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Abstract 

Fluoroquinolone resistance in Stenotrophomonas maltophilia is multi-factorial, but the 

most significant factor is overproduction of efflux pumps, particularly SmeDEF, 

following mutation. Here we report that mutations in the glycosyl transferase gene 

smlt0622 in S. maltophilia K279a mutant K M6 cause constitutive activation of SmeDEF 

production, leading to elevated levofloxacin MIC. Selection of a levofloxacin-resistant 

K M6 derivative, K M6 LEVR, allowed identification of a novel two-component regulatory 

system, Smlt2645/6 (renamed as SmaRS). The sensor kinase Smlt2646 (SmaS) is 

activated by mutation in K M6 LEVR causing over-production of two novel ABC 

transporters and the known aminoglycoside efflux pump SmeYZ. Over-production of 

one ABC transporter, Smlt1651-4 (renamed as SmaCDEF) causes levofloxacin 

resistance in K M6 LEVR. Over-production of the other ABC transporter, Smlt2642/3 

(renamed SmaAB) and SmeYZ both contribute to the elevated amikacin MIC against K 

M6 LEVR. Accordingly, we have identified two novel ABC transporters associated with 

antimicrobial drug resistance in S. maltophilia, and two novel regulatory systems 

whose mutation causes resistance to levofloxacin, clinically important as a promising 

drug for monotherapy against this highly resistant pathogen.  
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Introduction 

Levofloxacin is one of only six antimicrobials where breakpoints have been defined by CLSI 

for use against the opportunistic pathogen Stenotrophomonas maltophilia (1) The drug of 

choice is trimethoprim-sulphamethoxazole, but there have been several trials and meta 

analyses pointing towards the promising potential of levofloxacin monotherapy (2-4). 

Fluoroquinolone resistance (e.g. to ciprofloxacin, moxifloxacin, levofloxacin) in Gram-negative 

bacteria involves multiple mechanisms (5). In Enterobacteriales, mutations in the 

fluoroquinolone targets, the so-called quinolone resistance determining regions (QRDRs) of 

DNA gyrase and topoisomerase enzymes are prevalent in fluoroquinolone resistant isolates. 

But in non-fermenting bacteria such as Pseudomonas aeruginosa, mutations increasing the 

production of fluoroquinolone efflux pumps are more common (5). For S. maltophilia, QRDR 

mutations have never been seen in clinical isolates or laboratory selected fluoroquinolone 

resistant mutants (6). Production of Qnr proteins, which protect DNA gyrase from 

fluoroquinolones, is important for intrinsic fluoroquinolone MICs against S. maltophilia, e.g. the 

chromosomally-encoded SmQnr (7,8) whose production is controlled at the transcriptional 

level by SmqnrR (9,10). We have recently shown that loss of TonB in S. maltophilia elevates 

fluoroquinolone MIC, suggesting that drug uptake is at least partly TonB dependent (11) but 

the most abundant fluoroquinolone resistance mechanisms in S. maltophilia are efflux pumps. 

These include the ABC transporter SmrA (Smlt1471) (12) the MFS type transporter MfsA (13) 

and the RND pumps SmeJK (14) and SmeGH (15). 

The most clinically important fluoroquinolone efflux pumps in S. maltophilia are the RND 

systems SmeDEF and SmeVWX, which confer resistance when overproduced. SmeDEF was 

first identified as being hyper-produced in isolates resistant to a range of antimicrobials (16). 

Hyper-production was shown to be due to loss-of-function mutation in the transcriptional 

repressor gene smeT, encoded immediately upstream of smeDEF (17). Interestingly, triclosan 

is a substrate for SmeDEF and binds SmeT, meaning that SmeDEF production is induced in 

the presence of this biocide (18). It has been suggested that internal signal molecules may 
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exist in S. maltophilia, which also bind SmeT and control smeDEF transcription (19). The role 

of SmeVWX over-production in fluroquinolone resistance in S. maltophilia clinical isolates is 

also well documented, particularly in the context of levofloxacin resistance, and particularly in 

combination with other mechanisms of resistance (20-22). 

We have previously defined S. maltophilia acquired ‘resistance profile 1’ in mutants with 

reduced susceptibility to fluoroquinolones and tetracyclines (19). Two such mutants are K M6 

and K M7, derived from the clinical isolate K279a by selection for reduced susceptibility to 

moxifloxacin (19). The MIC of ciprofloxacin was previously found by Etest to have risen from 

2 µg.mL-1 against K279a to be >32 µg.mL-1 against K M7 and 12 µg.mL-1 against K M6 (19). 

According to semi-quantitative RT-PCR, both mutants over-express smeDEF, which encodes 

the efflux pump associated with resistance profile 1, but only K M7 has a mutation in the local 

regulatory gene smeT (19).  

In the work reported here we first aimed to identify the reason for smeDEF over-expression in 

K M6, having an intact smeT. We also report the identification of a novel two-component 

regulatory system, and a novel ABC transporter contributing to levofloxacin resistance in S. 

maltophilia and demonstrates the associations between increased levofloxacin and amikacin 

MIC, identifying the amikacin transporters responsible. 

 

Results and Discussion 

Disruption of glycosyl transferase gene smlt0622 causes over-production of SmeYZ and 

SmeDEF efflux pumps, leading to elevated amikacin and levofloxacin MICs against S. 

maltophilia K279a. 

Both K M6 and K M7 were recovered from storage and confirmed by disc testing to have 

reduced susceptibility, but not to the point of resistance, to minocycline and 

trimethoprim/sulphamethoxazole, according to CLSI breakpoints (1) (Table 1). The most 

clinically relevant change came for levofloxacin, where K M6 was found to have acquired 
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intermediate resistance and K M7 was found to be resistant, based on MIC testing (Table 2). 

There was also a one doubling increase in amikacin MIC against K M6 versus K M7 and the 

parent strain (Table 2) 

Whole envelope proteomics analysis confirmed previously reported (19) over-expression of 

smeDEF in these two mutants. There was a 1.5-fold upregulation of SmeDEF in K M6, and a 

3-fold upregulation of SmeDEF in K M7 relative to the parental strain, K279a (Figure 1A). The 

statistically significantly increased amount of SmeDEF produced in K M7 versus K M6 explains 

why MICs of ciprofloxacin (19) and levofloxacin (Table 2) are higher against K M7 than against 

K M6. Indeed, disruption of smeE in K M6, K M7 or K279a reduced the MIC of levofloxacin to 

0.25 µg.mL-1, confirming the importance of SmeDEF for levofloxacin non-susceptibility – as 

defined using the CLSI breakpoint – in both mutants. Disruption of smeE in K M6 did not 

reverse the slight increase in amikcin MIC seen against this mutant (Table 2). 

K M7 has a loss-of-function mutation in smeT, but the mutation responsible for smeDEF over-

expression in K M6 has not been defined (19). Whole genome sequencing revealed only one 

mutation in K M6, a single missense mutation relative to K279a, predicted to cause a 

Gly368Ala change in a putative glycosyl transferase encoded by the smlt0622 gene. Glycosyl 

transferases are responsible for the addition of saccharides onto other biomolecules. 

Therefore, they can utilize various substrates and participate in myriad cellular functions. For 

example, cellular detoxification (23). Currently, there is no information about the specific role 

of the glycosyl transferase encoded by smlt0622.  

To test whether the mutation in smlt0622 is responsible for SmeDEF over-production in K M6, 

we insertionally inactivated smlt0622 in its parent strain, K279a. Levofloxacin MIC was actually 

higher against K279a smlt0622 than against K M6 (Table 2) and proteomics confirmed that 

SmeDEF production was higher in K279a smlt0622 than in K279a, and higher even than in K 

M6, mirroring levofloxacin MIC (Figure 1A, 1B, Table 2). This led us to hypothesise that the 

Gly368Ala point mutant Smlt0622 enzyme in K M6 retains some activity, though because we 

have no assay for this enzyme we were unable to test this hypothesis. It is possible that 
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Smlt0622 modifies a ligand that is the signal for SmeT de-repression or generates a ligand 

essential for SmeT repressive activity, or that in some other way modifies the expression of 

smeT. Therefore, when the activity of Smlt0622 is reduced, the balance of ligand concentration 

is towards SmeT de-repression and smeDEF over-expression (Table 2).  

We also noticed that the MIC of amikacin against K279a smlt0622 was higher than against 

K279a, again, the loss of function mutation having a greater impact than the small increase in 

amikacin MIC seen against K M6 (Table 2). This was explained by our observation from 

proteomics data that levels of SmeYZ, a known aminoglycoside efflux pump (24) were higher 

in K279a smlt0622 than in K279a (Figure 1C). This was unexpected, because of previous 

data showing that SmeDEF over-production leads to reduced SmeYZ production (25); in this 

case K279a smlt0622 over-produces both efflux pumps (Figure 1). One explanation is that 

the smlt0622 mutation has a general effect on cellular physiology and that this stimulates 

SmeYZ production despite SmeDEF over-production. In support of this, we noted that K279a 

smlt0622 grew slowly compared with K279a and the smlt0622 point mutant K M6, which we 

hypothesised above retains significant activity (Figure 1D). We have recently reported that 

ribosome damage stimulates SmeYZ production in S. maltophilia (26) and so we hypothesise 

that slow growth activates a similar control system to ribosomal damage, stimulating SmeYZ 

production.  

 

ABC transporters controlled by the Smlt2645/6 two-component regulatory system contribute 

to levofloxacin resistance and elevated amikacin MIC. 

We next attempted to learn more about mechanisms of levofloxacin resistance in S. 

maltophilia by selecting a levofloxacin resistant mutant derivative of K M6. The resulting 

mutant, K M6 LEVR, presented a generally similar resistance profile to K M6 (Table 1) but had 

acquired levofloxacin resistance, as confirmed by MIC testing (Table 2). Interestingly, the 

mutant also had reduced susceptibility to the aminoglycosides gentamicin (Table 1) and 
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amikacin (Table 2). Whole envelope proteomic analysis (Table 3) revealed upregulation of a 

bipartite ABC transporter (Smlt2642/3) in K M6 LEVR versus K M6 (Figure 2A). We also 

noticed in the proteomics data that a putative two-component regulatory system (Smlt2645/6), 

encoded immediately adjacent to smlt2642/3 on the chromosome, is also over-produced in K 

M6 LEVR relative to K M6 (Figure 2A). According to whole genome sequencing, K M6 LEVR 

has only one mutation relative to K M6, predicted to cause an Ala198Thr change in the over-

produced sensor kinase Smlt2646. This mutation is located between the two helices of the 

histidine kinase domain (27). This putative Smlt2645/6 two-component system is therefore a 

good candidate for local activation of smlt2642/3 ABC transporter operon transcription in K 

M6 LEVR. 

Since an activatory mutation in a two-component system is generally dominant in trans, we 

aimed to confirm the effect of the mutated version of the sensor kinase gene smlt2646, 

referred to as smlt2646*, from K M6 LEVR in a wild-type background. The operon, including 

the response regulator gene and the putatively activated sensor kinase mutant gene 

(smlt2644-smlt2646*) from K M6 LEVR, was cloned to create plasmid 

pBBR1MCS-4::smlt2644-6*, which was used to transform S. maltophilia K279aAmpFS, an 

ampicillin susceptible derivative of K279a (28) to ampicillin resistance (the marker on the 

plasmid). Relative to plasmid only control, MIC testing showed that carriage of 

pBBR1MCS-4::smlt2644-6* in K279aAmpFS confers levofloxacin intermediate resistance, and 

a greatly increased MIC of amikacin (Table 2).  

Disruption of the activated sensor kinase mutant gene smlt2646* in K M6 LEVR reduced 

Smlt2642/3 ABC transporter production back to the levels seen in K M6 (Table 3, Figure 2A) 

and reduced MICs of amikacin and levofloxacin to one doubling dilution below even their MICs 

against K M6 (Table 2). This confirms that the activator mutation seen in the sensor kinase 

Smlt2646* causes Smlt2642/3 ABC transporter upregulation and, together with the 

transactivation experiment, that the Smlt2646* mutation causes the resistance phenotype 

expressed by K M6 LEVR. However, disruption of the upregulated putative ABC transporter 
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gene smlt2642 in K M6 LEVR only reduced the MIC of amikacin, and even then it remained 

two doubling dilutions higher than the MIC against K M6 (Table 2) showing that Smlt2642/3 

transporter upregulation is not responsible for levofloxacin resistance in K M6 LEVR and is 

only partially responsible for the increased MIC of amikacin against this mutant. In order to 

find additional amikacin resistance proteins, we explored the proteomics data (Table 3) and 

identified that the aminoglycoside efflux pump SmeYZ was also over-produced in K M6 LEVR 

relative to K M6, then down regulated in upon disruption of the smlt2646* sensor kinase gene 

in K M6 LEVR, i.e. its production mirrored changes in the MIC of amikacin (Figure 2B, Table 

2). Therefore, we conclude that increased amikacin MIC seen when the Smlt2645/6 two-

component system is activated by mutation is caused by a combined effect of SmeYZ and 

Smlt2642/3 over-production. However, neither Smlt2642/3 (Table 2) or SmeYZ (14) are 

responsible for levofloxacin resistance in K M6 LEVR so we again searched the proteomics 

data (Table 3) and identified another novel ABC transporter, Smlt1651-4, which was 

upregulated in K M6 LEVR relative to K M6 and then downregulated in the smlt2646* signal 

sensor gene disrupted derivative of K M6 LEVR (Figure 2C), i.e. a derivative that lost 

levofloxacin resistance (Table 2). We therefore disrupted the putative ABC transporter gene 

smlt1651 in K M6 LEVR and noted that the MIC of levofloxacin reduced to be the same as the 

MIC against K M6, but the amikacin MIC did not change (Table 2). This confirmed that over-

production of Smlt1651-4 is responsible for levofloxacin resistance in K M6 LEVR. SmeDEF 

over-production, seen in K M6 and maintained in K M6 LEVR (Figure 1A) is also essential for 

levofloxacin resistance in K M6 LEVR as confirmed because disruption of smeE reduced the 

levofloxacin MIC against K M6 LEVR even more than disruption of the ABC transporter gene 

smlt1651 (Table 2). Importantly, however, the MIC of levofloxacin against K M6 LEVR smeE 

remained one doubling dilution higher than against K M6 smeE (Table 2) confirming 

involvement of ABC transporter Smlt1651-4 over-production in elevating levofloxacin MICs in 

S. maltophilia. 
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Conclusions 

Over-production of SmeDEF confers levofloxacin resistance in S. maltophilia (22). This is 

typically caused by an smeT loss-of-function mutation, as seen here in K279a derived mutant 

K M7 (Table 2). However, we have also found a novel alternative mutational pathway to this 

phenotype. We show that disruption of the glycosyl transferase gene smlt0622 constitutively 

activates production of SmeDEF (Figure 1B). A loss-of-function mutation in this gene has a 

significant impact of cell growth (Figure 1D), but the laboratory selected smlt0622 point 

mutant, K M6 appears to retain some residual Smlt0622 activity, because SmeDEF production 

is not at such high levels (Figure 1B) and growth rate is not significantly affected (Figure 1D). 

We hypothesise that reduction of Smlt0622 activity affects the concentration of some cellular 

metabolite, possibly increasing the concentration of a toxic molecule that is a signal for SmeT 

activation. This would imply there are multiple signals for SmeT de-repression since it is known 

that triclosan can also perform this role (18), as well as plant-derived flavonoids (29). It may 

be that, like triclosan, the putative cytoplasmic SmeT-activator ligand is also a substrate for 

SmeDEF. In this way, the SmeT-SmeDEF regulatory system may be analogous to the 

VceCAB efflux pump and its control by the SmeT homologue VceR in Vibrio cholerae, where 

VceR can be de-repressed in the presence of a number of different substrates of VceCAB 

(30,31). Testing this hypothesis will form the basis of future work. 

Because SmeDEF abundance is not increased to the same extent in the smlt0622 point 

mutant K M6 as it is in the smeT loss-of-function mutant K M7 (Figure 1A) the MIC of 

levofloxacin against K M6 is not high enough for the mutant to be called resistant (Table 2). 

Therefore, by selecting a resistant derivative, K M6 LEVR, we were able to identify a novel 

two-component regulatory system Smlt2645/6, where Smlt2646 is a sensor histidine kinase 

and Smlt2645 is a response regulator. Activation of the Smlt2646 sensor kinase by mutation 

increases production of two novel ABC-type antibiotic efflux pumps, and the known 

aminoglycoside efflux pump SmeYZ (14) and has a significant impact on antibacterial MIC. 

Importantly, the activatory mutation seen here, Ala198Thr, was also found in an S. maltophilia 
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clinical isolate from an intensive therapy unit (32), Genbank Accession WP_049401591.1. We 

also identified individual Genbank entries with mutations in this same region: Val196Ile 

(Accession TFZ45076.1) , Glu199Gln (ALA84602.1), which is from a clinical isolate reported 

as levofloxacin susceptible (33), Leu203Pro (MBC9115351.1), which is reported as 

levofloxacin resistant (34). Among two-component regulators encoded in the S. maltophilia 

K279a genome (35), Smlt2646 and Smlt2645 are most identical (48% and 63%, respectively) 

to SmeS and SmeR, which control transcription of the smeYZ efflux pump operon, potentially 

explaining cross-regulation of smeYZ expression. 

Alongside SmeYZ over-production, amikacin MICs increased in K M6 LEVR because of the 

over-production of the novel ABC transporter Smlt2642/3 (Figure 2) as annotated in the S. 

maltophilia K279a genome sequence (35). We now name this novel S. maltophilia ABC 

transporter: “SmaAB”. The Smlt2645/6 two-component system encoded immediately adjacent 

to smaAB, we name SmaRS. SmaA and SmaB are most identical (54% and 43%, 

respectively) to Smlt1538 (MacAsm) and Smlt1539 (MacBsm), which form another 

aminoglycoside ABC transporter, whose expression is controlled by another two-component 

regulator, encoded alongside: Smlt1540/1 (MacRS) (36). A second novel ABC transporter, 

Smlt1651-4, which we now name SmaCDEF, is also up-regulated upon activation of the 

SmaRS two-component system (Figure 2), and this enhances the MIC of levofloxacin (but not 

amikacin), and when this occurs in addition to SmeDEF over-production, this confers 

levofloxacin resistance (Table 2). These new ABC transporters are well conserved across S. 

maltophilia. Applying 100% coverage and >90% identity thresholds, SmaB was found to match 

with 190 Genbank entries and SmaD with 168 using blastp searches. This compares with 150 

matches for SmeE.  

Accordingly, we have added to the already dizzying array of known efflux systems relevant for 

intrinsic and acquired antimicrobial resistance in S. maltophilia (37). A species having a 

remarkable resistance protein armamentarium, explaining why it is one of the most difficult-to-

treat bacterial pathogens. 
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Experimental 

Materials, bacterial isolates and antimicrobial susceptibility testing 

Chemicals were from Sigma and growth media from Oxoid, unless otherwise stated. Strains 

used were S. maltophilia K279a (38) two spontaneous mutants selected for reduced 

moxifloxacin susceptibility, K M6 and K M7 (19) and a β-lactam susceptible mutant derivative, 

K279a ampRFS with a frameshift mutation engineered into the β-lactamase activator gene 

ampR via suicide gene replacement (27). Antimicrobial susceptibility was determined using 

CLSI broth microtiter assays (39) or disc susceptibility testing (40) and interpreted using 

published breakpoints (1).  

 

Selection and construction of mutants 

To select levofloxacin resistant mutant derivative of K M6, 100 µL aliquots of overnight cultures 

of K M6 grown in Nutrient Broth (NB) were spread onto Mueller Hinton agar containing 5 

µg.mL-1 levofloxacin and incubated for 24 h. Insertional inactivation of smlt0622, smlt2646*, 

smlt2643, smlt1651 and smeE was performed using the pKNOCK suicide plasmid (41). The 

DNA fragments were amplified with Phusion High-Fidelity DNA Polymerase (NEB, UK) from 

S. maltophilia K279a genomic DNA. pKNOCK-GM::smeE was constructed by PCR using 

primers smeE F (5′-CAATGTTGTCGATCGCCTGA-3′) and smeE R (5′- 

TACGACATCGCCGTCCATTC-3′), the product was digested with PstI and XhoI and ligated 

into pKNOCK-GM at the PstI and XhoI sites. pKNOCK-GM::smlt0622 was constructed by 

using smlt0622 F (5′-CAACGAGCGGGATGTTAGGT-3′) and smlt0622 R (5′-

CGTCGAAGTGGGCAACAAC-3′), the product was digested with BamHI and XhoI and ligated 

into pKNOCK-GM at the BamHI and XhoI sites. pKNOCK-GM::smlt1651, pKNOCK-

GM::smlt2643 and pKNOCK-GM::smlt2646 were constructed using primers smlt1651 FW KO 

with a SalI site included, underlined (5′-AAAGTCGACAGTGGTGGAAGGTGCTGG-3′) and 
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smlt1651 RV KO with ApaI (5′-AAAGGGCCCGGCATGGAAGTAGGTATCGACA-3′); 

smlt2643 FW KO with SalI (5′-AAAAGTCGACCCACAGTGGCTCCAAGAAAC-3′) and 

smlt2643 RV KO with ApaI (5′-ATAGGGCCCGGCATCATCACTTTCGGCAA-3′); smlt2646 

FW KO with SalI (5′-AAAGTCGACTATGACGAGCCGGAAACCAT-3′) and smlt2646 RV KO 

with ApaI (5′-AAAGGGCCCCCATGGAGTTGAAGTCGCTG-3′). Each recombinant plasmid 

was then transferred into K279a, K M6 or K M6 LEVR, as required, by conjugation from 

Escherichia coli BW20767. Mutants were selected using gentamicin (30 µg.mL-1) and the 

mutations were confirmed by PCR using primers smeE F and smeE R (above); smlt0622 F 

and smlt0622 R (above); smlt1651 F (5′-AGAGCAGGTGGGGGCGTCTGAACGCC-3′) and 

BT543 (5′-TGACGCGTCCTCGGTAC-3′); smlt2643 F (5′-CTGCAGGCATGAGACTCAGT-3′) 

and BT543; smlt2646 F (5′-TTGCAGGACCGGGTGGACGCAACG-3′) and BT543. 

 

Proteomics 

500 µL of an overnight NB culture were transferred to 50 mL NB and cells were grown at 37˚C 

to 0.6 OD600. Cells were pelleted by centrifugation (10 min, 4,000 × g, 4°C) and resuspended 

in 30 mL of 30 mM Tris-HCl, pH 8 and broken by sonication using a cycle of 1 s on, 0.5 s off 

for 3 min at amplitude of 63% using a Sonics Vibracell VC-505TM (Sonics and Materials Inc., 

Newton, Connecticut, USA). The sonicated samples were centrifuged at 8,000 rpm (Sorval 

RC5B PLUS using an SS-34 rotor) for 15 min at 4°C to pellet intact cells and large cell debris; 

For envelope preparations, the supernatant was subjected to centrifugation at 20,000 rpm for 

60 min at 4°C using the above rotor to pellet total envelopes. To isolate total envelope proteins, 

this total envelope pellet was solubilised using 200 μL of 30 mM Tris-HCl pH 8 containing 

0.5% (w/v) SDS.  

Protein concentrations in all samples were quantified using Biorad Protein Assay Dye Reagent 

Concentrate according to the manufacturer’s instructions. Proteins (5 µg/lane for envelope 

protein analysis) were separated by SDS-PAGE using 11% acrylamide, 0.5% bis-acrylamide 
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(Biorad) gels and a Biorad Min-Protein Tetracell chamber model 3000X1. Gels were resolved 

at 200 V until the dye front had moved approximately 1 cm into the separating gel. Proteins in 

all gels were stained with Instant Blue (Expedeon) for 20 min and de-stained in water.  

The 1 cm of gel lane was subjected to in-gel tryptic digestion using a DigestPro automated 

digestion unit (Intavis Ltd).  The resulting peptides from each gel fragment were fractionated 

separately using an Ultimate 3000 nanoHPLC system in line with an LTQ-Orbitrap Velos mass 

spectrometer (Thermo Scientific). In brief, peptides in 1% (v/v) formic acid were injected onto 

an Acclaim PepMap C18 nano-trap column (Thermo Scientific). After washing with 0.5% (v/v) 

acetonitrile plus 0.1% (v/v) formic acid, peptides were resolved on a 250 mm × 75 μm Acclaim 

PepMap C18 reverse phase analytical column (Thermo Scientific) over a 150 min organic 

gradient, using 7 gradient segments (1-6% solvent B over 1 min, 6-15% B over 58 min, 15-

32% B over 58 min, 32-40% B over 5 min, 40-90% B over 1 min, held at 90% B for 6 min and 

then reduced to 1% B over 1 min) with a flow rate of 300 nL/min.  Solvent A was 0.1% formic 

acid and Solvent B was aqueous 80% acetonitrile in 0.1% formic acid. Peptides were ionized 

by nano-electrospray ionization MS at 2.1 kV using a stainless-steel emitter with an internal 

diameter of 30 μm (Thermo Scientific) and a capillary temperature of 250°C. Tandem mass 

spectra were acquired using an LTQ-Orbitrap Velos mass spectrometer controlled by Xcalibur 

2.1 software (Thermo Scientific) and operated in data-dependent acquisition mode. The 

Orbitrap was set to analyse the survey scans at 60,000 resolution (at m/z 400) in the mass 

range m/z 300 to 2000 and the top twenty multiply charged ions in each duty cycle selected 

for MS/MS in the LTQ linear ion trap. Charge state filtering, where unassigned precursor ions 

were not selected for fragmentation, and dynamic exclusion (repeat count, 1; repeat duration, 

30 s; exclusion list size, 500) were used. Fragmentation conditions in the LTQ were as follows: 

normalized collision energy, 40%; activation q, 0.25; activation time 10 ms; and minimum ion 

selection intensity, 500 counts. 

The raw data files were processed and quantified using Proteome Discoverer software v1.4 

(Thermo Scientific) and searched against the UniProt S. maltophilia strain K279a database 
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(4365 protein entries; UniProt accession UP000008840) using the SEQUEST (Ver. 28 Rev. 

13) algorithm. Peptide precursor mass tolerance was set at 10 ppm, and MS/MS tolerance 

was set at 0.8 Da. Search criteria included carbamidomethylation of cysteine (+57.0214) as a 

fixed modification and oxidation of methionine (+15.9949) as a variable modification. Searches 

were performed with full tryptic digestion and a maximum of 1 missed cleavage was allowed. 

The reverse database search option was enabled, and all peptide data was filtered to satisfy 

false discovery rate (FDR) of 5 %. Protein abundance measurements were calculated from 

peptide peak areas using the Top 3 method (42) and proteins with fewer than three peptides 

identified were excluded. The proteomic analysis was repeated three times for each parent 

and mutant strain, each using a separate batch of cells. Data analysis was as follows: all raw 

protein abundance data were uploaded into Microsoft Excel. Raw data from each sample were 

normalised by division by the average abundance of all 30S and 50S ribosomal protein in that 

sample. A one-tailed, unpaired T-test was used to calculate the significance of any difference 

in normalised protein abundance data in the three sets of data from the parent strains versus 

the three sets of data from the mutant derivative. A p-value of <0.05 was considered 

significant. The fold change in abundance for each protein in the mutant compared to its parent 

was calculated using the averages of normalised protein abundance data for the three 

biological replicates for each strain.  

 

Whole genome sequencing to Identify mutations 

Whole genome resequencing was performed by MicrobesNG (Birmingham, UK) on a HiSeq 

2500 instrument (Illumina, San Diego, CA, USA). Reads were trimmed using Trimmomatic 

(43) and assembled into contigs using SPAdes 3.10.1 (http://cab.spbu.ru/software/spades/). 

Assembled contigs were mapped to S. maltophilia K279a (35) obtained from GenBank 

(accession number NC_010943) by using progressive Mauve alignment software (44).  
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Cloning smlt2644-6 for in trans expression 

In trans expression of Smlt2646* was performed after amplifying the smlt2644-6 operon with 

Phusion High-Fidelity DNA Polymerase (NEB, UK) using K M6 LEVR genomic DNA and 

primers smlt2644 F with an EcoRI site added, underlined, (5′-

AAAGAATTCTTGGAGCCACTGTGGAGATTG-3′) and smlt2646 R with EcoRI (5′-

AAAGAATTCGGTGGGTCGGGGGTAGAGT-3′). The resulting DNA was digested with EcoRI 

and ligated to pBBR1MCS-4 at its EcoRI site (45,46). Recombinant plasmid was then 

transferred into K279a ampRFS by electroporation. K279a ampRFS/pBBR1MCS-4 and K279a 

ampRFS/pBBR1MCS-4::smlt2644-6 were selected using ampicillin (100 µg.mL-1) and the 

presence of plasmids were confirmed by PCR using primers M13F (5′- 

GTAAAACGACGGCCAGT-3′) and M13R (5′-CAGGAAACAGCTATGAC-3′).  

 

Growth curves 

OD600 measurements of bacterial cultures were performed using a Spectrostar Nano 

Microplate Reader (BMG, Germany) in COSTAR Flat Bottom 96-well plates. Overnight 

cultures (in NB) were adjusted to OD600 = 0.01 and 200 µL of the diluted culture were taken to 

the plate together with a blank, NB. The plate was incubated at 37°C with double orbital 

shaking and OD600 was measured every 10 min for 24 h. 

 

Acknowledgments 

This work was funded by grant MR/S004769/1 to M.B.A. from the Antimicrobial Resistance 

Cross Council Initiative supported by the seven United Kingdom research councils and the 

National Institute for Health Research. K.C. received a postgraduate scholarship from 

SENESCYT, Ecuador. Genome sequencing was provided by MicrobesNG 



 

16 
 

(http://www.microbesng.uk/), which is supported by the BBSRC (grant number 

BB/L024209/1). 

 

We declare no conflicts of interest.  



 

17 
 

Figure Legends 

Figure 1. Role of glycosyl transferase Smlt0622 in controlling SmeDEF and SmeYZ 

efflux pump production 

Protein abundance was measured using LC-MS/MS and normalised to the abundance of 

ribosomal proteins in cell extracts obtained from bacteria grown in NB. Data are mean ± 

standard error of the mean, n=3. Protein abundance in all mutants is statistically significantly 

different from the parent strain according to t-test (p<0.05). (A) SmeDEF production in the 

smeT loss-of-function mutant K M7 and the smlt0622 point mutant K M6 versus the parent 

strain K279a (B) SmeDEF production in the smlt0622 insertionally inactivated mutant versus 

K279a control. (C) SmeYZ production in the smlt0622 insertionally inactivated mutant versus 

K279a control. (D) growth curve, in NB, of K279a, the smlt0622 point mutant K M6 and the 

smlt0622 insertionally inactivated mutant; growth based on OD600 was measured and 

presented as mean ± standard error of the mean. 

 

Figure 2. Impact of Smlt2646 sensor kinase activation on SmeYZ efflux production, and 

on Smlt2642/3 and Smlt1651-4 ABC transporter production. 

Protein abundance was measured using LC-MS/MS and normalised to the abundance of 

ribosomal proteins in cell extracts obtained from bacteria grown in NB. Data are mean ± 

standard error of the mean, n=3. Protein abundance in the mutant K M6 LEVR is statistically 

significantly different from the parent strain and from the mutant where smlt2646* was 

disrupted according to t-test (p<0.05). (A) Smlt2642/3 ABC transporter and Smlt2645/6 

response regulator/sensor kinase production in the smlt2546* activator mutant K M6 LEVR, 

and the smlt2646* disrupted derivative versus parent strain K M6 (B) SmeYZ efflux pump 

production in the smlt2546* activator mutant K M6 LEVR, and the smlt2646* disrupted 

derivative versus parent strain K M6 (C) Smlt1651-4 ABC transporter production in the 
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smlt2546* activator mutant K M6 LEVR, and the smlt2646* disrupted derivative versus parent 

strain K M6.  
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Tables 

 

Table 1 Susceptibility testing of S. maltophilia K279a and mutants selected for reduced 

fluoroquinolone susceptibility. 

 

 
Zone Diameter (mm) Across Disc 

(µg in disc) 

 

CAZ 

(30) 

MIN 

(30) 

GEN 

(30) 

CHL 

(30) 

SXT 

(25) 

K279a 32 32 (S) 22 25 27 (S) 

K M6 30 27 (S) 23 23 22 (S) 

K M7 31 27 (S) 21 22 22 (S) 

K M6 LEVR 30 27 (S) 16 22 22 (S) 

 

 

 

Shaded values represent reduced zone diameters (≥5 mm relative to K279a). For Disc 

susceptibility, values reported are the means of three repetitions rounded to the nearest 

integer for the diameter of the growth inhibition zone across each antimicrobial disc (mm). 

Susceptibility (S) is defined using breakpoints set by the CLSI (1). Where no designation is 

given, there is no defined breakpoint. Abbreviations: CAZ, ceftazidime; MIN, minocycline; 

GEN, gentamicin; CHL, chloramphenicol; SXT, sulphamethoxazole/trimethoprim. 
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Table 2 MICs (µg.mL-1) against S. maltophilia K279a and mutant derivatives. 

 Levofloxacin MIC Amikacin MIC 

K279a 2 8 

K279a smeE ≤0.25 8 

K M7 8 8 

K M7 smeE ≤0.25 2 

K M6 4 16 

K M6 smeE ≤0.25 16 

K smlt0622 8 64 

K M6 LEVR 8 >256 

K M6 LEVR smlt2646* 2 8 

K279a ampRFS/pBBR1MCS-4 2 16 

K279a ampRFS/pBBR1MCS-4::smlt2644-6* 4 >256 

K M6 LEVR smlt2643 8 64 

K M6 LEVR smlt1651 4 >256 

K M6 LEVR smeE 0.5 >256 

 

The CLSI susceptible and resistance breakpoints (1) for levofloxacin are ≤2 and ≥8 µg.mL-1. 

There are no breakpoints for amikacin. Values are modes of three repetitions. 
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Table 3: Significant changes in envelope protein abundance seen in S. maltophilia mutant K M6 LEVR compared with K M6, which 1 

reverse upon disruption of sensor kinase gene smlt2646. 2 

Accession Description   
Fold-change 

K M6 LEVR/ 
K M6 

Fold-change 
K M6 LEVR 
smlt2646/ 

K M6 LEVR 

t-test  
p value  

K M6 LEVR/ 
K M6 

t-test  
p value  

K M6 LEVR 
smlt2646/ 

K M6 LEVR 

B2FHD2 
Putative uroporphyrinogen III C-
methyltransferase HemX  

Smlt0166  
>20 <0.05 <0.005 <0.005 

B2FIC9 Putative multidrug resistance protein A  Smlt1529  <0.05 >20 <0.005 <0.005 

B2FIN8 Uncharacterized protein  Smlt4152  >20 <0.05 <0.005 <0.005 

B2FK29 Putative outer membrane efflux protein  Smlt1651  80.41 0.04 <0.005 <0.005 

B2FK30 
Putative ABC transport system, membrane 
protein  

Smlt1652  
>20 <0.05 <0.005 <0.005 

B2FK31 Putative ABC transporter ATP-binding protein  Smlt1653  >20 <0.05 <0.005 <0.005 

B2FK32 Putative HlyD family secretion protein  Smlt1654  >20 <0.05 <0.005 <0.005 

B2FKN6 Putative peptide transport protein  Smlt4335  2.12 0.75 <0.005 <0.005 

B2FKP9 Putative ion channel transmembrane protein  Smlt4350  6.99 0.18 <0.005 <0.005 

B2FKR1 Polyamine aminopropyltransferase  SpeE  >20 <0.05 <0.005 <0.005 

B2FL08 Putative transmembrane anchor protein  Smlt0538  0.54 3.54 0.033 0.016 

B2FLS9 
Putative two component sensor histidine 
kinase transcriptional regulatory protein  

Smlt0596  
<0.05 >20 <0.005 <0.005 

B2FMP2 
Putative undecaprenyl-phosphate 4-deoxy-4-
formamido-l-arabinose transferase  

ArnC  
0.60 2.50 0.046 0.001 

B2FP19 Putative TonB dependent receptor protein  Smlt3449  0.43 4.50 0.020 0.001 

B2FP55 Conserved hypothetical exported protein  Smlt4642  >20 <0.05 <0.005 <0.005 

B2FQ54 Putative secretion protein-HlyD family  SmeY  3.46 <0.05 0.009 <0.005 

B2FQ55 Efflux pump membrane transporter  SmeZ  9.76 0.35 0.000 <0.005 
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B2FQN3 Uncharacterized protein  Smlt0960  0.26 9.27 0.028 0.003 

B2FR08 Putative TonB dependent receptor  Smlt3645  0.53 4.63 0.017 0.002 

B2FRS9 Putative pilus-assembly protein  PilG  0.17 9.82 <0.005 <0.005 

B2FSH5 
Putative PilO protein (Type 4 fimbrial 
biogenesis protein PilO) 

PilO  
0.47 4.81 <0.005 <0.005 

B2FSH6 
Putative PilN protein (Type 4 fimbrial 
biogenesis protein)  

PilN  
<0.05 >20 <0.005 <0.005 

B2FSH7 
Putative PilM protein (Type 4 fimbrial 
biogenesis protein)  

PilM  
<0.05 >20 <0.005 <0.005 

B2FT66 Putative TonB dependent receptor  Smlt3905  0.46 4.28 0.022 0.002 

B2FTJ7 
Macrolide export ATP-binding/permease 
protein MacB  

Smlt2642 
>20 <0.05 <0.005 <0.005 

B2FTJ8 Putative HlyD family secretion protein  Smlt2643  >20 <0.05 <0.005 <0.005 

B2FTK0 
Putative two-component regulatory system 
family, response regulator protein  

Smlt2645  
>20 <0.05 <0.005 <0.005 

B2FTK1 
Putative two-component regulatory system 
family, sensor histidine kinase protein  

Smlt2646  
>20 0.46 <0.005 0.001 

B2FU50 Glucans biosynthesis protein D  OpgD  >20 <0.05 <0.005 <0.005 

B2FUE6 Uncharacterized protein  Smlt1413  >20 <0.05 <0.005 <0.005 

B2FUE8 
Putative diaminobutyrate--2-oxoglutarate 
aminotransferase  

Dat  
>20 <0.05 <0.005 <0.005 

B2FUV3 Putative acriflavin resistance protein A  SmeD  2.45 0.75 0.007 0.026 

 3 

Strains were grown in NB and fold changes in raw abundance are provided, averaged across three biological replicates of parent (K M6) and 4 

mutant (K M6 LEVR) and against parent (K M6 LEVR) and mutant (K M6 LEVR smlt2646). Analysis was as described in Experimental and proteins 5 

listed are those with significantly up- or down-regulated abundance, (p <0.05) in K M6 LEVR versus K M6, whose abundance was then significantly 6 

shifted back in the opposite direction in K M6 LEVR smlt2646 versus K M6 LEVR. Shaded proteins are those discussed in the text.7 
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