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In the artificially tailored heterostructures of certain materials, a polar discontinuity across the

interface introduces a large energy cost. The total energy of such systems may be reduced either by

electronic reconstruction leading to the interface phases or by simple atomic reconstruction by

inter-site cation mixing. While most of the experiments and theoretical calculations assume an

abrupt interface, in this work, we consider the La/Sr inter-site disorder across the interface of

SrTiO3/LaTiO3 heterostructures and study its energetics and electronic structure properties. The

calculations find that inter-site mixing of La/Sr atoms across the interface also reduces the total

energy. However, the extent of such disorder is found to be dramatically minimized by allowing

the interfacial atoms to relax fully and that for such systems, the changes in the electronic structure

are negligible. VC 2011 American Institute of Physics. [doi:10.1063/1.3629786]

Control of oxide film growth at the level of unit cell

dimensions has opened a route in materials design.1 One

such manifestation is the observation of a two dimensional

electron gas (2DEG) at the interface of two insulating oxide

perovskites,2–5 such as LaAlO3/SrTiO3 and LaTiO3/SrTiO3.

The formation of 2DEG results from the compensation of

the polar discontinuity at the interface, which can be illus-

trated as follows: SrTiO3 has alternating (Sr2þO2�) and

ðTi4þO2�
2 Þ layers along crystallographic [001] direction and

is, thus, nonpolar while LaTiO3 (or LaAlO3) is polar due to

the alternating (La3þO2�)þ and ðTi3þO2�
2 Þ
�

layers. Thus,

the polar discontinuity in such heterostructures is mainly

induced by the alternating polarized layers of the La based

system.

Several mechanisms have been proposed to explain the

origin of electronic conductivity at the interface. These

include electronic reconstruction, as suggested by the polar

catastrophe model6 or by an atomic reconstruction at the

interface by creation of oxygen vacancies in the substrate7,8

and/or inter-site cationic disorder across the interface.9–14

For an atomically abrupt interface, elementary electrostatic

considerations suggest an electronic reconstruction via trans-

ferring a fraction of an electron per unit cell from

(La3þO2�)þ to ðTi4þO2�
2 Þ

0
layers, thereby establishing

charge neutrality at the interfacial layers. The model ele-

gantly accounts for the strong ionic relaxations at the inter-

face,15 switching of insulating to metallic ground states as a

function of layer thickness, and the variation in the carrier

density in samples that are synthesized at high O partial pres-

sures.16 However, the model invariably assumes an ionic pic-

ture which is in contrast to the nature of chemical bonding in

LaTiO3.17 By means of electron localization function, it has

been shown that La–O and Ti–O bonds, in both cubic and

orthorhombic forms of LaTiO3, have a certain degree of

covalent nature associated with them.17

An alternate mechanism that can avert the polar discon-

tinuity at the interface is by an aliovalent cation exchange

across the interface, i.e., an inter-site La/Sr disorder across

the interface.6,9–13,18 Support for the inter-site mixing fol-

lows from the diffraction experiments where about 1–2 mul-

tilayers of disordered Sr1�xLaxTiO3 layers with significant

lattice deformations has been observed.9,18 Besides, the ob-

servation of a rough interface for the TiO2 terminated

(n-type) also indicates a possibility of La and Sr inter-site

mixing across the interface.6 Since La at Sr sites in SrTiO3

would be an n-type dopant,19,20 such a chemically disordered

effect could also equally well explain the interface conduc-

tivity in such heterostructures.

The effect of cation inter-site disorder in heterostruc-

tures has received only little attention from theoretical calcu-

lations, perhaps, due to the requirement of large supercells

which are computationally expensive. However, attempts

were made to account for such interfacial La/Sr disorder in

LaAlO3/SrTiO3 heterostructures, by using a simplified super-

cell in which a monolayer of LaO was embedded at the inter-

face, between the TiO2 and the SrO layers. The resulting

electronic structure showed substantial band bending at the

interface.9

In this work, we employ the coherent potential approxi-

mation (CPA) to model La/Sr disorder in LaTiO3/SrTiO3

heterostructures. CPA has not been used in such systems.

We note that CPA describes the electronic structure proper-

ties of disordered bulk and interface alloys,21 besides being a

very reliable approximation in treating metallic systems.

Given that the interface of 5 (or more) LaTiO3 unit cells on

SrTiO3 substrates induces a metallic state at the interface,

CPA unequivocally tends to be a good approximation to

study disorder in these systems. The chemical disorder is

confined to the interfacial region and is schematically shown

in Fig. 1.

The LaTiO3/SrTiO3 heterostructures are modeled by set-

ting the lattice constant to that of the cubic SrTiO3

(a¼ 3.905 Å), with the SrTiO3 terminated by the TiO2 layer.

Our model system comprises of 4 unit cells of SrTiO3,
a)Author to whom correspondence should be addressed. Electronic mail:

sauluck@iitk.ac.in.
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interfaced with 5 unit cells of LaTiO3. The ground state

properties are calculated using the Green’s function method

formulated in the atomic sphere approximation (ASA) (Ref.

22 and references therein). For better refinements in the alloy

energetics, the ASA is corrected by the use of both the muf-

fin-tin correction for the Madelung energy and the multi-pole

moment correction to the Madelung potential and energy.

These corrections bring significant improvement in the accu-

racy by taking into consideration the nonspherical part of the

polarization effects.23 The partial waves in the Korringa-

Kohn-Rostoker-ASA calculations are expanded up to

lmax¼ 3 inside the atomic spheres. The multi-pole moments

of the electron density have been determined up to lmax¼ 6

and then used for the multipole moment correction to the

Madelung energy. For the exchange-correlation effects, we

adopt to the generalized gradient approximation (GGA). The

core states have been recalculated after each iteration. The

atomic sphere radii of Sr/La, Ti, and O were kept as 1.511,

0.853, and 0.667 of the Wigner-Seitz radius, respectively. A

Monhorst-Pack grid of 12� 12� 4 k-points was used to

determine the total energies.

To study the lattice relaxation effects in LaTiO3/SrTiO3,

we employ the full-potential linearized augmented plane

wave method (FP-LAPW).24 The basis set is determined by

the following parameters: RMTKmax¼ 7.0, lmax¼ 10, and

Gmax¼ 24, with 28 k-points in the irreducible Brillouin zone.

The effects of local lattice relaxation at the interface of

LaTiO3/SrTiO3 are found to be similar to those reported ear-

lier.15,25,26 The largest relaxation effects are determined for

the Ti and O ions in the TiO2 layer which is closest to the

LaO layer, near to the interface. Comparing the self consis-

tently determined total energies of the relaxed and unrelaxed

structures, we find an energy gain of about 12.2 meV/atom

due to the local relaxation of atoms.

In Fig. 2, we show the relative total energy difference of

the disordered systems with respect to the atomically abrupt

structure for both relaxed and unrelaxed structures. For the

unrelaxed structure, we find that the minimum in the total

energy corresponds to x � 0.6, across TiO2 interface. The

decrease in the total energy between x¼ 0.6 and x¼ 0.0 is

determined to be �10.6 meV/atom. Thus, on a given length

scale, we find the energy gain due to the local lattice relaxa-

tion of an atomically abrupt interface (�12 meV/atom) and

that of an atomically reconstructed interface through a La/Sr

inter-site mixing (�10 meV/atom) are comparable. How-

ever, for the fully relaxed structure, the CPA calculations

find that the minimum in the total energy shifts towards

lower La/Sr disorder concentrations. The total energy is min-

imum for the x¼ 0.1 by �0.43 meV/atom with respect to

that of the fully relaxed atomically abrupt configuration

(x¼ 0.0). These results imply that the polar discontinuity at

the LaTiO3/SrTiO3 interface can be minimized by both lat-

tice relaxation and chemical disorder.

To study the changes in the electronic structure due to

the inter-site La/Sr intermixing across the TiO2 layers, we

show in Fig. 3 the density of states of three TiO2 layers that

are closest to the interface. The isolated deep valence states

are essentially a composite of the O 2s states and La 5p
states, while the states between �0.6<E (Ry)<�0.2

mainly constitute the O 2p states with little admixture of the

La/Sr and Ti states. The lower and the upper valence bands

are separated by a pseudogap (�0.2<E (Ry) �0.05) which

manifests the separation of the bonding and anti-bonding

states. With finite density of states at the Fermi energy, the

metallic nature of the interface is established for both x¼ 0.0

FIG. 1. The schematic representation of the LaTiO3/SrTiO3 heterostructure,

used in the present work, showing La/Sr inter-site disorder across the TiO2

interface. FIG. 2. (Color online) The relative total energy difference (DE) of the disor-

dered systems with respect to the atomically abrupt structure, in units of

meV/atom. The blue filled circles represent the results from the unrelaxed

structure, while the red filled squares are those for the fully relaxed

structures.

FIG. 3. (Color online) Layer resolved TiO2 density of states of the LaTiO3/

SrTiO3 using GGA, for x¼ 0.0 (blue curves) and x¼ 0.1 (red curves) for the

atomically relaxed interface (see text). The middle panel represents the DOS

of the TiO2 terminated interface, while the upper and lower panels represent

the DOS of TiO2 layers in the LaTiO3 and SrTiO3 motifs, which is adjacent

to the interface. The zero on the energy scale represents the Fermi energy

(dashed line).
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and x¼ 0.1 case. As evident, one finds that the states in the

vicinity of the Fermi energy are the least affected due to La/

Sr disorder across the interface. The primary effect of disor-

der is mostly seen in the lower valence band (E<�0.3 Ry)

where one finds significant re-distribution of states. These

results suggest that a thermodynamic stability may be

attained by local relaxation of atoms across the interface

along with small mixing of the La/Sr atoms across the inter-

face. However, the effects of such chemical disorder bring

only little changes in the electronic structure properties of

the LaTiO3/SrTiO3 system.

In summary, we have studied the effects of inter-site cat-

ionic La/Sr disorder across the interface of LaTiO3/SrTiO3

heterostructures using CPA. We find an intricate dependence

of La/Sr disorder and lattice relaxation effects, with the local

relaxation mainly accounting for the thermodynamical sta-

bility of the system, and by a factor of three larger in com-

parison to the inter-site mixing of the La and Sr ions across

the interface. Furthermore, we also find that such small lev-

els of La/Sr disorder (�0.1 at. %), which may persist across

the interface, have only little effect on the occupied states

near Fermi energy. We propose that developing growth tech-

niques, such as pulsed laser interval deposition or interrupted

deposition methods,27–29 that can allow a proper relaxation

of the ions at the interface, can minimize the cationic inter-

site disorder at the interface, and that the effects of such

chemical disorder can be neglected in modeling such hetero-

structures for future investigations.
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