
chemiresistive sensor for DNA. Since the charge transfer in the hybrid nanostructures is considered
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We fabricated ZnS nanocrystals decorated single-walled carbon nanotube sSWNTd based

to be responsible for many of their unique properties, the role of ZnS nanocrystals toward its

performance in DNA sensor was delineated. It was found that the free carboxyl groups surrounding

the ZnS nanocrystals allowed large loading of single strand DNA sssDNAd probe that provided an

ease of hybridization with target complementary c-ssDNA resulting in large electron transfer to

SWNT. Thus it provided a significant improvement in sensitivity toward c-ssDNA as compared to

.

Recent advances have resulted in the large-scale prepa-

ration of relatively monodisperse quantum dots sQDsd.
Compared with existing labels, nanoparticles in general

and QD in particular are more stable and cheaper. These QDs

are widely used in photocatalysis,
1
luminescence,

2,3
and

bioconjugate.
4,5

Recent advances in nanomaterials have gen-

erated a class of markers and probes by conjugating semi-

conductor QDs with biomolecules that have affinities for

binding with selected biological structures. Recently, the car-

boxyl group functionalized ZnS QDs have been utilized as a

reagentless amperometric uric acid biosensor.
6
Its ability to

promote the direct electron transfer between the biomol-

ecules and electrode surfaces was also explored.
7

Field-effect transistors sFETsd based on semiconductor

CNTs have attracted much interest due to their superior

properties such as high conductance, high mobility, and

chemical inertness, compared to ones based on conventional

semiconductor materials. A great deal of effort was placed on

using single-walled carbon nanotubes for electrochemical

sensor design. Nowadays, a great deal of research efforts has

been devoted to alter the physical properties of CNTs by

surface modification with organic, inorganic, and biological

species.
8,9

Among them, linking semiconductor nanocrystals

to CNTs has emerged as an active field.
10,11

The superiority

of this system lies in the fact that the combination of the

properties of two functional nanoscale materials can be used

to achieve a wider range of applications. With the develop-

ment of electrochemical DNA sensors, it is necessary to

search for efficient surface-immobilization techniques to en-

hance immobilization amount and ultimate detection capac-

ity of sequence specific DNA. A detection method of DNA

hybridization based on labeling with QD tracers has been

developed with electrochemical-stripping measurements of

the nanoparticles.
12,13

Kong et al.
14
have proposed a mecha-

nism for the interaction of SWNTs and DNA using first prin-

ciple electronic structure calculations. Functionalizing CNTs

with ZnS nanocrystals cannot only combine the advantages

of ZnS sn-type semiconductord and single-walled carbon

nanotube sSWNTd sp-type semiconductord but also may re-

sult in fresh properties, which have potential applications in

nanoscale electronic devices.

In this work, the electrical and DNA sensing properties

of ZnS nanocrystals functionalized SWNTs were systemati-

cally investigated to develop a better understanding of the

sensing mechanism by the measurement of I−V and FET

transfer characteristics.

Oligonucleotide NH2-ssDNA s58 amino-GAGCGGCGC
AACATTTCAGGTCGA-38d and its complementary

c-ssDNA s58 TCGACCTGAAATGTTGCGCCGCTC-38d
and noncomplimentary nc-ssDNA s58 CAGCGGCGCAACA
TTTCAGGTCGA-38d were purchased from MWG Biotech

Pvt. Ltd. Bangalore, India. The SWNTs sSWNT-COOH,

80%–90% purity; bundle diameter: 4–5 nmd were purchased
from Carbon Solution, Inc. sRiverside, CAd. The SWNTs

s0.01 mg ml−1d were suspended in N ,N-dimethylformamide

sDMFd and were ultrasonically dispersed by centrifugation at
310003g for 90 min. The dispersed SWNTs were aligned

across a pair of the 3 mm apart microfabricated gold elec-

trodes by ac dielectrophoresis by applying 0.36 VRMS at 4

MHz frequency until a desired resistance was achieved, fol-

lowed by annealing at 300 °C for 1 h in a reducing environ-

ment si.e., 5% H2 in N2d.
15
The aligned SWNTs were incu-

bated in a 6 mM solution of 1-pyrenemethylamine

hydrochloride sPyMe-NH2d in DMF, for 2 h, at room tem-

perature, washed extensively with DMF and dried under N2.

The whole assembly was then treated with 6 mM

6-mercapto-1-hexanol sMCHd in DMF to block the non-

specific binding site at gold surface for 1 h. An aqueous

solution of mercaptopropeonic acid sMPAd caped ZnS nano-

crystals of 5–6 nm size was prepared by procedure as re-

ported earlier
16
for further ZnS functionalization of SWNTs.

1-pyrenemethylamine functionalized aligned SWNTs were

treated with 1 mg ml−1 aqueous solution of ZnS sMPAd
nanocrystals containing 0.1M N-s3-dimethylaminopropyld-
N8-ethyl carbodiimide and 0.05M N-hydroxy succinamide

for 2 h and was rinsed thoroughly with double distilled wa-

ter. ss-DNA probe was covalently immobilized on ZnS func-

bare SWNT based DNA sensor.

ZnS nanocrystals decorated single-walled carbon nanotube based chemiresistive label-free DNA sensor

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IR@NPL

https://core.ac.uk/display/34213472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


tionalized SWNTs by depositing a drop of 1 mM
NH2-ssDNA in phosphate buffer solution sPBSd s0.01M; pH

7.2d on the chip for 20 h, at 37 °C in an incubator. To re-

move the loosely bound ss-DNA, the SWNTs were washed

five times with PBS and dried under N2. The ZnS/SWNTs

FET was formed by using the highly doped silicon substrate

as a back gate and is schematically represented in Fig. 1.

NH2-ssDNA was covalently immobilized directly over the

aligned SWNT through 1-pyrene butanoic acid succinimidyl

ester sPyBtNHSd without undergoing any functionalization

with ZnS nanocrystals to fabricate SWNTs FET for compara-

tive study. DNA hybridization was carried out with

c-ssDNA, on the device chip.

The fabrication and sensing processes were monitored

by recording the current-voltage sI-Vd characteristics of the

device between +1 and 21 V after each step using a

HP4155A semiconductor parameter analyzer and taking the

inverse of the slope of the I−V curve from 20.1 to +0.1 V.

As shown in Fig. 2, the current in the SWNTs device at a

given voltage decreased upon functionalization with

1-pyrenemethylamine/1-pyrene butanoic acid succinimidyl

ester, which is due to p-p stacking interactions between

SWNTs and pyrene groups. The current in SWNT device

further decreased upon treatment with nonspecific blocking

reagent MCH, functionalization with ZnS sMPAd nanocrys-
tals and NH2-ssDNA hybridization fFig. 2sadg. These

changes in resistance are attributed to the reduction in the

charge carriers sholesd in the p-type semiconductor SWNT

from an accumulation of negative charge and/or scattering

potential as a result of covalent attachment of ZnS nanocrys-

tals to SWNTs and of NH2-ssDNA to ZnS and modulation of

work function difference between the metal sgoldd contacts
and semiconducting SWNTs. The surface characterization of

SWNTs device by scanning electron microscope sPhilips
XL30 FEGd also confirmed the attachment of preformed 4–5
nm size ZnS nanocrystals fas evident by transmission elec-

tron microscope sTEMdg over SWNT fsee inset of Fig. 2sadg.
It is noteworthy to observe that the ZnS nanocrystals are well

decorated with equal interspacing over the aligned SWNT

resulting in the formation of multiple p-n junction type semi-

conductor devices. However, to understand the role of ZnS

nanocrystals over SWNT for DNA detection, we have fabri-

cated a similar SWNT device without ZnS nanocrystals fFig.
2sbdg and have undertaken a comparative DNA sensing

study. The current/resistance behavior of both the devices

was monitored for different concentrations of c-ssDNA and

nc-ssDNA, respectively. As expected, both the devices did

not show any significant change in current resistance re-

sponse toward nc-ssDNA because of no hybridization due to

mismatch of the nc-ssDNA sequence with the probe ss-DNA

sdata not shownd. Moreover, the devices responded explicitly

for different concentrations of c-ssDNA due to hybridization.

All experiments for monitoring the device response toward

c-ssDNA were carried out after incubation with different

concentration of c-ssDNA, for 5 min, followed by washing

and then drying under N2. Figure 3 shows a calibration curve

of devices with and without ZnS nanocrystals. As shown in

Fig. 3, both devices exhibited a linear change in the response

snormalized resistance changed upon incubation with

c-ssDNA from 1 pM to 10 nM concentrations. However, a

significant difference in sensitivity was observed between the

two devices. The ZnS/SWNT-ssDNA device exhibited about

2.5 fold increase in sensitivity of 0.16 per decade pM

c-ssDNA sthe slope of the calibration curved over SWNT-

ssDNA device showing a sensitivity of 0.06 per decade pM

c-ssDNA. This significant increase in sensitivity toward

c-ssDNA hybridization may be attributed to an increased

loading of NH2-ssDNA probe over ZnS nanocrystals due to

their large surface to volume ratio and a subsequent transfer

of negative charge electrons to SWNT upon hybridization

FIG. 1. sColor onlined Schematic cross-section of the ZnS/SWNT FET

device.

FIG. 2. sColor onlined I-V characteristics of the device at various stages of

fabrication sad ZnS/SWNT sbd SWNT; upper left side inset: SEM of ZnS/

SWNT and SWNT, and bottom right side inset: TEM of ZnS.

FIG. 3. sColor onlined Calibration curve of sad ZnS/SWNT-ssDNA and sbd

SWNT-ssDNA sensor for complimentary DNA sc-ssDNAd. Data points are

averages of four independent sensors sfor each investigationd prepared at

different times, and error bars represent 61 standard deviation.



with c-ssDNA. To further understand the sensing mecha-

nism, we have done a FET study. Figures 4sad and 4sbd show
typical gate voltage dependence of the normalized Isd for

ZnS/SWNT and SWNT, devices, respectively, after function-

alization with the capture ss-DNA probe and after hybridiza-

tion with 1 nM c-ssDNA. It was observed that percentage Isd

decreased with the covalent attachment of ZnS nanocrystals

over SWNT, as it doped SWNT heavily with negative charge

electrons. The decrease in hole density in SWNT was calcu-

lated by using a widely used expression CDVT /eL, where C

is the approximate capacitance, DVT is the shift in threshold

voltage, e the electron charge, and L the channel length
17
and

the field-effect mobility of the holes was calculated in the

linear regime by the equation, m= sLd2 sdIsd/dVgd/CVD,

wherein VD is the drain voltage.
18

The device revealed a

decrease in holes concentration by 2.73106 cm−1 after the

ZnS attachment, as the threshold voltage was shifted to nega-

tive side by 1.8 V with respect to bare SWNT. The device

exhibits a charge mobility of ,83102 cm2
/V s after ZnS

functionalization of bare SWNT. A further decrease in Isd

and charge mobility as well, was found after the immobili-

zation of ss-DNA probe over the ZnS nanocrystals in the

ZnS/SWNT device. The hole density was decreased by

,8.33106 cm−1 due a threshold voltage shift of 5.3 V and

the charge mobility was significantly decreased to ,2.2

3102 cm2
/V s. This significant feature of the device indi-

cates a Schottky barrier mechanism fsFig. 4sadg which may

be due to the fact that the adsorbed biomolecule at the metal

contact modulate the local work function and thus the band

alignment.
19
After hybridization with c-ssDNA, the device

shows a further decrease in hole density by ,1.0

3107 cm−1 versus ZnS/SWNT-ssDNA due to a threshold

voltage shift of 6.8 from 28.59 to 215.59 V due to a nega-

tive charge doping of SWNT resulting in decrease of hole

density in SWNT. Similarly, a large decrease in charge mo-

bility was seen from ,2.23102 cm2
/V s obtained in ZnS/

SWNT-ssDNA to ,1.23102 cm2
/V s in ZnS/SWNT-

ssDNA-c-ssDNA, which is a net decrease of ,1.0

3102 cm2
/V s upon hybridization.

On comparing the charge transfer characteristic of ZnS/

SWNT device with that of SWNT, it has been found that

though the sensing mechanism in SWNT device is also gov-

erned by electrostatic gating effect but no major change in

charge mobility was found in SWNT. The hole density was

decreased by 6.83106 cm−1 due a threshold shift of 4.5 V

upon hybridization, which is smaller than the value obtained

in ZnS/SWNT device. A very small change in charge mobil-

ity was seen upon ssDNA probe immobilization and on sub-

sequent hybridization step, i.e., ,6–6.53102 cm2
/V, as

can be seen from the slope dI /dV fFig. 4sbdg. This further
corroborates our contention that the improved sensitivity of

ZnS/SWNT device toward target c-ssDNA is due higher

loading of ssDNA probe over the large negative charged

binding sites of ZnS nanocrystals and successive large elec-

tron doping on SWNT on hybridization with c-ssDNA.

In conclusion, we have fabricated ZnS nanocrystals

decorated SWNT FET device for DNA detection. We have

discussed in detail the role of ZnS nanocrystals in sensing

mechanism toward target DNA. An analysis of the transfer

characteristic of the FET suggests that the ZnS nanocrystals

provides high loading of ssDNA probe and the sensing

mechanism is governed by strong electrostatic gating effect

with large electron doping on SWNT, resulting in improved

sensitivity toward c-ssDNA detection in comparison to

SWNT FET. Such improvement could make this device im-

portant for those nanobiosensors that demand high perfor-

mance.
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FIG. 4. sColor onlined Typical gate voltage dependence of the normalized

source-drain current Isd at VD of 0.5 V for sad ZnS/SWNT device, immobi-

lized with probe-ssDNA and hybridized with c-ssDNA and sbd bare SWNT

device, immobilized with probe-ssDNA and hybridized with c-ssDNA.


