
CORE DISCUSSION PAPER

2007/26

A tighter continuous time formulation for

the cyclic scheduling of a mixed plant

Yves Pochet1, François Warichet2

March 2007

Abstract

In this paper, based on the cyclic scheduling formulation of Schilling
and Pantelides [22], we propose a continuous time mixed integer linear
programming (MILP) formulation for the cyclic scheduling of a mixed
plant, i.e. a plant composed of batch and continuous tasks. The cycle
duration is a variable of the model and the objective is to maximize
productivity. By using strengthening techniques and the analysis of
small polytopes related to the problem formulation, we strengthen the
initial formulation by tightening some initial constraints and by adding
valid inequalities. We show that this strengthened formulation is able
to solve moderate size problems quicker than the initial one. However,
for real size cases, it remains difficult to obtain the optimal solution of
the scheduling problem quickly. Therefore, we introduce MILP-based
heuristic methods in order to solve these larger instances, and show
that they can provide quite good feasible solutions quickly.

Keywords : Cyclic scheduling, Continuous time formulation, Mixed integer

programming heuristics, Strengthening

1CORE & IAG, Université Catholique de Louvain, Belgium, pochet@core.ucl.ac.be
2CORE & INMA, Université Catholique de Louvain, Belgium, warichet@core.ucl.ac.be

This work was supported by le Fond de Recherche Solvay. This work was partly carried out
within the framework of ADONET, a European Network in Algorithmic Discrete Optimization,
contract no. MRTN-CT-2003-504438. This text presents research results of the Belgian Program
on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister’s Office,
Science Policy Programming. The scientific responsibility is assumed by the authors.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DIAL UCLouvain

https://core.ac.uk/display/34211046?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

The problem that we address in this paper is the optimization of the cyclic
schedule of a mixed plant in order to maximize its productivity. A mixed
plant is composed of batch and continuous tasks. A batch task has a fixed
processing time and produces at the end a fixed amount of product. A con-
tinuous task is processed continuously and its decision variable is the speed
at which it is performed. Both types of tasks consume resources with limited
capacity or availability.

Two types of formulations are typically proposed in the literature to
model such scheduling problems as mixed integer programs : the discrete
time formulation and the continuous time formulation.

Initially, scheduling problems were modeled by discrete time formula-
tions (see for example Kondili et al. [12]) using time intervals of fixed dura-
tion and a state task network representation to model the process network.
To better model the various types of resources used, the resource task net-
work was introduced (see Pantelides [18]) to generalize the concept of state
task network. Typically discrete time formulations require a large number
of small time intervals to model the problem accurately and obtain realistic
solutions. This gives rise to large size models in terms of number of vari-
ables. However, given that the formulation is usually strong (i.e. the duality
gap is rather small), one can hope to solve moderate size problems to near
optimality.

Even though the number of variables is very large, the number of time
intervals in which an event occurs in an optimal solution is usually quite
small. Therefore, continuous time formulations were proposed to reduce the
size of the formulation, see among others Zhang and Sargent [28], Pinto
and Grossmann [19] and Mockus and Reklaitis [16]. The characteristic of
these types of formulations is that time intervals have variable duration.
Consequently, the number of time intervals required to model the schedul-
ing problem accurately can be much smaller and is close to the number of
events that really occur. The continuous time formulations can be based on
time slots or on events.
For the slot-based formulation, time is decomposed into a set of consecutive
time slots of variable duration and a batch task is assigned to a set of consec-
utive time slots. The representation of time can be global, i.e synchronized
for all units (see for example Schilling and Pantelides [21]) or unit specific,

1

i.e asynchronous (see for example Karimi and McDonald [10]).
For the event-based formulations, the variables correspond to the starting
and the ending time of each batch task expressed in absolute time units,
and model events that occur at different moments. Here also, the represen-
tation of time can be global (see for example Zhang and Sargent [28] and
Mockus and Reklaitis [16]) or unit specific (see for example Ierapetritou
and Floudas [8]).
The main interest of continuous time formulations is that the number of
variables is very small. The mixed integer program is compact but typically
weak in the sense that the duality gap is large, and therefore the number
of Branch and Bound nodes needed to obtain the optimal solution is large.
This is due, very often, to the necessary introduction of so-called big M type
of constraints to obtain a correct model formulation.

For recent literature reviews about scheduling formulations for chemical
processing systems, see Floudas and Lin [7] and Mendez et al. [15].

In the problem studied here, the product demand is relatively stable
which implies that we are interested by an optimal cyclic schedule where
the objective is to maximize the long term productivity. In the literature,
this cyclic scheduling problem has been modeled by discrete time formula-
tions (see for example Shah et al. [23]) and continuous time formulations (see
for example Wu and Ierapetritou [27], Schilling and Pantelides [22]). The
paper by Castro et al. [2] models a case study problem using both types
of formulations and concludes that the discrete time formulation gives, in a
reasonable amount of time, a solution of better quality than the continuous
time formulation.

In this paper, we study a continuous time slot-based formulation to
model the productivity optimization problem for the cyclic schedule of a
mixed plant. In our model, some tasks have to start after others without
any waiting time. In such a case, it is not possible to remove the big M
constraints as proposed in the paper by Sundaramoorthy and Karimi [25].
Therefore, the continuous time formulation becomes weak.

One way to improve the model formulation is to get rid of the big M
constraints by decomposing the problem into an assignment master problem
and a sequencing subproblem. In the paper by Maravelias and Grossmann
[14], for example, the assignment of production units to tasks is modeled by
a mixed integer linear programming (MILP) formulation and the sequenc-

2

ing subproblem is modeled and solved by constraint programming (CP).
Another related decomposition approach is proposed by Maravelias in [13].
The assignment problem is also modeled as a mixed integer linear program,
but the feasibility check and the deduction of feasible schedules are per-
formed by combinatorial sequencing algorithms.

Another way to improve model formulations with big M constraints is to
tighten the model formulation. In general, to tighten a formulation , we can
use strong or facet defining valid inequalities for the problem studied (see
Nemhauser and Wolsey [17]). We can also tighten formulations by using an
extended space of variables (see Pochet and Wolsey [20]) or by strengthening
techniques (see Andersen and Pochet [1]).

Our first contribution is to show that by using a tightened continuous
time formulation, we solve problem instances quicker and with less Branch-
and-Bound nodes than if we use the initial continuous time formulation. The
tightened formulation is obtained by using a combination of strengthening
techniques and the analysis of small polytopes, see Christof and Loebel [3],
applied to the formulation of the scheduling of the batch tasks.

We also tried to improve the model formulation of the continuous part of
the problem. The results obtained so far suggest that only one of the valid
inequalities found can help to solve the problem instances more rapidly, see
Warichet and Pochet [26].

Using this tightened formulation, we detect that for many instances,
the CPU solution time and the total number of nodes in the branch and
bound algorithm are drastically reduced. Nevertheless the time needed in
some cases to find the optimal solution remains very long because of the
difficulty of finding good feasible solutions even though the duality gap is
small. Therefore, we pay attention to some MILP heuristic techniques in or-
der to obtain good feasible solutions quickly, while trying to take advantage
of the improved formulation obtained. The MILP heuristic methods can
be subdivided into two groups. The fist type are the construction heuristic
methods that construct a feasible solution from scratch (LP-and-Fix or Cut-
and-Fix, Relax-and-Fix (see Stadtler [24]), . . .) and the second type are the
improvement heuristic methods that try to improve some initial feasible so-
lution (Relaxation Induced Neighborhood Search (RINS) (see Danna et al.
[4]), Local Branching (LB) (see Fischetti and Lodi [6]), Exchange (EXCH)).
For more details about these heuristic methods, see for instance Pochet and

3

Wolsey [20].

In Kelly and Mann [11], the use of a Relax-and-Fix heuristic is proposed
in order to speed up the resolution of production scheduling problems. They
showed that with this heuristic, it is possible to find a good feasible solution
quickly.

Our second contribution is that the heuristic method used, a combina-
tion of various well-known MILP heuristic methods such as Relax-and-Fix
and Local Branching, allows us to find better feasible solutions than exact
solution methods for a fixed computing time and for some large instances.

The outline of the paper is the following. In Section 2, we present an
initial formulation of our scheduling problem. We show in Section 3, how
some of the constraints can be strengthened. We define in Section 4 the
heuristic methods used. In Section 5, we present some computational results
and eventually in the last section, we conclude and propose some directions
for future work.

2 Initial model formulation

The objective is to obtain a cyclic schedule of the mixed plant maximizing
its productivity. The mixed plant is composed of batch and continuous
tasks that consume resources. The formulation of the scheduling problem
has to take into account the limited availability of the resources. The initial
formulation proposed and the time decomposition are related to the model
formulation presented in Schilling and Pantelides [22].

For the continuous time formulation used here, the time is decomposed
in a fixed and finite number of time slots and the duration of every time
slot is a variable of the model. The decomposition of time is common to all
processing units. In the literature, this is known as a global time slot based
model.
We represent in Figure 1 the time decomposition into time slots. An event
is here defined as the beginning or end of a batch task, and a time slot is
the time between two events. Events and time slots are numbered from 1
up to T. In cyclic scheduling, the event at the end of time slot T coincides
with the event occurring at the beginning of time slot 1, and is numbered
as event 1.

In this section, we define the sets and the variables used and we present

4

Event t Event t+1

Time slot t

time

t
t

t
t +1

Figure 1: Event and Time slot

an initial formulation for our problem.

2.1 Sets and Variables

Taking into account the process description, we model batch and continuous
tasks. We are given a set of batch tasks BT , a set of continuous tasks CT
and a maximum number T of events. For generality, we suppose that the
capacity of each resource is represented using its own unit of measure that
we call ru. The size of a batch of task i is denoted by BSi[ru] and expresses
the quantity of product produced at the end of the task. The processing
time of a batch task i ∈ BT is constant and is given by pi[h]. The continuous
tasks j ∈ CT are performed continuously. The lower and upper bounds on
the speed or processing rate of the continuous task j ∈ CT are ρ

j
[ru/h]

and ρj [ru/h] respectively. There are precedence constraints between some
definite batch tasks and some resources r ∈ {1, . . . , R} are shared.

The four types of indices and sets are the following :

i: is the index of a batch task, i ∈ BT

j: is the index of a continuous task, j ∈ CT

t: is the index of a time slot, t ∈ {1, . . . , T}

r: is the index of a resource, r ∈ {1, . . . , R}

The five types of decision variables are the following :

τt: is the duration of time slot t [h], τt ≥ 0.

zi,t,t′ : =1 if a batch of task i starts at the beginning of time slot t and finishes
at the end of time slot t′,
=0 otherwise.

5

qj,t: is the quantity processed by the continuous task j during time slot t
[ru], qj,t ≥ 0.

rr,t: is the rate [ru/h] or the quantity [ru] of resource r available at the
beginning of time slot t just after the event occuring at the beginning
of time slot t, rr,t ≥ 0.

rfr,t: is the rate [ru/h] or the quantity [ru] of resource r available at the end
of time slot t just before the event occuring at the end of time slot t,
rfr,t ≥ 0.

To reduce the number of binary variables zi,t,t′ , we impose the following
restriction. A batch task i can only be performed during a maximum num-
ber of consecutive time slots denoted by d. This means that if task i starts
at time slot t, this task has to end at or before time slot t + d− 1. This im-
plies that zi,t,t′ exists for all i ∈ BT, t ∈ {1, . . . , T} and t′ ∈ {t, . . . , t+d−1}.

We also impose, without loss of generality, τt ≤ pmax for all t ∈ {1, . . . , T},
where pmax = maxi∈BT pi is the maximum processing time among all batch
tasks.

2.2 Initial continuous time formulation

We model a cyclic schedule. In general, it is possible that a task starts in the
current cycle and finishes in the next cycle. As observed in Shah et al. [23],
it is possible in this case to optimize the schedule over one cycle by using the
concept of task ‘wrap-around’, because the end of the task in the next cycle
has a corresponding end in the beginning of the current cycle. We use the
‘wrap-around’ time operator Ω(t) defined in Schilling and Pantelides [22] :

Ω(t) = t ∀t : 1 ≤ t ≤ T,

Ω(t) = Ω(t − T) for t > T,

Ω(t) = Ω(t + T) for t < 1.

So, a batch task i starting in time slot t and finishing in time slot t + k
corresponds to zi,t,Ω(t+k) = 1 as illustrated in Figure 2. We present now the
various type of constraints that we need in order to model the problem.

6

1 t T 1 t+k

1 t T

1 Cycle

W(t+k)

time

z

i,t,t+k

z

i,t,W(t+k)

Figure 2: The ‘wrap-around’ time operator Ω(t)

2.2.1 Duration constraints for batch tasks

The following timing constraints (1)-(2) impose that if a batch task i starts
at time slot t and finishes at time slot l then the sum of the time slot dura-
tions from t to l is equal to the processing time of batch task i, denoted by
pi. The constant pmax allows one to obtain a non positive right hand side
in (2) when zi,t,Ω(l) = 0, because τt ≤ pmax holds for all t.

For all i, t, l : i ∈ BT, 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1, we have that

pizi,t,Ω(l) ≤
l
∑

k=t

τΩ(k) (1)

pizi,t,Ω(l) ≥
l
∑

k=t

τΩ(k) − pmax(l − t + 1)
(

1 − zi,t,Ω(l)

)

. (2)

Constraint (2) is called a big M constraint where the big M constant
is pmax(l − t + 1). This big M constraint is usually not strong (non facet-
defining).

The constraints (3)-(4) impose that we can start or finish only one batch
task at each time slot. When adding this type of constraints, one needs to
increase the size of the formulation (larger T) in order to obtain an equivalent
formulation because we limit to one the number of tasks starting or finishing
at each time event. However, as observed in practice, this new formulation
is stronger, i.e. the duality gap is smaller, and allows one to strengthen the

7

formulation of the timing constraints (see Section 3.1).

∑

i∈BT

t+d−1
∑

l=t

zi,t,Ω(l) ≤ 1 ∀t : 1 ≤ t ≤ T (3)

∑

i∈BT

l
∑

t=l−d+1

zi,Ω(t),l ≤ 1 ∀l : 1 ≤ l ≤ T (4)

Note that constraints (3)-(4) are facet-defining for the subproblem in
which we consider only one batch task and no resource restriction.

2.2.2 Processing constraints for the continuous tasks

Constraints (5)-(6) limit the amount processed by the continuous tasks

qj,t ≤ ρjτt ∀j, t : j ∈ CT, 1 ≤ t ≤ T (5)

qj,t ≥ ρ
j
τt ∀j, t : j ∈ CT, 1 ≤ t ≤ T (6)

where ρ
j
[ru/h] and ρj [ru/h] are the lower and the upper bounds for the rate

of material that is processed by the continuous task j, respectively.

Once started, the continuous tasks have to be active all the time. In the
case of a cyclic schedule, this means that the continuous tasks have to be
active all the time.

2.2.3 Resource constraints

As proposed in Pantelides [18], the problem formulation is based on the re-
source task network (RTN) representation. The set {1,. . . ,R} of resources
r is composed of all the materials (products produced, consumed, or stored
into storage tanks) (Rm), utilities (Ru), and processing equipments (produc-
tion units) (Re) involved in the process. The precedence constraints between
batch tasks are modeled by resource constraints as well. A detailed example
is given in Section 5.1.

The general material balance constraint can be written as follows. It de-
termines the resource availability level, for each resource r, at the transition
from the end of the time slot t − 1 to the start of time slot t. Only batch
tasks produce or consume resources at these events.

rr,t = rfr,Ω(t−1) +
∑

i∈BT

µ̄i,r

t−1
∑

t′=t−d

zi,Ω(t′),Ω(t−1) −
∑

i∈BT

µi,r

t+d−1
∑

t′=t

zi,t,Ω(t′) (7)

8

∀r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T and where

µ̄i,r : is the rate [ru/h] of renewable resource r ∈ Ru released at the end of
task i, or
the quantity [ru] of non renewable resource r ∈ Rm produced at the
end of task i, or
the number of units [ru] of non renewable resource r ∈ Re released at
the end of task i.

µi,r : is the rate [ru/h] of renewable resource r ∈ Ru consumed at the be-
ginning of task i, or
the quantity [ru] of non renewable resource r ∈ Rm consumed at the
beginning of task i, or
the number of units [ru] of non renewable resource r ∈ Re consumed
at the beginning of task i.

Continuous tasks are in process during time slots and therefore we have
to control the level of all the resources r ∈ Rm related to the continuous
tasks at the end of every time slot τt just before receiving possible resource
releases or consumptions occuring at the beginning of the next time slot.
The resource level at the end of every time slot can be expressed as

rfr,t = rr,t +
∑

j∈CT

λj,rqj,t ∀r, t : r ∈ Rm, 1 ≤ t ≤ T (8)

where

λj,r = 1 if the continuous task j produces resource r ∈ Rm

= −1 if the continuous task j consumes resource r ∈ Rm

= 0 otherwise.

The levels of resources r ∈ Re ∪ Ru are not changed during time slots,
therefore rfr,t = rr,t ∀ t, ∀ r ∈ Re ∪ Ru.

We have to verify at the beginning and at the end of each time slot that
the resource capacity limitations are satisfied.

Rminr ≤ rr,t ≤ Rmaxr ∀r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T (9)

Rminr ≤ rfr,t ≤ Rmaxr ∀r, t : r ∈ Rm, 1 ≤ t ≤ T (10)

where Rminr, Rmaxr represent the lower and upper limits on the level of
resource r, respectively, in [ru/h] for r ∈ Ru and in [ru] for r ∈ Rm ∪ Re.

9

However if there exists a time event t at which there exists both a release
of resource r at the end of time slot t − 1 and a consumption of r at the
start of time slot t, then we need an additional set of constraints in order
to guarantee that the maximum resource capacity usage is satisfied. This is
why we have to also impose the following condition

rfr,t +
∑

i∈BT

µ̄i,r

t
∑

t′=t−d+1

zi,Ω(t′),t ≤ Rmaxr (11)

for all r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T .

Finally, if for a certain resource r̃ ∈ R, µ̄i,r̃ = µi,r̃, for all i ∈ BT , then
we do not use the constraints (7)-(11) for that resource r̃. We only impose
the following set of constraints :

Rminr̃ ≤
∑

i∈BT

t
∑

t1=t−d+1

t1+d−1
∑

t2=t

µ̄i,r̃zi,Ω(t1),Ω(t2) ≤ Rmaxr̃ (12)

for all t ∈ {1, . . . , T}. This occurs typically for the modelling of the avail-
ability of the utilities (i.e r̃ ∈ Ru).

Figure 3 represents the two variables rr,t and rfr,t for the three types of
resources.

2.2.4 No waiting time between two batch tasks

Some batch tasks have to be performed directly after others without any
waiting time. For instance, in a chemical reactor, regulation has to start
immediately after heating. This is modeled as follows :

t+d−1
∑

l=t

zi′,t,Ω(l) ≥
t−1
∑

l=t−d

zi,Ω(l),Ω(t−1) (13)

for all i, i′ such that i′ follows directly i without any waiting time, for all
t ∈ {1, . . . , T}.

This constraint is the reason why we need to know or to model exactly
the duration of a batch task as the sum of time slots durations.

2.2.5 Breaking symmetry in the cyclic solution

To remove the symmetry in the cyclic solution, we usually fix the initial
starting time slot of one batch task that has to be processed during the

10

R
min,r

R
max,r

t

Available rate of utility

r

r,,t

r

r, t +1
+1

+1

t
t

t
t +1

(a)

[];

rf

r,,t

rf

r, t +1
+1

+1

R
min,r

R
max,r

t

Quantity of product in a Storage tank

t
t

t
t +1

(b)

r

r,,t

rf

r,,t

rf

r,,t+1

r

r,,t+11+

R
min,r

R
max,r

t

Available units of a machine

1

2

t
t

t
t +1

(c)

r

r,,t+11+

r

r,,t1+

rf

r,,t1+

rf

r,,t+11+

Figure 3: Representation of the resource r ∈ Ru (a), r ∈ Rm (b) and r ∈ Re

(c), respectively.

cyclic schedule.
For example, if we know that a specific batch task i1 has to be processed dur-
ing the cyclic schedule, the corresponding constraint will be :

∑d
t′=1 zi1,1,t′ =

1. This can usually be done without loss of generality or optimality.

2.2.6 The objective function

The objective is to maximize the average production per unit of time over
the entire cycle, or the productivity. The non linear objective function is
the following

max

∑

j∈OUT

∑T
t=1 qj,t

∑T
t=1 τt

, (14)

where OUT ⊆ CT is the set of output products of the plant. It is here
assumed that the output products are produced by some of the continuous
tasks. This restriction can be relaxed easily.

11

It was shown by Isbell and Marlow [9], and also extended by Dinkelbach
[5], that this nonlinear objective function can be optimized by solving a
sequence (iterations p = 1, 2, . . .) of linear optimization problems where the
objective function at iteration p is

max
∑

j∈OUT

T
∑

t=1

qj,t − µp

T
∑

t=1

τt, (15)

and where µp is a constant which is computed before iteration p as

µp =

∑

j∈OUT

∑T
t=1 q⋆,p−1

j,t
∑T

t=1 τ⋆,p−1
t

,

where q⋆,p−1
j,t , for j ∈ OUT and for all t, and τ⋆,p−1

t , for all t, are the
optimal solution of the problem at iteration p − 1. The initialization is
µ1 =

∑

j∈OUT ρ
j
. This iterative process stops at the end of iteration p when

µp+1 = µp. In that case, the optimal objective function (15) is equal to 0.
As explained and proved in Isbell and Marlow [9], the corresponding opti-
mal solution is also optimal for the problem with the nonlinear objective
function (14). We show in Appendix A another way to prove this result.

This sequence of µp converges because the value of µp increases monoton-
ically and is bounded from above. The sequence of µp increases monotoni-
cally because if µp+1 < µp then

∑

j∈OUT

T
∑

t=1

q∗,pj,t − µp

T
∑

t=1

τ∗,p
t < 0

and this implies

∑

j∈OUT

T
∑

t=1

q∗,pj,t − µp

T
∑

t=1

τ∗,p
t < 0 =

∑

j∈OUT

T
∑

t=1

q∗,p−1
j,t − µp

T
∑

t=1

τ∗,p−1
t

and therefore (q∗,p, τ∗,p) cannot be optimal for iteration p because it is dom-
inated by (q∗,p−1, τ∗,p−1), and this is a contradiction.
Moreover, the value of the µ’s is bounded from above by the upper bound
on the rate of material that is processed by the continuous tasks in the set
OUT , that is

∑

j∈OUT ρj .

12

Finally, as explained in Isbell and Marlow [9], this algorithm converges
in a finite number of iterations. The optimal solution of each problem with
the linear objective function (15) is a vertex of the feasible set and there are
only a finite number of vertices for this set. If the same vertex is returned
for two successive iterations, the corresponding µ’s are equivalent and the
algorithm terminates.

3 Strengthened continuous time formulation

In this section, we describe the improved formulation of some constraints
and some valid inequalities added to tighten the MILP formulation. The
proofs of validity and the detailed derivation for the various results of this
section are given in Warichet and Pochet [26].
These results have been obtained by the analysis and generalization of
the reformulation of small polytopes (see Christof and Loebel [3]), and by
strengthening techniques such as the one described in Andersen and Pochet
[1].

3.1 Strengthening of the timing constraints for the batch

tasks

The initial timing constraint (1)

l
∑

k=t

τΩ(k) ≥ pizi,t,Ω(l) ∀i ∈ BT,∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1

can be strengthened as

l
∑

k=t

τΩ(k) ≥
∑

i∈BT

l
∑

k=t|t6=l

pizi,t,Ω(k) +
∑

i∈BT

pizi,l,l (16)

l
∑

k=t

τΩ(k) ≥
∑

i∈BT

l
∑

k=t|t6=l

pizi,Ω(k),l +
∑

i∈BT

pizi,t,t (17)

for all t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1.

Constraints (16) and (17) are both facet-defining for the subproblem in
which we consider only one batch task and no resource restriction. Note
that the size of the formulation has been reduced by avoiding the definition

13

of separate timing constraints for each batch task i ∈ BT .

To illustrate the difference between the initial and the strengthened for-
mulation, we assume that we have only one batch task and we write the
initial constraint (1) for t = 1 and l = 3 :

τ1 + τ2 + τ3 ≥ p1z1,1,3.

The corresponding strengthened expression (16) can be written as

τ1 + τ2 + τ3 ≥ p1 (z1,1,1 + z1,1,2 + z1,1,3) + p1z1,3,3.

In Figure 4, taking into account the fact that we can start or finish
at most one batch task at each time slot, we can see that we may add
the variables corresponding to the dashed intervals in the right hand side,
and keep the inequality valid. This holds because z1,1,3 + z1,1,2 + z1,1,1 ≤
1, and if z1,1,3 + z1,1,2 + z1,1,1 = 1 then τ1 + τ2 + τ3 ≥ p1. Similarly, if
z1,1,3 + z1,3,3 = 1 then we must also have τ1 + τ2 + τ3 ≥ p1. Finally, when
z1,1,1 + z1,1,2 + z1,1,3 + z1,3,3 = 2 (for instance when z1,1,1 = z1,3,3 = 1) then
the two batches do not overlap and we must have τ1 + τ2 + τ3 ≥ 2p1.

t
1

t
2

t
3

z

1,1,3

z

1,3,3

z

1,1,2

z

1,1,1

Figure 4: Strengthened constraint (16) : an example

By using the same idea, we can generalize this result even more by
considering that if there are two (or more) batch tasks, we can sum their
processing times in the right hand-side :

τ1 + τ2 + τ3 ≥ p1 (z1,1,1 + z1,1,2 + z1,1,3) + p1z1,3,3

+p2 (z2,1,1 + z2,1,2 + z2,1,3) + p2z2,3,3.

The second strengthened inequality (17) is closely related to the first one
and can be explained in the same way.

14

Similarly, the timing constraint (2)

l
∑

k=t

τΩ(k) ≤ pizi,t,Ω(l) + pmax(l − t + 1)
(

1 − zi,t,Ω(l)

)

for all i, t, l : i ∈ BT, 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 can be strengthened as

l
∑

k=t

τΩ(k) ≤
∑

i∈BT

l
∑

k=l−d+1

pizi,Ω(k),Ω(l)

+pmax
(

(l − t + 1) −
∑

i∈BT

l
∑

k=l−d+1

min{l − t + 1, l − k + 1}zi,Ω(k),Ω(l)

)

+
∑

i∈BT

(pi − pmax)
l−1
∑

t′=t|l−t+1=d

zi,t,Ω(t′) (18)

for all t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1, and

l
∑

k=t

τΩ(k) ≤
∑

i∈BT

t+d−1
∑

k=t

pizi,t,Ω(k)

+pmax
(

(l − t + 1) −
∑

i∈BT

t+d−1
∑

k=t

min{l − t + 1, k − t + 1}zi,t,Ω(k)

)

+
∑

i∈BT

(pi − pmax)
l
∑

t′=t+1|l−t+1=d

zi,Ω(t′),Ω(l) (19)

for all t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1.

Constraints (18) and (19) are facet-defining for the subproblem in which
we consider only one batch task and no resource restriction. Again, the
size of the formulation has been reduced compared to (2) when there are
multiple batch tasks.

The two strengthened inequalities are closely related and we explain here
intuitively how to interpret one of them. When l < t + d − 1, the general

15

form of the inequality (19) is

l
∑

k=t

τΩ(k) ≤
∑

i∈BT

t+d−1
∑

k=t

pizi,t,Ω(k) +

pmax
(

(l − t + 1) −
∑

i∈BT

t+d−1
∑

k=t

min{l − t + 1, k − t + 1}zi,t,Ω(k)

)

(20)

for all t, l : 1 ≤ t ≤ T, t ≤ l < t + d − 1.

To illustrate the difference between the initial and the strengthened for-
mulation when l < t + d − 1, we assume that we have only one batch task
and we write the initial constraint (2) for t = 1, l = 2 and d = 3 :

τ1 + τ2 ≤ p1z1,1,2 + pmax(2 − 2z1,1,2). (21)

The corresponding strengthened expression (20), can be written as

τ1 + τ2 ≤ p1(z1,1,1 + z1,1,2 + z1,1,3) + pmax(2 − z1,1,1 − 2z1,1,2 − 2z1,1,3)

In Figure 5, taking into account the fact that we can start at most
one batch task at each time slot, we can see that we may subtract in the
right hand side of (21) a positive multiple of the variables corresponding
to the dashed intervals, and keep the inequality valid. This holds because
Z = z1,1,1 + z1,1,2 + z1,1,3 ≤ 1 and if Z = 0, then τ1 + τ2 ≤ 2pmax by the
initial upper bound on τt. Similarly, if Z = 1 and z1,1,1 = 1 then τ1 = p1

and τ2 ≤ pmax and finally if Z = 1 = z1,1,2 + z1,1,3 then τ1 + τ2 ≤ p1 because
a batch of task 1 starts in t = 1 and finishes at or after l = 2.

t
1

t
2

z

1,1,3

z

1,1,2

z

1,1,1

Figure 5: Strengthened constraint (20) : an example

16

If there are several batch tasks, the inequality (20) becomes

τ1 + τ2 ≤ p1(z1,1,1 + z1,1,2 + z1,1,3) + pmax(2 − z1,1,1 − 2z1,1,2 − 2z1,1,3)

+p2(z2,1,1 + z2,1,2 + z2,1,3) + pmax(−z2,1,1 − 2z2,1,2 − 2z2,1,3)

which is stronger because the terms added in the right hand side are non
positive.

When l = t + d − 1, one term from (19) is missing in inequality (20).
We explain now that, when l = t + d − 1, we can introduce the term
∑

i∈BT (pi − pmax)
∑l

t′=t+1 zi,Ω(t′),Ω(l) in the right hand side of (20) and keep
the inequality valid.

We continue with an example involving one batch task. Suppose that
d = 3, t = 1 and l = 3 (= t + d − 1), the strengthened inequality (19) for
that example can be written as

τ1 + τ2 + τ3 ≤ p1(z1,1,1 + z1,1,2 + z1,1,3) + pmax(3 − z1,1,1 − 2z1,1,2 − 3z1,1,3)

+(p1 − pmax)(z1,2,3 + z1,3,3)

The only new or additional case to consider is : z1,2,3 + z1,3,3 = 1. In that
case, z1,1,2 + z1,1,1 ≤ 1 and z1,1,3 = 0.
Suppose first that z1,1,2 + z1,1,1 = 1. If z1,1,2 = 1, τ1 + τ2 = p1 and τ3 ≤ p1,
then τ1 + τ2 + τ3 ≤ 2p1. If z1,1,1 = 1, τ1 = p1 and τ2 + τ3 ≤ p1 + pmax, then
τ1 + τ2 + τ3 ≤ 2p1 + pmax.
Suppose now that z1,1,2 + z1,1,1 = 0, then τ1 + τ2 ≤ 2pmax, τ3 ≤ p1 and
τ1 + τ2 + τ3 ≤ 2pmax + p1.
So the inequality is satisfied in all possible cases.

3.2 Strengthening of the constraints for the continuous tasks

If the continuous tasks j ∈ CT consume or produce a product stored into
a resource r ∈ Rm, i.e if λj,r 6= 0 in (8), then the constraint (5) can be
strengthened as

qj,t ≤ ρjτt−
∑

i

max
(

piρj − (Rmaxrj
−Rminrj

); 0
)

zi,t,t ∀t ∈ {1, . . . , T}

(22)
where rj is the resource that stores the product produced or consumed by
the continuous task j.

The continuous task j has a maximum speed (ρj [ru/h]) and the resource
rj has a limited capacity ([Rminrj

; Rmaxrj
][ru]). If a batch task i starts

17

at time slot t and finishes at time slot t, the duration τt of the time slot
t is equal to the processing time of the batch task pi. In that case, if
piρj > Rmaxrj

− Rminrj
then the continuous task cannot be performed at

maximum speed and qj,t ≤ Rmaxrj
−Rminrj

. Constraint (22) imposes this
additional restriction.

3.3 Other valid inequalities improving the model formula-

tion

The next valid inequality (23) explicitly takes into account the fact that
the batch tasks can be performed in parallel when they can last for several
consecutive time slots. The maximum number of consecutive slots on which
any batch task can be performed is denoted by d. This implies that any
time slot can be used by various batch tasks performed in parallel. This
time slot is in a sense “shared” by the various batch tasks.

We define the discrete array coeff , for fixed t ∈ {1, . . . , T} and l ∈
{t + 2, . . . , t + T + d − 3}. For each k ∈ {t, . . . , l}, coeffk represents the
maximum number of batch tasks performed completely (i.e., starting and
finishing) in the interval {t, . . . , l} that can be active during time slot k, and
is expressed as

coeffk = min(k − t + 1; l − k + 1) ∀k ∈ {t, . . . , l}

= 0 otherwise.

Then, we can add the following valid inequality for 1 ≤ t ≤ T and t ≤ l ≤
t + d − 1, (see Warichet and Pochet [26])

l
∑

k=t

min(coeffk, d)τΩ(k) ≥
∑

i∈BT

pi

l
∑

k=t

min(k+d−1,l)
∑

f=k

zi,Ω(k),Ω(f)

 . (23)

To illustrate this valid inequality, we consider one batch task, t = 1,
d = 3 and l = 4. For this small example, Coeff = (1, 2, 2, 1). Only one
batch task can be active during time slot 1 because only one batch task can
start at time slot 1. For the time slot 2, 2 batch tasks can be active because
we can start a batch task at time slot 1 and finish this batch task after time
slot 2 and we can start a batch task at time slot 2 also. For the time slot
3, at most 2 batch tasks can be active because we can finish a batch task
at time slot 3 and a batch task at time slot 4. Only one batch task can be
active during time slot 4 because only one batch task can finish at time slot

18

4. A batch task can last only for d = 3 consecutive time slots and therefore
at most 3 batch tasks can overlap the same time slot. This is why we take in
the left-hand side of the inequality (23) the minimum between coeffk and
d. We can write the corresponding valid inequality as

τ1 + 2τ2 + 2τ3 + τ4 ≥ p1(z1,1,1 + z1,1,2 + z1,1,3 + z1,2,2 + z1,2,3

+z1,2,4 + z1,3,3 + z1,3,4 + z1,4,4).

The inequality (23) is valid because the left hand side is the production
time available in {t, . . . , l} for batches performed completely in {t, . . . , l} and
the right hand side is the production time effectively used by such batches.

4 Heuristic Methods

We introduce below a heuristic method that combines the use of various
well known MIP based heuristic methods. Our objective in using MIP based
heuristics is to find good feasible solutions quickly by taking advantage of
the improved formulations described above. We outline here the well known
heuristic methods and we explain how we combine them. All these heuristics
are described in Pochet and Wolsey [20].

The main heuristic method used is Relax-and-Fix, see Stadtler [24].
The various steps of our specific implementation are the following :

1. We decompose the set of binary variables zi,t,Ω(l) in various non-disjoint
sets S1, S2, . . . , ST . In our case, the set St is composed of the binary
variables that can be active during time slot t. Every variable will be
part of at least one set. In other words, for each t ≤ k ≤ l ≤ t + d− 1,
the variable zi,t,Ω(l) ∈ SΩ(k).

2. We start by imposing the integrality restriction for the binary variables
in the sets S1 and S2 and we relax this constraint (i.e. 0 ≤ z ≤
1) for variables in the sets (S3 ∪ . . . ∪ ST) \ (S1 ∪ S2). We solve the
corresponding relaxed MIP problem and we obtain an upper bound
for the original problem (for the maximization of the linear objective
function).
We fix the binary variables in the set S1 at their optimal values.
This is the end of the first iteration of Relax-and-Fix.

3. Then, we impose the integrality condition for the binary variables in
the sets S2 and S3 and we relax the integrality constraints for the
rest of the variables, i.e. for variables in the sets (S4 ∪ . . . ∪ ST) \

19

(S1 ∪ S2 ∪ S3). We solve the corresponding relaxed MIP problem and
we fix the binary variables in the set S2 at their optimal value. This
is the end of the second iteration.

4. And so on, up to the last iteration where variables in (ST−1 ∪ ST) \
(S1 ∪ . . . ∪ ST−2) are binary, the other variables being fixed by previ-
ous iterations.

The difficulty is that at each step, it is possible that the MIP problem
becomes infeasible because of previous variables being fixed at inconsistent
values. In such a case, we combine this first heuristic method with a neigh-
borhood search method similar to the Local Branching heuristic method
(see Fischetti and Lodi [6]). More specifically, if the MIP problem is infeasi-
ble at iteration p of Relax-and-Fix, we solve a relaxation of this MIP problem
where we impose that the variables previously fixed (zi,t,Ω(l) = z⋆,f

i,t,Ω(l) for

(i, t, l) ∈ F) have to remain binary but we allow a limited number k of them
to change their values.
This can be modeled by adding the following constraint :

∑

(i,t,l)∈F |z⋆,f

i,t,Ω(l)
=0

zi,t,Ω(l) +
∑

(i,t,l)∈F |z⋆,f

i,t,Ω(l)
=1

(1 − zi,t,Ω(l)) ≤ k

This additional Local Branching step is performed to improve the robust-
ness of the Relax-and-Fix heuristic method.

An additional way for improving the quality of the feasible solutions ob-
tained by the heuristic is to use the Local Branching heuristic method at
the end of the Relax-and-Fix algorithm. It consists in allowing k variables
zi,t,Ω(l) to change their values compared to the final Relax-and-Fix solution.
This Local Branching step is repeated until no significant improvement to
the objective is obtained. This final Local Branching step defines an im-
provement heuristic starting from the Relax-and-Fix solution.

5 Computational results

In order to test the efficiency of the strengthened model formulation and
the heuristic, we define first a simple test case problem. Then, we present
specific valid inequalities for the test case, and some computational results
for the test case and some variants of it. Finally, we show how the improved
formulation and heuristic can be used to model and solve an industrial larger
size scheduling case.

20

5.1 Test case

The simple test case is composed of one continuous task and of a finite
number of units (reactors) denoted by nbr unit on which a set of batch
tasks are performed. The reactors are identical and produce the batches in
parallel. The batches produced are stored in a limited capacity tank before
being processed by the continuous task. The test case is represented in
Figure 6. The size of a batch is fixed and is equal to 8 ru.

Reactor 1

Storage

 Tank

Reactor nbr_unit

.

.

.

Continuous

 process

Figure 6: The test case

The polymerization process (I) that takes place in the reactors is sub-
divided in five consecutive batch tasks : the filling of the reactor (I,1), the
heating of the raw material (I,2,h), the exothermic reaction (I,2,r), the cool-
ing (I,2,c) and the discharge (I,3). In our model, the exothermic reaction
(I,2,r) is further subdivided in 4 batch subtasks because the consumption
of resources varies too much during the temperature regulation task. We
assume that the filling of the reactor takes 0.166 h, the heating of the raw
material takes 0.4522 h, the exothermic reaction is subdivided in 4 subtasks
taking 0.5 h, 0.5 h, 1 h and 1.44125 h respectively, the cooling takes 0.919
h and the discharge 0.166 h.

The resources are the intermediate storage tank (IS), the hot water (H),
the cold water (C) and a stock attached to each batch task (a1-a5) in order
to model the number of reactors available for performing the corresponding
batch task, i.e nbr unit of resources a1 to a5 are available in total.
The rate of hot water needed to perform the heating task is 3 [ru/h]. The
rates of cold water needed to perform the four subtasks of the exothermic
reaction are 3.7 [ru/h], 1.64 [ru/h], 0.92 [ru/h] and 0.41 [ru/h], respectively.
The rate of cold water needed for the cooling task is 2 [ru/h].

The lower and upper limits on the level of product in the storage tank,
on the rate of hot water and cold water are [0, 15] ru,[0, 3] [ru/h] and [0, 4.2]

21

[ru/h], respectively.
The lower and upper bounds for the rate of material that is processed

by the continuous task are ρ = 1[ru/h] and ρ = 6[ru/h], respectively.
The resource task network of the test case problem is represented in

Figure 7, where the continuous task is denoted by II.

I,1 I,2,h I,2,r I,2,c I,3

H C

IIIS

a1 a2 a3 a4 a5

Batch Tasks Continuous

Task

Figure 7: The resource task network representation for the test case

The two main characteristics relative to this test case are that the con-
tinuous task cannot be interrupted because we try to find a cyclic schedule
and the second is that we cannot wait between the heating, the exothermic
reaction and the cooling tasks.

Suppose that we have 2 reactors (nbr unit = 2), 17 time slots (T = 17)
and a batch task can last for 4 time slots (d = 4). A typical evolution of
the resources level of the storage tank, of the hot water rate used and of the
cold water rate used over the scheduling cycle are represented in Figure 8.
The dots represent the event times over the scheduling cycle.

The corresponding values of the zi,t,Ω(l) batch variables are represented
in the Gantt chart in Figure 9, with time on the horizontal axis and batch
tasks on the vertical axis.

5.2 Specific reformulation

In this section, we describe three additional valid inequalities that are spe-
cific for this test case problem.

Every batch task can be performed on every reactor. The first valid
inequality takes into account the fact that the time needed to complete all

22

0 1 2 3 4 5 6
5

10

15

In
te

rm
ed

ia
te

 s
to

ra
ge

 ta
nk

0 1 2 3 4 5 6
0

1

2

3

H
ot

 W
at

er
 r

at
e

0 1 2 3 4 5 6
0

2

4

6

C
ol

d
W

at
er

 r
at

e

Time (h)

Discharge

Reactor 2

Discharge

Reactor 1

Figure 8: Evolution of the resources over the scheduling cycle

the tasks (i.e. the duration of the cycle) is greater or equal to the time
needed if the batch tasks and processing times are evenly allocated among
all the nbr unit reactors.

The constraint can be written as

1

nbr unit

(

∑

i∈BT

T
∑

t=1

t+d−1
∑

t′=t

pizi,t,Ω(t′)

)

≤
T
∑

t=1

τt. (24)

Because of the cyclic schedule, all the batch tasks have to be processed
the same number of times. The total number of time slots is limited and
therefore, we can restrict the number of times that a batch task can be
performed on a cycle as follows

T
∑

t=1

t+d−1
∑

t′=t

zi,t,Ω(t′) ≤

⌊

T

|BT |

⌋

∀i ∈ BT. (25)

For this specific test case, inequality (23) can be strengthened if nbr unit <

23

0 1 2 3 4 5 6

Gantt Chart

I,1

I,2h

I,2r
1

I,2c

I,3

I,2r
2

I,2r
3

I,2r
4

T
h

e

B

a
t
c
h

t
a

s
k
s

Time (h)Cycle Length

Figure 9: The scheduling of the batch tasks (2 reactors)

d. If this is the case, the inequality becomes

l
∑

k=t

min(coeffk, nbr unit)τΩ(k) ≥
∑

i∈BT

pi

l
∑

k=t

min(k+d−1,l)
∑

f=k

zi,Ω(k),Ω(f)

 .

(26)
The inequality (26) is still valid because the left hand side is the produc-

tion time available in {t, . . . , l} for batches performed completely in {t, . . . , l}
and the right hand side is the production time effectively used by such
batches. We take the minimum between coeffk and nbr unit in the left-
hand side of the inequality (26) because the number of active batch tasks in
any time slot cannot be larger than the number of reactors available.

5.3 Results for the test case

We report on tests on the efficiency of the exact and heuristic methods in
order to solve the test case problem. We solve the improved formulation

24

of this problem by using a standard Branch and Bound package. In order
to improve the Branch and Bound performance for the cases studied, we
set priorities to branch first on the zi,t,Ω(l) binary variables. The reason is
that the other integer variables (units of resources available corresponding
to machines and equipments) depend only of the binary variables zi,t,Ω(l),
and take automatically integer values when the zi,t,Ω(l) variables take inte-
gral values.
We also impose to branch up first because this influences more the objective
function value of the corresponding subproblem.

We show first that the exact solution method can only be used for lim-
ited size problem instances. We show also that for some larger instances,
our MIP heuristic methods taking advantage of the strengthened formula-
tion find good feasible solutions quickly. All the results in this paper have
been obtained by using the Xpress MP software on a pentium 4, running at
3 GHz.

5.3.1 Exact solution methods

We pay attention first at the performance of the initial (F1) and of three
strengthened formulations (F2)-(F3)-(F4). The initial formulation (F1) is
based on the constraints (1)-(13), plus the specific constraints (24) and (25)
for the test case. The basic strengthened formulation (F2) is based on
the constraints (3)-(4), (6)-(13), (16),(18) and (22), with the case specific
constraints (24), (25). The complete strengthened formulation (F3) is com-
posed of (F2) and in addition the constraints (17), (19) and (26). The last
strengthened formulation (F4) considers the additional constraints (17), (19)
and (26) as model cuts, i.e these constraints are removed from the initial
formulation, are added to the cut pool, and generated as cuts when they are
violated.

The characteristics of the small (resp. large) instance in Table 1 are the
following : T = 10(resp.17), d = 4, nbr unit = 2, There are 80 (resp. 136)
integer variables, 320 (resp. 544) binary variables and 61 (resp. 103) contin-
uous variables. The number of constraints in the strengthened formulations
(F2)-(F4) is smaller because the timing constraints have been aggregated
over all batch tasks.

Table 1 reports on the solution of the test case using the four formula-

25

Small Instance (T=10)
nbr unit=2 F1 F2 F3 F4

Constraints 889 339 499 499

Nodes 118 21 3 1

Time 2.3 s 1.4 s 2 s 0.7 s

Productivity 3.11 3.11 3.11 3.11

Large Instance (T=17)
nbr unit=2 F1 F2 F3 F4

Constraints 1498 563 954 954

Nodes 274 334 174 644

Time 13.3 s 13.8 s 44 s 153.7 s

Productivity 3.11 3.11 3.11 3.11

Table 1: First comparison between the initial (F1) and the strengthened
formulations (F2)-(F4)

tions and a standard MIP solver. For both instances and all formulations,
the maximal productivity for the test case is obtained by solving two mixed
integer optimization problems with the objective function (15). We start
with µ1 = ρ.
In Table 1, “Nodes” represents the total number of Branch-and-Bound nodes
needed in order to solve the two iterations up to optimality, “Time” repre-
sents the corresponding total CPU time and “Productivity” is the maximal
productivity obtained for the test case.

In Table 1, we can see that the small and the large instances are solved
easily by the four formulations. The small instance is solved by using the
formulation (F4) at the root node. However, for the large instance, (F1)
and (F2) give the best results and are quite comparable. In order to really
test the quality of the two formulations, we need to solve more instances.

In Table 2, we consider a second case where the instances characteris-
tics and the number of variables are the same as those in Table 1, except
that nbr unit = 3. In the next Tables, the star (*) after the productivity
measure means that the iterative procedure (that gives the optimal solution
of the problem with the nonlinear objective function) is stopped at the end
of some iteration before obtaining the optimal productivity solution. This
occurs when the CPU solution time is too large.

26

Small Instance (T=10)
nbr unit=3 F1 F2 F3 F4

Constraints 889 339 499 499

Nodes 1342 1186 700 630

Time 26.1 s 14.5 s 20.4 s 18 s

Productivity 3.27 3.27 3.27 3.27

Large Instance (T=17)
nbr unit=3 F1 F2 F3 F4

Constraints 1498 563 954 954

Nodes 48524 24009 12169 16271

Time 1744 s 496 s 1617 s 2275 s

Productivity 3.21* 3.21* 3.21* 3.21*

Nbr of iterations 1 1 1 1

Table 2: Second comparison between the initial (F1) and the strengthened
formulations (F2)-(F4), where Nbr of iterations is the number of iterations
of the objective linearization procedure

For both instances in Table 2, the strengthened formulations (F2)-(F4)
obtain the optimal solution in fewer nodes. The strengthened formulation
(F2) solves both instances quicker than the other three formulations. Not
surprisingly, the strengthened formulations (F3)-(F4) taking into account
all valid inequalities need fewer nodes than the other two formulations.

Finally, the characteristics and the number of variables of the small and
the large instances in Table 3 are the same as the one in Table 1, except that
nbr unit = 4. For the large instance and for all formulations except (F2),
we are even not able to solve the first iteration of the linearized objective
up to optimality. For such cases, a star is added to the CPU solution time
of the corresponding instance in Table 3 and we calculate the remaining
duality gap for that iteration as Best bound - Best solution

Best bound and the productivity
is the one corresponding to the best schedule obtained with respect to the
linearized objective.

For the small instance in Table 3, the strengthened formulation (F2) gets
the optimal solution quicker and with less nodes. For the large instance, only
the strengthened formulation (F2) gives the optimal solution for the first it-
eration of the linearization procedure in a reasonable amount of time.

27

Small Instance (T=10)
nbr unit=4 F1 F2 F3 F4

Constraints 889 339 499 499

Nodes 1365 766 772 1114

Time 20.61 s 8.9 s 18 s 25 s

Productivity 3.27 3.27 3.27 3.27

Nbr of iterations 2 2 2 2

Large Instance (T=17)
nbr unit=4 F1 F2 F3 F4

Constraints 1498 563 954 954

Nodes 60900 25609 13000 14000

Time 2000 s* 516 s 2000 s* 2000 s*

Productivity 3.21* 3.21* 3.21* 3.21*

Nbr of iterations 1 1 1 1

Remaining Duality gap 10.72 % 0 % 5.56 % 2.5 %

Table 3: Third comparison between the initial (F1) and the strengthened
formulations (F2)-(F4)

In Tables 1 - 3, we can observe that for small instances, the four formu-
lations give good results. For the large instances, the strengthened formu-
lation (F2) provides almost always the optimal solution with respect to the
linearized objective in less computing time and is more efficient than the ini-
tial one (F1). The strengthened formulations (F3)-(F4) solve the problem
instances with almost always fewer nodes but are on average slower than
(F2) in term of CPU time. A better cutting plane strategy should be devel-
oped in order to take advantage of the valid inequalities found in a reduced
amount of computing time.

However, we can observe that for larger instances, the exact methods
cannot solve the problems in a reasonable amount of time. Therefore, we
pay attention to heuristic methods in order to obtain good feasible solutions
for these larger instances quickly.

28

5.3.2 Heuristic solution methods

Given the superiority of reformulation (F2), the 5 heuristic methods used
and compared to solve larger instances are the following :

1. Truncated B&B (F1) : Based on the initial formulation (F1), we solve
the problem and we stop the branch and bound algorithm before the
end of the resolution.

2. Truncated B&B (F2) : Based on the basic strengthened formulation
(F2), we solve the problem and we stop the branch and bound algo-
rithm before the end of the resolution.

3. Relax-and-Fix (F1) : The heuristic method described in Section 4
based on the initial formulation (F1). The parameter k for Local
Branching, during and at the end of Relax-and-Fix, takes a value in
the set {6, 9, 12}. We always start with k = 6. During Relax-and-Fix,
we increase k only if we could not find a feasible solution, otherwise
we stop Local Branching. At the end of Relax-and-Fix, we increase k
as long as a significant improvement is observed.

4. Relax-and-Fix (F2*) : The heuristic method described in Section 4
based on the formulation (F2) plus constraints (17) and (19). The
parameter k follows the same rules as for method 3.

5. Relax-and-Fix/LB (F2*) : It is a variant of method 4. The differences
are that, at each iteration p of Relax-and-Fix : (i) we allow to change
k1 values of variables in Sp−1 (p ≥ 2), (ii) the binary variables in the
set {zi,t,p−2 : i ∈ BT, t ∈ {p − d − 1, . . . , p − 2}}(if p ≥ 3) are fixed
(for all subsequent iterations of Relax-and-Fix) at the optimal value
obtained at iteration p − 1, (iii) the z variables in the set (Sp ∪ Sp+1)
have to be binary, and finally (iv) the integrality condition is relaxed
on the others z variables. Here, we set k1 = 3 and the parameter k
follows the same rules as for methods 3 and 4.

For the last three heuristic methods, we have imposed a maximum time
for solving each MIP optimization subproblem in the heuristic. We choose
to set this parameter to 500 sec. If at the end of the 500 sec., we have ob-
tained a feasible solution, we stop the resolution of the current problem and
proceed to the next step of the heuristic method. Otherwise, we continue
to solve the current subproblem until a first feasible solution is obtained.

29

For Tables (4)-(6), we only try to solve the first iteration of the lin-
earization of the objective function. Therefore, we put a star (*) after the
productivity obtained because we could not prove with one iteration of the
linearization that the productivity is optimal. Moreover, for the heuristic 1
or 2, the resolution of the first linearized objective problem was sometimes
stopped before optimality was proved. For such cases, a star (*) is added to
the CPU solution time of the corresponding instance in the Table. The du-
ality gap indicates the remaining gap with respect to the linearized objective
and is defined as Best bound - Best solution

Best bound . For the Relax-and-Fix methods, the
best bound is the optimal solution obtained at the first iteration (before any
fixing), and the best solution is the final Relax-and-Fix solution obtained.

The first heuristic comparison is proposed in Table 4. The characteristics
of the small (resp. large) instance in Table 4 are the following : T =
18(resp.26), d = 7, nbr unit = 2, ρ = 1[ru/h], ρ = 6[ru/h]. There are 144
(resp. 208) integer variables, 1008 (resp. 1456) binary variables and 109
(resp. 157) continuous variables.

2 units B&B B&B R&F R&F R&F/LB
(F1) (F2) (F1) (F2*) (F2*)

Constr. 2449 703 2449 919 919
Small Nodes 1643 1 18524 10 23

Instance D. Gap (%) 0 0 50.4 0 0
T=18 Time 96 s 2 s 484 s 9 s 22 s

Prod. 3.11* 3.11* 3.05* 3.11* 3.11*

Constr. 3529 1007 3529 1319 1319
Large Nodes 6200 9300 15192 493 48

Instance D. Gap (%) 14.8 0.74 40 1 0

T=26 Time 1000 s* 1000 s* 556 s 105 s 51 s

Prod. 2.37* 3.06* 2.51* 3* 3.11*

Table 4: First heuristic comparison, nbr unit = 2

In Table 4, and for the small instance, the heuristic method 2 provides
the optimal solution of the first linearization iteration quicker and with fewer
nodes than the other heuristic methods. Regarding the large instance, the
heuristic methods 5 provides quicker and with fewer nodes the optimal so-
lution of the first linearization.

The second heuristic comparison is proposed in Table 5. The character-
istics of the small (resp. large) instance in Table 5 are the same as the one
given for Table 4, except that nbr unit = 3. Again, for every instance of

30

this table, we only perform one linearization iteration.

3 units B&B B&B R&F R&F R&F/LB
(F1) (F2) (F1) (F2*) (F2*)

Constr. 2449 703 2449 919 919
Small Nodes 13400 7490 12918 10647 2575

Instance D. Gap (%) 11 8.13 11 7.4 8.13
T=18 Time 1000 s* 517 s* 589 s 403 s 196 s

Prod. 3.32* 3.6* 3.32* 3.67* 3.6*

Constr. 3529 1007 3529 1319 1319
Large Nodes 4300 5400 2019 3762 2558

Instance D. Gap (%) 48.9 40.67 48.9 11.56 22.2
T=26 Time 1000 s* 1000 s* 109 s 700 s 332 s

Prod. 2.51* 3.32* 2.51* 3.27* 2.57*

Table 5: Second heuristic comparison, nbr unit = 3

The heuristic methods 4 or 5 seem to outperform the other three meth-
ods, a better solution in terms of remaining duality gap is obtained quicker.
The heuristic 4 gives for the two instances a solution with a smaller re-
maining duality gap and a higher productivity than heuristic 5 but need
more running time to compute these better results. Therefore, both heuris-
tic methods 4 and 5 can be interesting in order to compute good feasible
solutions quickly.

The third heuristic comparison is proposed in Table 6. The characteris-
tics of the small (resp. large) instance in Table 5 are the same as the one of
Table 4 except that nbr unit = 4. Again, for every instance of this table,
we only perform one linearization iteration.

In Table 6, we can see that for the small instance, the heuristic method
1 gives a good feasible solution quicker. For the large instance, the heuristic
method 4 gives a good solution with a smaller duality gap quicker than the
other heuristic methods. We can observe in Table 6 that the heuristic meth-
ods 4 and 5 give good solutions for the small instance but are quite slow. For
the large instance, the heuristic method 5 finds a good solution in terms of
productivity but a very bad solution (and large duality gap) in terms of the
linear objective. In order to obtain a better feasible solution (with respect
to the linear objective) using the heuristic method 5, we change two para-
meters of the heuristic. The maximum time for solving each optimization
subproblem is now set to 100 sec. in order to obtain quicker a feasible solu-
tion and we introduce more flexibility in the resolution of each subproblem
by using the parameter k1 = 5 in order to obtain a better feasible solution.

31

4 units B&B B&B R&F R&F R&F/LB
(F1) (F2) (F1) (F2*) (F2*)

Constr. 2449 703 2449 919 919
Small Nodes 489 2545 1901 11960 13969

Instance D. Gap (%) 16.1 16.1 16.1 17.33 16.1
T=18 Time 58 s* 270 s* 95 s 1167 s 1265 s

Prod. 3.32* 3.32* 3.32* 3.21* 3.32*

Constr. 3529 1007 3529 1319 1319
Large Nodes 8800 9300 2302 6420 5816

Instance D. Gap (%) 44.06 42.63 51.8 16.3 42.2
T=26 Time 2000 s* 2000 s* 256.4 s 1421 s 1490.3 s

Prod. 3.32* 3.53* 2.51* 3.3* 3.6*

Table 6: Third heuristic comparison, nbr unit = 4

The results obtained for the modified heuristic method 5 are presented
in Table 7.

4 units R&F/LB(F2*)

Constr. 919
Small Nodes 5584

Instance D. Gap (%) 16.1
T=18 Time 551 s

Prod. 3.32*

Constr. 1319
Large Nodes 4388

Instance D. Gap (%) 16.5
T=26 Time 823 s

Prod. 3.28*

Table 7: Modified heuristic method 5, nbr unit = 4

In Table 7, we can observe that for the small instance, the solution ob-
tained with the heuristic method 5 and the new parameters is the same as
the one obtained with the initial parameters but the CPU time is reduced.
For the large instance, we get quicker a very good solution with a small
remaining duality gap. With these new parameters, the heuristic method 5
provides a very good solution quicker than the other heuristic methods.

32

To summarize, we can conclude that for the small instances in Tables
4-6, the heuristic method 4 does not (except once) obtain a better feasible
solution than the heuristics 1 and 2, with a smaller duality gap. However
for the large instances in the same Tables, the heuristic methods 1 and 2 do
not provide good solutions quickly anymore. For large instances, the use of
the heuristic method 4 or 5 is quite interesting because we obtain on average
better feasible solutions in less computing time. Moreover, heuristic method
5 can be more interesting than heuristic method 4, because, on average, this
heuristic provides good feasible solutions quicker and with a small duality
gap. However, for one instance, the results obtained by the heuristic method
5 are not satisfactory. For this case, we have seen that the parameters of
the algorithm can be adapted in order to provide better feasible solutions
quicker.

In the next section, we try to solve a larger industrial scheduling instance
and we compare the efficiency of heuristic method 5 with truncated branch
and bound corresponding to heuristic methods 1 and 2.

5.4 An industrial scheduling instance

In this section, we present a basic industrial scheduling problem and we use
the heuristic methods 1,2 and 5 defined previously.

5.4.1 Problem description

There are three polymerization lines (denoted by I-II-III) with three, three
and one unit respectively. The volume of the reactors for the first two lines
(V 1) is 27 ru. The volume of the reactor of line three (V 2) is 140 ru. The
polymerization task performed in the reactors is decomposed into the same
number of batch tasks as in Section 5.1. Moreover, the same resources as for
the test case are shared among the processes of a same line, but not shared
between lines. The maximum rate of hot water for each line is 3 [ru/h]. The
maximum rate of cold water is 7.4 [ru/h] for line 1, 8 [ru/h] for line 2 and
3.7 [ru/h] for line 3.

After each reactor, there is one tank for each line where the product
is discharged. The capacity of the tanks are 35 ru, 35 ru and 140 ru,
respectively. The discharge of these tanks into the common buffer to all lines
is modeled as a continuous task. We assume that the valve is processing like
a continuous task and that the rate of material processed by the valves of
the two first lines is in the interval [0ru/h, 15ru/h] and by the valves of

33

the third line in the interval [0ru/h, 10ru/h]. The valves of the three lines
do not have to process material all the time. The capacity of the common
buffer is 40 ru and the continuous task after the buffer is a stripping task
that cannot be stopped. For this task, the rate of material processed is in
the interval ρ ∈ [10ru/h, 55ru/h].

This process is represented in Figure 10.

 V2

Tank 2

Tank 1

Tank 3

Buffer

Stripping

Column

 V1

 V1

 V1

 Vr1

Continuous TasksBatch Tasks

II

I

III

 Vr2

 Vr3

 Vr4

 V1

 V1

 V1

Figure 10: The basic industrial case

5.4.2 Comparison of Heuristics

We first model the problem with the initial formulation (F1) and with the
strengthened formulation (F2) and we try to solve it up to optimality. We
decide to take 20 time slots (i.e., T = 20) and a batch task can last for 10
time slots (i.e, d = 10). The problem has 10973 constraints for the initial for-
mulation and 1833 for the strengthened one. For both formulations, we have

34

4800 binary variables, 480 integer variables, and 381 continuous variables.
We stopped the resolution of the problem modeled by the initial formulation
at the first linearization iteration after 20000 sec. and 21500 nodes, we got
a remaining duality gap of 31.3%. The productivity corresponding to the
best feasible solution is 20.6 [ru/h]. This solution method corresponds to
heuristic method 1.
Also, we stopped the resolution of the problem modeled by the strength-
ened formulation at the first linearization iteration after 20000 sec. and
57600 nodes, we got a remaining duality gap of 27.2%. The productiv-
ity corresponding to the best feasible solution is 22 [ru/h]. This solution
method corresponds to heuristic method 2.

For the same problem, we used the heuristic method 5 defined previ-
ously with the parameter k1 = 8 and the maximum time for solving each
optimization subproblem is now set to 200 sec. The feasible solution ob-
tained has a remaining duality gap of 26.9%. The corresponding number
of nodes is 3126 and the CPU solution time is 1232 sec.. The productivity
corresponding to this feasible solution is 22.12 [ru/h].

After 20000 sec. of CPU time, the two methods firstly proposed, based
on the initial (F1) and the strengthened (F2) formulation, were not able to
provide a better feasible solution than the one given by the heuristic method
5 in 1232 sec. of CPU time. Therefore, heuristic methods such as heuristic
5 can be interesting for large instances of the linearized objective problem,
both in terms of solution quality and running time.

5.4.3 Bounds on the maximal productivity

However, the final objective is to maximize productivity. As explained in
section 2.2.6, the optimal productivity is obtained by solving a sequence
of mixed integer linear programs where the value of µ is updated at each
iteration.

Therefore, in order to obtain a good productivity for this basic industrial
case, if the feasible solution obtained at the first iteration has a productiv-
ity significantly higher than the one fixed by default for iteration 1 (µ1), we
can solve a second iteration where µ is updated. We will obtain a feasible
solution with a productivity at least as good as the one obtained at the first
iteration. We can continue this procedure until no significant improvement
of the productivity is achieved.

35

In this case, µ1 = ρ = 10 and the heuristic 5 gives, for the first iteration,
a feasible solution with a duality gap of 26.9% (for the linearized objective)
and a productivity of 22.12[ru/h].

Actually, we cannot prove that this solution is optimal for the problem
with the nonlinear objective function (14) maximizing productivity because
the solution of the linear relaxation of the second linearized problem with
objective function (15) and with µ2 = 22.12 is 14.18, and is not 0.

To measure the quality of the solution obtained for the problem with
the linearized objective function in term of productivity (i.e. with respect
to the non-linear objective), we show that we can bound the maximal im-
provement of productivity that can be obtained by the optimal solution at
each iteration, and that this bound on the maximal improvement per itera-
tion is monotonically non increasing over the linearization iterations.

The objective value for the optimal solution of the problem with the
linear objective function at iteration p (q∗,p, τ∗,p) is bounded by :

∑

j∈OUT

T
∑

t=1

q∗,pj,t − µp

T
∑

t=1

τ∗,p
t ≤ UBp

where UBp is the LP relaxation bound obtained at the root node of the
Branch-and-Bound algorithm. We show now how an upper bound on the
maximal productivity improvement can be obtained for this iteration.

We divide every term of the previous inequality by the unknown
∑T

t=1 τ∗,p
t (>

0), that is by the optimal cycle duration at iteration p for the problem with
the linear objective function, and we get :

∑

j∈OUT

∑T
t=1 q∗,pj,t

∑T
t=1 τ∗,p

t

− µp = µp+1 − µp ≤
UBp

∑T
t=1 τ∗,p

t

This defines an upper bound on the productivity improvement (µp+1 −
µp). As

∑T
t=1 τ∗,p

t is unknown, we look for a known lower bound on
∑T

t=1 τ∗,p
t

in order to obtain a known upper bound on µp+1 − µp.
First note that

∑T
t=1 τ∗,p

t ≥ pi1 because we know that in order to break
the symmetry, we have imposed that at least one batch task i1 of the line I ′

has to be performed during the cycle. Moreover, in our case, we have some
precedence constraints between batch tasks and therefore we know that if a
batch task i1 starts on line I ′, at least a set of batch tasks on line I ′ (BTI′)
has to be processed during the cycle. The minimum time required, in order

36

to complete all the batch tasks in the set BTI′ , is obtained when all the
possible reactors of line I ′ are performing the tasks in BTI′ in parallel. This
is why (

∑T
t=1 τt) ≥

1
nbr unit I′

∑

i∈BTI′
pi where nbr unit I ′ is the number of

reactors available on line I ′ able to perform a batch tasks of the set BTI′ .

This lower bound on the cycle length can actually be improved. If a
feasible solution at iteration p exists for the problem instance, it must satisfy
∑T

t=1 τt ≥ LBCL,p where

LBCL,p = min
T
∑

t=1

τt

st
∑

j∈OUT

T
∑

t=1

qj,t − µp

T
∑

t=1

τt ≥ 0

and all the constraints of the basic strengthened formulation (F2)

are satisfied

Therefore, the upper bound on the maximal improvement of productivity
that can be obtained by the optimal solution at iteration p can be bounded
by

µp+1 − µp ≤
UBp

∑T
t=1 τ∗,p

t

≤
UBp

LBCL,p
(27)

Now we prove why the upper bound on the maximal productivity im-
provement that can be obtained by the optimal solution at each iteration is
monotonically non increasing over the iterations.

By starting with µ1 =
∑

j∈OUT ρ
j
, the value of µp is monotonically non

decreasing (see Section 2.2.6).
Let q̃ and τ̃ be the solution of the linear relaxation at iteration p + 1

that defines the upper bound UBp+1 on the optimal objective value. Then,
this solution can also be a relaxed solution for iteration p. UBp+1 =
∑

j∈OUT

∑T
t=1 q̃j,t − µp+1

∑T
t=1 τ̃t ≤

∑

j∈OUT

∑T
t=1 q̃j,t − µp

∑T
t=1 τ̃t because

µp ≤ µp+1 and
∑T

t=1 τ̃t ≥ 0. As q̃ and τ̃ are feasible for iteration p, we have
∑

j∈OUT

∑T
t=1 q̃j,t − µp

∑T
t=1 τ̃t ≤ UBp. This proves that UBp+1 ≤ UBp.

Moreover, since the value of µp is monotonically non decreasing, the
value of LBCL,p is also monotonically non decreasing since the constraint
∑

j∈OUT

∑T
t=1 qj,t − µp

∑T
t=1 τt ≥ 0 will restrict more and more the feasible

solution set.
Then, by dividing UBp+1 by LBCL,p+1 and UBp by LBCL,p, and by us-

ing (27), the upper bound on the maximal productivity improvement that

37

can be obtained by the optimal solution at iteration p + 1 is less or equal
than the one at iteration p.

Therefore, if the upper bound on the maximal improvement of produc-
tivity that can be obtained by the optimal solution between two iterations
is small, we know that for the next step this bound will be even smaller,
and we can stop when we find that the improvement will not be significant
enough.

In our industrial case, we tried to solve the optimization problem in or-
der to determine LBCL,1 but we could not solve it to optimality. The lower
bound at the root node obtained on the minimum duration of the cycle
is 1.8 h. The upper bound obtained for the first linearization iteration is
40.5 for the three heuristic methods. Therefore, the maximal improvement
of productivity that can be obtained by the optimal solution for the first
linearization iteration is 40.5

1.8 = 22.5[ru/h]. So the maximal productivity
that can be obtained by the optimal solution at iteration 1 is 32.5 [ru/h]
(µ1+22.5). Heuristic 5 produces a solution whose productivity is 22.12 ru/h
(= µ2).

The upper bound obtained for the second linearization iteration is 14.18
and the lower bound at the root node obtained on the minimum duration
of the cycle at iteration 2 is LBCL,2 ≥ 1.8 h. The maximal productivity im-
provement that we can obtain by solving the second iteration up to optimal-
ity is 14.18

1.8 = 7.87[ru/h]. Therefore, the maximal productivity that can be
obtained by the optimal solution at iteration 2 is 30 [ru/h] (µ2(22.12)+7.87).
We observe that the maximal improvement per iteration is non-increasing.

We can also mention here the fact that during the Branch and Bound al-
gorithm, every time a feasible solution is obtained with a larger productivity
than the best current one, we could add a cut valid for the whole formula-
tion imposing that the productivity of the next feasible solution has to be
greater or equal to this larger productivity. This could give a better value of
µ for the next iteration and therefore speed up the convergence of the µ’s.
Unfortunately, we have observed that by adding this type of constraints, the
resolution of the problem with the linear objective function was slower.

38

5.4.4 Solution of the Case

To conclude, we describe the best solution obtained in terms of productivity
by heuristic method 5. The schedule obtained for line I and II is given in
Figures 11-12 respectively. We can observe that the three reactors of line I
and the three reactors of line II are processing during the cycle. Line III is
not used.

0 0.5 1 1.5 2 2.5 3 3.5

T
h

e

B

a
t
c
h

T

a
s
k
s

o

f

l
i
n

e

I

I,1

I,2h

I,2r
1

I,2r
2

I,2r
3

I,2r
4

I,2c

I,3

Gantt Chart of line I

Time (h)

Cycle length : 2.44 h

Figure 11: The schedule of the batch tasks of line I

For line 1 and 2, the resource levels are represented in Figures 13-14,
respectively.

The evolution of the storage tank level of the common buffer (Vr4) is
represented in Figure 15.

6 Conclusion and Future Work

In this paper, we introduced a tightened continuous time MILP formulation
for solving the cyclic scheduling problem of a mixed plant. We showed that
the improved formulation gave better results (quality and/or running times)
than the initial one but the resolution of large instances remains difficult.

39

0 0.5 1 1.5 2 2.5 3 3.5

T
h

e

B

a
t
c
h

T

a
s
k
s

o

f

l
i
n

e

I
I

II,1

II,2h

II,2r
1

II,2r
2

II,2r
3

II,2r
4

II,2c

II,3

Gantt Chart of line II

Time (h)

Cycle length : 2.44 h

Figure 12: The schedule of the batch tasks of line II

0 0.5 1 1.5 2 2.5
0

10

20

30

40

S
to

ra
ge

 T
an

k
V

r1

0 0.5 1 1.5 2 2.5
0

1

2

3

H
ot

 W
at

er
 u

se
d

0 0.5 1 1.5 2 2.5
0

2

4

6

C
ol

d
W

at
er

 u
se

d

Line I : Resources level

Time (h)

Figure 13: The resources for line I

40

0 0.5 1 1.5 2 2.5
0

10

20

30

S
to

ra
ge

 T
an

k
V

r2

0 0.5 1 1.5 2 2.5
0

1

2

3

H
ot

 W
at

er
 u

se
d

0 0.5 1 1.5 2 2.5
0

2

4

6

C
ol

d
W

at
er

 u
se

d

Line II : Resources level

Time (h)

Figure 14: The resources for line II

0 0.5 1 1.5 2 2.5
37

37.5

38

38.5

39

39.5

40

S
to

ra
ge

 ta
nk

 le
ve

l o
f t

he
 b

uf
fe

r
V

r4

Time (h)

Figure 15: The evolution of the storage tank level of the buffer

41

We were still not able to solve realistic industrial cases with exact Branch-
and-Bound methods. So, we investigated MIP based heuristic methods in
order to obtain good feasible solutions quickly. We showed that, for some
large instances, the heuristic solutions given by the exact methods (trun-
cated Branch-and-Bound) were not better than the feasible solutions given
by the MIP based heuristic methods, and the latter use less CPU solution
time. Finally, we solved a basic industrial case using the initial and the
strengthened formulations by truncated branch and bound, and also by a
MIP based heuristic method. We got quicker and better feasible solutions by
using the MIP based heuristic method, showing that such heuristic methods
seem important for large instances.

As future work, we would like to find a tighter reformulation for the
interaction between batch and continuous tasks in order to speed up the
problem resolution. Also, an efficient separation algorithm should be im-
plemented in order to choose which valid inequalities should be added to
the model formulation during Branch and Bound, in order to reduce the
formulation size and be able to solve larger instances faster.

Another objective for the future is to improve the heuristic methods
found in order to find better feasible solutions for large instances quicker.

We would like also to extend the formulation in order to be able to
model the problem where the batch sizes and the batch processing times are
variables of the model.

Finally, the best cyclic schedule calculated here is independent of the
initial state of the production lines. In order to be able to apply a good
cyclic schedule for the plant processes, we need a transient schedule that
brings the system from some initial state (possibly bad in terms of long term
productivity) to a state from which a cyclic schedule with good productivity
can be applied. Our model formulation should be adapted to contain a
transient schedule before the cyclic one.

Appendix A

Suppose that for the problem composed of the linear objective function (15)
and a given set of constraints, the optimal solution at iteration p is q⋆,p

j,t , for

all t and j ∈ OUT , and τ⋆,p
t , for all t. Suppose also that the

∑

t τ⋆,p
t > 0,

and that

µp = µp+1 =

∑

j∈OUT

∑

t q⋆,p
j,t

∑

t τ⋆,p
t

.

42

The optimal objective value at iteration p for the objective function (15) is
then zero because the solutions of the optimization problems at iterations
p − 1 and p have the same productivity.

Suppose also that for the problem composed of the same constraints and
of the non-linear objective function (14), the optimal solution is q̃j,t, for all
j ∈ OUT and t, and τ̃t for all t. Suppose also that the

∑

t τ̃t > 0.
Let µ̃ be the optimal productivity

µ̃ =

∑

j∈OUT

∑

t q̃j,t
∑

t τ̃t

We have then that :
∑

j∈OUT

∑

t q̃j,t − µ̃
∑

t τ̃t = 0.

We cannot have µp > µ̃, because q̃ and τ̃ define the optimal productivity
and q⋆,p and τ⋆,p are part of a feasible schedule.

Suppose now the µ̃ > µp, i.e :

µ̃ =

∑

j∈OUT

∑

t q̃j,t
∑

t τ̃t

>

∑

j∈OUT

∑

t q⋆,p
j,t

∑

t τ⋆,p
t

= µp

Then,
∑

j∈OUT

∑

t q̃j,t − µp
∑

t τ̃t >
∑

j∈OUT

∑

t q⋆,p
j,t − µp

∑

t τ⋆,p
t = 0

This is a contradiction because the optimal solution at iteration p of the
problem with the objective function (15) is q⋆,p and τ⋆,p, and q̃, τ̃ is feasible
for this problem.

Therefore µ̃ = µp and the optimal solution of the problem with the ob-
jective function (15), q⋆,p and τ⋆,p, is also optimal for the problem with the
nonlinear objective function (14).

Acknowledgement

We would like to especially thank I. Simeonova, G. Bastin and D. Dochain,
from the INMA departement at University of Louvain in Belgium, for all
the fruitful comments they have made about this work. We want to also
thank our colleagues, Peter Malkin, Michel Baes and Ruslan Sadykov for
the interesting questions asked and remarks made about this paper.

43

References

[1] K. Andersen and Y. Pochet. Coefficient strengthening : a tool for for-
mulating mixed integer programs. CORE Discussion Paper, (2007/24),
2007.

[2] P.M. Castro, A.P. Barbosa-Povoa, and H.A. Matos. Optimal periodic
scheduling of batch plants using RTN-based discrete and continuous-
time formulations : a case study approach. Ind. Eng. Chem. Res.,
42:3346–3360, 2003.

[3] T. Christof and A. Loebel. Porta - a polyhedron
representation transformation algorithm. available via
http://www.zib.de/Optimization/Software/Porta/, 1997.

[4] E. Danna, E. Rothberg, and C. Le Pape. Exploring relaxation induced
neighborhoods to improve mip solutions. Mathematical Programming,
102:71–90, 2005.

[5] W. Dinkelbach. On nonlinear fractional programming. Management
Science, 13:492–498, 1967.

[6] M. Fischetti and A. Lodi. Local branching. Mathematical Programming,
98:23–48, 2003.

[7] C.A. Floudas and X. Lin. Mixed integer linear programming in process
scheduling : modeling, algorithms, and applications. Annals of Opera-
tions Research, 139:131–162, 2005.

[8] M.G. Ierapetritou and C.A. Floudas. Effective continuous-time formu-
lation for short-term scheduling. 1. multipurpose batch processes. Ind.
Eng. Chem. Res., 37:4341–4359, 1998.

[9] J.R. Isbell and W.H. Marlow. Attrition games. Naval Research Logistics
Quarterly, 3:71–93, 1956.

[10] I.A. Karimi and C.M. McDonald. Planning and scheduling of parallel
semicontinuous processes. 2. short-term scheduling. Ind. Eng. Chem.
Res., 36:2701–2714, 1997.

[11] J.D. Kelly and J.L. Mann. Flowsheet decomposition heuristic for
scheduling : a relax-and-fix method. Computers chem. Engng, 28:2193–
2200, 2004.

44

[12] E. Kondili, C.C. Pantelides, and R.W.H. Sargent. A general algorithm
for short-term scheduling of batch operations - I. MILP formulation.
Computers chem. Engng, 17:211–227, 1993.

[13] C.T. Maravelias. A decomposition framework for the scheduling of
single- and multi-stage processes. Computers chem. Engng, 30:407–420,
2006.

[14] C.T. Maravelias and I.E. Grossmann. A hybrid MILP/CP decomposi-
tion approach for the continuous time scheduling of multipurpose batch
plants. Computers chem. Engng, 28:1921–1949, 2004.

[15] C.A. Mendez, J. Cerda, I.E. Grossmann, I. Harjunkoski, and M. Fahl.
State-of-the-art review of optimization methods for short-term schedul-
ing of batch processes. Computers chem. Engng, 30:913–946, 2006.

[16] L. Mockus and G.V. Reklaitis. Mathematical programing formulation
for scheduling of batch operations based on nonuniform time discretiza-
tion. Computers chem. Engng, 21:1147–1156, 1997.

[17] G.L Nemhauser and L.A Wolsey. Integer and combinatorial optimiza-
tion. John Wiley & Sons, 1988.

[18] C.C. Pantelides. Unified frameworks for the optimal process planning
and scheduling. Proceedings on the second conference on foundations
of computer aided operations, pages 253–274, 1994.

[19] J.M. Pinto and I.E. Grossmann. A continuous time mixed integer lin-
ear programming model for short term scheduling of multistage batch
plants. Ind. Eng. Chem. Res., 34:3037–3051, 1995.

[20] Y. Pochet and L.A. Wolsey. Production planning by mixed-integer pro-
gramming. Springer, 2006.

[21] G. Schilling and C.C. Pantelides. A simple continuous-time process
scheduling formulation and a novel solution algorithm. Computers
chem. Engng, 20:S1221–S1226, 1996.

[22] G. Schilling and C.C. Pantelides. Optimal periodic scheduling of mul-
tipurpose plants. Computers chem. Engng, 23:635–655, 1999.

[23] N. Shah, C.C. Pantelides, and R.W.H. Sargent. Optimal periodic
scheduling of multipurpose batch plants. Annals of Operations Re-
search, 42:193–228, 1993.

45

[24] H. Stadtler. Multilevel lot sizing with setup times and multiple con-
strained resources: Internally rolling schedules with lot-sizing windows.
Operations Research, 51:487–502, 2003.

[25] A. Sundaramoorthy and I.A. Karimi. A simpler better slot-based
continuous-time formulation for short-term scheduling in multipurpose
batch plants. Chemical Eng. Science, 60:2679–2702, 2005.

[26] F. Warichet and Y. Pochet. A continuous time formulation for the
cyclic scheduling of a mixed plant : valid and facet defining inequali-
ties. Technical report, Center for operations research and econometrics
(CORE), Belgium, 2006,in preparation.

[27] D. Wu and M. Ierapetritou. Cyclic short-term scheduling of multi-
product batch plants using continuous-time representation. Computers
chem. Engng, 28:2271–2286, 2004.

[28] X. Zhang and R.W.H. Sargent. The optimal operation of mixed pro-
duction facilities - a general formulation and some approaches for the
solution. Computers chem. Engng, 20:897–904, 1996.

46

