit unitary transformations

A =

(
a11 a12
a21 a22

)
and B =

(
b11 b12
b21 b22

)
(3.2.19)

are themselves in U(2) and obey detA = detB. These sub-matrices A and B act on the
even- and odd-parity subspaces, respectively. As with the CNOT gate, I, the author,
was not successful in finding NMR sequences using the Heisenberg interaction that
can simulate the full set of matchgates.

The failure in finding working pulse sequences raises the suspicion that none might
exist at all. These thoughts will be discussed in Chap. 5. One idea is to examine
the symmetry that the Ising and Heisenberg interactions each obey. The continuous
rotational symmetry of the isotropic Heisenberg interaction might be the reason for
not being able to construct the aforementioned gates. One idea is thus to examine
using an interaction that breaks this symmetry.

XXZ interaction

Taking one step away from an isotropic interaction, we will first take one direction
of the spin interaction to deviate from the other two directions in strength. From
Eq. (2.3.18) we recall the Heisenberg XXZ coupling Hamiltonian for two spins,

Ĥc = J
(
∆ŜzAŜ

z
B +

1
2
(
Ŝ+AŜ

−
B + Ŝ

−
AŜ
−
B
))
=
J

4

©­­­«
∆
−∆ 2
2 −∆

∆

ª®®®¬ , (3.2.20)

42

3. Forming quantum gates from NMR qubit rotations

where ∆ parameterizes the anisotropy. The coupling rotation propagator is then

RXXZ
AB (Jt/h̄) =

©­­­«
e2 i J∆t/h̄

cos(Jt/h̄) i sin(Jt/h̄)
i sin(Jt/h̄) cos(Jt/h̄)

e2 i J∆t/h̄

ª®®®¬ , (3.2.21)

where we have again omitted an overall phase factor because it has no physical
relevance. If we compare Eq. (3.2.21) to Eq. (3.2.16), we see that we now have an extra
degree of freedom in the first and last diagonal entries. We can interpret the anisotropy
∆ as a factor that shifts the even parity subspace relative to the odd parity subspace.
We remember that this was one of the features of the matchgates in Eq. (3.2.18).

Indeed, by choosing the anisotropy to be ∆ = 2, it is possible to find a sequence
for the CNOT gate that only uses single qubit rotations and the XXZ rotation. Here
∆ = 2 means that the z components of the spin interact twice as strongly as the other
components. In some sense, this is an interaction intermediate between the Ising
model and the isotropic Heisenberg model. The sequence found for two qubits reads

UCNOT = RxB(π/2)R∆=2
AB (π/2)RyA(π/2)RzB(π/2)R∆=2

AB (−π/2)RzA(−π/2) . (3.2.22)

The matrix representation is calculated just as in Eq. (3.2.4). We notice several dif-
ferences to the Ising sequence of the CNOT in Eq. (3.2.3). First, this sequence needs
six pulses. It is not possible to construct a sequence of less than six pulses if we only
include the aforementioned discrete rotation angles. Secondly, we need to apply the
interaction rotation twice. Again, it is not possible to reduce it to fewer interaction
pulses. It is interesting to note that, for ∆ = 2, it is also not possible to find a sequence
for the CNOT gate with seven or eight pulses that makes use of only one coupling
rotation pulse.

The finding of this sequence shows that it is indeed possible to have a universal
set of quantum gates, implemented as NMR control sequences with a generalized
Heisenberg interaction. Whether or not it is possible to find such a set of sequences in
the isotropic case remains unclear. This will be discussed more extensively in Chap. 5.

As a side note, in the search for a CNOT sequence in the isotropic model, a sequence
using a mixture of the isotropic and anisotropic interactions was found. Namely, the
sequence

UCNOT = RyB(−π/2)R∆=2
AB (π/2)R

∆=1
AB (π/2)RyB(π/2)RzA(π/2)RxB(π/2) (3.2.23)

uses one isotropic interaction and one anisotropic one with ∆ = 2. The question arises,
if this combination is relevant for real physical systems. After all, by having two
different interactions, we assume that the systems environment has changed from
one interaction pulse to the next. However, this is actually something that can be
realized by, for example, manipulating a lattice structure externally. Note here that the

43

3. Forming quantum gates from NMR qubit rotations

quench-like sequence R∆=2
AB (π/2)R

∆=1
AB (π/2) does not have the same effect as gradually

increasing the anisotropy like in Eq. (2.3.21).

3.3. Universal three-qubit-gate

Having found sequences for the implementation of a universal set of quantum gates
with two qubit operations, we will now take one step further and investigate three
qubit operations to close out this chapter.

In contrast to classical computing, there is no universal two-qubit quantum gate.
This means that a universal set of gates that is capable of all quantum computations on
two qubits has to have more than one member. An example of a universal set of gates
for two qubits is the set of the CNOT gate combined with the single qubit rotations.

There is, however, a universal three-qubit quantum gate. It forms a universal
set consisting of just one member: the Toffoli gate, which can also be described as a
controlled-controlled-NOT-gate (CCNOT). It flips qubit C if and only if both qubits A
and B are in state 1. One can implement any quantum circuit using networks of the
Toffoli gate. The Toffoli gate can be written in terms of two and one qubit gates as [23]

A

B '

C .Ry(π/2) Ry(π/2) Ry(−π/2) Ry(−π/2)

It requires only CNOT gates and single-qubit rotations Ry(θ). The sequence of pulses
can, of course, be assembled by simply concatenating the single-qubit and two-qubit
sequences of the respective gates. However, Lee et al. [21] show that for the Ising
interaction, the sequence can be reduced to

UTOFF =RzA(−π/4)RzB(−π/4)RzAB(π/2)RyC(π/2)
·RzC(π/4)RzAC(−π/2)RzBC(−π/2)RyC(π/2)RzAC(π/2)
·RxC(π/2)RzBC(−π)RxC(−π/2)RzAC(−π)

(3.3.1)

using only 13 rotations. The effect of this sequence on the initial state |↓↓↑〉 is depicted
in Fig. 3.4. After the sequence is finished, the last qubit ends up in the opposite state
because both the first and the second qubit initially were in the 1 state (|↓↓〉AB).

For the XXZ interaction with ∆ = 2, it is easy to assemble the sequence for the Toffoli
gate by combining sequences for the CNOT gate with single qubit rotations.

To summarize, we have seen that it is fairly easy to devise a universal set of quantum
gates using NMR control techniques using the Ising interaction. In particular, the key

44

3. Forming quantum gates from NMR qubit rotations

−
1
2

0

+
1
2

〈S
σ

A
〉

Spin A

x

y

z

−
1
2

0

+
1
2

〈S
σ

B
〉

Spin B

x

y

z

Time
−

1
2

0

+
1
2

〈S
σ

C
〉

Spin C

x

y

z

Figure 3.4.: Evolution of the expectation values during the sequence of the Toffoli-gate. The |↓↓↑〉 initial
state is rotated to |↓↓↓〉 because both the first and the second qubit are in the state 1 (|↓↓〉AB).

element of the set, the CNOT gate, can be encoded by five NMR pulses, one of them
an evolution due to the spin-spin interaction.
For the isotropic Heisenberg model, I, the author, have not found a pulse sequence,
either for the CNOT gate or for matchgates. It remains unclear if symmetry or some
other property excludes such a sequence.
For the anisotropic Heisenberg interaction, however, we have seen that a pulse se-
quence that implements the CNOT gate exists. In combination with single-qubit
rotations, this forms a universal set of quantum gates. The generalized Heisenberg
interaction can thus be used to implement universal quantum computing. In Chap. 4,
we will discuss in detail the methods that were used to obtain these results. The results
themselves will be discussed in Chap. 5.

45

4. Methods

In the last chapter, we have found that we can implement quantum gates using NMR
pulse sequences. In addition, we have shown that universal quantum computing is
possible within this scheme. However, a universal set of quantum gates was only found
for the Ising and the anisotropic Heisenberg interaction. While the pulse sequences
for the Ising model can be found in the literature, in this chapter, we will discuss
the algorithms that I developed for finding analogous sequences for the Heisenberg
interaction.

Before we come to the algorithms, we will briefly cover the methods used to visualize
the propagation of the quantum states. This was done with the QuTiP Python library
[24], which offers a convenient framework for quantum calculations. The program
uses an ordinary differential equation solver to calculate the time evolution of quantum
states.

We will then discuss my approach to finding possible NMR pulse sequences to
implement quantum gates. First, we will have an introduction by covering a very
simple and general algorithm that searches though all possible sequences. This is not
very efficient but well-suited to illustrate the general idea of the search.

Finally, we will learn about the optimizations, that I have added to the base algo-
rithm. These optimizations include both algorithmic and numeric improvements. On
the one hand, the optimized algorithm does not have to carry out all matrix multipli-
cations, the most costly part of the program. On the other hand, fast data structures
such as hash tables have been implemented. Finally, the full method has been adapted
to utilize multi-threading. Multi-threading is not natively supported by Python, but
there are workarounds to nevertheless use its advantages.

In the next chapter, an alternative approach to these tasks is mentioned. This highly
advanced technique would however have far exceeded the scope of this thesis, so it
was not implemented here.

4.1. Propagation and visualization of quantum
systems using QuTiP

The visualization of the effect of NMR pulses on quantum states is a key element
of understanding how they might be used to form quantum gates. In particular, if
we know what the effect of a quantum gate such as CNOT is, we can try to reverse-

46

4. Methods

engineer its code to form NMR pulse sequences. If we also know how each pulse
changes the quantum state, we can then try to find the desired sequence by combining
pulses in a visualization scheme such as the Bloch sphere. The Bloch sphere is a
three-dimensional representation of a spin and is much more intuitively accessible
than a matrix representation.

For the visualizations of quantum systems in this thesis (e.g., Fig. 3.1), I have chosen
the Python module QuTiP, which provides a complex environment for the simulation
of quantum systems [24]. QuTiP is an open-source framework that has proven its
versatility in many fields of quantum mechanics. In particular, simulation of quantum
computing and plotting in the Bloch sphere is what it was mainly used it for here.

The main task was to visualize how the Hamiltonian of a certain NMR pulse or
pulse sequence propagates an arbitrary quantum state. The computationally difficult
problem in simulating quantum objects is solving the Schrödinger equation

d
dt
|Ψ(t)〉 = i Ĥ |Ψ(t)〉 . (4.1.1)

The Schrödinger equation is an ordinary differential equation (ODE). It is thus natural
that QuTiP uses a long-established ODE solver to find the time evolution of quantum
states. The QuTiP Schrödinger equation solver qutip.sesolve() calls the SciPy
generic ODE solver scipy.integrate.ode() [25]. The latter uses the C-method
zvode, which is the complex valued version of the method vode. Essentially, it all boils
down to vode, which is a solver that uses variable-coefficient Adams-Moulton and
backward differentiation formula methods in Nordsieck form to find the evolution
of the state [26]. We will not discuss the intrinsic workings of the QuTiP module any
further because it is only peripherally relevant to the key elements of this thesis.

A convenient way of tracking the evolution of a spin quantum state, as described in
Chap. 2, is to plot the expectation values of hypothetical measurements along all spin
axes. The brute-force method would be to compute the evolved state for all of a set
number of time steps. Then one could compute the expectation values of this state
along all axes. However, this is very costly computationally. Hence, the time evolution
method qutip.sesolve() only computes the expectation values and not the states,
as they are not required for visualization.

The second great feature of QuTiP is that one can directly take the results from
the Schrödinger equation solver and feed them to another method, for example, one
that plots them in a Bloch sphere representation. The data can then be visualized as
Bloch vectors or points inside the sphere. This Bloch sphere plotting was extremely
helpful for understanding the action of both the Ising and the Heisenberg interactions
propagation, as depicted in Fig. 2.3.

While the QuTiP module is very versatile and can be used for many problems in
quantum mechanics, I chose not to use it to implement the search algorithm in this
thesis. The main reason for this is that, because of its versatility, QuTiP uses a lot

47

4. Methods

Sequence calculator

Compute sequence matrix.
Is it equivalent to CNOT?

Sequence generator

Outputs all possible sequences.

Found sequences
Bin

Rejected sequencesyes no

Figure 4.1.: Simplest idea of the algorithm to find CNOT sequences. A python generator generates an
encoding of every possible sequence one by one. The encoding is then transformed into the
matrix representation via multiple matrix multiplication. If the matrix is the CNOT gate,
then the sequence is saved under "found sequences".

of data overhead to represent quantum states and operators. In order to search as
many possible NMR sequences as possible, I used slimmer built-in methods of Python,
which are more efficient in both time and space. The disadvantage is a less intuitive
representation of the physics within the program.

4.2. The search for quantum gates in terms of NMR
pulse sequences

We will now discuss how the new NMR pulse sequences in Chap. 3 were found. For
that, we will walk through a series of steps that check whether or not a given sequence
has the desired properties. A very simple summary of the algorithm is given in Fig. 4.1.
The upper method encodes all possible sequences in a way that is easy to process. The
sequence encoding is then translated to a matrix representation using multiple matrix
multiplication. The resulting matrix is the operator that represents the full sequence of
NMR pulses. It is saved if and only if it fulfills the requirement of being equivalent to
the CNOT gate. The method was completely analogous for finding matchgates.

In this simplest version of the search algorithm, the execution of the matrix multipli-
cations takes over 99% of the computing time. Although it is only a multiplication of
up to nine 4×4-matrices, the sheer number of possible sequences makes this part very
expensive. It is thus natural to search for ways to avoid having to compute the matrix

48

4. Methods

representation for as many sequences as possible.

4.2.1. Encoding of sequences

The first thing we have to ask ourselves is how we translate the pulse sequences such
as that in Eq. (3.2.3) efficiently into code. I implemented each pulse as a tuple of
parameters, i.e.,

(’y’, 0, 3.14),

where the first entry denotes the direction or type of the pulse’s rotation, and the
second entry represents which qubit which the pulse acts on. Note that this itself
can be a tuple when describing a coupling rotation. The last element is the angle
of rotation, which can be positive or negative. For example, the rotation RXXX

AB (−90◦)
would be encoded as

(’XXX’, (0, 1), -1.57) .

A full sequence consists of the consecutive application of its pulses. Thus, the
encoding of a full sequence is just a tuple of single-pulse tuples. The causality runs
from left to right, that is, its direction is the opposite of the matrix representation. The
pulse in the first entry of the sequence is applied first. The full sequence of the CNOT
gate on spins A and B in the Ising model (Eq. (3.2.3)) is given by

((’y’, 1, pi / 2.), (’z’, (0, 1), pi), (’z’, 1, -pi / 2.), (’
z’, 0, -pi / 2.), (’y’, 1, -pi / 2.)) ,

where the variable pi contains the number π .

Tuples were chosen as a data structure because it is important in a later part of the
algorithm to have the sequences saved as immutable data structures. In Python, tuples
are, in their functionality, essentially the same as lists. However, lists can be changed
after their creation, while tuples remain unchanged until annihilation.

When creating sequences, one could simply create and save all possible permu-
tations of pulses of the length under investigation. However, saving such a large
amount of data is unnecessary and very expensive with regards to memory. Python
does provide a way to avoid these shortcomings. Python generators are functions that
yield elements one by one at each call. They do not have all the elements saved, but
construct them one at a time, following the rules given to them. They are very light in
memory because they only need to save the rules and not the elements themselves. A
simple example is the generator of natural numbers

1 def natural_numbers():
2 n = 0
3 while True:
4 yield n
5 n += 1

49

4. Methods

which yields the next natural number each time natural_numbers() is called. In this
way, one could, in principle, do calculations on each integer, without ever saving more
than one integer.

Using an analogous generator, the permutations of NMR pulse sequences are gen-
erated and passed on one by one. The generator only saves the set of pulses to be
permuted and is hence much more memory-efficient than code that saves a full array
of sequences. It is implemented with the Python-module itertools, which makes easy
implementation of generator methods like permutations or combinations possible.

4.2.2. Testing sequences for universal gate application

The key element of the program is the method for testing the sequence. For each of
the possible pulses, we already know the corresponding matrix representation from
Chap. 2 and Chap. 3. One can then simply take the matrix for each pulse and execute
the full multi-matrix multiplication, resulting in an operator matrix that represents the
action of the full pulse sequences in the chosen basis.

After having obtained the resulting matrix, one only needs to check if the matrix
does indeed represents the required quantum gate, be it the CNOT gate or a matchgate.
If one is searching for the CNOT gate, it is useful to normalize all entries of the matrix
so that the first entry is unity. This is allowed because an overall phase does not
have any physical meaning in quantum mechanics. It is also worth noting that the
comparison of two floating point numbers is a procedure which computers are quite
bad at. Because of small fluctuations in the floating-point representation, one should
test for strong similarity rather than exact equality.

Matrix multiplication is, in general, a problem that scales very badly. For the
multiplication of two n×n-matrices, the number of elementary operations (flops) is
n3 [27]. As we are treating 4×4-matrices, this means 64 flops for each multiplication.
Hence, we need 64l flops to compute the full matrix, where l is the length of the
sequence. Even though n is small in this case, computational difficulty still arises
because we have to execute so many multi-matrix multiplications. After all, we have
to carry out many millions of these multiplications, as shown in Chap. 3.

4.2.3. Optimizing the program for performance

Because of the inefficiency of the matrix multiplication, it would be desirable to carry
out fewer of these operations, but without missing any matrices that we are searching
for. We will now discuss several ways of trimming the program to execute fewer
matrix multiplications. The general idea is that sequences are ignored before carryig
out the multiplication if they are not a valid candidate for a CNOT or a matchgate.
Fig. 4.2 displays a diagram of the optimized program. Two new procedures have been
inserted before the sequence check compared to the algorithm in Fig. 4.1.

50

4. Methods

Sequence calculator

Compute sequence matrix.
Is it equivalent to CNOT?

Permutations

Similar sequence already
found or in bin?

Logic

Does sequence make sense?

Sequence generator

Outputs all possible sequences

Found sequences
Bin

Rejected sequencesyes no

yes

no

no

yes

comparison

yes

comparison

Figure 4.2.: Advanced algorithm for the finding of a CNOT sequence. The generator generates all
possible sequences. Each sequence is then checked for logical attributes and may be rejected.
Then, all known permutations of the sequence are calculated using the commutator relations.
If one of these was already treated, the matrix of the sequence itself need not be calculated.
The rest of the algorithm is the same as in Fig. 4.1

51

4. Methods

Logical examination

The first way to reduce the number of executed matrix multiplications is by checking
the sequences for logic. That means we want to exclude sequences that we know do
not yield the desired matrix by examining the sequence.

Consider the example sequence

RXXX
AB (−90◦)RyA(90◦)RyA(180◦)RzB(−90◦) (4.2.1)

and notice that the second and the third pulse are both rotations around the y-axis
in the subspace of spin A. Two pulses of the same kind, albeit with different rotation
angles, just represent a longer-acting pulse. This means that this sequence, though
written down in terms of four pulses, is effectively just three pulses long. Because the
approach of this thesis’ search was increasing the length of the sequence, it is justified
to discard this sequence. If it had been relevant, it would have already been found in
the search for three-pulse sequences.

Consider a further example sequence,

RXXZ
AB (−90◦)RzA(90◦)RzB(−90◦)RyA(90◦) , (4.2.2)

where the first pulse is a rotation of spin A around the y-axis. Subsequently, there are
only z and interaction rotations. For the CNOT gate in the Sz basis, we expect the spin
A to return to the same substate after the sequence. However, if we assume that spin
A does not start in the y direction, then it is rotated away from its initial position in the
first pulse. As it is never rotated back, this cannot yield the CNOT gate for arbitrary
initial states. Similar thoughts apply to the other axis directions.

A sequence can also be discarded for one of the above reasons without directly
meeting these criteria. If we find consecutive pulses in a sequence that commute
with each other, then we can switch the pulses and still have the same net action. By
consequently permuting pulses, we may discover that equivalent sequences fall under
the aforementioned dismissal criteria. After excluding all of these sequences, I was
able to reduce the number of unnecessary matrix multiplications by about 25%.

Checking permutations of the pulse

The main reason for the program to have taken a long time was that a lot of the
matrices that were computed had similar sequences, that were rejected and discarded
before. The same applies for sequences that were put into the "found sequences"
stack before. In the first version of the program, only those sequences that yielded the
correct matrix were saved; rejected sequences were discarded. As we have just seen,
many sequences may effectively be the same, albeit with permuted pulses. In order
to compare to the already found or discarded sequences, they shall now be saved in
some form.

52

4. Methods

Again, a number of different data structures can be used to save the found and
discarded sequences. I selected Python’s set() class, which is the best structure for
quick lookups. The set class is the raw version of a dictionary in Python. While a
dictionary contains keys and allocated values, the set only contains keys. Since we
want to look for similar sequences in the set, that has already been saved, this look
up has to be as efficient as possible. Sets (like dictionaries) are implemented using a
hash function, i.e., they are hash tables by nature. Hashable structures are amongst the
most efficient ways to look up elements because the computer only has to check one
address in memory. Simply speaking, hash tables work similarly to a checklist. A set
theoretically consists of all possible data structures that can be saved and a checkbox
for each of the elements. If an element is contained in the set, there is a check in the
element’s entry. If one searches for an element inside a set, all one needs to do is to see
if there is a check at the corresponding entry. A simple consequence of this architecture
is that hash tables cannot have duplicate entries. In contrast, lists (or tuples) work on a
pointer- or reference-based architecture. That is, each entry is a pointer to a place in
memory with the corresponding object. If one wants to search for an element inside a
list, in the worst case, one has to look up every single element’s reference in memory.

Here we come back to the choice of tuples to encode the sequences. Eventually,
we will want to save the sequences inside the set of found sequences or the set of
discarded sequences. Sets only support immutable objects as entries. The reason
for this is, simply speaking, that the entries are not saved as objects, but rather as
hashes or hash values. These codes do only correspond to a particular data structure
and cannot be altered. In contrast, the objects which the pointers of a list point to
can be changed. There will then just be a different object at the pointer’s address in
memory. In summary, hash tables are the ideal choice for look ups and they only
support non-mutable entries.

The workflow, which is sketched in Fig. 4.2, is then as follows. For each incoming
sequence, all known permutations are calculated taking into account the commutation
relations. Each of these permutations is then looked up in the found and discarded
stacks. If it is already in one of these, then the sequence is itself discarded. Calcu-
lating the permutations of the tuple sequences is faster than executing the matrix
multiplications by many orders of magnitude.

After having implemented all of the above optimizations, the execution time de-
creases dramatically. Initially, testing all pulse sequences of length six took around 30
minutes. With the aforementioned optimizations, this was reduced to around three
minutes, i.e., by a factor of ten. However, for longer sequences, a different obstacle
arose. Remember that I chose to implement the creation of the sequences as a Python
generator in order to avoid saving all sequences beforehand. Saving the sequences
to the discarded and found stacks recreates this problem of space. While keeping all
those sequences in memory is no problem for short sequences, for the sequence length
of eight pulses, the set of discarded sequences could no longer be saved within the
random access memory (RAM) of 64 gigabytes. In order to compute longer sequences,

53

4. Methods

Checking
sequences

Checking
sequences

Checking
sequences

Sequence
generator

Found Bin

.

distributing sequences

comparing and saving

Figure 4.3.: Sketch of multiprocessing, applied to the program of Fig. 4.2. The generator distributes
the sequences to many different processes, one on each processor. Each of the processes
then calculates a portion of all sequences. All the processes run in parallel. If permutation
checking is implemented, then the comparison with the found and discarded stacks leads
to a cluttered communication. The latter can drastically diminish the performance of the
program.

one has to find a good-trade off between the memory limitation and the execution
time.

Multiprocessing

In order to expand the search for a Heisenberg XXX sequence by one more pulse, I
eventually introduced multiprocessing into the program. Inherently, Python does not
provide multiprocessing or even multithreading. That is, Python starts one thread by
default and executes all the computations in this single thread.

However, there does exist a way to implement multithreading and also multiprocess-
ing. The Python module multiprocessing offers ways to start more than one process
on the CPU and is even able to distribute and manage those processes among all
kernels. In this way, tasks can be executed in parallel on many processors as opposed
to just one thread. The multiprocessing module provides manager objects that receive
data, in this case, sequences, and then send it to the different processes for calculation.
This distribution is done, so that the one process that is idle is always fed first. Using
this procedure, one can minimize the idle time of all the processors. After computation
has finished, each process communicates its results back to the manager, which resides
in a parent process.

54

4. Methods

If one only needs to execute independent calculations, then multiprocessing is the
ideal approach to increase performance. However, in the last subsection, we have seen
that the search program was extended by incorporating some communication features
that ensure that no two similar sequences are calculated twice. Communication is
typically something that multiprocessing is not good at. We will now see the reason
why.

When processes have to communicate with each other, they typically do it in a
send-message-receive-message way. That is, the receiving process has to be idle for
processing the input. If the process still has work to do, it may not receive the input
for a long time. If the sender then wants to send another message, the communication
channel would still be blocked by the first message. As the sender now has to wait
until the channel is free again, it cannot continue with its own tasks. In this way,
communication can significantly slow down the overall performance of a program.

In my program, each processor receives one or many sequences from the sequence
generator and is then given the task to decide whether or not this sequence yields the
desired matrix. In the last subsection, we have seen that one step of this checking is
to look up all permutations of the sequence in the found and the discarded stacks.
The sequence will actually be calculated only if it is not contained in those sets. In
order to check against all found or discarded sequences, these sets have to be saved in
a parent process, for example, the one which also houses the sequence distribution
manager. Every process then has to communicate with the parent process, for each
sequence to check, if a similar sequence has already been computed. A sketch of the
multiprocessing evolution of the aforementioned program can be found in Fig. 4.3.

The amount of communication that is needed in such a simple implementation
renders all the performance gains that we discussed so far void. The program would
become even slower than the very first and rough version of the program. To under-
stand this problem, we note the clutter of arrows in Fig. 4.3 that represent communi-
cation. The amount of communication can be reduced in the following way: the first
step is to distribute larger chunks of sequences to the processes so that they do not
have to communicate inputs and results so often. Secondly, each process can create
its own intermediate found and discarded stacks and only compare its sequences to
these sets. It will then receive the full stacks of found and discarded sets only once at
the beginning of the process. In general, this will lead to more matrix computations
because the process cannot check against all sequences calculated. We have to realize
that, during the processes’ work, other processes are constantly finding or discarding
sequences that cannot be accessed by any other process. However, it lies in the nature
of the sequence generator that successive sequences will be similar in shape. That
is, they are created by a few permutations at most. This is exactly what the permu-
tation optimization tries to sort out. Only after completion of the process will the
intermediate sets be added to the global found and discarded stacks.

This modification of multiprocessing does indeed bring a performance enhancement
compared to the single-threaded version of the program. In summary, we have two

55

4. Methods

trade-offs between between factors that can enhance or diminish the performance of
the sequence search. With regards to the found and discarded sets, these are: saving
as few sequences as possible for memory efficiency versus saving as many sequences
as possible for time efficiency. For the multiprocessing method, we have to weigh
calculating and comparing as up-to-date as possible for maximum efficiency against
communicating as little as possible to reduce the idle time. By carefully adjusting
these factors, I was eventually able to extend the search for a Heisenberg XXX CNOT
sequence to nine pulses. Nonetheless, under the assumption of the above discussed
restrictions of the angles, no sequences of up to nine pulses were found that implement
the CNOT operation.

In Chap. 5 we will debate wether the methods in this chapter are sufficient to find
the desired sequences. We will find that the simplifications used for the sequence
search are reasonable. Nevertheless, there are other, more advanced, methods that
may make this search more efficient. One of them will be described briefly in the next
chapter.

56

5. Discussion

We have now discussed all the implementations and approaches for finding NMR
sequences for quantum computing that are part of this work. One important achieve-
ment was the discovery that universal quantum computing is possible using the
anisotropic Heisenberg interaction. Specifically, I found a sequence of NMR pulses
that implements the CNOT gate using the Heisenberg XXZ interaction with ∆ = 2.
However, I was not able to find a CNOT sequence for the isotropic Heisenberg model.

In this chapter, we will discuss these results as well as possible methods to refine
this search. First of all, we will investigate real NMR quantum computing experiments
and discuss why they will, most likely, never work on architectures larger than 15
qubits. Subsequently, we will discuss wether or not it is even possible to implement a
CNOT gate in using the Heisenberg XXX interaction using only NMR manipulation
techniques. Finally, several ideas to improve the performance of the search algorithm
described in Chap. 4 will be presented, including various small improvements as well
as a variational approach that could form the basis for a new search algorithm.

5.1. Application in real experiments

In the previous chapters, we have discussed NMR quantum computing in a rather
simplified and theoretical manner. We will now discuss some obstacles and restrictions
that occur in real experimental NMR quantum computing.

5.1.1. Ensemble quantum computing

While other potential quantum computers rely on isolating individual ions or photons
from its environment to overcome decoherence, a different approach is used in an NMR
quantum computer. The nuclear spins are well-suited for quantum computing because
their coherence time is typically much longer than the time scale of decoherence that
arises from thermal motion. The coherence time can reach up to thousands of seconds.
Even at room temperature, this property can be used to realize a quantum computer.

Since it is very difficult to isolate single molecules, an NMR quantum computer
uses a method called ensemble quantum computing. Typically, it will run on a sample
of ∼ 1023 molecules, for example, molecules dissolved in a liquid. Each of these
molecules represents a separate quantum computing unit with a certain number of

57

5. Discussion

qubits, embodied as nuclear spins (see Fig. 1.1a for a sketch).

The actual quantum information is not directly realized as the state of one molecule.
Such a state would not be coherent because of the thermal motion of the molecules at
room temperature. Since an NMR measurement can only detect macroscopic magnetic
fields, the magnetization of the molecules would average to zero. The quantum
states are instead coded in small deviations from the mean value of the total spin
magnetization that arises due to an external magnetic field. This procedure makes
pseudo-pure states at room temperature possible. The disadvantage of this technique
is that one needs to have a larger number of spins with only a part of them acting as
the computational qubits.

Typically, the number of computational qubits is less than half of the number of the
physical qubits, which are spins [14]. For larger systems, there are methods to gain
more computational qubits at the cost of losing signal strength. The signal strength
is the biggest weakness of ensemble quantum computing. It roughly scales as 2−N ,
where N is the number of (computational) qubits. The conseqence is that with modern
signal-detection methods, it is only possible to resolve of the order of ten qubits. This
corresponds to a state space with dimension 210 ≈ 103. Beyond this, other elaborate
information packing schemes exist that can enlarge the computational space, but only
with polynomial scaling. In contrast, the state space grows exponentially with the
number of qubits.

NMR quantum computing has both advantages and disadvantages compared to
other implementations. On the one hand, no other method grew so fast in qubit
size in the late 1990’s and early 2000’s, which was the beginning of the age of real
implementations of quantum computers. NMR quantum computing experiments
led to the first experimentally implemented quantum gates and algorithms, such as
the Shor prime factorization algorithm in 2001 [17]. On the other hand, the potential
scaling of NMR quantum computers is so unfavorable that it is unlikely that any
experiments with more than 15 qubits will be realized unless some revolutionary
new method is discovered. Consequently, scientists are presently focusing on other
architectures such as cold trapped ions or topological qubits.

Recall that some of the ideas and theories that were presented in chapters 2 and 3 are
greatly simplified; therefore we should discuss their validity for real experiments. In
the following, we will discuss two obstacles to real implementation as well as solutions
to overcome them.

5.1.2. Refocusing

In the preceding chapters, we have assumed that we can switch the rotational pulses
on and off at will. For a single qubit-rotation via rf-pulses, this is indeed true to some
extent, but, as we will see, there is a limitation to this idealization. However, we cannot
switch the interaction term, J ŜzŜz , off because we cannot break the molecule up and

58

5. Discussion

distance the nuclear spins. Thus, we need a way to control the interaction term in
the Hamiltonian so that we can still implement the aforementioned sequences. If we
cannot turn off the interaction, an alternative is to reverse it repeatedly so that we have
a vanishing interaction evolution on average. We note that a time inversion of the
interaction

RϕA(180◦)RzAB(θ)RϕA(−180◦) = RzAB(−θ) (5.1.1)

can be achieved with the Ising interaction by a 180◦ pulse along any axis ®ϕ [14]. By
repeatedly applying reversing pulses, we can let the system evolve back and forth
with respect to the interaction term in the Hamiltonian. On average, the state will
remain unchanged. This technique is called refocusing and is essential to implementing
circuits such as the CNOT gate (Eq. (3.2.3)) in practice.

5.1.3. Pulse shaping

We have learned how to effectively eliminate the coupling evolution via refocusing,
but what happens if we are simultaneously applying rotations to the individual nuclei
A and B? After all, the interaction is still present during the single qubit rotations in
Eq. (5.1.1). Will the coupling term destroy the ability to implement perfect single-qubit
rotations such as RxA(90◦)? In Fig. 5.1, the rotation due to the rf-field is illustrated with
and without the coupling term in the Hamiltonian. The coupling strength J is highly
exaggerated for illustrative purposes. We can observe that the two evolutions deviate
by only a small amount. We assume, without loss of generality, that we want to apply
a rotation around the y-axis. If we apply an rf-field with its effective B-field in the
y-direction, the Hamiltonian, including the Ising interaction, reads

Ĥ = γBŜyA + J ŜzAŜzB =
h̄

2

©­­­«
Jh̄/2 0 − iγB 0

0 −Jh̄/2 0 − iγB
iγB 0 −Jh̄/2 0

0 iγB 0 Jh̄/2

ª®®®¬ , (5.1.2)

where the diagonal elementy induce only a small deviation from RxA(90◦) because
Jh̄/2 � γB.

What if it is necessary to eliminate this small disturbance? Analytically, it is not
possible to discard the interaction or separate it from the single qubit pulses. However,
there are certain techniques that can improve the pulse in practice. The most effective
method is to shape the pulse of the rf-field in a particular way. There are several
different shapes that have different effects and may be used for a variety of corrections,
for example, instead of the rectangular shape that was implicitly assumed up to now,
the pulse could be shaped by a gaussian envelope, which is much more realistic in
general. Vandersypen et al. [18] give a very good overview of these pulse shaping
techniques and many other methods for practical NMR quantum computing.

We have seen so far that the two last mentioned methods are a kind of error correc-

59

5. Discussion

−
1
2

0

+
1
2

Sp
in

ex
pe

ct
at

io
n

va
lu

e
〈S
σ

A
〉

a) Ĥ = γB ŜyA + J ŜzAŜzB

x

y

z

Time

−
1
2

0

+
1
2

Sp
in

ex
pe

ct
at

io
n

va
lu

e
〈S
σ

A
〉

b) Ĥ = γB ŜyA

x

y

z

Figure 5.1.: Comparison of an undisturbed y-rotation of qubit A and the same rotation in the presence
of interaction between the spins. The initial state |↑x 〉 ⊗ |↑z〉 = (|↑↑〉 + |↓↑〉)/

√
2 is rotated by

90◦ around the y-axis. a) In the presence of interaction, the final state is a small deviation
from |↓↑〉. Due to the coupling disturbance, the state experiences a nutation on top of
the y-rotation, that leads to a deviation from the theoretically predicted final state. b) For
comparison, the evolution without the interaction term in the Hamiltonian is shown. The
largest deviation can be observed in expectation value of Sz .

tion in the machine language of NMR pulse sequences. However, we might also take
them as opportunity to find interesting new pulse sequences. Remember that I did
not succeed in finding pulse sequences with the Heisenberg interaction that can be
used to form a universal set of quantum gates. The disturbance of single-qubit pulses
by the spin-spin interaction could be used to change the symmetry properties of the
available pulses in order to overcome symmetry dependent obstacles. We will discuss
some ideas along these lines in Sec. 5.2.

60

5. Discussion

5.2. Symmetry considerations

The fact that an exhaustive search of pulse sequences of up to nine pulses could not
find a sequence implementing the CNOT gate, raises the question of wether it is at all
possible to find such a sequence with the isotropic Heisenberg interaction. It would
thus be useful to prove that NMR quantum computing in the isotropic Heisenberg
model is not capable of implementing a CNOT gate. A more comprehensive statement
would be that universal NMR quantum computing cannot be implemented using the
Heisenberg interaction. Several approaches to find proofs for these statements were
tried in the scope of this thesis. Two of them shall be presented here.

The first approach is to examine the subspaces of the Hilbert space for two qubits of
different parity. The Heisenberg interaction propagator,

RXXX
AB (Jt) = ei J ®̂SA

®̂SBt '

©­­­«
ei Jt/2

cos(Jt/2) i sin(Jt/2)
i sin(Jt/2) cos(Jt/2)

ei Jt/2

ª®®®¬ (5.2.1)

does not mix the subspaces of different parity. This means that it cannot change the
quantum state from the odd-parity subspace of the Hilbert space, spanned by |↑↓〉 and
|↓↑〉, to the even parity subspace, spanned by |↑↑〉 and |↓↓〉. In contrast, the CNOT gate
can do this. This can directly be seen in the structure of the matrix

UCNOT =

©­­­«
1

1
0 1
1 0

ª®®®¬ , (5.2.2)

which does not have block-diagonal structure with block sizes 1-2-1. The reasoning
is that, since single-qubit rotations alone cannot implement the CNOT gate, so the
missing properties must come from the interaction term. The CNOT gate and the
interaction propagator should then obey the same rules. However, it can easily be seen
that the Ising interaction propagator does not mix the parity subspaces either because
it is diagonal. However, single-qubit rotations can clearly connect the parity subspaces.
Thus, definite statements about the mixing of the subspaces of different parity cannot
be made for sequences of pulses which include either Heisenberg or Ising interaction
propagators and single-qubit pulses.

A similar idea uses the symmetry of the interaction term as an argument. As
mentioned in Sec. 2.1, the distinct difference between the Ising and the Heisenberg
spin interactions are their symmetry properties. While the Ising model is invariant
under reflection, the Heisenberg model is invariant under rotations. The Heisenberg
interaction Hamiltonian is thus invariant under the su(2) Lie algebra. The line of
reasoning is similar to the previous approach. If the Heisenberg interaction propagator

61

5. Discussion

is invariant under rotations, can we implement the CNOT gate, which is clearly not
invariant under rotations? If both the interaction propagator and the single-qubit
rotations were rotationally invariant, we could prove that a sequence containing
only such pulses could not implement the CNOT gate. However, similarily to the
previous approach, single-qubit rotations are not invariant under rotations. Specifically,
rotational invariance means that rotating all the spins by the same angle would leave
the system’s energy unchanged. Single-qubit rotations do not fulfill this criterion. In
fact, it is exactly their action of rotating just one qubit that leads to them not being
invariant to full rotations.

These ideas are described here as a starting point for future work. While I was
not able to find a proof that a CNOT gate cannot be implemented using the isotropic
Heisenberg interaction, I was also not able to find such an implementation using an
exhaustive search of pulse sequences of up to length nine.

5.3. Further numerical improvement

If it should prove impossible to show that no Heisenberg XXX pulse sequence can be
used to implement the CNOT gate, then it is useful to discuss how to improve the
numerical approach to find such a sequence. In order to make this search more efficient,
a few ideas to further improve the search algorithms beyond the optimizations in
Chap. 4 are discussed here.

The first step of the algorithm in Chap. 4 is the generation of all the sequences.
This is implemented by means of a Python generator in order to avoid saving all
the sequences at once, say in a list. For convenience, methods of the Python module
itertools were used. After their generation, all of the sequences had to be passed
on to the part of the program that checked them for logic. Theoretically, one could
implement the logic directly into a custom generator. The sequences that are illogical
would then not have to be passed on. However, the passing of the sequences takes next
to no CPU time, and the built-in modules are usually implemented very efficiently.
Hence, such an optimization will not implement a big improvement in performance.

It was mentioned in Chap. 4 that the search for the sequences was limited to a
very small set of rotation angles. This limitation to certain discrete angles is based
on the experience that the CNOT sequence with the Ising interaction only requires
angles of 90◦ or 180◦. Of course, it is possible to rotate through any angle with NMR
manipulation methods. This restriction might have been the reason for overlooking a
potential CNOT sequence. We want to discuss two ways to loosen that limitation here.

The first idea is to use the Bloch sphere representation directly. We have seen in
Sec. 2.3 how single-qubit rotations and interaction propagations change a state in the
Bloch sphere. We could work in spherical coordinates to represent the current state
in the Bloch sphere. With two qubits, we need two sets of spherical coordinates and,
thus, we have to work with six degrees of freedom. The next step is to assume that

62

5. Discussion

we can rotate the state around any axis with NMR techniques. This is true because
a rotation around an arbitrary axis can always be simulated by subsequent rotations
around the cartesian axes. The task is to find a path in spherical coordinates through
the Bloch sphere, so that it implements the CNOT operation. While more illustrative
than the matrix representation, the Bloch-sphere representation does still not offer any
numerical advantage. We still have the same number of degrees of freedom as with
matrices because a unitary 4×4 matrix also has six degrees of freedom when leaving
out the global phase. Also, calculating the new spherical coordinates after a rotation
around an arbitrary axis is not easy. This method of searching would be advantageous
if one were to search by hand and needed to keep track of the effect of the operation.

The aforementioned idea of varying continuous angles in the Bloch sphere represen-
tation is only a simplified application of the general method of solving such a problem.
Quantum optimal control is a variational method and resembles the brachistochrone
problem in classical mechanics by searching for a path of minimal action. The task is
the following: given an initial state |Ψi〉 and a final state |Ψf 〉, for what Hamiltonian Ĥ
does the evolution Û [Ĥ](t) connect two states in the shortest amount of time, that is

|Ψf 〉 = Û
[
Ĥ

]
(t) |Ψi〉 , δt

(
δĤ

)
= 0 . (5.3.1)

The variation is, in general, not limited to time but can be extended to any type of
action, for example, the amount of energy used in during the operation. Carlini et al.
[28] give a good introduction to quantum optimal control. They develop a general
variational theory for finding such a Hamiltonian and also present two examples with
exact solutions. This method could potentially be used to determine wether a CNOT
sequence using the Heisenberg interaction exists. The implementation of quantum
optimal control would have exceeded the scope of this Master’s thesis and is left as a
topic for future work.

63

6. Conclusion

In this thesis, we have extended the concept of NMR based quantum computing
to utilize the Heisenberg spin interaction to entangle the qubits. By changing the
symmetry properties of the spin interaction, we have also changed the evolution
of the spin states due to interaction. With this different interaction evolution, the
sequences for quantum gates that are known from already published work are no
longer applicable. We had to search for alternate sequences to also validate universal
quantum computing based on the Heisenberg interaction.

I was not able to find a pulse sequence using the isotropic Heisenberg interaction
that represents the CNOT gate or the set of matchgates with the numerical methods
in this thesis. Thus, it was not possible to prove that universal quantum computing
is possible using the isotropic Heisenberg interaction. However, I have derived a
sequence for the CNOT gate using the Heisenberg XXZ interaction. This proves that
universal quantum computing is possible using a Heisenberg interaction in general.
While I have not found a sequence for the isotropic interaction, this does not mean that
it is impossible to find such a sequence for all instances of the Heisenberg interaction.

The most interesting remaining question is: does a set of sequences using the
isotropic Heisenberg interaction exist that can implement universal quantum comput-
ing? One possibility is that it could be proven to be impossible to implement such
a sequence. Another possibility is that the methods of finding sequences could be
improved, perhaps leading to such a sequence being found. Possible improvements in-
clude numerical optimizations of the program described in Chap. 4 or the application
of quantum optimal control. With these methods, one could search for more rotation
angles and for longer sequences without knowing in advance if a result exists.

It has indeed been possible to extend the framework of NMR quantum computing
to the Heisenberg spin interaction. While universal quantum computing has been
proven to be possible using a specific instance of the anisotropic Heisenberg interaction,
further work is needed to show or disprove whether this can be done for the isotropic
Heisenberg interaction.

64

Appendices

66

A. Python code for the sequence
search

1 import numpy as np
2 from itertools import product, chain, permutations, islice
3 from cProfile import run
4 from math import factorial
5 from multiprocessing import Pool, cpu_count, set_start_method,

freeze_support
6 from multiprocessing.managers import SyncManager, BaseManager
7 from sys import stdout, getsizeof
8 from os import getpid
9 from time import sleep

10 from guppy import hpy
11

12

13 def mat_Ising(ang=np.pi):
14 """returns the Ising models interaction rotational matrix"""
15 return np.cos(ang / 2.) * np.eye(4) + 1j * np.sin(ang / 2.) * np.

diag([1, -1, -1, 1])
16

17

18 def mat_XXX(ang=np.pi/2.):
19 """returns the Heisenberg XXX models interaction rotational

matrix"""
20 return np.array([[np.exp(1j * ang), 0, 0, 0],
21 [0, np.cos(ang), 1j * np.sin(ang), 0],
22 [0, 1j * np.sin(ang), np.cos(ang), 0],
23 [0, 0, 0, np.exp(1j * ang)]])
24

25

26 def mat_XXZ(ang=np.pi/2., delta=2):
27 """returns the Heisenberg XXZ models interaction rotational

matrix"""
28 return np.array([[np.exp(2j * ang * delta), 0, 0, 0],
29 [0, np.cos(ang), 1j * np.sin(ang), 0],
30 [0, 1j * np.sin(ang), np.cos(ang), 0],

67

A. Python code for the sequence search

31 [0, 0, 0, np.exp(2j * ang * delta)]])
32

33

34 single_mats = np.load(’single_mats.npy’) # external file with all
the single qubit rotation matrices

35

36

37 dir_which = ((’x’, 0), (’x’, 1), (’y’, 0), (’y’, 1), (’z’, 0), (’z’,
1)) # allowing for positive and negative rotation for each axis

38 single_dict = {i: j for (i, j) in zip(dir_which, single_mats)}
39 single_dict_expanded = dict()
40 for key in single_dict:
41 single_dict_expanded[(*key, -np.pi / 2)] = single_dict[key][0]
42 single_dict_expanded[(*key, np.pi / 2)] = single_dict[key][1]
43 double_dict = dict()

creating a dictionary of all two-pulse matrices
44 for key1 in single_dict_expanded:
45 for key2 in single_dict_expanded:
46 double_dict[(key1, key2)] = np.dot(single_dict_expanded[key1

], single_dict_expanded[key2])
47

48

49 def sequence_to_operator(sequence):
50 """
51 Takes an encoded NMR pulse sequence an calculates its matrix

operator
52 :param sequence: [(’x’ or ’y’ or ’z’, 0 or 1 or (0, 1), angle),

(.,.,.), ...]
53 :return: matrix operator of the full sequence
54 """
55 dim = 0
56 for i in sequence:
57 if isinstance(i[1], int):
58 temp = i[1]
59 else:
60 temp = max(i[1])
61 if temp > dim:
62 dim = temp
63 #dim += 1
64 dim = 2
65 matrices = []
66 global single_dict_expanded
67 global double_dict
68 last_was_single_rotation = False

68

A. Python code for the sequence search

69

70 for op in sequence:
71 if last_was_single_rotation:
72 if isinstance(op[1], int):
73 matrices.insert(0, double_dict[(

last_was_single_rotation, op)])
74 else:
75 matrices.insert(0, single_dict_expanded[

last_was_single_rotation])
76 last_was_single_rotation = False
77 if isinstance(op[1], int):
78 last_was_single_rotation = op
79 elif op[0] == ’I’:
80 matrices.insert(0, mat_Ising(ang=(int(op[2]) - .5) * np.

pi))
81 elif op[0] == ’XXX’:
82 matrices.insert(0, mat_XXX(ang=(int(op[2]) - .5) * np.pi)

)
83 elif op[0] == ’XXZ’:
84 matrices.insert(0, mat_XXZ(ang=(int(op[2]) - .5) * np.pi)

)
85

86 # is there still a single rotation on the hold?
87 if last_was_single_rotation:
88 matrices.insert(0, single_dict_expanded[

last_was_single_rotation])
89

90 if len(matrices) > 1:
91 mat = np.linalg.multi_dot(matrices)
92 else:
93 mat = matrices[0]
94

95 # simplify
96 mat = mat / mat[0, 0]
97 return mat
98

99

100 def seq_is_logical(seq):
101 """
102 Checks, if a given sequence is trivial in some way
103 :param seq:
104 :return:
105 """
106 # limit how many rotations of each type are in a sequence

69

A. Python code for the sequence search

107 counts = {’x’: 0, ’y’: 0, ’z’: 0, ’XXX’: 0, ’XXZ’: 0, ’ramp’: 0}
108 for i in seq:
109 if i[0] not in counts:
110 counts[i[0]] = 1
111 else:
112 counts[i[0]] += 1
113 if counts[’XXX’] > 1 or counts[’XXZ’] > 1 or (counts[’y’] % 2 and

counts[’x’] % 2):
114 pass
115

116 # no two adjacent rotations can be of same type
117 for i in range(len(seq) - 1):
118 if seq[i][0] == seq[i + 1][0]:
119 return False
120 return True
121

122

123 dirs = {’x’, ’y’, ’z’}
124 single_angs = {False, True}
125 coupling_angs = {False, True}
126 coupling_dirs = {’XXX’}
127 nos = {0, 1}
128

129

130 def tot_comb(length):
131 t = len(dirs) * len(nos) * len(single_angs) + len(coupling_dirs)

* len(coupling_angs)
132 return int(factorial(t) / factorial(t - length))
133

134

135 def sequence_commutations(seq):
136 index = 0
137 singles = {’x’, ’y’, ’z’}
138 doubles = {’XXX’}
139 yield seq
140 # compare nearest neighbours
141 while index < len(seq) - 1:
142 if all((dir in singles for dir in (seq[index][0], seq[index +

1][0])))\
143 or all((dir in doubles for dir in (seq[index][0], seq

[index + 1][0]))):
144 if index == 0:
145 new_seq = (seq[index + 1],
146 seq[index],

70

A. Python code for the sequence search

147 *seq[index + 2:])
148 elif index == len(seq) - 2:
149 new_seq = (*seq[:index],
150 seq[index + 1],
151 seq[index])
152 else:
153 new_seq = (*seq[:index],
154 seq[index + 1],
155 seq[index],
156 *seq[index + 2:])
157 yield new_seq
158

159 if index < len(seq) - 2:
160 if all((dir in singles for dir in (seq[index][0], seq

[index + 1][0], seq[index + 2][0])))\
161 or all((dir in doubles for dir in (seq[index

][0], seq[index + 1][0], seq[index + 2][0]))):
162 if index == 0:
163 new_seq = (seq[index + 2],
164 seq[index + 1],
165 seq[index],
166 *seq[index + 3:])
167 elif index == len(seq) - 3:
168 new_seq = (*seq[:index],
169 seq[index + 2],
170 seq[index + 1],
171 seq[index])
172 else:
173 new_seq = (*seq[:index],
174 seq[index + 2],
175 seq[index + 1],
176 seq[index],
177 *seq[index + 3:])
178 yield new_seq
179

180 index += 1
181

182

183 # noinspection PyStatementEffect
184 def process_combination(combs, already_found, tossed, count, tot,

found_count, jumped_count, mat_count):
185

186 newly_found = set()
187 newly_tossed = set()

71

A. Python code for the sequence search

188 newly_jumped = 0
189 newly_mult_mats = 0
190 newly_found_count = 0
191 i = 0
192 for comb in combs:
193 # do not calculate for already handled sequences and their

equivalences
194 if comb in already_found:
195 newly_jumped += 1
196

197 # do nothing if an equivalent sequence was already tossed
before

198 elif not tossed.isdisjoint(set(sequence_commutations(comb))):
199 newly_jumped += 1
200

201 # do not calculate matrix if sequence is trivial in some way
202 elif not seq_is_logical(comb):
203 newly_tossed.add(comb)
204 newly_jumped += 1
205 else:
206 # create matrix
207 mat = sequence_to_operator(comb)
208 newly_mult_mats += 1
209

210 # test for CNOT
211 if all(abs(m) < 1e-6 for m in {mat[0, 1], mat[0, 2], mat

[0, 3], mat[1, 0], mat[1, 2], mat[1, 3],
212 mat[2, 0], mat[2, 1], mat

[2, 2], mat[3, 0], mat[3, 1], mat[3, 3]}) \
213 and all(np.isclose(m, 1) for m in {mat[1, 1], mat

[2, 3], mat[3, 2]}):
214 newly_found_count += 1
215

216 # add more commutations of the found sequence to the
already found set

217 newly_found.update(sequence_commutations(comb))
218 #already_found.update(sequence_commutations(comb))
219

220 else:
221 newly_tossed.update(comb)
222

223 if (count + i) % 1000 == 0:
224 print(’\r{0:} of {1:} sequences checked’.format(count + i

, tot), end=’’)

72

A. Python code for the sequence search

225 stdout.flush()
226 if (count + i) % 1000000 == 0:
227 print(’Size of tossed after’, count, ’steps:’, round(

getsizeof(tossed._getvalue()) / 1000000, 1), ’MByte’)
228 stdout.flush()
229 i += 1
230

231 already_found.update(newly_found)
232 tossed.update(newly_tossed)
233 jumped_count + newly_jumped
234 mat_count + newly_mult_mats
235 found_count + newly_found_count
236

237 return
238

239

240 def callback_procession(args):
241 return
242

243

244 class Counter(object):
245 def __init__(self, i=0):
246 self.value = int(i)
247

248 def __add__(self, other):
249 self.value += other
250

251 def __mod__(self, other):
252 return self.value % other
253

254 def __str__(self):
255 return str(self.value)
256

257 def __repr__(self):
258 return str(self.value)
259

260

261 def search_sequence(seq_len):
262 print(’Sequence length: ’, seq_len)
263

264 # create all possible sequences
265 single_seqs = product(dirs, nos, single_angs)
266 H_seqs = product(coupling_dirs, {(0, 1)}, coupling_angs)
267 all_seqs = chain(single_seqs, H_seqs)

73

A. Python code for the sequence search

268 all_perm = permutations(all_seqs, r=seq_len)
269

270 # Proxies for multiprocessing
271 SyncManager.register(’set’, set, exposed=(’add’, ’__iter__’, ’

isdisjoint’, ’update’).0
272

273 SyncManager.register(’int’, Counter, exposed=(’__add__’, ’__mod__

’, ’__repr__’, ’__str__’))
274 manager = SyncManager()
275 manager.start()
276 tot = manager.int(tot_comb(seq_len))
277 found_count = manager.int()
278 jumped_count = manager.int()
279 mat_count = manager.int()
280 already_found = manager.set()
281 tossed = manager.set()
282

283 # multiprocessing
284 p = Pool(maxtasksperchild=1000)
285 chunk_len = 1000
286 count = 0
287 while True:
288 try:
289 count += 1
290 combs = set(islice(all_perm, chunk_len))
291 if not combs:
292 raise StopIteration
293 p.apply_async(process_combination,
294 args=(combs.copy(), already_found, tossed,

count, tot, found_count, jumped_count, mat_count),
295 callback=callback_procession)
296 except StopIteration:
297 count -= 1
298 break
299 sleep(15)
300 print(hpy().heap())
301 p.close()
302 p.join()
303

304 print(’\n\nsequences checked:\t’, count, ’/’, tot)
305 print(’found:\t\t\t\t’, found_count)
306 print(’jumped:\t\t\t\t’, jumped_count)
307 print(’matrices multiplied:’, mat_count)
308 return set(already_found)

74

A. Python code for the sequence search

309

310 if __name__ == ’__main__’:
311 set_start_method(’forkserver’)
312 freeze_support()
313

314 seq_len = 6
315 run(’found_seqs = search_sequence(seq_len)’, sort=’cumtime’)
316 with open(’found_sequences_length_{}.txt’.format(seq_len), ’w’)

as file_handler:
317 for seq in iter(found_seqs):
318 file_handler.write(’{}\n’.format(seq))
319 if not found_seqs:
320 file_handler.write(’nothing found’)
321

322

323 quit()

75

B. Personal notes and
acknowledgements

First of all, I want to thank my supervisor Prof. Dr. R. Noack for guiding me through
the process of creating this work. I look back to many fruitful discussions and advice
that has helped me grow as a theoretical physicist. I encourage everyone interested in
numerical many-body-physics to apply for a thesis in the work group Vielteilchenphysik
at Universität Marburg.

As an orientation for any future masters student I want to lay open the amount
of work put into this thesis. I have logged my work hours on a daily basis. From
the beginning of the browsing for background literature to handing in the thesis it
required a total of 565 hours of work time. The total can be split up into 120 hours of
background reading, 255 hours of implementing the program code in Python, and 185
hours for actually writing down the thesis with LATEX. This time does only include
actual work time and does not represent all the time spent at work.

76

C. Declaration of originality

English

I declare that this thesis has been composed solely by myself and that it has not been
submitted, in whole or in part, in any previous application for a degree. Except where
states otherwise by reference or acknowledgment, the work presented is entirely my
own.

German

Ich versichere hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, ganz oder in Teilen noch nicht als Prüfungsleistung vorgelegt und keine
anderen als die angegebenen Hilfsmittel benutzt habe. Sämtliche Stellen der Arbeit,
die benutzten Werken im Wortlaut oder dem Sinn nach entnommen sind, habe ich
durch Quellenangaben kenntlich gemacht. Dies gilt auch für Zeichnungen, Skizzen,
bildliche Darstellungen und dergleichen sowie für Quellen aus dem Internet. Mir ist
bewusst, dass es sich bei Plagiarismus um akademisches Fehlverhalten handelt, das
sanktioniert werden kann.

August 6, 2020

Date/Datum Signature/Unterschrift
(Maximilian Schwetz)

77

References

[1] I. I. Rabi, J. R. Zacharias, S. Millman, and P. Kusch, “A New Method of Measuring
Nuclear Magnetic Moment”, Phys. Rev. 53, 318–318 (1938).

[2] E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance Absorption by Nuclear
Magnetic Moments in a Solid”, Phys. Rev. 69, 37–38 (1946).

[3] P. C. Lauterbur, “Image Formation by Induced Local Interactions: Examples
Employing Nuclear Magnetic Resonance”, Nature 242, 190–191 (1973).

[4] P. Benioff, “The computer as a physical system: A microscopic quantum me-
chanical Hamiltonian model of computers as represented by Turing machines”,
Journal of Statistical Physics 22, 563–591 (1980).

[5] R. P. Feynman, “Simulating physics with computers”, International Journal of
Theoretical Physics 21, 467–488 (1982).

[6] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information:
10th Anniversary Edition (Cambridge University Press, 2010).

[7] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and
factoring”, in Proceedings 35th Annual Symposium on Foundations of Computer
Science (1994), pp. 124–134.

[8] S. Lloyd, “A Potentially Realizable Quantum Computer”, Science 261, 1569–1571
(1993).

[9] M. H. Levitt, Spin Dynamics, Second (John Wiley & Sons Ltd, 2007).

[10] A. Auerbach, Interacting Electrons and Quantum Magnetism, edited by J. Birman,
H. Faissner, and J. W. Lynn (Springer Verlag, 1994).

[11] J. Dr. Wells, Lecture on the Standard Model, tech. rep. (CERN, 2013).

[12] N. Goldenfeld, Lectures on phase transitions and the renormalization group (CRC
Press, 2018).

[13] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S.
Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro,
R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney,
M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann,
A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang,
D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa,
D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R. McClean, M.
McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman,

78

https://doi.org/10.1103/PhysRev.53.318
https://doi.org/10.1103/PhysRev.69.37
https://doi.org/10.1038/242190a0
https://doi.org/10.1007/BF01011339
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1126/science.261.5128.1569
https://doi.org/10.1126/science.261.5128.1569

References

M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana,
E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy,
K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao,
P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, “Quantum supremacy using a
programmable superconducting processor”, Nature 574, 505–510 (2019).

[14] N. A. Gershenfeld and I. L. Chuang, “Bulk Spin-Resonance Quantum Computa-
tion”, Science 275, 350–356 (1997).

[15] Y. Wu and X. Yang, “Strong-Coupling Theory of Periodically Driven Two-Level
Systems”, Phys. Rev. Lett. 98, 013601 (2007).

[16] D. G. Cory, A. F. Fahmy, and T. F. Havel, “Ensemble quantum computing by
NMR spectroscopy”, Proceedings of the National Academy of Sciences 94, 1634–
1639 (1997).

[17] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and
I. L. Chuang, “Experimental realization of Shor’s quantum factoring algorithm
using nuclear magnetic resonance”, Nature 414, 883–887 (2001).

[18] L. M. K. Vandersypen and I. L. Chuang, “NMR techniques for quantum control
and computation”, Reviews of Modern Physics 76, 1037–1069 (2005).

[19] R. Khalaf and A. Abdullah, “Novel Quantum Encryption Algorithm Based on
Multiqubit Quantum Shift Register and Hill Cipher”, Advances in High Energy
Physics 2014, 1–5 (2014).

[20] A. C. C. de Albornoz, J. Taylor, and V. Cărare, “Time-optimal implementations
of quantum algorithms”, Physical Review A 100 (2019).

[21] S. Lee, S.-J. Lee, T. Kim, J.-S. Lee, J. Biamonte, and M. Perkowski, “The cost of
quantum gate primitives”, Journal of Multiple-Valued Logic and Soft Computing
12, 561–573 (2006).

[22] S. Ramelow, A. Fedrizzi, A. M. Steinberg, and A. G. White, “Matchgate quantum
computing and non-local process analysis”, New Journal of Physics 12, 083027
(2010).

[23] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor,
T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum
computation”, Physical Review A 52, 3457–3467 (1995).

[24] J. Johansson, P. Nation, and F. Nori, “QuTiP: An open-source Python framework
for the dynamics of open quantum systems”, Computer Physics Communica-
tions 183, 1760–1772 (2012).

79

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1126/science.275.5298.350
https://doi.org/10.1103/PhysRevLett.98.013601
https://doi.org/10.1073/pnas.94.5.1634
https://doi.org/10.1073/pnas.94.5.1634
https://doi.org/10.1038/414883a
https://doi.org/10.1103/revmodphys.76.1037
https://doi.org/10.1155/2014/104325
https://doi.org/10.1155/2014/104325
https://doi.org/10.1103/physreva.100.032329
https://doi.org/10.1088/1367-2630/12/8/083027
https://doi.org/10.1088/1367-2630/12/8/083027
https://doi.org/10.1103/physreva.52.3457
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021

References

[25] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J.
Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E.
Larson, C. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde, J.
Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald,
A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and S. 1. 0. Contributors, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python”, Nature Methods
17, 261–272 (2020).

[26] P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, “VODE: A Variable-Coefficient
ODE Solver”, SIAM Journal on Scientific and Statistical Computing 10, 1038–1051
(1989).

[27] G. H. Golub and C. F. V. Loan, Matrix Computations, Fourth Edition (The Johns
Hopkins University Press, 2013).

[28] A. Carlini, A. Hosoya, T. Koike, and Y. Okudaira, “Time-Optimal Quantum
Evolution”, Phys. Rev. Lett. 96, 060503 (2006).

80

https://doi.org/https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1137/0910062
https://doi.org/10.1137/0910062
https://doi.org/10.1103/PhysRevLett.96.060503

	Introduction
	Historical development of NMR quantum computing
	Choosing a spin-interaction model
	Finding a protocol for quantum computing in the Heisenberg model

	Theoretical Framework for NMR quantum computing
	Interaction of spin-1/2 particles
	Ising model
	Isotropic Heisenberg model
	Anisotropic Heisenberg model
	Differences

	Summary of Quantum Information Theory
	Classical information processing
	Quantum information processing

	Principles of nuclear magnetic resonance methods
	NMR spectroscopy
	Manipulation of spins using radio frequency electromagnetic fields
	Rotations with more spins
	The coupling dance in the Bloch sphere

	Forming quantum gates from NMR qubit rotations
	Elementary single qubit gates
	Two-qubit gates
	Ising model
	Heisenberg model

	Universal three-qubit-gate

	Methods
	Propagation and visualization of quantum systems using QuTiP
	The search for quantum gates in terms of NMR pulse sequences
	Encoding of sequences
	Testing sequences for universal gate application
	Optimizing the program for performance

	Discussion
	Application in real experiments
	Ensemble quantum computing
	Refocusing
	Pulse shaping

	Symmetry considerations
	Further numerical improvement

	Conclusion
	Appendices
	Python code for the sequence search
	Personal notes and acknowledgements
	Declaration of originality

