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We introduce the Iris Billiard, consisting of a point particle enclosed by a unit circle enclosing a central scattering
ellipse of fixed elongation (defined as the ratio of the semi-major to the semi-minor axes). When the ellipse degenerates
to a circle, the system is integrable, otherwise it displays mixed dynamics. Poincaré sections are displayed for different
elongations. Recurrence plots are then applied to the long-term chaotic dynamics of trajectories launched from the
unstable period-2 orbit along the semi-major axis i.e., one that initially alternately collides with the ellipse and the
circle. We obtain numerical evidence of a set of critical elongations at which the system transitions to global chaos.
The transition is characterized by an endogenous escape event, E , which is the first time a trajectory launched from the
unstable period-2 orbit misses the ellipse. The angle of escape, θesc and distance of closest approach, dmin of the escape
event are studied, and are shown to be exquisitely sensitive to the elongation. The survival probability that E has not
occurred after n collisions is shown to follow an exponential distribution.

The Iris Billiard, a unit circle enclosing a central scat-
tering ellipse, of fixed elongation, is a generic system, i.e.
one that exhibits mixed dynamics. The chaotic dynamics
within this system display incompletely understood fea-
tures, such as stickiness. Transport barriers within the
phase space, which play a fundamental role in the system’s
mixed dynamics, may be created or destroyed by vary-
ing the ellipse elongation. We explore the consequences of
such variation on the long-term evolution of chaotic trajec-
tories using recurrence plots. These display features that
identify a set of critical elongations that demark a tran-
sition to global chaos. The observable properties of the
dynamical transition are characterized.

I. INTRODUCTION

Billiards1 are Hamiltonian systems in which a point parti-
cle moves freely within a compact, planar, Euclidean do-
main. The particle undergoes elastic collisions at the domain’s
edge and so exhibits dynamics that are purely determined by
the interplay between its initial conditions and the confining
boundary. These systems exhibit three behaviors: 1) Regular
(i.e. periodic or quasi-periodic orbits, as found in circular2,3

elliptic4 or confocal elliptic5 billiards). 2) Ergodic, with orbits
that fill the entire phase space, as found in the Sinai6, Buni-
movich stadium7 and cardioid8 billiards. 3) Mixed dynamics,
i.e. with coexisting regular and irregular trajectories, such as

a)Electronic mail: gregorypage823@gmail.com
b)Electronic mail: antoine@lptmc.jussieu.fr
c)Electronic mail: Carl.Dettmann@bristol.ac.uk
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FIG. 1. The Iris Billiard. (a) Generic configuration: a 6= b (b) Limit-
ing case a = b, which forms an annulus. (c) Case b = 1, which forms
two separate crescents a ∈ (0,1]. Orientation angle θ and reflection
angle β are shown.

found in the family of limaçon, eccentric annular and mush-
room billiards9,10.

These systems, which have been the focus of mathematical
research2,11–13, provide insight into physical phenomena
such as encountered in celestial mechanics14,15, statistical
mechanics6,16,17, tokamak physics18,19, as well as being
important models for quantum chaos20–22. Billiard systems
connect experimental physics and mathematics through
experiments employing both two and three dimensional
geometries that may be either open2 or closed. Examples
include situations where particles or waves are confined
to cavities or other homogeneous regions2 such as wave
guides23, electrons in semiconductors confined by electric
potentials24 and atoms interacting with laser beams25,26.
Dynamical tunneling between classically isolated phase
space regions has also been investigated and observed in
both desymmetrized mushroom and eccentric annular su-
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perconducting microwave resonators27,28. Escape rates of
open billiards is a characteristic that is both experimentally
accessible26 and important for transport properties of many
related systems such as fractal conductance fluctuations29,30.

Mixed dynamics have many interesting and unexpected
characteristics, such as the existence of dynamical barriers
to chaotic transport31 and quasi-regular chaotic motion near
regions of stability, known as ‘stickiness’.32–34, of which there
are two types35. "Internal" stickiness presents in systems with
no islands of stability, such as the Bunimovich stadium, or
else is due to the presence of marginally unstable periodic
orbits (MUPOs) that are completely contained within the
chaotic sea, such as in mushroom billiards36. "External"
stickiness however, arises due to the existence of the bound-
aries between regular and chaotic regions. Stickiness results
in non-exponential decays of both the time-correlation func-
tions and Poincaré recurrence distributions of the system’s
chaotic dynamics37–40.

To understand these behaviors, recurrences41,42, which are
events characterized by a given trajectory occupying a state
close to one already visited, are often considered. Recurrence
plots (RPs)43,44 permit the quantitative and qualitative study
of this property. This tool has already been applied in the
fields of economy45, physiology46, ecology47, neuroscience48

and astrophysics49. Although recurrence statistics have
been extensively studied in billiards31,34,39, RPs appear to
have only been applied to position recurrences in a two
particle billiard system50 and, more recently, to the Poincaré
section of an eccentric annular billiard51. In this paper, time
recurrences in the Poincaré section will be considered.

Section II fully describes the model. Section III presents a
set of Poincaré sections for different ellipses, and details their
features. Section IV applies RPs and a new time measure to
chaotic trajectories starting with the unstable period-2 orbit
for many ellipse parameters. Section V identifies and further
studies the endogenous escape event. Section VI discusses the
results and concludes.

II. THE SYSTEM

The billiard domain, B ⊂ R2, has a two-part, continuous,
boundary, ∂B =

⋃i
∂Bi, where each ∂Bi is piece-wise smooth.

The initial conditions of a given trajectory are defined by the
arc length distance, s = θ ∈ (−π,π], along the outer circular
boundary, and the initial direction of motion, described by the
angle between the initial velocity and the center-facing nor-
mal to the outer boundary, β ∈ (−π/2,π/2]: See Fig. 1. At
any instant the point particle, mass m = 1, is described by its
position, q ∈ B, and momentum, |p| = 1. The dynamics is
governed by the Hamiltonian:

FIG. 2. A selection of regular, circle map, trajectories. a) A peri-
odic orbit with frequency ratio ω1/ω2 = 1/3. b) A periodic orbit
with frequency ratio ω1/ω2 = 2/7. c) A quasi-periodic orbit with
frequency ratio ω1/ω2 = 1/

√
2 that would densely fill the annulus if

allowed to run for infinite time. All trajectories were generated with
104 collisions.

H(q, p) =

{
p2/2, q ∈ B/∂B.
∞, q ∈ ∂B.

(1)

The infinite boundary potential causes every collision to be
elastic. Therefore, the component of the momentum projected
onto the normal at the point of each collision changes sign,
while the tangential component stays constant. The momen-
tum vector, pi+1 after the ith collision at point qi is:

pi+1 = pi−2[pi · n̂(qi)]n̂(qi). (2)
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FIG. 3. A selection of orbits that collide with the ellipse. Geometry:
a = 0.2,e = 4. a) Periodic orbit: initial conditions: θ = 2.19,β =
0.577 b) Quasi-periodic orbit: initial conditions: θ = 2.48,β =
0.577. c) Chaotic orbit: initial conditions: θ = 3,β = 0.577. All
trajectories were generated with 104 collisions.

n̂(qi) is the normal of the boundary at each collision. The
equation of the ellipse is:

x2

a2 +
y2

b2 = 1. (3)

Where a and b are the semi-major, and minor axes, ( b∈ (0,1]
and a ∈ (0,b] ). We use the elongation, e = b/a as a measure
of the breaking of the system’s symmetry. When e = 1,
the system reduces to the centered annulus, which is totally
symmetric, and therefore integrable by conservation of
angular momentum.

All possible trajectories fall into one of two mutually exclu-
sive categories: those that never hit the central ellipse and
those that do. The first type, illustrated by Fig. 2, are char-
acterized for all quasiperiodic orbits by an angle β that obeys
the following tangency condition:

β ≥ βc = arcsinb, (4)

b is the radius of the inaccessible circular region, defined by
a caustic edge, as seen in Fig 2c . The trajectories are regular
(i.e. either periodic or quasi-periodic, with constant β ), and
are given by the unperturbed circle map:

θn+1 = θn +Ω mod 2π, with Ω = π−2β . (5)

If Ω/2π is rational, the motion may be represented as a
quotient of coprime numbers such that: Ω = 2πω1/ω2 with
ω1,ω2 ∈ Z+. In this case, the orbit closes on itself after a
finite number of iterations, i.e. it is periodic, and will form
polygons as in Fig 2 a and b. If Ω/2π is irrational, the se-
quence {θn} ergodically fills [0,2π], as time tends to infinity,
as shown in Fig 2 c. It is well known that rational approxi-
mations of some irrational frequency, are obtained through its
continued fraction representation52.

Numbers can be irrational to different degrees, the highest of
which is the golden mean, represented by a continued fraction
whose partial quotients are all equal to 1, and is an element
of the set of noble frequencies, whose partial quotients always
end in ones, although the first quotients may be different. The
transport barriers defined by these frequencies are more ro-
bust under perturbation, as has been verified in work that ap-
plied Greene’s residue criterion53, to numerically determine
the frequency of the final destroyed invariant transport barrier
for both the standard map and the double pendulum54.

If the tangency condition is not satisfied, some rational Ω =
ω1/ω2 orbits may continue to exist over a finite range of el-
lipse elongations. These trajectories form ω2-polygons whose
radius depends of intersection of the enclosed caustic is:

rω1,ω2 =

∣∣∣∣cos
(

ω1π

ω2

)∣∣∣∣ (6)

The minimum value of e at which the rational polygon may
exist at some orientation without intersecting the ellipse is :

emin =

[
1

cos2(π/κ(n)ω2)

(
r2

ω1,ω2

a2 −1

)
+1

]1/2

ω2 ∈{3,4,5...}

(7)
where:

κ(ω2) = 1+ω2 mod 2. (8)

See Appendix A for the derivation. Fixing ω1 and taking the
limit ω2→ ∞ returns the limit:
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a=0.9, below: e=1.068 above: e=1.070

a=0.5, below: e=1.068 above: e=1.178

a=0.1, below: e=1.320 above: e=1.321

FIG. 4. A set of complete Poincaré sections. Top row: Constant elongation: e = 2, for increasing semi-minor axis from left to right. Bottom
row: Constant semi-minor axis: a = 0.2, for increasing elongation from left to right.

FIG. 5. 1-4, Successive magnifications of the archipelago seen in the
top left of the Poincaré section obtained for e = 4,a = 0.2. (Figure 4,
bottom, centre).

lim
ω2→∞

emin = 1/a. (9)

On the contrary, the maximum value of e, at which the ω2-
polygon intersects the ellipse for any orientation is:

emax = rω1,ω2/a, (10)

and so approaches the same limit as emin when ω2→ ∞.

The second type of trajectory, that involves collisions with the
ellipse, illustrated by Fig. 3, results in rotational and libra-
tional periodic and quasi-periodic orbits (i.e. β 6= constant) as
well as chaotic orbits. Appendix B includes a stability analy-
sis for the simplest period-2 orbits along the axes of symmetry
of the ellipse. The orbit along the semi-minor axis is stable
for all elongations. In contrast, the orbit along the semi-major
axis is unstable for all elongations greater than one, where all
orbits are stable. However, the range of dynamics in Fig.3 can
only be completely visualized by considering the phase space.

III. POINCARÉ SECTIONS

The phase space is a set of points that fully describe the
system. For planar billiard systems, it is four dimensional,
(x,y,vx,vy). However, the complete description of an orbit
can be shown using a two-dimensional Poincaré section, via
Birkhoff coordinates55, (θ ,sin(β )).

θ is the arclength of the outer circle collision. Due to the
system’s axial symmetry, θ can be restricted to the range
θ ∈ (−π/2,π/2]. sinβ ∈ (−1,1) is the momentum com-
ponent, at the point of collision, tangential to the boundary.
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The periodicity in θ makes the Poincaré section topologically
equivalent to an annulus, S× [−1,1].

Fig. 4 shows a series of sections constructed by trajec-
tories launched from initial conditions spanning θ ,β ∈
(−π/2,π/2). If the tangency condition, Eq.(4), is obeyed,
trajectories follow the rotational curves above and below the
central mixed region, defined by β = constant. Lines corre-
sponding to periodic, but from a disjoint set of initial condi-
tions, and rotational quasi-periodic motion shown in Fig. 2,
smoothly wind around the annulus. These circles are homo-
topically non-trivial and are known as ‘rotational circles’. In-
creasing the elongation of the ellipse, e, until the tangency
condition, Eq.(4), is just violated, causes the trajectory to
make contact with the ellipse, therefore deforming the orbit’s
associated invariant rotational circle in the Poincaré section.
The curves often persist with increasing elongation, as pre-
dicted by KAM theory, and there is, consequently, no flux of
trajectories between the regions partitioned by the deformed
circle. As the elongation is further increased, however, the in-
variant curves will be increasingly deformed until some criti-
cal value is reached, (each corresponding to the quasi-periodic
frequency ratio of the deformed curve in question), at which
point the curve is destroyed. When β < βc, the Poincaré sec-
tion displays mixed dynamics. i.e. it is divided into several
invariant components.

The center of every Poincaré section presented , i.e.
θ = 0,β = 0, or equivalently ±π , is an elliptical fixed point
for all geometries, corresponding to the stable period-2 orbit
along the semi-minor axis. Sets of concentric, homotopically
trivial circles, representing librational quasi-periodic motion
(as seen, for example, in Fig. 3b) surround the stable period-2
orbit, for all geometries, as well as from other geometry-
dependent elliptical periodic orbits. It is thought that these
curves only cause a limited impediment to the diffusion of
chaotic orbits since they do not encircle the entire annulus53.
Librational circles occur in concentric sets. The outermost
forms the critical boundary of the island of stability, which
can be destroyed by an arbitrarily small perturbation.

The hyperbolic period-2 orbit along the ellipse semi-major
axis is always within the chaotic sea. (The exception to this is
when e= 1 i.e. when the system is integrable). Boundaries be-
tween the regular and chaotic components of the phase space
are often characterized by scale invariant structures. Such fea-
tures are illustrated by Fig. 5, in which an island archipelago is
magnified indicating where a critical curve used to lie. Insets
2-4 clearly show scale invariant structures that reveal the dif-
ferent dynamics present inside the islands, i.e. quasi-periodic
trajectories enclosing narrow stochastic layers. These island
chains create partial barriers to chaotic transport, and are the
source of external stickiness.

IV. RECURRENCE PLOTS AND QUANTIFICATION
ANALYSIS.

The Poincaré recurrence theorem states that for a finite
measure preserving transformation, almost every point in a
finite measure set will return to its neighborhood infinitely
many times. Therefore, even though very close chaotic
trajectories exponentially deviate in finite time56, they must,
eventually, return arbitrarily close to their initial conditions
and evolve in ways similar to before57. Although this theorem
gives no indication of the frequency at which recurrences
occur, RPs allow the quantitative and qualitative study of this
feature44. During an orbit of Ncol total collisions, there are N◦
collisions with the outer boundary. The time evolution of the
points corresponding to a trajectory in the Poincaré section
can be labeled as : {vi} i = 1...N◦. A state, vj , is defined as
recurrent to a former state, vi, if sufficiently close.

The L∞ norm is used to define the neighborhood around each
point, which defines a square of length ε with vi at its center,
such that vj is a recurrent state of vi if and only if the two
states lie within the same square region. The value of ε is
important. If too small, no recurrences would be recorded in
a finite time. If too big, every point would be recorded as a
recurrence of every other point, leading to artifacts unrelated
to the dynamics. Although these artifacts may be analytically
determined for simple periodic and quasi-periodic motions58,
in general they cannot be completely removed by any known
means. We follow the usual convention of defining ε as 10%
of the width of its corresponding phase component43.

The binary, N◦×N◦, recurrence matrix is defined as:

Ri, j = Θ(ε−||vi−vj ||), i, j = 1...N◦, (11)

where Θ(·) is the Heaviside function.

RPs are the graphical representation of Ri, j. The value
‘1’, encoded by a black point, indicates that |vi − vj | < ε .
Otherwise, points are blank, representing the value ‘0’. All
RPs will show a diagonal line, i.e. Ri, j = 1 ∀i = j, known
as the Line of Identity (LOI). RPs display many patterns
associated with different behaviors. At the small scale, they
exhibit isolated points, diagonal lines and vertical lines;
(the combination of the latter two results in rectangular
clusters of recurrence points)43. Single, isolated recurrence
points indicate that a state is rare, or only briefly persists.
Diagonal lines, running parallel to the LOI, of length l
occur when part of a trajectory runs almost in same phase
neighborhood as a previous portion, for l segments. Finally,
vertical lines indicate time intervals in which a state is
either stationary or changes very slowly. Applying RPs to
the rotational periodic and quasi-periodic dynamics gives
expected results, such as required by the Steinhaus conjecture
(three gap theorem)59. Reference51 provides an overview of
these behaviors in the context of the eccentric annular billiard.
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i i

j j

j j
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FIG. 6. Recurrence Plots (RPs), visualizing the dynamics resulting from the unstable period-2 orbit for different elongations. a = 0.2 Top left:
e = 1.01, where the measure of interest; Nε is indicated, Top right: e = 1.1, Bottom left: e = 1.2, Bottom right: e = 1.3, for which dynamical
transitions, as indicated by the variation of density of recurrence points, are clearly present.

To explore the relationship between chaotic dynamics and
geometry, we studied the recurrence properties of the long-
term motion launched as close to the unstable period-2 orbit
as numerically possible. RPs of a 103 iteration trajectory, for
a = 0.2,e = 1.01,1.1,1.2,1.3 are illustrated in Fig.6.

Although many tools already exist to quantify most features
in the RPs presented, we carry out a simple analysis by in-
troducing a new time measure, Nε : The number of collisions
with the outer boundary before the particle exits its initial
L∞,ε-neighborhood for the first time. This manifests as the
black box in the bottom left-hand corner of all four plots in
Fig.6.

Fig.7 shows the evolution of Nε/N◦, for a fixed value of
Ncol = 104, for different ellipse parameters. For all values of
a considered, as e→ 1, so does Nε/N◦. This is because the
initial period-2 orbit approaches stability, as demonstrated in
Appendix B, so it always remains in its initial neighborhood.
Similarly, as e→ 1/a, Nε/N◦ again approaches unity as the
period-2 orbits approaches stability. This can be expected as,
intuitively, as the region becomes more confined, the distance
the particle traverses between each collision approaches zero,
meaning that small deviations from the initial conditions will
have an increasingly negligible effect on the orbits stability
matrix (see Appendix B, section A2 ).

The most important feature of the main plot in Fig. 7 is the
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FIG. 7. The ratio of the number of collisions within the initial neighbourhood of the unstable period-2 orbit, Nε , to the total number of
collisions with the outer circular boundary, N◦, as a function of the elongation, e. A logarithmic scale is used to show the transition point
clearly on each curve. X-axis: The elongation of the inner scatterer for different values of a, each identified by a color in the legend. In each
case, total trajectory length, Ncol = 104.

transition of Nε/N◦ from smooth to rough. This happens at
different values of elongation for each value of semi-minor
axis, a, and is insensitive to changes in numerical precision.
To understand this phenomenon, recall that the trajectory be-
gins as the unstable period-2 orbit, i.e. the particle collides
with the boundary at every other iteration. When e = 1,
Nε = N◦ = Ncol/2. As e increases, Nε/N◦ smoothly evolves
until a critical value of the elongation, e = ecrit(a). This crit-
ical geometry causes a non-zero probability that the particle,
having just collided with the circular outer boundary, will miss
the ellipse, and collide again with the outer circle, therefore
breaking the parity condition. The first time this event occurs
in a trajectory will be referred to as the endogenous escape
event, or E for brevity. This must not be confused with the
escape events normally studied in open billiard systems, as
the hole through which the particle is escaping in this case
is intrinsic to the system’s phase space. The true value of
ecrit depends neither on ε , nor the numerical precision chosen.
ecrit(a) is defined as the elongation for which the following is
true:

lim
Ncol→∞

(
N◦−

Ncol

2

)
= 1. (12)

To estimate ecrit for a given value of a, we used the following
algorithm. The initial value of e is set to 1+δe with δe= 0.02
in the results presented, and a trajectory of 2×106 collisions is

launched near the unstable period 2 orbit. If N◦ = Ncol/2, the
current value of e is increased by δe and another trajectory
is launched. This is continued until N◦ > Ncol/2 and ecrit is
taken as the current value of e.

Due to finite simulation times, any obtained value of ecrit will
inevitably be an overestimation. Figure.8 shows that ecrit(a)
demarks the elongations that permit two classes of behavior
by reconstructing, and including as insets, the long-term
trajectories of the unstable period-2 orbit for values below
and above ecrit(a). When e < ecrit(a), the trajectory explores
an extended stochastic region that is bounded by a rotational
KAM curve/surface. This rotational curve is destroyed at
e = ecrit(a), i.e. holes are created which allow the trajectory
to escape its reduced chaotic portion of the phase space after a
finite number of iterations. By simple inspection of Fig.8, no
other similar transitions are observed for elongations beyond
the critical value.

For values of elongation below the critical value, ecrit(a), the
trajectories exploring the bounded chaotic region are clearly
still subject to both position and momentum diffusion, yet un-
der the constraint that the point particle will always alternately
collide with the circle and the ellipse. In this case, one may
symbolize the trajectory, T as:

T = [ ... ,e,c,e,c,e,c,e,c ... ], (13)



The Iris Billiard: Critical Geometries for Global Chaos. 8

a=0.9, below: e=1.068 above: e=1.070

a=0.5, below: e=1.068 above: e=1.178

a=0.1, below: e=1.320 above: e=1.321

a = 0.1 a = 0.5 a = 0.9

a = 0.1 a = 0.9

e = 1.321 e = 1.178 e = 1.069

e = 1.320 e = 1.068

a = 0.5

e = 1.177

(a)                             (b)                             (c)

FIG. 8. Evolution of ecrit(a) for a ∈ (0,1). Trajectories of length Ncol = 2× 106 were used to obtain each point. The curve indicates the
elongation at which the final rotational curve is destroyed as a function of a. The subfigures show the Poincaré section occupation of the long
time chaotic trajectory (Ncol = 107 ) for elongations just above and below ecrit (a) a = 0.1, below: e = 1.320 above: e = 1.321. (b) a = 0.5,
below: e = 1.178 above: e = 1.179. (c) a = 0.9, below: e = 1.068 above: e = 1.069.

where c and e denote collisions with the circle and ellipse, re-
spectively. For e > ecrit , this constraint no longer applies. The
moment this parity condition is broken implies the dynami-
cal transition has occurred, and is characterized by E , i.e. the
first passage of the particle’s trajectory from one major fractal
subset to the rest of the chaotic phase space. In this case, the
trajectory may now be symbolized as:

T = [ ... ,cnesc−4,enesc−3,cnesc−2,enesc−1,

E︷ ︸︸ ︷
cnesc ,c, ... ]. (14)

The first, bold, consecutive c represents E by hitting the
outer circular boundary twice in a row, which, as before
specified, never occurs when e < ecrit(a). We note that
lime→ecrit nesc = ∞. Without explicit numerical calculation,
it seems impossible to know the symbolic order following
E . The set [E1,E2,E3...], is defined as the first, second, third,
etc. times the trajectory consecutively hits the outer boundary
after E .

V. STUDY OF E

To characterize the endogenous escape event, we introduce
the angle, θesc, at which the escaping segment comes closest

to the ellipse and the distance of closest approach, dmin, shown
in Fig. 9, are presented in Figs.10 - 20. These quantities were
obtained by noting that, at the point of closest approach, the
trajectory lies parallel to the ellipse at the closest point on the
ellipse circumference. Appendix D provides the geometrical
derivation of these quantities and further details.

A. Numerical procedure

To ensure that the results presented reflect the global proper-
ties of the chaotic region of the phase space, the Nsample = 106

trajectories studied were launched from slightly different ini-
tial conditions, within the neighborhood of the unstable period
2 orbit. The starting position on the outer boundary is defined
by:

θk = (−1)k
π/2+ εθ ηθ (15)

Where 1≤ k ≤ Nsample. The starting orientation is given by:

βk = εβ ηβ (16)

where εβ = εθ = 10−10. ηθ , ηβ are random numbers chosen
from independent uniform random distributions between -1
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and +1, i.e. the starting position of the two unstable orbits
are given very slight, unbiased variations, which will cause
the trajectories to exponentially deviate over a finite time and,
therefore, follow very different trajectories within the reduced
chaotic phase space before escaping. The following results
displayed only minor variations upon setting εθ or εβ to zero.

FIG. 9. An illustration of the endogenous dynamical escape event, E ,
of a trajectory launched from the unstable period 2 orbit, that signals
the transition to global chaos. The relevant observable variables, θesc
and dmin are indicated. The unit vector of the escape segment, û is
also shown.

B. Results

Heatmaps showing the distributions of θesc and dmin for E ,E10
and E50 are presented in Figs. 10, 12, 14, 16, 18 and 20.
Results for a = 0.1,0.5,0.9 are collected for two values of e
above and approaching ecrit . Survival probabilities before E
are presented in Figs. 11, 13, 15, 17, 19 and 21. These figures
also show a semi-log linear fit, log(Psurvival) = An+B , over
the domain demarked by the two vertical red dashed lines, us-
ing the method of least squares. Both A and B are given within
the figures. nmin is the minimum recorded value before any es-
cape, and so may be thought of as a deterministic dead time.
No power-law behaviors were observed. The heatmaps were
constructed by discretizing the θesc and dmin values for each
geometry studied, and plotting the correspondences between
the two values on a 2D histogram. The global heatmaps were
made with a resolution of L×L cells where L = 500. A color-
bar is used to count the number of events recorded per ‘cell’.
Units given as ‘counts per bin’: cpb. The following results are
symmetric around θesc = 0,π and θesc =−π/2,π/2.

(a) E

(b) E10

(c) E50

FIG. 10. Heatmaps of θesc against dmin. a = 0.1,e = 1.4, for the first,
tenth and fiftieth escape events (a-c).
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FIG. 11. Survival probability on semi log scale. nmin = 239. a =
0.1,e = 1.4.
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(a) E

(b) E10

(c) E50

FIG. 12. Heatmaps of θesc against dmin. a = 0.1,e = 1.321, for the
first, tenth and fiftieth escape events (a-c).
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FIG. 13. Survival probability on semi log scale. nmin = 83759. a =
0.1,e = 1.321.

(a) E

(b) E10

(c) E50

FIG. 14. Heatmaps of θesc against dmin. a = 0.5,e = 1.2, for the first,
tenth and fiftieth escape events (a-c).
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FIG. 15. Survival probability on semi log scale. nmin = 469. a =
0.5,e = 1.2, for the first, tenth and fiftieth escape events (a-c).
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(a) E

(b) E10

(c) E50

FIG. 16. Heatmaps of θesc against dmin. a = 0.5,e = 1.178, for the
first, tenth and fiftieth escape events (a-c).

0 1 2 3 4 5 6
  nesc 1e7

14

12

10

8

6

4

2

0

 lo
g 

( P
su

rv
iv

al
 ) 

('A = -0.0000001443', 'B = 0.0353')

1e7

FIG. 17. Survival probability on semi log scale. nmin = 52137. a =
0.5,e = 1.178.
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(c) E50

FIG. 18. Heatmaps of θesc against dmin. a = 0.9,e = 1.1, for the first,
tenth and fiftieth escape events (a-c).
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FIG. 19. Survival probability on semi log scale. nmin = 495. a =
0.9,e = 1.1.
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(a) E

(b) E10

(c) E50

FIG. 20. Heatmaps of θesc against dmin. a = 0.9,e = 1.069, for the
first, tenth and fiftieth escape events (a-c).
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FIG. 21. Survival probability on semi log scale. nmin = 48891. a =
0.9,e = 1.069.

As it is challenging to fully characterize the forms displayed
by the results, we focus on their common properties.

In every case, the distribution of θesc, at E , is unintuitive and
even, as for Fig. 16a, counter-intuitive. One might expect
E to occur when the distance between the inner and outer
boundaries is maximum, i.e. at θesc = 0, yet here it is clearly
a minimum. Appendix E displays heatmaps of θesc vs nesc,
where this counter-intuitive behavior is also very visible.
However, for every case studied, the distributions of θesc and
dmin approach those that might be expected intuitively by E50.
The holes that persist must relate to the structure of the global
chaotic phase space, i.e. any trajectories within them belong
to a disjoint set of trajectories within some KAM island.
However, the same cannot be said for the dark bands within
the heatmaps at E . Furthermore it should be noted that the
value of the maximum recorded ‘count per bin’ decreases by
often more than an order of magnitude between the first and
fiftieth escape event.

A common feature of most of the heatmaps at E is shown
in greater detail within Fig. 22, where two distinctive band
formations seem to merge into one. The variation in color
is due to the variation of occupancy within different regions
of the escape variable space, indicating that even within the
set of coordinates at which the trajectory may escape, some
are nonetheless more likely to be occupied than others. This
may be analogous to the stickiness observed within the usual
Poincaré sections.For some distributions collected, extreme
variations of occupational density were observed, as clearly
evidenced by the presence of the white points within, for
example, Fig. 32b.

For values of elongation close to the critical value, the
survival probability distribution is exponential. However, for
values studied well above the critical value, the behaviors
observed can be broken into two classes, those that clearly
exponentially decrease immediately after nmin, and those
that exhibit exponential decrease after a transitory regime
following nmin. The prefactor A, of the linear semi-log fit
of the survival probability distribution decreases by several
orders of magnitude as e approaches ecrit . This is expected as,
during this approach, the probability of escape in finite time
decreases to zero.

VI. DISCUSSION & CONCLUSION.

We introduced a new 2D billiard that exhibits mixed dynam-
ics. As well as presenting complete Poincaré sections recur-
rence plots (RPs) were applied to the long-time dynamics re-
sulting from unstable period-2 orbits for different elongations.
The study of a the RP features led to the identification of a
new quantitative measure, that provided strong numerical ev-
idence for the existence of a set of criticalelongations, shown
in Fig. 8, marking the destruction of the final rotational trans-
port barrier in the phase space, i.e. the two main portions of
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FIG. 22. Closeup of Fig. 10a highlighting the consistent ‘merging’ feature, present in most of the above heatmaps at E .

the chaotic region of the phase space connect, causing a tran-
sition to global chaos.

The subfigures within Fig. 8 clearly show that the frequencies
of the final destroyed rotational transport barriers correspond
to different values of β . Contrary to the result obtained for the
transition to global chaos in the standard map, we postulate
that each critical value of elongation is directly associated
to a different noble fraction, which defines the frequency of
the final destroyed rotational transport barrier. The evidence
suggests a connection between the set of noble numbers and
the critical ellipse geometries, with deep consequences for the
global structure of the chaotic phase space. To further explore
this phenomenon, in the context of the system’s symmetries,
one would need a Poincaré first return map which, until now,
is unobtainable by known means.

The endogenous escape event, E , that signals the transition
to global chaos, is illustrated in Fig. 9. It is so named to
distinguish it from previously studied escape events that
consider the first passage though some pre-defined hole in an
open system. For example, survival probabilities of dynam-
ical escape events have been previously studied in the case
of ’open billiards’, where a MUPO in a mushroom billiard,

whose stem is replaced by a hole leads to a contribution
to the survival probability proportional to 1/t as t → ∞60.
However, in this system, the ‘holes’ created are, unlike in
open billiards, intrinsic to the phase space arising from the ge-
ometry considered. Furthermore the diffusive behavior of the
reduced chaotic trajectory’s components means that it would
be probably incorrect to try to make an analogy with the
previously studied MUPO escape probability distributions.
It is, however, surprising that no power law distributions
are at all observed as one would expect the presence of an
infinite hierarchy of cantorous regular regions at the boundary
between the two connected chaotic phase regions. The results
obtained for different ellipse parameters, and therefore dif-
ferent times before the escape event, over which the survival
probability is computed, means that one can be sure that the
decaying exponential distributions are not masking some
longer time power law distribution. Further results show that
the distributions of both the angle of escape, and the distance
of closest approach behave counter-intuitively at the moment
of escape and for several iterations after, before relaxing to
distributions one would expect for the chaotic behavior in a
mixed dynamical system.
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Initial investigations of the 3D version of the Iris billiard,
following approaches used in Ref.61, show that an analogous
critical geometric property discussed in this paper persists. It
would therefore be natural to carry out a similar characteriza-
tion of the 3D escape event E . It is not clear how to obtain
the observable escape features in 3 dimensions by similar
arguments as employed here.

It would be interesting, and straightforward, to carry out a
comparative study on the same phenomenon and resulting ob-
servables as studied here, in the context of the eccentric an-
nular billiard51. If the transition to global chaos is again ob-
served, it would then be possible to study the Poincaré map,
which has already been obtained51, in order to identify the pe-
riodic orbits that become unstable at the critical perturbation
value, via Greene’s residue criterion53,62. Finally, it would be
of great interest to perform superconducting microwave res-
onator experiments, such as those previously used to explore
chaos-assisted dynamical tunneling27,28, with an Iris domain,
or its desymmetrized version27. These could be carried out,
for precisely machined geometries close to the critical values
presented here. Such experiments could facilitate a detailed
study of transport between the wave analogues of the parts of
phase space that always, sometimes or never impinge upon
the central ellipse.
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Appendix A: Derivation of conditions permitting rational
ω1/ω2 orbits

A rational ω1/ω2 orbit , where ω1 <ω2, defines a ω2 polygon,
whose radius of intersection of the enclosed caustic formed by
its rotation through θ ∈ [0,2π] follows:

rω1,ω2 =

∣∣∣∣cos
(

ω1π

ω2

)∣∣∣∣ . (A1)

Considering the parametric form of the ellipse, and applying
simple geometric arguments returns the following condition
for intersection,

b2 sin2
θ +a2 cos2

θ − r2
ω1,ω2

≥ 0, (A2)

which is true for all values of θ iff r2
ω1,ω2

≤ a2. Conversely,
there are no intersections for any value of θ when r2

ω1,ω2
≥ b2.

In the regime a2 ≤ r2
ω1,ω2

≤ b2, to determine if there is an
intersection one must solve:

b2 sin2
θ +a2 cos2

θ − r2
ω1,ω2

= 0, (A3)

returning:

sin2
θ =

r2
ω1,ω2

−a2

b2−a2 . (A4)

Therefore the conditions for intersection with the inner ellipse
are therefore met by:

|θ −π/2| ≤ arccos

√
r2

ω1,ω2
−a2

b2−a2 , (A5)

or, by the symmetry of the system,

|θ −3π/2| ≤ arccos

√
r2

ω1,ω2
−a2

b2−a2 , (A6)

In order for a rational ω1/ω2 orbit to exist, one must avoid in-
tersections for all θ +2πn/ω2 ∀n ∈ [0, ..,ω2−1]. Therefore,
the following condition must be met:

arccos

√
r2

ω1,ω2
−a2

b2−a2 <
π

κ(ω2) ω2
, ω2 ∈ {3,4,5...} (A7)

where:

κ(ω2) = 1+ω2 mod 2. (A8)

Equation (A7) may be finally rearranged to give:

b
a
≥ emin =

[
1

cos2(π/κ(ω2) ω2)

(
r2

ω1,ω2

a2 −1

)
+1

]1/2

.

(A9)

Appendix B: Stability analysis of Period 2 orbits

Each orbit within the billiard is an ensemble of alternating
straight lines and reflections. To describe the effect of chang-
ing the initial conditions on a trajectory of n segments we con-
struct a stability matrix, Mn, such that:
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(
δθn

δβn

)
= Mn

(
δθ0

δβ0

)
. (B1)

Slight changes, (δθ0,δβ0), made to the initial position per-
pendicular to the direction of motion and to the initial direc-
tion, respectively, at (θ0,β0), through the operation of Mn,
produce the resultant deviations (δθn,δβn). Mn is computed
as the product of matrices describing the effect of the devia-
tions to each straight line segment and reflection of a trajec-
tory resulting from a slight change in its initial conditions:

Mn =
n

∏
i=0

(
1 li
0 1

)
·
( −1 0

−2
Ri cosβi

−1

)
, (B2)

where li is the length of the ith segment and Ri is the radius of
curvature of the, inner or outer, boundary at the ith collision.
Since the system is conservative, the mapping describing the
evolution of the trajectory is area preserving, i.e.

DetMn = 1. (B3)

Eigenvalues of the stability matrix, and therefore the proper-
ties of the trajectory, depend only upon its trace. To best ob-
tain the analytical properties of the trajectory, its residue, R,
as defined by Greene53, is used, where:

R =
1
4
(2−TrMn). (B4)

The values of R, determined by the value of TrMn, character-
ize the analytic properties of a trajectory as follows:


R < 0 Hyperbolic
R = 0, Marginally Stable
0 < R < 1 Stable.
R > 1 Reflection Hyperbolic

(B5)

Hyperbolic trajectories correspond to Mn having real eigen-
values that are positive (or negative in the reflection case).
They always undergo significant deviation due to the finite
limits of numerical precision. Marginally stable trajectories
correspond to eigenvalues of ±1. The stable case yields
complex eigenvalues with magnitude unity. Two stable
trajectories, with slightly different initial conditions, undergo
a linear deviation over time.

The trace of the stability matrix of a single period 2 orbit in
the direction of the ellipse’s semi-minor axis is:

Tr(Ma
2) =

4b
(
e2−1

)
e3 +

4
e2 −2. (B6)

|Tr(Ma
2)| ≤ 2 ∀a,e. Therefore the residue of the orbit always

indicates stability (0 < R < 1).

Along the direction of the semi-major axis, the trace otherwise
returns:

Tr(Mb
2) =−4b

(
e2−1

)
+4e2−2. (B7)

In this case the orbit is always hyperbolic (R < 0), except for
where it yields marginal stability (R = 0) in the limiting cases,
a = b and b = 1. (If a = b, i.e. for a circular inner scatterer, all
trajectories from every initial condition are either periodic or
quasi-periodic, with conserved angular momentum. If b = 1,
the system becomes two separate crescents). As time tends
to infinity, the stable orbit will continue unchanged; while the
unstable orbit, knocked off course by numerical imprecision,
will explore the accessible chaotic sea.

Appendix C: Recurrence Quantification Analysis as indicators
of stickiness

To study the structures presented by RPs, several measures63,
known as Recurrence Quantification Analysis (RQA), are al-
ready in use. We will focus specifically on two in the context
of the chaotic dynamics of the Iris Billiard. The first measure
is the recurrence rate (RR), defined as the percentage of black
points in an RP:

RR(ε) =
1

N2

N

∑
i, j=1

Ri, j(ε). (C1)

This may be better understood as the ‘sparsity’ of the N×N
binary matrix under consideration. In the limit N→ ∞, RR is
the probability that a state recurs to its phase neighbourhood,
as demarked by ε .

The second measure is based on the distribution of diagonal
lines present within the RP:

P(ε, l) =
N

∑
i, j=1

(1−Ri−1, j−1)(1−Ri+l, j+l)
l−1

∏
k=0

Ri+k, j+k (C2)

Recurrence plots principally show diagonal lines for periodic
and quasiperiodic orbits, as one of length l shows that a seg-
ment of a trajectory is close to another segment from a differ-
ent time, for l iterations. The trajectory’s determinism (DET),
is defined as the percentage of black points belonging to a di-
agonal line of at least lmin. The ratio of recurrence points that
form a diagonal line, of at least length lmin, to all the recur-
rence points, therefore, provides a measure of how determin-
istic (predictable) the trajectory is,

DET =
∑

N
l=lmin

lP(ε, l)

∑
N
l=1 lP(ε, l)

. (C3)
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FIG. 23. RP of a 2× 104 long chaotic trajectory, launched from the
unstable period-two orbit, for a= 0.9,e= 1.1. RRcrit = 0.1. DEcrit =
0.3. Three separate regions of interest are selected and marked as I,
II and III.

In what follows, lmin = 3. For all periodic orbits DET = 1.
To apply these measures as indicators of stickiness within the
billiard dynamics, windows of size lw = 200 will be overlayed
the original recurrence plot. RQA will be applied to each
window, and the evolution of the above introduced variables
will serve as indicators of dynamical transitions.
An example RP applied to a chaotic orbit of length 2× 104

is shown. The measures introduced above are applied as a
particularly sensitive measurement of intra-chaotic dynamical
transitions. Fig 23 shows the RP of a long, chaotic orbit for
a = 0.9,e = 1.1. The trajectory is then analysed by applying
the previously introduced RQA measures to moving windows
of length w = 200. The selected RQA measures (RR &
DET ) are monitored with respect to time. When the chaotic
trajectory encounters a sticky region, the RR significantly
changes as its evolution becomes much more regular. Three
examples are highlighted in Fig 23 as Domains I, II and III.
These correspond to regions where both RR and DET surpass
RRcrit and DETcrit , defined as 0.1 and 0.3 respectively.
These values were chosen for the purpose of demonstrating
the presence and detection of stickiness for one specific
geometry, and would have to be reevaluated for each different
geometry considered. Domain III is of particular interest as it
corresponds a high deviation for only the DET measure, but
not for RR. Figs. 24 25 & 26 show the phase occupation of
the sticky orbits observed by the RR and DET measures.

FIG. 24. Domain I, i ∈ 352,1100: Rotational motion, of different
frequencies,

FIG. 25. Domain II, i ∈ 9420,5200: Librational diffusion.

FIG. 26. Domain III, i ∈ 9400,9540 Short rotational motion.

Appendix D: Derivation of θesc and dmin

Let û be the unit vector specifying the trajectory. For a non-
intersecting trajectory, there is a point of closest approach on
the ellipse, re = (xe,ye), whose tangent is parallel to û, see
Fig. 9. Thus

dy
dx

=−xb2

ya2 =
uy

ux
. (D1)
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(a) (b) (c)

r_e1

r_e1

FIG. 27. Figures showing the geometric construction used to obtain θesc and dmin. (a) A ‘real’ case. Where dmin is obtained via reasoning
shown in (b): L2 = û · (r1−re). (c) A ‘virtual’ case, where the escaping trajectory is only parallel to the ellipse at a constructed point extended
beyond the Iris boundary. This situation is most likely for billiards close to the crescent configuration.

Substituting for x in the ellipse equation, Eq. 3, returns

y2 =
b4

(auy/ux)2 +b2 . (D2)

Since there are two points on the ellipse whose tangents are
parallel to û, we obtain two solutions: (xe,ye) and (xe1,ye1).

Applying simple geometric reasoning, as shown in Fig. 27
gives the minimum distance of approach as:

d2
min = |r1− re/e1|2−

[
û · (r1− re/e1)

]2
. (D3)

The sought after solution is the one that returns the smallest
value of dmin, from which one may directly obtain the associ-
ated value of θesc.

Appendix E: Heat maps of θesc vs nesc

The heatmaps presented in Figs. 28, 29, 30, 31, 32 and 33
show the joint distribution of the number of iterations before
escape, n, against the angle of escape, θesc, at the first escape
event (i.e. the first miss), the tenth miss and the fiftieth miss.
These results show the high sensitivity of the escape event to
the billiard geometry. An example is given in Figs. 30 (a) and
31 (b), where there is only a 2% difference in the elongation.
Furthermore, for every case studied, there is a clear averaging
effect on the distribution of the observable as the number of

ellipse misses increases, whereas the statistics of the first es-
cape show bands of non-occupation, that can be related to the
structures observed in Sec. V B.
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(a) E

(b) E10

(c) E50

FIG. 28. Heat maps relating the escape angle θesc to the number of
trajectory iterations at (a) the first escape event (i.e. the first miss), (b)
the tenth miss, (c) the fiftieth miss. The sample was collected from
a set of trajectories launched from the unstable 2 period orbit with
slight deviations as given in Eqs. 15 V A. Geometry of the system
is: a = 0.1,e = 1.4 .

(a) E

(b) E10

(c) E50

FIG. 29. Same as for Fig. 28, but a = 0.1,e = 1.321
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(a) E

(b) E10

(c) E50

FIG. 30. Same as for Fig. 28, but a = 0.5,e = 1.2

(a) E

(b) E10

(c) E50

FIG. 31. Same as for Fig. 28, but a = 0.5,e = 1.178
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(a) E

(b) E10

(c) E50

FIG. 32. Same as for Fig. 28, but a = 0.9,e = 1.1

(a) E

(b) E10

(c) E50

FIG. 33. Same as for Fig. 28, but a = 0.9,e = 1.069

Appendix F: Box counting dimension around critical
geometries

We characterize the chaos/order boundary by considering its
box-counting dimension. This is done by defining NB(ε) as
the number of cells needed to cover the chaos border at given
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value of ε . We understand dimension to mean how much
space a set occupies near each of its points.

The idea of a ‘measurement’ of a set at scale, ε , defined
by L∞., is fundamental. For each ε , one measures the set
in a way that detects irregularities of size ∆ε . Ultimately
we want to know how these measurements behave as ε→ 064.

Defining the chaos border as the subset, B, for ε > 0, we also
define the smallest number of sets of maximum diameter ε as
NB(ε). The dimension of B reflects the way in which NB(ε)
grows as ε → 0. If NB(ε) even approximately behaves as a
power law, i.e.

NB(ε)' c ε
−D, ∀c,D≥ 0 (F1)

where c is some constant, B is then said to have a ‘box-
counting dimension’ D. This is solved via:

logNB(ε)' log(c)−D log(ε) (F2)

∴ D' − logNB(ε)

log(ε)
+

log(c)
log(ε)

(F3)

allowing us to obtain D, in the limit, as:

D = lim
ε→0

logNB(ε)

log(1/ε)
. (F4)

The second term disappears in the limit. The chaos border
subset, B, is defined as the set of ‘border cells’, i.e. that have
been visited but have at least one ‘empty’ neighbouring cell
alongside. The chaotic orbit must have visited a border cell
at least once, meaning that some part of the phase space
contained within is the chaotic component. However, it must
be recognized that, in all probability, the whole cell is not
filled by the chaotic phase component.

To determine the fractal dimension, grid cells between L =
500 and L = 1500 were used. The length of each chaotic or-
bit was 2× 109, to ensure a large number of counts per cell,
even for larger values of L. Using short trajectories to fill the
chaotic set results in an anomalous deviation of the border
cell count with number of cells L from the expected power
law. This is because the sparsity of points recorded within the
chaotic phase portion leads to the misidentification of border
cells where, in fact, there are none.

FIG. 34. Heatmap of the reduced chaotic portion of the phase
space, prior to global connection, filled by a 2× 109 long trajectory
launched from the unstable period-two orbit. L = 300, a = 0.9,e =
1.067. All trajectories launched from any initial condition, within
this chaotic set, will obey the symbolic parity condition for all time.

FIG. 35. Heatmap of chaotic potion of the phase space post global
connection. L = 300, a = 0.9,e = 1.069, filled by a 2×109 long tra-
jectory launched from the unstable period-two orbit. In this case, all
chaotic trajectories, may diffuse in and out of the region that obeys
the parity condition. The closer to the critical elongation one ap-
proaches, from above, the more time passes between the passages
between the two dynamical regime. For values of elongation that
approach the critical limit from above, the rate of diffusion lessens.

The fractal dimension of the chaos/order boundary at values
of elongation above and below the critical values measured by
trajectories of length N = 2×109 are presented in Tables I and
II.

a e D
0.1 1.317 1.70±1×10−2

0.5 1.175 1.62±2×10−3

0.9 1.067 1.80±7×10−3

TABLE I. Table the fractal dimensions of the border of the chaotic
component, for chosen elongations under the critical set.
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a e D
0.1 1.321 1.63±1×10−2

0.5 1.178 1.53±3×10−3

0.9 1.069 1.95±1×10−2

TABLE II. Table of the evolution of the fractal dimensions for the
border of the chaotic component, for chosen elongations above the
critical set.

Both Figs. 34 and 35 show very clearly the presence of can-
tori (destroyed remnants of perturbed robust transport barri-
ers) above and below the critical destroyed barrier, that must
correspond to the the remains of previously destroyed (but
nonetheless robust) rotational transport barriers. The marked
presence of these structures is what causes the fractal dimen-
sion of the chaos order border for a = 0.9 to be very high,
indeed higher than those measured measured for other ellipse
parameters, and close to the upper dimensional limit, 2.
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