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1 | INTRODUCTION

Zoe Nemec Venza |

Cecily Jill Harrison

Abstract

All Evo-Devo studies rely on representative sampling across the tree of interest to
elucidate evolutionary trajectories through time. In land plants, genetic resources
are well established in model species representing lineages including bryophytes
(mosses, liverworts, and hornworts), monilophytes (ferns and allies), and seed
plants (gymnosperms and flowering plants), but few resources are available for
lycophytes (club mosses, spike mosses, and quillworts). Living lycophytes are a
sister group to the euphyllophytes (the fern and seed plant clade), and have re-
tained several ancestral morphological traits despite divergence from a common
ancestor of vascular plants around 420 million years ago. This sister relationship
offers a unique opportunity to study the conservation of traits such as sporophyte
branching, vasculature, and indeterminacy, as well as the convergent evolution of
traits such as leaves and roots which have evolved independently in each vascular
plant lineage. To elucidate the evolution of vascular development and leaf for-
mation, molecular studies using RNA Seq, quantitative reverse transcription
polymerase chain reaction, in situ hybridisation and phylogenetics have revealed
the diversification and expression patterns of KNOX, ARP, HD-ZIP, KANADI, and
WOX gene families in lycophytes. However, the molecular basis of further trait
evolution is not known. Here we describe morphological traits of living lycophytes
and their extinct relatives, consider the molecular underpinnings of trait evolution
and discuss future research required in lycophytes to understand the key evolu-
tionary innovations enabling the growth and development of all vascular plants.
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evolutionary divergence gave rise to today's dominant
vascular plant flora and the bryophyte sister lineage of

Since plants emerged on land around 470 million years
ago (Morris et al., 2018), a series of evolutionary innova-
tions enabled their radiation and occupation of diverse
ecological niches across the globe (Figure 1). An ancient

vascular plants (Puttick et al., 2018). Provascular fossil
intermediaries have vastly different forms from either of
these groups, showing incremental acquisition of spor-
ophyte branching, differentiated vasculature, and
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indeterminate growth from a shoot tip (Cascales-Mifiana,
Steemans, Servais, Lepot, & Gerrienne, 2019; Edwards,
1986; Edwards and Kenrick, 2015; Gensel and Berry, 2001;
Harrison, 2017b; Lang, 1937). These traits contributed to
the rise of vascular plants and set a platform for all sub-
sequent plant radiations (Figure 1a). Now a diminutive
group, lycophytes are the living clade most similar to early
vascular plants of the fossil record, but lycophytes once
comprised a prolific and abundant part of the biosphere,
massively impacting biodiversity, soil production (Kenrick
& Strullu-Derrien, 2014), and CO, sequestration (Beerling
& Berner, 2005; Gensel & Berry, 2001). As such, lyco-
phytes are well placed to elucidate innovations in the
ancestors of vascular plants, and answer evolutionary
questions about the conservation, convergence, and di-
vergence of developmental processes in plant diversifica-
tion. The phylogeny and anatomy of lycophytes is well
characterised (Figure 1b; Gensel & Berry, 2001; Jernstedt,
Cutter, Gifford, & Lu, 1992; Jernstedt & Mansfield, 1985;
Kenrick & Crane, 1997; Lu & Jernstedt, 1996), and there
has been a recent surge of interest in establishing lyco-
phyte genetic models (Table 1). This review aims to pro-
vide a comprehensive overview of developmental and
molecular studies in lycophytes for use as a platform to
future research.

2 | THE DIVERSIFICATION OF
LYCOPHYTES

Modern lycophytes have a widespread distribution and
typically grow as understory herbs, but also grow in
freshwater (e.g. Isoétes lacustris), in ephemeral pools
(e.g. Phylloglossum drummondii) or as epiphytes
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(e.g. Lycopodium phlegmaria; Sporne, 1962). The growth
forms of lycophytes vary dramatically (Figure 2).
Whereas Selaginella forms bifurcating prostrate shoots
(Figure 2a,b), Phylloglossum drummondii has a long
thickened stem from which narrow leaves and elongated
tubers emerge at the base (Figure 2c) and Isoétes forms a
corm with leaves and rooting structures protruding from
a central swollen stem (Figure 2d; Gifford & Foster, 1989;
Sporne, 1962). While many lycophytes are common in
the humid tropics (e.g. Selaginella kraussiana), others are
well known for their ability to survive desert conditions
(e.g. Selaginella lepidophylla, the “Resurrection Plant”;
Pampurova & Van Dijck, 2014; Zentella et al., 1999).
Some species can also tolerate arctic and alpine condi-
tions, particularly in Lycopodium (Sporne, 1962;
Svensson & Callaghan, 1988). Clearly, the lycophyte ra-
diation involved adaptions to a range of environments,
and these enabled lycophytes' persistence among an in-
creasingly dominant angiosperm flora.

The Silurian, Devonian, and Carboniferous eras had
vastly different landscapes from today, including lyco-
phyte forests with trees over 30 m tall (Bateman et al.,
1998; Gensel & Berry, 2001; Thomas & Watson, 1976).
Although some fossils are difficult to place, lycophytes
(Lycophytina) comprise two main lineages, the Zoster-
ophyllopsida and Lycopsida (Figure 1b; Gensel & Berry,
2001). Zosterophylls are extinct, but Lycopsida includes
living lycophytes and their extinct prelycopsid sister
lineages (Figure 1b; Gensel & Berry, 2001; Kenrick &
Crane, 1997). Whereas zosterophylls lack leaves and have
lateral globose to reniform sporangia borne on sporangial
stalks, Lycopsida have shared characteristics such as
leaves with a central vascular strand, vasculature with a
unique arrangement of tissues, sporangial dehiscence

FIGURE 1

Trait evolution in land plants and lycophytes. (a) Current phylogenetic hypotheses of land plant evolution support

bryophytes as a monophyletic sister lineage to tracheophytes (Puttick et al., 2018). Trait innovations likely to have a single origin in the
radiation of land plants include stomata to regulate gas exchange and water loss (1), apical branching in the sporophyte (Edwards et al.,
2014) (2), specialisation of conducting cells of the xylem (tracheids; Cascales-Mifiana et al., 2019) (3), indeterminacy (Coudert et al., 2019)
(4), and enclosure of the embryo in a seed (7). Current fossil evidence supports the sequence of trait evolution shown in the figure (Harrison
& Morris, 2018). Other innovations such as leaves and roots are thought to have evolved independently at least in the lycophyte lineage (5)
and the euphyllophyte lineage (6). Traits highlighted in grey boxes are also represented in part B. (b) Phylogeny showing relationships
between extant (in bold; Euphyllophytes, Lycopodiales, Selaginellales, and Isoétales) and extinct (; Partitatheca, Aglaophyton, Rhynia,
Horneophyton, Zosterophyllopsida, Drepanophycales, Protolepidodendrales, and Lepidodendrales) land plant clades (Cascales-Mifiana et al.,
2019; Gensel & Berry, 2001; Schuettpelz et al., 2016). The last shared common ancestor of vascular plants had branching sporophytes (1;
Boyce, 2008; Edwards & Kenrick, 2015), and fossils show a stepwise acquisition of higher order branching (2; Kenrick & Crane, 1997),
specialised vascular cells (3; Cascales-Mifiana et al., 2019), annular and/or spiral xylem tracheid thickening (4; Cascales-Mifiana et al., 2019),
shoot meristem indeterminacy (5; Harrison, 2017b), sporangia on short lateral branches (6; Gensel & Berry, 2001), vegetative leaves with a
single vascular trace (7; Gifford & Foster, 1989; Gola et al., 2007), and sporangia with a subtending leaf (sporophyll) (8; Sporne, 1962).
Lycopodiales and Protolepidodendrales have/had spores that are all the same size (homospory) and no ligule at the base of the growing leaf.
The Selaginellales, Lepidodendrales and Isoétales on the other hand have/had different size spores on the same plant (heterospory) (9) and a
small ligule growing at the base of the developing leaf (Sporne, 1962). Selaginellales is the only order that has an angle meristem which has
the ability to become a root or a shoot (10; Banks, 2009). Lepidodendrales and Isoétales both have/had rhizomorphs from which branched
rootlets form (11; Hetherington et al., 2016) [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 1 Summary of molecular and genetic experiments performed in lycophytes

Flow Genome Protoplast Gene In situ
cytometry sequence Transcriptome extraction cloning RT-PCR hybridisation

Selaginella moellendorffii 1 1,2 3-10 5,11 10-14 14-16 6, 16, 17
Selaginella kraussiana 1, 18 18 9, 10, 18 19-21 18, 22 20, 21, 23, 24
Selaginella uncinata 25 25
Selaginella lepidophylla 26, 27
Selaginella erthropus 26
Selaginella deticulata 26
Selaginella remotifolia 28 28
Selaginella willdenowii 9
Selaginella selaginoides 9
Selaginella acathonota 9
Selaginella wallacei 9
Selaginella cf. pallescens 9 14 14
Selaginella apoda 9
Selaginella martensii 10
Isoétes echinospora 29
Isoétes drummondii 10, 30
Isoétes engelmanii 1
Isoétes tegetiformans 9
Isoétes yungviensis 31
Isoétes hypsophila 31
Isoétes sinensis 31 31 31
Isoétes orientalis 31
Isoétes taiwanensis 31
Phylloglossum 9, 30

drummondii
Huperzia selago 9, 32 32 32
Huperzia serrata 33
Huperzia myrsinites 9
Huperzia squarrosa 9
Huperzia lucidula 1 9 34
Diphasiatrum digitatum 1 9
Lycopodium annotinum 9 35, 36 35, 36
Lycopodium 9

deuterodensum
Dendrolycopodium 9

obscurum

Lycopediella appressa 9



SPENCER ET AL.

WILEY—"*2

TABLE 1 (Continued)

Genome
sequence

Flow
cytometry

Pseudolycopodiella 9
caroliniana

Transcriptome extraction

In situ
RT-PCR hybridisation

Gene
cloning

Protoplast

Note: Table showing each molecular and genetic experiment performed in different lycophyte species. The majority of studies have been performed in

Selaginella moellendorffii, Selaginella kraussiana, Huperzia selago, and Huperzia lucidula (Wang et al., 2005; Banks et al., 2011; Weng et al., 2005; Zhu et al.,
2017; Mello et al., 2019; Frank et al., 2015; Huang and Schiefelbein, 2015; Ferrari et al., 2020; Leebens-Mack, 2019; James et al., 2017; Yin et al., 2009; Moody
etal., 2012; Zhang et al., 2019; Kwantes et al., 2012; Kirkbride et al., 2013; Aya et al., 2011; Zumajo-Cardona et al., 2019; Ge et al., 2016; Hirakawa and Bowman,
2015; Harrison et al., 2005; Floyd & Bowman, 2006; Ocheretina et al., 2000; Prigge and Clark, 2006; Floyd et al., 2006; Kawai et al., 2010; Hedman et al., 2009;
Zentella et al., 1999; Tanabe et al., 2003; Hetherington et al., 2019; Dixon et al., 2016; Yang et al.,2017; Evkaikina et al., 2017; Luo et al., 2010; Floyd et al., 2014;

Svensson et al., 2000; Svensson and Engstrom, 2002).

and reniform sporangia borne on specialised sporophyll
leaves (Figure 1b; Gensel & Berry, 2001; Kenrick &
Crane, 1997). However, some fossils appear transitional,
lacking some lycopsid features. For example, Asteroxylon
lacked fully vascularised leaves, and both Asteroxylon
and Drepanophycus lacked sporangial leaves. These spe-
cies have therefore been placed in a “prelycopsid” clade
by some authors (Gensel & Berry, 2001).

After diverging from prelycopsids, lycophytes
formed many abundant and species rich lineages. The
Protolepidodendrales were present in the early-mid
Devonian era and had elaborate leaf shapes, sporophylls
that were morphologically similar to vegetative leaves
and sporangia with a dehiscence line along their margin
(Sporne, 1962). Many Protolepidodendrales had similar
growth habits to their modern lycophyte relatives, for
instance, the dichotomously branching creeping shoots
of Leclercqia resemble Lycopodium (Bonamo, Banks, &
Grierson, 1988). However, some species such as
Chamaedendron multisporangiatum and Longostachys
latisporophyllus from the Middle Devonian had tree-like
growth habits with distinct vertical shoots and a cone of
dichotomously branching roots (Cai & Chen, 1996;
Schweitzer & Li, 1996). Lycopsid forests from the early-
Late Devonian have been found at Svalbard, where
larger lycopsid trees display cormose rooting systems
resembling the rooting systems of extant lycophytes
in the Isoétales order (Berry & Marshall, 2015). Perhaps
the most successful group of arborescent lycopsids were
the Lepidodendrales, which grew a tall upright trunk
with a dichotomously branching crown and elaborate
dichotomous rooting systems known as rhizomorphs,
morphologically resembling shoots (Gensel & Berry,
2001; Sporne, 1962). Rhizomorphs had lateral appen-
dages known as stigmarian rootlets, which were ab-
scised during the plant's development leaving helically
arranged circular scars (Taylor, Taylor, & Krings, 2008).
It was recently shown that these stigmarian rootlets
were highly branched and covered in root hairs, much
like the roots of their closest modern relatives, the

Isoétales (Figure 1b; Hetherington, Berry, & Dolan,
2016). By late Devonian and Carboniferous periods, the
Lepidodendrales became dominant, and up to 200 spe-
cies have been recorded (Sporne, 1962). These lyco-
phytes were responsible for massive sequestration of
CO, from the atmosphere, and produced the majority of
coal and oil that fuelled the industrial revolution
(Beerling & Berner, 2005).

Despite their previous abundance and success in
geological history, lycophytes now represent a small
proportion of plant diversity, and it is thought that
glaciation events, prolonged drought, and subsequent
out-competition by tree ferns and conifers contributed to
their demise (Falcon-Lang & Dimichele, 2010). There are
three remaining Lycopodiopsida orders, known as the
Lycopodiales, Isoétales and Selaginellales (Figure 1b;
Schuettpelz et al., 2016). The Selaginellales comprises
1 family, 1 genus, and 700 species, and cretaceous amber
fossils have shown that Selaginella was prolific and spe-
ciose even during the rise of angiosperms (Schmidt et al.,
2020), persisting as the most species diverse lycophyte
genus. Lycopodiales comprises 1 family, 16 genera and
an estimated 388 species, and Isoétales comprises 1 fa-
mily, 1 genus and 250 species (Schuettpelz et al., 2016).
Lycopodiales are commonly known as club mosses and
fir mosses, the Isoétales as quillworts and the Selagi-
nellales as spike mosses (Figure 1b). While the Lycopo-
diales are characterised by equally sized spores
(homospory) and a lack of leaf ligules, the Selaginellales
and Isoétales have different sized spores (they are het-
erosporous) and have a ligule on the adaxial side of
leaves (Figure 1b; Sporne, 1962). Four-sided strobili with
distinct sporangia types and distributions discriminate
Selaginellales from Isoétales, with Iso&tales sporangia
being much larger and more productive (Kenrick &
Crane, 1997; Sporne, 1962). Reminiscent of Lepidoden-
drales, Isoétales are typically cormose or rhizomatous
with small branched rhizoids and have a basal rosette
which widens by secondary growth (Figures 1b and 2d;
Pigg, 2001), whereas Selaginellales only grow from apical
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S. kraussiana S."moellendorffii

FIGURE 2 Morphologies of extant Lycophytes.(a-d) Four species of lycophyte with diverse growth habits. (a) Selaginella kraussiana
(Sk) grows as a bifurcating creeping herb. (b) Selaginella moellendorffii (Sm) is a herb. (c) Phylloglossum drummondii has an elongated
reproductive strobilus (Str) that produces spores, long vegetative leaves (Le), short roots (Ro) and swollen tubers (Tu) that all emerge from
the base of the plant. (d) Isoétes drummondii has a corm (Co) from which elongated leaves (Le) and short rhizoids (Rh) are produced. (e-p)
S. kraussiana and S. moellendorffii development is well characterised. (e) The S. kraussiana shoot bifurcates to give shoots a zig-zag
morphology, with alternating major (Ma) and minor (Mi) branches. (f) S. moellendorffii branches arising from each bifurcation event also
grow unequally. White dotted boxes in (e) and (f) show tissue magnified in (k) and (1). (g-j) SAM of S. kraussiana (g-i) and S. moellendorffii
(4)- (g) SEM image of a bifurcating S. kraussiana SAM surrounded by leaf primordia (LP). (h) SEM image of a S. kraussiana shoot apex
shortly after bifurcation. (i-j) SAM of S. kraussiana (i) and S. moellendorffii (j). Dorsal leaves have been removed from positions marked
with *. (k) In both Selaginella species, leaves are paired and lanceolate, with one large ventral leaf and one smaller dorsal leaf. Leaf pairs in
each species are shown in white dotted ellipses. (1) S. moellendorffii strobilus (Str), which produces sporangia. Dorsal leaves (Le-D) are small
and ventral leaves (Le-V) are larger. (m,n) Angle meristems (AM) before they differentiate into a shoot or rhizophore, emerging at S.
kraussiana (m) and S. moellendorffii (n) branch junctions. (o) Rhizophore (Rh) emerging from the angle meristem of S. kraussiana. (p) After
fertilisation of an egg, and following embryogenesis, a new sporophyte emerges from the megaspore coat (Me). The sporeling has two
embryonic leaves (Le), clear apical basal polarity and a laterally arising root (Ro). Microspores (Mi) are considerably smaller than the
megaspore. (e,f) Scale bars = 10mm. (i-0) Scale bars = Imm. Images in (c) and (d) were kindly provided by Josh Mylne. SAM, shoot apical
meristems [Color figure can be viewed at wileyonlinelibrary.com]

meristems or angle meristems found at branch points
(Figures 1b and 2g-j,m,n; Banks, 2009).

transformed in different vascular plant lineages (trait
divergence), or have similar morphology but multiple
independent origins (trait convergence; Figure 1;
Harrison & Morris, 2018). All modern vascular plants

3 | TRAIT EVOLUTION have retained an ancestral ability to branch (Figure 1a),
but branching patterns have diverged during evolution to
3.1 | A single origin for branching give plants a range of architectures (Figure 2a-f;

Chomicki, Coiro, & Renner, 2017; Hallé, 1986). While

Vascular plants last shared a common ancestor in the
Silurian era and have a suite of shared traits that are
likely to be ancestral, but other traits have been lost or

angiosperms produce lateral foliar primordia with ax-
illary buds and branches from the main shoot apical
meristem (SAM; Domagalska and Leyser, 2011; Q. Wang,
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Kohlen, Rossmann, Vernoux, & Theres, 2014), the an-
cestral pattern of branching in vascular plants involves
splitting the shoot tip to generate two new branches
(Figure 2g-j). This process is known as bifurcation or
dichotomy (Harrison, 2017a; Harrison and Morris, 2018),
and dichotomising shoot systems have diversified into a
variety of forms in lycophytes. For instance, some zos-
terophylls such as Gosslingia have planar pseudomono-
podial growth (Edwards, 1970; Sporne, 1962). Although
the molecular regulators of bifurcation are unknown, the
cellular dynamics of bifurcation are well characterised in
Selaginella kraussiana and Huperzia lucidula, where the
apical cells amplify and are then partitioned to initiate
growth of the new branches (Gola & Jernstedt, 2011;
Harrison & Langdale, 2010; Harrison, Rezvani, &
Langdale, 2007). Daughter branches arising from a bi-
furcation event can either be the same size and set to the
converse angle to the parent branch (isotomous branch-
ing), or unequal sizes and/or angles (anisotomous
branching). Selaginellales can show weak anisotomy
with alternating dominant branches producing a zig-
zagging architecture (S. kraussiana, Figure 2e; Harrison
et al., 2007; Jernstedt et al., 1992), or can have strong
anisotomy, for instance producing a frond-like structure
(S. moellendorffii, Figure 2f; Banks, 2009). Branches can
also be angled differently in 3D space, to produce pros-
trate or more scrambling shoots. Unlike the Selaginella-
ceae, Isoétes forms branches from the central stem organ
and has a fan-type structure (Figure 2d; Sporne, 1962).
Lycopodiales on the other hand have very diverse
branching patterns, from erect stems with leaves and
roots branching laterally from the base (Phylloglossum
drummondii; Figure 2c), to dominant horizontal growth
axes with minor vertical side branches (Lycopodium
cernuum; Sporne, 1962). Lycophytes thus include a range
of models suitable for identifying ancestral mechanisms
of branching and reveal mechanisms involved in trait
divergence.

3.2 | A single origin for vascular
transport

Following the evolution of branching, tracheophytes
evolved xylem tracheids for water transport (Figures 1
and 3), allowing them to grow taller and probably im-
prove spore spread (Niklas & Kerchner, 1984). While
xylem is a defining feature of vascular plants, xylem cell
size and shape has diversified throughout the tracheo-
phyte lineage (Figure 3). Tracheary elements of the xy-
lem die to form long and hollow strands to improve
water flow and are also thickened with lignin for wa-
terproofing and structural support (Gifford & Foster,

1989). In contrast to vascular plants, bryophytes have
large water-conducting cells (WCCs; Figure 3), which
can either be perforate or imperforate (hydroids), but
lack a lignified cell wall (Ligrone, Duckett, & Renzaglia,
2000). Intermediate vascular structures are found in the
fossil record, supporting the stepwise evolution of com-
plex vasculature. For instance, Rhynia tracheids are only
partially thickened, while Horneophyton lignieri tracheids
have annular to helical cell wall thickening commonly
found in living vascular plants (Figure 3; Cascales-
Mifiana et al., 2019). Thickenings such as these may have
been important for maintaining turgor pressure and in-
creasing plant height, and lycophyte size correlates with
increasing vascular complexity in the fossil record. This
correlation has been used to model and predict fossil
plant heights (Bateman et al., 1998), and the arborescent
growth habit of 40-m tall Lepidodendrids would have
required elaborate vascular systems to provide water to
the canopy (Pittermann, 2010).

3.3 | Diversification of vascular tissue
arrangements

In living vascular plants, the procambium produces small
protoxylem cells and then larger metaxylem cells to form
the primary xylem. There are converse patterns of xylem
development in lycophytes and euphyllophytes.
While lycophyte root protoxylem develops internally re-
lative to the metaxylem (endarch) and shoot protoxylem
develops externally relative to the metaxylem (exarch),
euphyllophyte roots are exarch and shoots are endarch to
mesarch (protoxylem is surrounded on both sides by
metaxylem; Kenrick & Crane, 1997). Euphyllophytes
evolved secondary xylem incorporating elongated cells
with perforated plates known as vessel elements, which
generate wood (Figure 3). Secondary xylem also evolved
independently in Lepidodendron, conferring the me-
chanical and conductive properties to support arbores-
cence (Pittermann, 2010). However, an inwards unifacial
cambium prevented trunk thickening, possibly limiting
height and driving the extinction of Lepidodendron in
drier climates (Pittermann, 2010). In extinct and extant
tracheophytes, the arrangement of the xylem tissue
within the stem can be diverse. Lycophytes are typically
protostelic (Gola, Jernstedt, & Zagorska-Marek, 2007),
having a core of xylem surrounded by phloem and an
endodermis, and tissues can be arranged in a lobed
central xylem pole (actinostele), numerous xylem poles
(plectostele) or a combination of these arrangements
(actino-plectostelic, e.g. Lycopodium clavatum and Lyco-
podium annotinum; Figure 3; Gola et al., 2007). However,
the vascular tissue arrangements of some lycophytes
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FIGURE 3 Vascular cell and tissue types in land plants. Xylem conformations and phylogeny illustrating the distribution of vascular
traits among extinct and extant land plants. Bryophytes do not have xylem but have WCCs known as hydroids, while tracheophytes have

Xylem Tracheids

xylem tracheids involved in water transport. Fossils such as Rhynia have rudimentary xylem tracheids, while Horneophyton and extant
Lycophyte tracheids have elaborate secondary thickening with lignin. Some euphyllophytes have specialised cells called vessel elements
with perforations in the primary cell wall. These are arranged into multiple vascular bundles in spermatophytes. (*) Vessel elements evolved
multiple times, including in Selaginella, in the Pteris fern genus, in Gnetophytes and within angiosperms (Gifford and Foster, 1989). In the
diagrams above the phylogeny, the xylem strand (pale grey) is surrounded by phloem (blue) within the stem (green). The xylem strand can
be cylindrical (haplostelic, as seen in Horneophyton fossils) or lobed (actinostelic, as seen in many club mosses). Alternatively, lycophyte
xylem can form many strands within the phloem (plectostelic) or a combination of lobed and multiple strands (actino-plectostelic).
Monilophytes have siphonostelic vasculature, in which the xylem has an internal core of parenchyma cells. Monilophytes can have a
solenostele, in which only one leaf attachment to the vasculature is evident in a transverse section, or a dictyostele, in which there is
evidence of several leaf attachments in a transverse section. Seed plants have a more elaborate eustele, which contains many vascular
bundles. WCC, water conducting cells [Color figure can be viewed at wileyonlinelibrary.com]

such as Selaginella can be difficult to characterise, as
many species can have two or more protosteles (referred
to as meristeles), which change their arrangement as the
stem develops (Gola & Jernstedt, 2016). In contrast,
monilophytes are siphonostelic, having a par-
enchymatous pith inside the xylem core. Ferns differ
from seed plants as the stele has interruptions in the
main vascular cylinder at points of leaf insertion known
as leaf gaps (solenostelic or dictyostelic), while seed
plants can have many vascular bundles around the pith
(eustelic; Figure 3; Gifford and Foster, 1989). Clearly,
vasculature is common to all tracheophytes but cell type
and vascular architectures are highly diverse (Gola &

Jernstedt, 2016; Matsunaga, Cullen, & Tomescu, 2017).
Such differences should be taken into account in select-
ing models for vascular evolution and development.

3.4 | The origin of indeterminacy and
diversification of shoot apical meristems

A third putative synapomorphy of vascular plants is the
capacity to grow and continuously produce new organs
and tissues from the shoot apex, a trait known as in-
determinacy (Figure 1; Harrison, 2017b). Fossil vascular
plants from the late Silurian to early Devonian have
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dichotomously branching sporophytes with each branch
terminating in sporangia, suggesting that indeterminate
shoot growth evolved after vasculature and involved the
displacement of terminal sporangia onto short lateral
branches (Figure 1b; Boyce, 2008; Edwards, 1986;
Edwards, Morris, Richardson, & Kenrick, 2014; Edwards,
Richardson, Axe, & Davies, 2012; Harrison, 2017b; Lang,
1937). The production of similar forms in moss mutants
(T. A. Bennett et al., 2014; Ortiz-Ramirez et al., 2016)
suggests that the earliest vascular plants may have had
similar meristematic activities to moss sporophytes,
comprising an apical cell and an intercalary proliferative
zone subtending sporangia (Coudert, Novédk, & Harrison,
2019; Puttick et al., 2018). Early vascular plants could
have grown upwards by displacement from a pro-
liferative intercalary zone, rather than by downwards
displacement from the shoot apical cells as in eu-
phyllophytes (Coudert et al.,, 2019; McKim, 2019).
While there is no evidence of apical organisations in
coalified fossils, silicified shoot apices of the early ly-
copsid, Asteroxylon mackiei, have been preserved
(Kidston & Lang, 1917). These show the primordia of
leaf-like appendages emerging (Kerp, Wellman, Krings,
Kearney, & Hass, 2013), but cannot be used to determine
the number of meristematic cells. It is also not possible to
infer ancestral apical organisations among lycophytes
because living lycophytes have diverse apical organisa-
tions comprising a single initial cell or a multicellular
meristem. Early anatomical studies in Selaginella re-
ported meristems with one or two initial cells, each with
two, three, or four cutting faces (Barclay, 1931; Dengler,
1983; Hagemann, 1980; Imaichi & Kato, 1989; Williams,
1931). A more recent clonal sector analysis in
S. kraussiana showed that two transiently acting apical
initials generate the major axis of the shoot (Harrison &
Langdale, 2010; Harrison et al., 2007; Jones & Drinnan,
2009). In contrast to Selaginellaceae, Lycopodiales, and
Isoétes meristems are multicellular (Philipson, 1990). In a
study of the Huperzia lucidula meristem surface, the
shape of cell packets has been interpreted as the result of
four active initials that can be replaced during growth
(Gola & Jernstedt, 2011). These meristem types are also
distinct in terms of plasmodesmatal networks: Selagi-
nellaceae have a high plasmodesmatal density like ferns,
while Lycopodiaceae and Isoé&taceae have lower plas-
modesmatal densities, comparable with multicellular
seed plant meristems (Imaichi & Hiratsuka, 2007). Al-
though developmental changes involved in the origin of
indeterminacy  remain  obscure, the variation
among modern lycophytes and distinction between ly-
cophyte and single stem-celled monilophyte meristems
suggest that multicellular shoot meristems evolved by
convergence in lycophyte and euphyllophyte lineages
(Harrison, 2017b).

3.5 | Multiple origins of leaves

Similarly to meristems, lycophyte leaves had a separate
evolutionary origin from euphyllophyte leaves
(Figure 1a), and the latter were gained independently in
several lineages (Tomescu, 2009). Generally, extant ly-
cophyte leaves have a single vascular trace running along
the centre of the blade and the vascular strand connects
directly to the protoxylem poles in the stem (Gola et al.,
2007). In contrast, euphyllophyte leaves have branched
venation whose development is controlled by auxin flow,
and there are leaf gaps in the main xylem where the leaf
attaches to the stem (Berleth, Mattsson, & Hardtke,
2000). Lycophyte leaf phyllotaxy is species-specific, and
can vary from spiral to whorled to opposite, arising in-
dependently of xylem patterns in the stem (Gola et al.,
2007; Webster, 1992). According to the enation theory,
lycophyte leaves arose by progressive elaboration of epi-
dermal outgrowths, into which vascular strands later
entered (Bower, 1935). Consistent with this notion, fos-
sils such as Asteroxylon have only partially vascularised
leaves (Kidston & Lang, 1920), and leaves in the living
lycophyte S. kraussiana arise from two adjacent epi-
dermal cells growing to form opposite pairs with a small
dorsal and larger ventral leaf per pair (Figure 2k;
Harrison et al.,, 2007). During juvenile development,
S. kraussiana leaves are spirally arranged, and leaf de-
velopment is plastic, responding to hormonal cues
(Sanders & Langdale, 2013). In adult plants, the number
of leaves per internode is consistent, with major branches
having eight pairs per internode and minor branches
having six pairs, and a further pair develops at each
branch point (Harrison et al., 2005). Strobili have oppo-
site and decussate leaf pairs as in S. moellendorffii
(Figure 21). While S. kraussiana and S. moellendorffii
leaves are lanceolate (Figure 2k-1), other lycophytes have
distinctive leaf shapes, such as the needle-like structures
of Isoétes (Figure 2d; Sporne, 1962).

3.6 | Origins and diversification of roots
Devonian fossils suggest that roots also evolved
independently in lycophytes and euphyllophytes
(Figure 1a), and all extant lycophyte roots branch iso-
tomously, and have root hairs and a root cap
(Hetherington & Dolan, 2017). Despite high conservation
of morphology, lycophyte roots develop from varied
structures and cell types, such as basal meristem cells in
Isoétes, the internal cell layers of Selaginella rhizophores,
and superficial cells of tubers in some Lycopodium and
Phylloglossum species (Hetherington & Dolan, 2017). The
early Devonian lycophyte Asteroxylon mackiei had roots
that lacked root hairs, an endodermis and a root cap, but
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instead had an intact epidermis that covered the root
apex (Hetherington & Dolan, 2018). This suggests that
endodermis and root caps also evolved independently in
lycophytes and euphyllophytes, perhaps reflecting mul-
tiple geological transitions to a more soil-like substrate as
land plants became dominant and changed the soil geo-
chemistry (Hetherington & Dolan, 2018). As in lycophyte
shoots, roots have diverse meristem organisations
(Fujinami et al., 2017). Root meristems in the Selagi-
nellaceae have an apical cell with multiple cutting faces,
similar to the single pyramidal apical cell of monilophyte
roots. In contrast, the Isoétaceae and Lycopodiaceae have
multicellular root meristems of three main types. Type I
meristems in Lycopodium have a non-layered group of
initial cells with low mitotic activity, much like the
Quiescent Centre (QC) of seed plants. Lycopodiella and
Huperzia instead have Type II meristems characterised
by layers of epidermal initial cells. The initials produce
an epidermal covering similar to A. mackiei fossils, but
separating the root proper from the external root cap
(Fujinami et al., 2017; Hetherington & Dolan, 2018). Fi-
nally, Type III root meristems have a layer of initial cells
which form both the epidermis and the root cap, as seen
in Isoétaceae (Fujinami et al., 2017). Further studies are
needed to determine how these diverse root meristem
structures evolved in lycophytes.

3.7 | Origin of a unique lycophyte organ,
the rhizophore

While shoots and roots have evolved as similar solutions
to plants’ sessile habit and resource requirements in di-
verse lineages, at branch junctions Selaginella spp. have a
unique organ known as the rhizophore (Figures 1b and
2m-0). Rhizophores are similar to roots in lacking
chlorophyll and stomata and having gravitropic devel-
opment, but are also similar to shoots in lacking root
hairs and root caps, so their identity has been debated
(Jernstedt & Mansfield, 1985; Jernstedt et al., 1992;
Kawai, Tanabe, Soma, & Ito, 2010; Mello, Efroni, Rahni,
& Birnbaum, 2019; Webster, 1992; Wochok &
Sussex, 1974, 1976). Rhizophores develop from angle
meristems (Figure 2m-n), which are typically positioned
on both the dorsal and ventral sides of each branch point
in Selaginella (Banks, 2009). The number of angle mer-
istems at each branch point varies between species, and
the identity of angle meristems shows plasticity, some-
times attaining shoot fate over rhizophore fate. In
S. moellendorffii the dorsal angle meristem most often
produces a shoot, while the ventral angle meristem most
often becomes a rhizophore (Mello et al., 2019). In con-
trast, S. kraussiana has a single dorsal angle meristem

that typically forms a rhizophore (Otreba & Gola, 2011).
Rhizophores are often referred to as “root bearing or-
gans” as they produce roots once near or in contact with
the soil, in contrast to the roots that are constitutively
formed from the developing sporeling (Figure 2p; Banks,
2009). Since rhizophores produce the only roots in the
adult plant, they are critical for anchorage and acquiring
water.

Angle meristem plasticity may be regulated by long
range auxin transport (Mello et al., 2019; Williams, 1937;
Wochok & Sussex, 1975), but as yet no mechanism has
been identified. A recent study investigating the vascu-
larisation of the rhizophore in nine species found three
main patterns (Matsunaga et al., 2017). The vasculature
can diverge from the centre of the stele bifurcation, or
from the stele of the main stem close to the stele bi-
furcation point, or from the stele of the side branch, in
what is often known as K- or H-branching. Interestingly,
in all cases vascular strands arch backwards from the
direction of the main vascular strands, perhaps reflecting
redirection of auxin from basipetal transport in the stem
to acropetal transport in the growing rhizophore
(Matsunaga et al., 2017). However, the location and di-
rection of auxin transport in vascular development are
yet to be established in rhizophores or bifurcating shoots.
The Selaginella rhizophore could be a useful model to
study how whole organ identity is determined.

3.8 | Ancient divergence in
reproductive strategies

Changes in plants’ reproductive strategy to reduce re-
liance on water for life cycle completion were also im-
portant in land plant diversification, and distinct patterns
of life cycle progression typify plant groups. Phylogenetic
mapping of extant spore characteristics suggests that the
last common ancestor of land plants had a single type of
spore (homospory), but the evolution of specialised
spores of different sizes (heterospory) has been a re-
peating trend in plant evolution. Among extinct and
living lycophytes, the Lycopodiales and Proto-
lepidodendrales are homosporous and the Selaginellales,
Lepidodrendrales, and Iso&tales are heterosporous with
large female megaspores and small male microspores
(Figures 1b and 2p; Sporne, 1962). This suggests that
heterospory evolved in the lycophyte lineage after the
divergence of the Protolepidodendrales. All lycophyte
spores are produced in sporangia which arise from re-
productive leaves (sporophylls) in Isoétes or on specia-
lised reproductive shoots known as strobili in Selaginella
and some Lycopodium spp. (Figure 21; Gifford & Foster,
1989). A study in Selaginella found that species have
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diverse locations on the strobilus of large megasporangia
and small microsporangia. The megasporangia can either
be basally located, distributed along two sides of the
strobilus, or the whole strobilus can have mega- or
micro-sporangia (Horner & Arnott, 1963). After release
from sporangia, the spores germinate to form mega-
(female) and micro- (male) gametophytes which are
largely contained within the spore wall (endospory).
These gametophytes develop archegonia and antheridia
respectively, and then eggs and sperm. After fertilisation
and embryogenesis, the sporophyte emerges from the
megaspore coat (Figure 2p), a characteristic shared with
seed plants but not homosporous ferns or bryophytes
(Linkies, Graeber, Knight, & Leubner-Metzger, 2010). In
common with other vascular plants, but in contrast to
bryophytes, the gametophyte life cycle stage of living
lycophytes is transient and the sporophyte stage is
dominant and free living. However, Aglaophyton, Rhynia
and Horneophyton fossils from the Rhynie chert have life
cycles that are distinct from both bryophytes and vas-
cular plants with free-living sporophytes and gameto-
phytes, so the ancestral pattern of life cycle progression
in land plants is ambiguous (Taylor, Kerp, & Hass, 2005).
Nevertheless, lycophyte models will help to elucidate the
molecular evolution of traits such as heterospory, spor-
ophyte dominance, and endospory in vascular plants.

4 | GENOMIC AND GENETIC
RESOURCES FOR LYCOPHYTES
41 | Genomics and transcriptomics

The phylogenetic position and ancient evolutionary di-
vergence of the lycophyte lineage offer exciting opportu-
nities to identify the genetic basis of conservatism,
convergence and diversification in trait evolution. Due to
the advent of low-cost and high-quality sequencing
methods, genomic resources for lycophytes have expanded
significantly in the last ten years, lowering the feasibility
threshold for reverse genetic approaches. The first lyco-
phyte sequence datasets were a BAC gDNA library and an
EST library from S. moellendorffii (W. Wang et al., 2005;
Weng, Tanurdzic, & Chapple, 2005). This species was se-
lected on the basis of C values showing that, at 88-127
Mbp/1C, S. moellendorffii has the smallest genome
among Huperzia lucidula (5585 Mbp/1C), Diphaiastrum
digita (2670 Mbp/1C), Isoétes engelmanii (1710 Mbp/1C),
and S. kraussiana (211-240 Mbp/1C; Table 1; W. Wang
et al., 2005). An annotated S. moellendorffii genome was
published by Banks et al., (2011), and there are RNASeq
and DNASeq datasets from S. kraussiana (Table 1;
Ge et al., 2016). Several lycophyte transcriptomes such
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Selaginella martensii and Isoétes echinospora have recently
been published (Hetherington, Emms, Kelly, & Dolan,
2019; James et al., 2017; Leebens-Mack, 2019) and lyco-
phyte transcriptomes from Isoétes drummondii and Phyl-
loglossum drummondii are also available on request
(Table 1; Dixon, Harrison, Hetherington, Mylne, & Zhang,
2016). Such genomic and transcriptomic data are im-
portant for analyses of gene copy number and the iden-
tification of developmental gene orthologs and will
facilitate future evo-devo studies by providing templates
for primer design. Evolutionary changes in genome ar-
chitecture have also been investigated. It was shown that
more recent Long Terminal Repeat Retrotransposons
(LTR-RT) insertion events in lycophytes correlated with
smaller genome sizes, typically found in heterosporous
species (Baniaga & Barker, 2019). Future studies will re-
veal how genome expansion and contraction contributed
to important developmental innovations.

4.2 | Gene expression analyses

Many developmental genes have been isolated from ly-
cophytes, and reverse transcription polymerase chain
reaction (RT-PCR), quantitative RT-PCR (qRT-PCR),
transcriptomic and in situ hybridisation analyses have
been used to infer gene expression patterns (Table 1). For
example, Frank et al. (2015) isolated apical cells, the core
meristem region and leaf primordia from S. moellen-
dorffii by laser microdissection and performed RNASeq
on each tissue type to study differential gene expression
across the shoot apex. Similarly, Mello et al. (2019)
compared the transcriptomes of roots, stems, leaves, and
rhizophores in S. moellendorffii to investigate rhizophore
identity, and similar sampling was used in S. kraussiana
to study WOX evolution in land plants (Ge et al., 2016).
Huperzia selago shoot tips were used in an RNASeq ex-
periment to investigate leaf evolution (Evkaikina et al.,
2017). More recently, a gene expression atlas for
S. moellendorffii has been produced and made available
on the eFP Browser and CoNekT-Plants databases, gen-
erating a useful resource for in silico expression analyses
(Ferrari et al., 2020). Using different developmental
stages, time points, and heat stress conditions, the latter
paper also demonstrates that coexpression data of genes
present in the same tissues could be used to predict
functional gene modules, such as lignocellulose bio-
synthesis in the cell wall which is conserved across vas-
cular plants (Ferrari et al., 2020). Protocols for tissue
scale resolution of gene expression patterns (e.g. RNA in
situ hybridisation) are available for S. kraussiana,
S. uncinata, and S. moellendorffii, and have been used to
indicate the functions of a range of developmental gene
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FIGURE 4 Schematics summarising the expression patterns of key developmental genes in Lycophytes. (a) SmPINS, SmHomeobox,
SmMADs-box, SmMWOX, SmMARG, SmHDZIPI, SmLTP, and SmMYOSIN genes are expressed in the Selaginella moellendorffii shoot tip (Frank
et al., 2015). (b) SKKNOX1 and SKKNOX2 in Selaginella kraussiana show distinct expression patterns in the shoot apex. SKKNOX1 is
expressed in a band underneath the apical cells and in the developing vascular strands, while SKKNOX2 is expressed in the internodes.
SkARPI expression is diffuse in the whole meristematic region, but is stronger in leaf primordia and leaf vascular traces (Harrison et al.,
2005). (c) SkC3HDZ]1 is expressed in the Selaginella kraussiana shoot tip in provascular strands and in the adaxial side of leaf primordia.
SkH3HDZ2 signal is present immediately underneath the apical cells and in the developing provascular strands (Floyd and Bowman, 2006;
Floyd et al., 2006; Prigge & Clark, 2006). (d) SmKANI and SmKAN?2 expression was detected in Selaginella moellendorffii developing
vasculature, leaf primordia and in the apical dome, with the exception of the apical cells. SmKAN3 was expressed only faintly in the outer
layer of the shoot tip (Zumajo-Cardona et al., 2019). (¢) SuKNOX1 expression in the Selaginella uncinata shoot apex and rhizophore apex.
Expression was absent in root meristems (Kawai et al., 2010) [Color figure can be viewed at wileyonlinelibrary.com]

families such as KNOX, ARP, HD-ZIPIII, PIN, WOX, and 4.3 | Genetics

KANADI (Figure 4; Floyd & Bowman, 2006; Floyd,

Zalewski, & Bowman, 2006; Frank et al., 2015; Harrison
et al., 2005; Kawai et al., 2010; Prigge & Clark, 2006;
Zumajo-Cardona, Vasco, & Ambrose, 2019). In using a
combination of phylogenomic and transcriptomic ap-
proaches and expression localisation tools, great ad-
vances in understanding the evolution of plant
developmental gene families have been made.

Methods to interrogate gene functions currently remain
limiting in lycophytes, but an in vitro method for cross-
ing S. kraussiana was published in 1979, involving in-
duction of sporogenesis, megaspore culture and sperm
released from microgametophytes (Webster, 1979). This
method was used to establish the dominance of the
S. kraussiana aurea mutation (Harrison et al., 2007;
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Webster & Tanno, 1980), which confers a golden-green
colour in heterozygotes. The recent advent of new
methods for transformation in ferns (Muthukumar,
Joyce, Elless, & Stewart, 2013; Plackett, Huang, Sanders,
& Langdale, 2014), and development of DNA-based and
DNA-free nucleoprotein genome editing methods
(Ferenczi, Pyott, Xipnitou, Molnar, & Merchant, 2017;
Kim et al.,, 2017; Mallett, Chang, Cheng, & Bezanilla,
2019) bring great promise for future genetic analyses in
lycophytes.

5 | ANALYSES OF GENE
FUNCTIONS IN TRAIT
EVOLUTION

5.1 | Roles of auxin and PINs in
development, including branching and
vascular formation

The phytohormone auxin integrates many signalling
pathways to mediate Arabidopsis development (Biedron
& Banasiak, 2018; Xiong & Jiao, 2019). Importantly,
auxin is able to pass freely into cells, but it is then
acidified and therefore unable to pass out of the cell
(Rubery & Sheldrake, 1974). PIN FORMED (PIN)
membrane proteins transport auxin out across the plas-
ma membrane and can be positioned to create a local
Polar Auxin Transport (PAT) stream through a tissue
(Gélweiler et al., 1998). In a moss sister lineage to vas-
cular plants, disruption of polar auxin transport and PIN
function causes developmental changes that make spor-
ophytes branch and look similar to protracheophyte
fossils, potentially implicating PINs in the origin of vas-
cular plant branching architectures (T. A. Bennett et al.,
2014). The PIN gene family diversified independently in
lycophyte and euphyllophyte lineages (T. Bennett et al.,
2014). There are six homologs in S. moellendorffii, PINR-
PINU and PINUS3 (T. A. Bennett et al., 2014), but while
PINS is expressed at the shoot apex (Figure 4a; Frank
et al., 2015), the functions of Selaginella PINs are un-
known. All lycophyte PINs have a central intracellular
loop domain typical of the canonical euphyllophyte PINs,
which are localised to the plasma membrane, unlike
noncanonical PINs which can be ER-localised (T. A.
Bennett et al., 2014). A GFP-tagged SmPINR expressed
under the AtPIN2 promoter in Arabidopsis localised to
the plasma membrane but not the base of cells, con-
sistent with the notion that lycophyte PINs are canonical,
and providing indirect evidence that PINR may not be
polarly localised in the same way as Arabidopsis cano-
nical PINs (Y. Zhang, Xiao, Wang, Zhang, & Friml, 2019).
Expression of the DR5:GFP auxin response reporter
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(Ulmasov, Murfett, Hagen, & Guilfoyle, 1997) in
S. moellendorffii protoplasts supports functional con-
servation of auxin signalling pathways in lycophytes
(Mello et al., 2019). Auxin and its transport regulate
many aspects of Selaginella development, including root
branching, vascular formation in leaves, shoot in-
determinacy, initial cell function, phyllotaxy, leaf devel-
opment, and rhizophore identity and outgrowth (Fang,
Motte, Parizot, & Beeckman, 2019; Mello et al., 2019;
Sanders & Langdale, 2013). However, unlike Arabidopsis,
exogenously applied auxin does not directly affect
root branching (Fang et al.,, 2019). Since auxin and
PIN-mediated auxin transport are important regulators of
many aspects of development in all land plants so far
assayed (Harrison, 2017a), future analyses of PIN func-
tion in lycophytes are likely to give insights into the
evolution of plant architecture.

5.2 | Gene regulatory networks for
vascular development and meristem
identity

The CLAVATA pathway is a further key regulator of
Arabidopsis development, comprising small diffusible
CLE peptides in TDIF and CLV3 classes, their receptors
and downstream targets such as WUSCHEL (Fletcher,
2018). In the Arabidopsis vascular cambium the WUS-
like proteins WOX4 and WOX14 promote proliferation to
regulate the girth of the shoot, and TDIF CLEs act
through the PXY receptor-like kinase to promote WOX
expression (Etchells, Provost, Mishr, & Turner, 2013;
Etchells & Turner, 2010; Hirakawa, Kondo, & Fukuda,
2010). Selaginella moellendorffii has four TDIF-encoding
genes (Whitewoods et al., 2018), and in another study a
SkCLE-TDIF peptide was exogenously applied to the
developing vasculature of A. thaliana and S. kraussiana
to test conservation of TDIF functions in vascular de-
velopment. This inhibited vascular development in
A. thaliana, but not S. kraussiana, implying that roles for
TDIF peptides might not be conserved (Hirakawa &
Bowman, 2015).

In Arabidopsis shoot apical meristems, the WUSCHEL
transcription factor promotes meristem identity, and
CLV3 peptides repress meristem identity acting through
one or more Leucine Rich Repeat-Receptor Like Kinase
(LRR-RLK) receptors of CLV1, CLV2, CRN, or RPK2
receptor classes (Clark, Running, & Meyerowitz, 1995;
Ito & Fukuda, 2006; Jeong, Trotochaud, & Clark, 1999;
Kondo et al., 2006; Laux, Mayer, Berger, & Jiirgens,
1996; Miiller, Bleckmann, & Simon, 2008; Ogawa,
Shinohara, Sakagami, & Matsubayash, 2008; Somssich,
Je, Simon, & Jackson, 2016). Selaginella moellendorffii
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has eleven CLV3-encoding genes, three CLV1-like re-
ceptors and one RPK2-like receptor (Whitewoods et al.,
2018), however the roles of these genes and receptors in
lycophytes are unknown. With respect to WOX genes, S.
moellendorffii has four genes and S. kraussiana has eight
genes (Ge et al., 2016; Segatto, Thompson, & Freitas,
2016). A recent phylogeny segregates WOX genes into
TIWOX, T2WOX, and T3WOX clades (Wu, Li, &
Kramer, 2019). The TIWOX clade comprises sequences
from all major land plant lineages and their charophyte
sister lineages. T2 and T3 WOXs, respectively, comprise
seed plant and vascular plant sequences, and lycophyte
sequences are sister to the T3 and T2 + T3WOX clades.
In situ analyses in S. moellendorffii showed that an
SmWOX gene is expressed in meristematic tissue and
developing leaves (Figure 4a; Frank et al.,, 2015) and
RNASeq analyses in S. kraussiana have shown that four
WOX genes are expressed throughout the plant, one is
expressed at the rhizophore tip and three genes showed
undetectable expression. A homolog of WOX5, which is
root-specific in Arabidopsis, showed ubiquitous expres-
sion (Ge et al., 2016), suggesting that lycophyte WOX
genes may not function in rooting, and that root-specific
WOX functions evolved in euphyllophytes (Liu & Xu,
2018). In conjunction with data from a moss suggesting
that CLAVATA and T1IWOXs affect unrelated develop-
mental processes (Sakakibara et al., 2014; Whitewoods
et al., 2018), these data point to lineage specific roles for
TDIF peptides, their receptors and WOXs, shaping an
interesting case study of gene regulatory network
evolution.

5.3 | KNOX genes have conserved roles
in promoting meristem indeterminacy

In common with PINs and CLV3, KNOX transcription
factors are likely conserved regulators of indeterminacy
in the last common ancestor of vascular plants. This in-
ference comes from outgroup comparison of moss KNOX
functions to vascular plant KNOX functions. In Arabi-
dopsis, Class I KNOX genes are expressed throughout the
proliferative region of shoot tips except in leaf primordia
(Long, Moan, Medford, & Barton, 1996), and KNOX
proteins activate cytokinin biosynthesis to promote pro-
liferation (Hay & Tsiantis, 2010; Jasinski et al., 2005;
Yanai et al.,, 2005). Class I KNOX proteins similarly
promote proliferation by activating cytokinin biosynth-
esis in an intercalary proliferative zone of developing
moss sporophytes, leading to the hypothesis that in-
determinacy arose following sporangium displacement
from the shoot tips, and consequent juxtaposition of in-
itial cells and a subtending proliferative region in the last

common ancestor of vascular plants (Coudert et al., 2019;
Harrison & Morris, 2018). Among lycophytes, S. kraussiana
has two Class I KNOX genes. SkKKNOX1 is most strongly
expressed in the proliferative region underneath the apical
cells and SKKNOX2 is expressed in internodes (Figure 4b;
Harrison et al., 2005). Coupled with in situ hybridisation
and immunolocalisation analyses in a range of ferns
showing KNOX expression in proliferative meristematic
regions (Ambrose and Vasco, 2016; Bharathan et al., 2002;
Harrison et al., 2005; Sano et al., 2005), these data suggest
that KNOX function in promoting indeterminacy is
conserved and arose in the last common ancestor of
vascular plants.

5.4 | Divergent pathways for leaf
initiation and patterning

In Arabidopsis, KNOX proteins also regulate entry into
leaf development pathways, and downregulation of
meristematic KNOX expression is an early marker of leaf
initiation, contrasting with a complementary pattern of
ARP gene expression. While downregulation of Class I
KNOX and upregulation of ARP expression also marks
leaf initiation in S. kraussiana (Figure 4b; Harrison et al.,
2005), a Huperzia selago shoot tip transcriptome yielded
KNOX but not ARP transcripts (Evkaikina et al., 2017),
suggesting that KNOX and ARP genes could have di-
vergent roles in leaf development across lycophytes
(Harrison et al., 2005). In ferns, KNOX expression ap-
pears persistent in the leaf primordia, and KNOX and
ARP homologue activities can overlap in leaf primordia
(Bharathan et al., 2002; Harrison et al., 2005; Sano et al.,
2005). These differences in KNOX function among lyco-
phytes and between vascular plant lineages are likely to
reflect independent leaf origins.

Other pathways for leaf development that are well
characterised in Arabidopsis also appear to have di-
vergent roles in lycophytes. For instance, HD-Zip gene
clades which regulate shoot apical meristem initiation,
xylem development, leaf initiation, and leaf polarity
(REV/PHV/PHB clade) or phloem development (CNA/
AthB8 clade) in Arabidopsis arose in a seed-plant specific
gene duplication (Prigge et al.,, 2005), and lycophyte
HD-Zips diversified independently (Floyd & Bowman,
2006; Prigge & Clark, 2006). Selaginella moellendorffii
and S. kraussiana each have two HD-Zip genes, and one
S. kraussiana HD-Zip has expression patterns consistent
with roles in meristem function and xylem development
while the other has patterns consistent with roles in leaf
initiation, polarity and phloem development (Figure 4c;
Floyd & Bowman, 2006; Floyd et al., 2006; Prigge &
Clark, 2006). While HD-Zips show adaxial expression in
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Arabidopsis and S. kraussiana, KANADIs regulate abax-
ial identity in Arabidopsis and show abaxial expression. A
recent study found three S. moellendorffii KAN genes,
which form a sister group to fern KANs. EhyKANI, 2,
and 3 were all expressed on the abaxial side of maturing
leaves in the horsetail, Equisetum hyemale (Zumajo-
Cardona et al. 2019). However, in S. moellendorffii,
SmKANI and SmKAN2 were uniformly expressed in all
stages of leaf development (Figure 4d; Zumajo-Cardona
et al., 2019). In combination, the data above point to a
permissive gene regulatory environment for the evolu-
tion of vascular plant leaves, consistent with a high level
of homoplasy in leaf evolution (Tomescu, 2009).

5.5 | Similar molecular regulators of
root development were independently
recruited

The independent origin of roots in lycophytes and eu-
phyllophytes calls into question the recruitment of dis-
tinct or homologous molecular regulators for root
development (Augstein & Carlsbecker, 2018). The mer-
istematic and elongation/differentiation zones were iso-
lated from Selaginella moellendorffii roots and their
transcriptomes compared to six vascular plant root tis-
sues (Huang & Schiefelbein, 2015). Transcriptomic ana-
lyses showed that the root transcriptome of S. moellendor{fii
is similar to euphyllophyte roots, suggesting that there was
either an ancestral root development mechanism in the
vascular plant ancestors, or that highly similar pathways
were recruited convergently to root development in
lycophytes and euphyllophytes (Ferrari et al., 2020;
Huang & Schiefelbein, 2015). Homologues of the lateral
root cap initial-promoting gene FEZ were also found in
S. moellendorffii, despite the proposed independent
evolution of the root cap in the two lineages (Augstein &
Carlsbecker, 2018; Hetherington & Dolan, 2018; Huang
& Schiefelbein, 2015). While the conservation of lyco-
phyte root morphology suggests that there may have
been a single origin of roots in lycophytes, the divergent
patterns of root organogenesis in lycophytes suggests
otherwise. Genetic studies would determine if lycophyte
roots are homologous, or if pre-existing organs such as
leaves acquired root-like characteristics and associated
genetic signatures convergently (Hetherington & Dolan,
2017). A transcriptomic approach recently showed that
the short rootlets of Isoétes echinospora are more tran-
scriptionally similar to Selaginella and Arabidopsis roots
than leaves, addressing a longstanding question about
the identity of rhizomorphic lycopsid rootlets
(Hetherington et al., 2019). It will be important to
identify genetic similarities between other root types

and the organs on which roots are borne to identify
conservation, convergence, and divergence in root
evolution.

5.6 | Molecular identity of the
rhizophore

Shoots, roots, and leaves comprise the basic organ sys-
tems of today's vascular plant flora, and while pathways
for a few key developmental gene families have con-
served roles in regulating meristem functions, pathways
for lycophyte root and leaf evolution have been recruited
convergently or divergently into development. In con-
trast to these exemplars, the innovation of a unique or-
gan system within lycophytes offers the opportunity to
explore the genetic basis of lineage-specific morphologi-
cal novelty and to address a longstanding question in
biology. To this end, the molecular identity of the rhi-
zophore was first investigated by comparison of 2D gel
electrophoresis patterns between rhizophore, stem, root,
and leaf samples, showing a strong similarity between
rhizophores and stems (Jernstedt & Mansfield, 1985).
More recent transcriptomic comparisons instead suggest
that the RNASeq profile of the rhizophore is distinct but
more similar to roots than shoots, sharing many genes
involved in cytokinin signalling (Mello et al., 2019). More
specifically, in situ hybridizations showed that Class I
SuKNOX1 expression marks shoot, root, and rhizophore
tips in S. uncinata, consistent with a general role for
KNOX genes in promoting proliferation (Figure 4e;
Kawai et al.,, 2010). Despite inconsistencies between
these studies, it is clear that the rhizophore is a unique
organ with some similarity to both roots and shoots.

5.7 | Reproductive transitions

Following vegetative growth, most lycophytes produce
specialised reproductive shoots which bear sporangia and
are known as strobili. Similar vegetative to reproductive
phase transitions in Arabidopsis and other flowering
plants are well characterised at the molecular level, in-
volving a microRNA-mediated mechanism. The expres-
sion of microRNAs miR156 and miR157 in shoot
meristems slowly declines through time, lifting repres-
sion of SQUAMOSA PROMOTER BINDING PROTEIN
(SBP/SPL) transcription factor expression to switch leaf
and meristem identity during phase change (Fouracre &
Scott Poethig, 2019; Poethig, 2013). All land plants are
thought to have miR156, (Poethig, 2013), and a miRNA-
SPL module regulates phase transition in Marchantia
(Tsuzuki et al., 2019), suggesting that miRNA-SPL
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control of phase change may be conserved. In Arabi-
dopsis, reproductive meristem identity is also controlled
by the LEAFY transcription factor, and LEAFY activates
MADS-box gene expression in inflorescence and floral
meristems to specify floral organ identity. Roles for
LEAFY in regulating the reproductive transition are
likely to be an innovation of seed plants as LEAFY
homologue expression precedes MADS expression in
Welwitschia cone development (Moyroud et al., 2017),
but LEAFY homologues control apical proliferation in a
fern (Plackett et al., 2018) and zygote proliferation in a
moss (Tanahashi, 2005). A study of five Isoétes species
showed that LEAFY is expressed in proliferating vegeta-
tive and reproductive tissue, however this expression is
diffuse and not localised to meristems (Yang, Du, Guo, &
Liu, 2017). Links between LEAFY and MADS-box func-
tion are so far unclear in nonseed plants, and LEAFY has
divergent DNA binding capacities in mosses and horn-
worts and liverworts and vascular plants, suggesting that
downstream targets are unlikely to be conserved (Sayou
et al., 2014).

5.8 | Sexual organ development

Land plant MADS proteins fall into MIKC® and MIKC*
clades based on the length of their K domain (Thangavel
and Nayar, 2018). Whereas seed plant sexual organ devel-
opment is spatially regulated by MIKCC class genes, fern
and moss MIKC® genes are expressed in reproductive and
vegetative tissues of the sporophyte as well as in gameto-
phytes (Hasebe, Wen, Kato, & Banks, 1998; Koshimizu
et al., 2018). In the lycophytes Lycopodium annotinum and
Selaginella remotifolia, RT-PCR showed that MIKCS genes
are expressed in strobili and vegetative tissues such as shoot
apices of the sporophyte (Svensson and Engstrom, 2002;
Tanabe, Uchida, Hasebe, & Ito, 2003). Thus, in non-
flowering plants, MIKC® genes have diverse roles in both
sporophytes and gametophytes. Interestingly, MIKC* genes
also regulate sporophyte and gametophyte growth in ferns
and bryophytes (Koshimizu et al., 2018; Kwantes, Liebsch,
& Verelst, 2012). However, RT-PCR experiments showed
that MIKC* genes are expressed exclusively in the strobili of
L. annotinum (Svensson, Johannesson, & Engstrom, 2000),
and in S. moellendorffii and S. pallescens are highly upre-
gulated in the microsporangia (Kwantes et al., 2012).
While these RT-PCR experiments showed broad expression
patterns (e.g. whole strobili), they were unable to resolve
the precise stage at which these genes are expressed (e.g.
sporophylls, microsporangia, megasporangia, and gameto-
phytes), but this will be important in revealing how spatial
characteristics such as the location of mega- and micro-
sporangia in Selaginella reproductive development arise

(Horner & Arnott, 1963; Horner & Beltz, 1970). Generally,
however, MIKC* genes seem to be important in gameto-
phyte development in all land plants, with further roles in
the bryophyte and fern sporophytes. Functional character-
isation of these genes in lycophytes will be important to
resolve the ancestral role of MADs genes in sporophyte
versus gametophyte development.

5.9 | Life cycle progression

Reproductive phase transitions are indicators of life cycle
progression in general, and insights into the molecular
regulation of life cycle progression have emerged from a
wide range of plant groups, involving homeodomain pro-
teins of KNOX and BELL classes. A single KNOX and
BELL protein differentiate mating strains of the unicellular
alga Chlamydomonas, and after mating, these proteins di-
merise to activate zygotic development and meiosis.
Changes in expression and delayed meiosis may have
contributed to the origin of embryos and the emergence of
the sporophyte generation in land plant life cycles (Lee, Lin,
Joo, & Goodenough, 2008). KNOX proteins duplicated in a
streptophyte ancestor of land plants (Frangedakis, Saint-
Marcoux, Moody, Rabbinowitsch, & Langdale, 2017) and
BELL proteins can dimerise with Class I KNOX proteins in
a moss, with both protein classes regulating gametophyte/
sporophyte life cycle stage identity (Sakakibara et al., 2013).
A Class T KNOX gene regulates proliferation in moss
sporophytes, and as previously discussed, KNOX genes
were likely important for the evolution of sporophyte in-
determinacy in vascular plants (Coudert et al., 2019). Un-
veiling the functions and interactions of type I and II
KNOX genes, and KNOX and BELL genes in lycophytes
will be important in understanding the evolution of spor-
ophyte life cycle stage dominance in vascular plants.

6 | CONCLUSIONS AND FUTURE
DIRECTIONS

6.1 | Molecular data will reveal
conservation, convergence, and divergence
in gene function

Here we summarise current thoughts about trait con-
servation, convergence, and divergence in vascular plant
evolution, and highlight the importance of appropriate
models and sampling strategies for evolutionary inferences.
If a trait is highly conserved, then taking a few re-
presentative models from each major land plant lineage
may be sufficient. However, some basic developmental
processes have massively diversified in plants to produce a
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variety of forms. Arabidopsis is often used to typify an-
giosperm development, but genetic studies must build on
new genomic resources (DePamphilis et al., 2013; L. Zhang
et al., 2020) to check for conservation, convergence, and
divergence across the angiosperms, between angiosperms
and gymnosperms and between gymnosperms and their
monilophyte sister lineages (Guan et al., 2016; Li et al,,
2018; Marchant et al., 2019; Plackett et al., 2014; Wan et al.,
2018). Similarly, while one lycophyte species is useful for
looking at broadly conserved processes, appropriate sam-
pling must be used to investigate divergence or convergence
across the lycophytes and land plants. Clearly, under-
standing the phylogeny and molecular regulators of devel-
opment of each plant lineage is likely to change hypotheses
about trait loss and gain through time (Delaux et al., 2019;
Harrison, 2017b).

6.2 | What have we learnt from studies
in lycophytes?

To date, several key findings have been made by mor-
phological comparisons and preliminary genetic studies.
It is clear from the fossil record and extant species that
shoot branching, vasculature, and shoot indeterminacy
were acquired sequentially and are conserved in vascular
plants, while roots, root caps, leaves, and complex mer-
istem structures evolved independently in lycophytes and
euphyllophytes (Harrison & Morris, 2018). Genetic stu-
dies corroborate these findings, as Class I KNOX genes
appear conserved regulators of indeterminacy (Coudert
et al., 2019; Harrison et al., 2005), but genetic regulators
of leaf development such as KANADI, and HD-ZIP genes
are differentially expressed in lycophytes and eu-
phyllophytes (Floyd & Bowman, 2006; Harrison et al.,
2005; Prigge & Clark, 2006; Zumajo-Cardona et al., 2019).
These studies revealed a propensity for the independent
recruitment of some gene families to similar develop-
mental processes in different lineages. Coupled with ex-
pression patterns from RNASeq analyses and in situ
hybridisation (Frank et al., 2015; Mello et al., 2019), these
studies have been critical for connecting genetics to the
evolution of vascular plant development.

6.3 | What are the next steps to advance
lycophyte research?

To progress further, modern imaging and molecular
techniques such as confocal live imaging, CRISPR gene
editing and RNASeq should be routinely used in lyco-
phytes. Although expression patterns can indicate gene
activities, they do not show gene function. For this,

mutant phenotype analysis is needed, but no transfor-
mation method has yet been established in lycophytes.
Protoplasts have been extracted from S. moellendorffii
leaves and roots and successfully transformed (Mello
et al., 2019; Yin, Richter, Borner, & Weihe, 2009), but no
regeneration protocol has yet been reported. This is the
biggest challenge for future lycophyte research, but new
transformation techniques bring significant potential to
answer questions about how vascular plants evolved.

6.4 | What can we learn from future
studies in lycophytes?

The genetic basis of some of the key evolutionary innova-
tions such as shoot and root branching, tracheid develop-
ment and thickening, apical cell identity, root and shoot
meristem diversification, sporophyte dominance and het-
erospory could be identified using lycophytes. Molecular
studies could also help to reveal how analogous organs
such as lycophyte and euphyllophyte leaf blades evolved.
They could also address broad evolutionary and develop-
mental questions, such as how plant tissues maintain de-
velopmental plasticity, how genetic circuits are remodelled
during evolution and how the rates at which genes and
genomes duplicate in eukaryotic lineages differ. The recent
increase in molecular studies of lycophytes bring us a step
closer to unveiling the evolutionary path that lead to the
incredible diversity and success of vascular plants, and to-
gether with modern fossil analysis will unravel how land
plants evolved and shaped today's ecosystems.
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