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Nonlinear dynamic analysis of complex engineering
structures modelled using commercial finite element
(FE) software is computationally expensive. Indirect
reduced-order modelling strategies alleviate this cost
by constructing low-dimensional models using a static
solution dataset from the FE model. The applicability
of such methods is typically limited to structures
in which (a) the main source of nonlinearity is
the quasi-static coupling between transverse and in-
plane modes (i.e. membrane stretching); and (b) the
amount of in-plane displacement is limited. We show
that the second requirement arises from the fact
that, in existing methods, in-plane kinetic energy
is assumed to be negligible. For structures such as
thin plates and slender beams with fixed/pinned
boundary conditions, this is often reasonable, but
in structures with free boundary conditions (e.g.
cantilever beams), this assumption is violated. Here,
we exploit the concept of nonlinear manifolds to show
how the in-plane kinetic energy can be accounted
for in the reduced dynamics, without requiring any
additional information from the FE model. This new
insight enables indirect reduction methods to be
applied to a far wider range of structures whilst
maintaining accuracy to higher deflection amplitudes.
The accuracy of the proposed method is validated
using an FE model of a cantilever beam.

1. Introduction
With the ever-increasing demand for better performance,
modern engineering structures continue to tend towards
thin, low-weight and highly flexible designs. This trend,
combined with the extreme loading environments
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in which structures are often required to operate, can lead to large-amplitude vibrations, and give
rise to nonlinear phenomena which have traditionally been neglected in structural dynamics.
In this context, performing nonlinear dynamic analysis in an accurate and efficient manner is
becoming a pressing need.

For this purpose, the Finite Element (FE) method can be used to discretise and simulate
the response of continuous structures, and is standard practice in many engineering fields [1].
Whilst FE models are able to accurately capture complex geometries and directly accommodate
geometric nonlinearity, the computational cost associated with the dynamic analysis of large
and complex nonlinear models can be prohibitively high, particularly during optimisation
procedures. In order to ease this bottleneck, reduced-order modelling methods aim to construct
computationally cheap, low-dimensional models which efficiently capture the salient dynamic
behaviour of the full-order FE model.

The focus of the current work is on parametric ROMs, in which the equations of motion
(EOMs) are expressed explicitly in the form of a small set of nonlinear second-order ordinary
differential equations. These can then be directly integrated in the time domain, or be used for
further analytical or numerical treatment by employing any of the well-established techniques
for analysing nonlinear dynamic behaviour, e.g. the harmonic balance, multiple scales or normal
form methods [2–4], or numerical continuation [5,6].

In recent years, many different methods have been developed to address reduced-order
modelling of geometrically nonlinear FE models. Here, we divide these methods into two broad
classes: direct and indirect. In the category of direct methods, we include any approach which
requires knowledge of the EOMs of the full-order model. For conservative, linearly elastic FE
models, this typically requires access to the stiffness tensors which contain the coefficients of
the quadratic and cubic monomials characterising the geometric nonlinearity [7], in addition
to the linear stiffness and inertia matrices. Early works have focussed on modal reduction
methods, originally developed for linear dynamics, in which the number of DOFs is reduced
through a Galerkin projection onto a subset of the linear normal modes (LNMs) of the FE
model [8–12]. Due to the coupling between modes, i.e. the membrane stretching induced by
finite deflections/rotations in thin plates or slender beams, typically a large number of modes
must be included in the reduction basis in order to accurately capture the nonlinear response.
Additionally, a major drawback of such methods is that the number and type of modes needed
to describe the response of the structure vary as the response amplitude increases, requiring that
the reduction basis be updated during time integration [13].

These issues stem from the fact that the eigenproblem characterising the nonlinear model
is configuration-dependent; the LNMs are precisely the solution of this problem at its static
equilibrium, but they diverge from it as the amplitude increases. In this context, the so-called
modal derivatives have been introduced as the second-order approximation of the state-dependent
modes [14,15]. Modal derivatives can be obtained by differentiating the nonlinear eigenproblem
with respect to the modal coordinates [16], thus requiring knowledge of the exact form of the
nonlinearities in the EOMs1. Several contributions have shown that the effects of the coupling
between modes can be effectively accounted for by including modal derivatives in the reduction
basis, in addition to the dynamically important LNMs [18–20]. Since the number of modal
derivatives grows quadratically with respect to the number of retained modes, a drawback
of this approach is that the size of the reduction basis increases quickly, thus limiting the
applicability of this method to relatively simple structures. To alleviate this burden, several
heuristic methods for ranking and selecting the most relevant modal derivatives have been
proposed [17,21]. Alternatively, the concept of a quadratic manifold has been proposed as a
method of constraining the amplitude of the modal derivatives to that of the LNMs, rather than
treating them as independent DOFs [22]. As such, reduction is achieved through a nonlinear
transform consisting of a linear and a quadratic part, whose coefficients are made up of LNMs

1Modal derivatives can also be approximated in a non-intrusive manner using finite difference schemes and commercial FE
software, however this can lead to significant numerical errors if the step width is not carefully tuned [17].



3

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

and modal derivatives, respectively. This method was found to work remarkably well for thin-
walled structures characterised by von Kármán kinematics, where the quadratic enslavement of
the axial modes to the bending modes is exact—however, poor results can be obtained when this
assumption is not valid, as has been demonstrated using a cantilever beam [23]. This suggests
that, generally, a projection onto a higher-order manifold (i.e. higher than quadratic) might be
necessary to accurately capture the nonlinear behaviour of the structure.

A similar but more general concept which has been utilised for reduced-order modelling, is
that of nonlinear normal modes (NNMs) defined as invariant manifolds in phase space [24–26]. The
fundamental idea underpinning NNMs is that, through a nonlinear transform, the system can be
defined in terms of a set of invariant, normal coordinates. In this framework, each displacement-
velocity pair of normal coordinates defines an NNM, and includes the effects of all the underlying
LNMs or DOFs [27]. As such, ROMs can be realised by retaining the normal coordinates
associated with NNMs whose linearised natural frequencies lie in the bandwidth of interest,
whilst all other coordinates can be neglected without introducing error in the process—this can be
considered as the nonlinear counterpart of modal truncation methods used in linear dynamics. In
its asymptotic formulation, the nonlinear transform applied to each state of the FE model, takes
the form of a polynomial function spanning the reduced states [28,29]. Analytical expressions [30]
for the newly introduced coefficients can be derived by substituting the transform into the full-
order EOMs and equating the coefficients of like monomial terms—the dynamics of the reduced
coordinates can then be expressed as a function of the coefficients of the FE model. Whilst
this method provides a powerful tool for generating accurate ROMs with the fewest possible
time-dependent variables, it does come with a major drawback associated with the asymptotic
nature of the nonlinear projection, in addition to being intrusive. As noted in [28], the accuracy
of the results can deteriorate quite rapidly in strongly nonlinear regimes, where higher orders
of nonlinearity need to be considered, thus compromising the reliability of the ROM. At the
same time, due to the analytical and mathematically involved nature of the method, calculations
quickly become onerous when considering truncations beyond cubic.

Indirect methods are non-intrusive, i.e. they do not require knowledge of the exact full-
order EOMs, and hence are applicable to models built within commercial FE software—a
comprehensive review of these can be found in [31]. Such methods rely on a Galerkin projection
to reduce the dimensionality of the FE model, typically onto a subset of its LNMs, such that the
nonlinearities in the reduced EOMs take the form of quadratic and cubic stiffness terms which
couple the retained modal coordinates. The coefficients of these nonlinear terms are approximated
by extracting a set of nonlinear static solutions of the FE model, and fitting cubic polynomial
functions to the static force-displacement dataset in a least-squares manner, as detailed in [32,33].

There exist two variations of indirect methods, which differ in how the static solution dataset is
obtained. In the displacement-based approach, which is often referred to as the enforced displacement
procedure, the structure is constrained into a prescribed shape that is a linear combination of
the basis functions, and the resulting reaction forces are extracted [32,34]. The main drawback of
this approach lies in the fact that, when only the low-frequency, dynamically important modes
are included in the reduction basis, the ROM fails to capture the effect of membrane stretching,
resulting in overly stiff behaviour [10,35]. To account for the induced in-plane motions, a number
of membrane modes whose natural frequencies are well beyond the bandwidth of interest,
must be explicitly included in the reduction basis [36,37]. Similarly, other strategies augment the
reduction basis with the so-called dual or companion modes, which are generated using a nonlinear
static or dynamic solution of the FE model, and aim to capture the membrane stretching [38–42].
As a result, not only is the identification of the relevant membrane/dual/companion modes
a cumbersome procedure, but the reduction basis becomes relatively large, thus limiting the
computational savings.

In the second, force-based variation of indirect methods, which is commonly referred to as
Implicit Condensation and Expansion (ICE) or the applied loads procedure, the static solution dataset
is obtained by applying a force that is a scaled superposition of the basis functions and computing



4

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

the corresponding displacement [33,43–46]. By applying a force to the structure, rather than
enforcing a modal displacement, the effect of membrane stretching is captured implicitly in
the nonlinear static response, thus removing the need for including any high-frequency, quasi-
statically coupled modes in the reduction basis as independent DOFs. As such, the reduction
basis can be constructed with only a few low-frequency transverse modes, whilst the response of
the axial modes, which is assumed to be a quadratic function of the retained modal coordinates,
can be reconstructed in a post-processing step [37,46]. Nevertheless, a drawback of the force-
based approach is that the quality of the ROM is greatly dependent on the scaling of the forces
used to obtain the training dataset. As such, scaling factors are often chosen on an ad hoc basis
guided by empirical rules which predict the force necessary to exercise a "sufficient" amount
of geometric nonlinearity, which often involves a trial and error process [33,37]. Recently, the
authors have shown that the effect of the quasi-statically coupled axial modes can manifest in
the ROM dynamics as nonlinear terms of order higher than cubic, i.e. higher than the order of
nonlinearity present in the full-order model [47]. As a result, ROMs which include higher-order
nonlinear terms are found to be not only more accurate, but also significantly more robust to
the scaling of the training dataset, compared to their cubic counterparts. The significance of the
higher-order polynomial terms in capturing quasi-static coupling in an accurate and consistent
manner, reinforces the idea that linear projection frameworks are generally not well-suited to
nonlinear reduced-order modelling.

Direct and indirect reduced-order modelling methods are often considered as largely
distinct research areas. Methods in the former class, and specifically invariant manifold-based
approaches, are supported by a rigorous mathematical framework, but due to their high analytical
complexity and intrusive nature, they cannot be employed for the reduction of large-scale FE
models built within commercial software. On the other hand, indirect methods are much more
applicable in practice; however, their approximate nature often means that the resulting ROMs
are not necessarily optimal. In this work, we aim to bridge the gap between the two classes of
methods, by exploiting the concept of underlying nonlinear manifolds whilst retaining the non-
intrusive nature of indirect methods. Specifically, we propose a Lagrangian approach to deriving
ROMs of geometrically nonlinear structures, which aligns with the theory of NNMs defined as
invariant manifolds—the proposed method may be considered as an extension to force-based
indirect methods such as ICE [46]. In the standard ICE method, the projection of the static solution
dataset onto the in-plane modes is used to extract a set of functions which relate the statically
condensed modal displacements to the retained, transverse modal coordinates. These are only
used in post-processing to recover physical deformations, stresses and strains of the FE model,
but they do not influence the computed ROM. In our proposed method, the same information is
utilised to enrich the ROM dynamics in order to account for the kinetic energy of the statically
coupled modes, which the standard approach neglects—this additional treatment will be termed
inertial compensation.

The rest of the paper is structured as follows. In §2, we present the theory behind force-based
indirect reduction methods, and demonstrate the effectiveness and limitations of the ICE method
using FE models of a clamped-clamped and a cantilever beam. In addition, we discuss how the
inaccuracy of the ICE method, when considering the cantilever beam, is related to the kinetic
energy of the in-plane modes. In §3, we present our proposed method of deriving nonlinear
ROMs such that the kinetic energy of the statically coupled modes is retained, and in §4 we revisit
the cantilever beam example to compare ROMs with and without inertial compensation. Finally,
conclusions are presented in §5.
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2. Applied loads method or Implicit Condensation and Expansion

(a) Theory
The equations of motion of a forced, undamped, continuous structure, discretised into N DOFs
using the FE method, can be written in the form

MÜx +Kx + fx(x) = Fx, (2.1)

where x is the N × 1 vector of generalised physical displacements, M and K are the N × N linear
mass and stiffness matrices respectively, and Fx and fx are the N × 1 vectors of external and
nonlinear restoring forces,2 respectively. For reduction purposes, it is useful to consider the FE
model in a space in which the coordinates are linearly uncoupled. This is achieved using the
linear transform

x =Φq, (2.2)

whereΦ is the N × N matrix of mass-normalised modeshapes, such that its nth column, φn, solves
the eigenproblem (K − ω2

nM)φn = 0, and ω2
n is the corresponding eigenvalue and the square of the

natural frequency of the corresponding LNM. Then, equation (2.1) is equivalent to

Üq + Λq + f(q) = F, (2.3)

where q is the N × 1 vector of modal coordinates, Λ is the N × N diagonal eigenvalue matrix
containingω2

n in the nth element along its leading diagonal, and f(q) =ΦËfx(Φq) and F =ΦËFx are,
respectively, the N × 1 vectors of external and nonlinear restoring forces in the modal space. Here,
we separate the LNMs of the FE model into three distinct classes: (1) a small set of dynamically
important, low-frequency transverse modes, (2) a small set of high-frequency in-plane modes,
which can be approximated, through geometric considerations, as being statically coupled to the
transverse modes [31,46,47], and (3) the remaining modes, which are neither dynamically relevant
nor statically coupled, and whose response is small enough to be neglected. Modes from each
group are denoted, respectively, by the subscripts •r (reduced), •s (static), and •u (unmodelled),
such that equation (2.3) can be rewritten as

Üqr

Üqs

Üqu

 +

Λr 0 0
0 Λs 0
0 0 Λu



qr

qs

qu

 +

fr (qr,qs,qu)

fs(qr,qs,qu)

fu(qr,qs,qu)

 =

Fr
Fs

Fu

 , (2.4)

where the lengths of vectors qr , qs and qu are R, S and U, respectively, such that R + S +U = N
and R, S� N . The corresponding modeshapes are contained in matrices Φr , Φs and Φu , whose
dimensions are N × R, N × S and N ×U, respectively.

In the ICE method [46], the dynamics of the ROM are governed only by the first group of
modes, i.e. equation (2.4) is reduced to

Ür + Λr r + f̃r (r) = Fr, (2.5)

where f̃r (r) is an R × 1 vector of nonlinear restoring forces which must be identified using the
original FE model, such that r ≈ qr . The coupling between qs and qr is approximated as quasi-
static, and is here denoted by the S × 1 vector function g, i.e.

s = g(r), (2.6)

such that s ≈ qs . Physically, this may be interpreted as meaning that the displacement of the quasi-
statically coupled (in-plane) modes may be determined from the displacement of the reduced
(transverse) modes. Then, the physical displacement of the FE model is approximated as a

2It should be highlighted that, in commercial FE software, the nonlinearities are typically computed iteratively, hence the
closed-form expression for fx (x) is not accessible.
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superposition of the reduced and the statically coupled modes, while the remaining modes are
neglected (u = 0 ≈ qu), i.e.

x ≈Φr r +Φsg(r). (2.7)

As such, a reduction from N to R DOFs is achieved.
For the identification of f̃r (r), it is typically assumed that the nonlinearities in the ROM take the

same form as the nonlinearities in the full-order system—in the case of a linearly elastic FE model
characterised by a quadratic strain-displacement relationship, each entry in f̃r (r) then becomes a
quadratic and cubic polynomial spanning the reduced modes [31]. However, as discussed in [47],
to account for the effect of the statically coupled in-plane modes, the order of nonlinearity in the
ROM must generally exceed that of the full-order model, such that a more robust form for f̃r (r) is
given by

f̃r (r) =
K∑
k=2

Akr(k), (2.8)

where r(k) is the nk × 1 vector containing all combinations of kth-order monomials involving
the elements of r, Ak is the R × nk matrix containing the corresponding kth-order coefficients

in each reduced equation, K > 3 is the truncation order, and nk =
(k + R − 1)!
k! (R − 1)!

is the number of kth-

order terms in each reduced equation. Similarly, the quasi-static coupling functions, g(r), can be
approximated as Kth-order polynomial functions3 of the reduced modes, i.e.

g(r) =
K∑
k=2

Bkr(k), (2.9)

where Bk is the S × nk matrix containing the kth-order coupling coefficients for each statically
coupled mode4.

The linear properties in the reduced EOMs, (2.5), can be computed directly using the mass and
stiffness matrices of the FE model; however, the coefficients in the reduced nonlinear restoring
forces, f̃(r), and in the quasi-static coupling functions, g(r), are computed indirectly using a set of
static solution data, as detailed in [33]. Each solution is obtained by applying a static force, Fx0,
that is a scaled linear combination of the reduction basis, Φr , and computing the corresponding
static displacement, x0. The physical force to be applied is given by

Fx0 =MΦrFr0 (2.10)

where Fr0 is the R × 1 vector of force scaling factors in the reduced modal space. After applying
the force and extracting the resulting physical displacements, these may projected into the modal
space using 

r0
s0
u0

 =Φ
−1x0. (2.11)

Finally, the coefficients in Ak and Bk , for k = {2, . . . ,K}, are computed in a least-squares manner
according to equations (2.8) and (2.9), using datasets of {r0, Fr0 − Λr r0} and {r0, s0}, respectively.
The number of unique static solutions in the datasets must be at least equal to the number of
unknown coefficients in each equation. The number of unknown coefficients in equation (2.8)
can be reduced by enforcing linear dependencies between elements of Ak such that symmetry is
preserved, and the resulting EOMs are consistent with an underlying nonlinear elastic potential
energy function. This concept, which is sometimes referred to as the constrained ICE, as well as
strategies for load case selection, are further discussed in [33].

3In the ICE method, a quadratic relationship is assumed.
4Note that B1 = 0 as qr and qs are linearly independent.
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Figure 1: Modeshapes and natural frequencies of three bending and two axial LNMs of (a) the
clamped-clamped beam and (b) the cantilever beam.

(b) Motivating example
In order to demonstrate the effectiveness as well as the shortcomings of the method described
above, we use it to reduce two different FE models of a linearly elastic, geometrically nonlinear
beam: one with clamped-clamped (C-C) and one with clamped-free (C-F) end conditions. The
beams have a length, width and thickness of ` = 300 mm, w = 25 mm and h = 1 mm, respectively,
and are made of steel with a Young’s modulus of 205 GPa, density of 7800 kg m−3 and Poisson’s
ratio of 0.3. The models are constructed in the FE software Abaqus5, and meshed with 120 three-
node quadratic beam elements (Timoshenko type, B32), resulting in 1434 and 1440 DOFs for the
C-C and the C-F beam, respectively. The shapes of the first three (symmetric) bending modes and
the first two (symmetric) axial modes of the C-F (C-C) beam, as well as the corresponding natural
frequencies, are shown in figure 1. The significance of these modes will be discussed later in this
section.

For each FE model, we construct a single-DOF quintic ROM of the first bending mode
according to equations (2.5) and (2.8) (R = 1, r ≈ [q1], K = 5), i.e.

Ür1 + ω
2
1r1 + A2r2

1 + A3r3
1 + A4r4

1 + A5r5
1 = F1. (2.12)

The static solution dataset used to identify the nonlinear coefficients, Ak , consists of four load
cases, in which the force applied to the first mode, F1, is equal to {−45,−22.5,+22.5,+45}. The
quasi-static response of the beams for the range of applied loads is shown in figure 2, both in
the physical and in the modal space6. The maximum vertical deflection of the tip (centre) node
of the C-F (C-C) beam is ytip = 100 mm = `/3 (ymid = 1.13 mm = 1.13h). This corresponds to a
maximum von Mises stress of 421 MPa (51.3 MPa) occurring at the clamped end(s), at which point
the material approaches the limit of the linearly elastic regime.

Figure 3 shows the quasi-static coupling between the reduced mode, q1, and the two most
strongly coupled bending modes, q2 and q3 (q3 and q6), as well as the two most strongly
coupled axial modes, q27 and q59 (q72 and q129), for the C-F (C-C) beam. The modal displacement
amplitudes resulting from the maximum applied static force, F1 = 45, normalised with respect to
the largest amplitude, are listed in table 1. It can be seen that the first mode of the C-C beam

5The MATLAB toolbox Abaqus2Matlab [48] was used in post-processing.
6Note that, in the modal space, only the response of the reduced mode and the two most strongly coupled bending and axial
modes is shown.
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Figure 2: Quasi-static response of the beams as a function of the force applied in the first mode.
The response is shown in the modal space (bottom panel) in terms of the reduced mode and the
two most strongly coupled bending and axial modes, and in the physical space (top panel) in
terms of the vertical displacement of (a) the centre node for the C-C beam, and (b) the tip node
for the C-F beam.

Figure 3: Static displacement of the relevant bending and axial modes as a function of the
displacement in the first mode for (a) the C-C and (b) the C-F beam, when a force is applied
in the first mode.

Table 1: Relative modal displacement amplitudes of the two most strongly coupled bending and
axial modes, when a static force F1 = 45 is applied in the first mode.

C-C
Mode no. 1 3 6 72 129
Rel. amp. 1.0 × 100 2.0 × 10−2 3.1 × 10−3 4.5 × 10−4 7.1 × 10−4

C-F
Mode no. 1 2 3 27 59
Rel. amp. 1.0 × 100 6.3 × 10−3 3.8 × 10−4 1.7 × 10−1 6.7 × 10−2

is most strongly coupled with third bending mode, whilst the coupling with the axial modes is
less significant. Conversely, the first mode of the C-F beam exhibits weaker coupling with other
bending modes, but significantly stronger coupling with axial modes—this is to be expected, as
the free end of the cantilever beam allows for large in-plane displacements.
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Figure 4: Top: First backbone curve of (a) the C-C and (b) the C-F beam, predicted by the
quintic single-DOF ICE ROMs. These are plotted in the projection of response frequency against
amplitude. Bottom: Comparison between the periodic response predicted by the ROMs (dashed
lines) and the response of the FE model (solid black line), plotted in the physical phase space, for
(c) the C-C and (d) the C-F beam. Ten different sets of initial conditions are considered for each
ROM, and these are marked with black dots on the backbone curves. For each free response run,
the FE states at time t = 0 and t =TΩ are marked with circles and crosses, respectively.

Figure 4 (a,b) shows the backbone curves7 of the computed single-DOF ROMs of the C-C
and the C-F beams, in the projection of reduced modal amplitude, R1, against the fundamental
response frequency, Ω. Both models exhibit hardening nonlinearities due to the effect of
membrane stretching induced by the large transverse displacements. It should be highlighted
that the quintic ROMs presented here were found to be robust with respect to the scaling of
the static solution dataset, suggesting that a higher truncation order is not necessary,8 at least
for the range of response amplitudes considered here. The accuracy of the ROMs is assessed by
comparing different periodic solutions of the ROM, to the corresponding full-order free response
of the FE model. To set the initial conditions of the FE model, we use the applied modal force method
proposed in [49]. For each ROM solution, the initial modal displacement, r0, which occurs at zero
initial velocity, is used to compute the corresponding static modal force, i.e.

Fr0 =Λr r0 + f̃r (r0). (2.13)

This force, projected into the physical space, is then applied to the FE model, before the structure
is released from its static equilibrium at time t = 0 and allowed to undergo free oscillation for one
7Here, backbone curves are equivalent to NNMs defined as families of periodic solutions of the conservative system. These were
computed using the MATLAB-based numerical continuation toolbox Continuation Core (COCO) [6].
8Exploring the characteristics of an FE model which might allow the required order of nonlinearity to be determined a priori
remains a topic for future work.
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Figure 5: Normalised maximum kinetic energy in the first bending mode and the first seven axial
modes, for (a) the C-C and (b) the C-F beam. These were computed from the free response of the
FE model, where the initial conditions correspond to a static force of Fr0 ≈ 45.

period of the ROM, TΩ = 2π/Ω. When the state of the FE model after one ROM period coincides
with its initial state, then a periodic solution is obtained and the ROM may be considered ideal.
Here, we compare the initial and final state of the FE model to qualitatively assess the accuracy of
each ROM.

Figure 4 (c,d) shows the FE response of the C-C and the C-F beam, respectively, obtained from
ten different sets of initial conditions over one period based on the frequency predicted by the
ROM (solid black line)—the FE states at t = 0 and t =TΩ are marked with black circles and crosses,
respectively. The corresponding periodic ROM solutions are represented by dashed blue lines.
The initial reduced modal displacements used are equally spaced and marked with black dots on
the backbone curves. It can be seen that the ROM of the C-C beam can very accurately predict
the response frequency of the full-order NNM for the whole range of amplitudes considered
here9. On the other hand, the ROM of the C-F beam appears to overestimate the frequency of
the NNM—the period predicted by the ROM is not sufficient to allow the FE model to reach its
initial state and "close" the loop in the phase space. The ROM predictions become increasingly
inaccurate as the response amplitude increases. The fact that the coupling between the first and
higher bending modes in the C-F beam is less significant compared to that in the C-C beam (see
table 1), suggests that the inaccuracy of the C-F ROM is unlikely to stem from any unmodelled
dynamic interaction with other low-frequency transverse modes. Instead, we suggest it is due
to the classical observation for the cantilever beam, that there is competing action between the
geometric nonlinearity, which is of the hardening type, and the in-plane inertia, which has a
softening effect [50–53]. Since the ICE method is unable to capture the latter effect, it is perhaps
not surprising that the resulting ROM leads to overpredictions of the response frequency.

To quantify the significance of the inertia of the statically coupled modes, we consider the
kinetic energy (KE) in each mass-normalised mode, which is directly related to the resulting
inertial force acting on it. We define the normalised maximum KE in each mode during a free
response of the FE model, as

Tn :=
max [Tn(t)]
max [T1(t)]

=
max

[
Ûq2
n(t)

]
max

[
Ûq2
1(t)

] , (2.14)

where Tn is the KE in the nth mode. Figure 5 shows the normalised maximum KE of the first seven
axial modes of the C-C and C-F beams, for the free response with the maximum initial static force
applied to the FE model. It can be seen that, for the C-C beam, the KE in the axial modes is more
than six orders of magnitude smaller than that in the reduced mode. As such, the condition that
in-plane inertia can be neglected, which the ICE method imposes, is a fairly good approximation.
9Note that for larger force scaling factors, which are not shown here, the modal interaction between the first mode and
other bending modes, particularly the third one, becomes relatively more significant—in such cases, and/or when internal
resonances are of interest, additional modes must be included in the reduction basis.
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Conversely, the KE in the first axial modes of the C-F beam is much more significant—in this
case, neglecting the effect of in-plane inertia leads to erroneous predictions. In the next section,
we propose a Lagrangian-based approach for deriving nonlinear reduced-order models, such that
the KE of the statically coupled modes is accounted for in the reduced dynamics.

3. Accounting for the kinetic energy of the condensed modes

(a) Proposed method
The point of departure is equation (2.4), i.e. the EOMs of the FE model, split into the reduced,
statically coupled, and unmodelled, mass-normalised modal coordinates. It is assumed that
Lagrangian of the system, which underpins equation (2.4), can be expressed in terms of the
categorised modal coordinates as

L ≡ T( Ûqr, Ûqs, Ûqu) − V(qr,qs,qu)

=
1
2

(
Ûqr

)Ë
Ûqr +

1
2

(
Ûqs

)Ë
Ûqs +

1
2

(
Ûqu

)Ë
Ûqu −V(qr,qs,qu),

(3.1)

where T andV denote kinetic and potential energy functions, respectively, such that

∂V

∂qr
=Λrqr + fr (qr,qs,qu),

∂V

∂qs
=Λsqs + fs(qr,qs,qu),

∂V

∂qu
=Λuqu + fu(qr,qs,qu). (3.2)

Assuming that the response of the unmodelled modes (qu) can be neglected, the Lagrangian can
be approximated as

L ≈ L̂ =
1
2
(Ûr)Ë Ûr +

1
2
(Ûs)Ë Ûs − V̂(r, s), (3.3)

where V̂(r, s) :=V(r, s, 0), such that r ≈ qr , s ≈ qs , u = 0 ≈ qu , and

∂V̂

∂r
=Λr r + f̂r (r, s),

∂V̂

∂s
=Λss + f̂s(r, s),

f̂r (r, s) := fr (r, s, 0), f̂s(r, s) := fs(r, s, 0).

(3.4a)

(3.4b)

Using the quasi-static coupling approximation, s = g(r), as given in equation (2.6), and noting that

Ûs =
∂g
∂r
Ûr, equation (3.3) can be rewritten in terms of the reduced coordinates as

L̂ =
1
2
(Ûr)Ë Ûr +

1
2
(Ûr)Ë

(
∂g
∂r

)Ë ∂g
∂r
Ûr − V̂(r, g(r)). (3.5)

From this, the partial derivatives of L̂ with respect to Ûr and r, can be written, respectively, as

∂L̂

∂Ûr
= Ûr +

(
∂g
∂r

)Ë ∂g
∂r
Ûr

∂L̂

∂r
=

(
∂g
∂r

)Ë ( ∂2g
∂r2
Ûr

)
Ûr −

(
Λr r + f̂r (r, g)

)
−

(
∂g
∂r

)Ë (
Λsg + f̂s(r, g)

)
.

(3.6a)

(3.6b)

According to the Euler-Lagrange equation, the reduced EOMs can be written as

d
dt

(
∂L̂

∂Ûr

)
−
∂L̂

∂r
= Fr . (3.7)

Substituting equations (3.6) into equation (3.7) leads to, after some algebraic manipulation,

Ür +
(
∂g
∂r

)Ë ∂g
∂r
Ür +

(
∂g
∂r

)Ë ( ∂2g
∂r2
Ûr

)
Ûr + Λr r + f̃r (r) = Fr, (3.8)
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where f̃r (r) := f̂r (r, g) +
(
∂g
∂r

)Ë (
Λsg + f̂s(r, g)

)
. By definition, g(r)must satisfy

Λsg + f̂s(r, g) = 0, (3.9)

as it is computed based on static solution data where only the reduced modes are directly forced,
while the response of the quasi-statically coupled modes is captured implicitly. As such, the
second term in f̃r (r)may be neglected, i.e. f̃r (r) = f̂r (r, g). As with the ICE method (equation (2.5)),
the reduced coordinates are related to the FE coordinates through equation (2.7), such that the
number of DOFs is reduced from N to R. As with equation (2.5), equation (3.8) can be solved
using numerical tools such as continuation.

(b) Indirect methods and nonlinear manifolds
The ROM obtained using our proposed method, equation (3.8), may be considered as a natural
extension to the ICE ROM, equation (2.5). In both cases, the expressions for the nonlinear restoring
forces, f̃r (r), are equivalent and can be approximated, using equation (2.8), as polynomial
functions in r, whose degree must generally exceed the order of nonlinearity in the full-
order model10 [47]. However, when the kinetic energy of the in-plane modes is taken into
account, two additional terms emerge in the reduced EOMs: a configuration-dependent inertia

term,
(
∂g
∂r

)Ë ∂g
∂r
Ür, and a convective term,

(
∂g
∂r

)Ë ( ∂2g
∂r2
Ûr

)
Ûr. The coefficients of both terms can be

expressed in terms of the precomputed quasi-static coupling coefficients, Bk , which define the
relationship between the reduced and the statically coupled coordinates (equation (2.9)). As such,
the proposed reduction method does not require that any additional information be extracted
from the FE model—instead, the existing information is used, after some computationally cheap
post-processing, to enrich the ROM dynamics. The inclusion of these additional terms in the
reduced dynamics will be referred to as inertial compensation, and the corresponding model, i.e.
equation (3.8), will be referred to as ICE-IC ROM. A schematic of the ROM generation procedure
using the ICE-IC method is shown in figure 6, where the extension proposed herein is represented
in red.

The importance of retaining the effect of in-plane inertia, compared to the static condensation
approach, has previously been demonstrated using the concept of modal derivatives and the
so-called quadratic manifold [22,54]. In the quadratic manifold approach, reduction is achieved
through a nonlinear mapping between the FE coordinates and a small set of modal coordinates—
the mapping is quadratic, and it is defined such that its gradient is given by linear modeshapes,
and its curvature is given by modal derivatives. While this approach was found to provide
excellent accuracy in some cases, its applicability is limited to structures characterised by von
Kármán kinematics, and in which the dominant source of nonlinearity is membrane stretching
[22,23]. Compared to the quadratic manifold approach, the merits of the ICE-IC method are
twofold. Firstly, the relationship between the reduced and the statically coupled modes is not
limited to being quadratic, which allows the method to be applied to a broader class of structures.
In addition, the proposed method is non-intrusive in nature, and can be applied using any
commercial FE software package. Nevertheless, the inertial compensation approach aligns with
the idea underpinning nonlinear manifolds—in fact, it can be shown that the reduced EOMs
derived through a general, not necessarily quadratic, nonlinear projection, are equivalent to
equations (3.8); this is demonstrated in appendix A.

The more general concept of an invariant manifold is based on the theory of normal forms, and
has been utilised, under its asymptotic formulation, for the reduction of thin shells and beams
[25–30,53,55–58]. The invariant manifold approach has the added capacity to allow for coupling

10The higher-order nonlinear terms are necessary to accurately capture the effect of the geometric nonlinearity related to the
quasi-static coupling between the low-frequency transverse modes and the high-frequency in-plane modes.
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Figure 6: Schematic of the ROM generation procedure using the ICE method, with the
schematically modest, but dynamically significant, proposed changes to incorporate inertial
compensation shown in red.

between modal displacements and modal velocities, whereas in our proposed method, quasi-
static coupling is assumed. However, it has been observed that, for non-gyroscopic, conservative
systems, any velocity dependence can be neglected without much loss of accuracy [53,56], making
the aforementioned assumption a good approximation. One the other hand, the main limitation
of the invariant manifold approach is its high algebraic complexity, which makes the derivation
of expressions for manifolds of order higher than cubic, intractable [28]. Even though 3rd-order
invariant manifolds can very accurately capture the NNMs of the full-order system at moderate
amplitudes, the results deteriorate rapidly beyond a certain amplitude, where higher-order
nonlinear terms are necessary to capture the reduced dynamics [28,30,57,58]. With our proposed
method, this issue does not occur, since the coefficients of the nonlinear functions in the EOMs are
computed indirectly via regression analysis, using a set of static solutions of the full-order system.
As a result, the expressions that directly relate the coefficients of the full-order system to those of
the ROM need not be derived, and thus higher orders of nonlinearity can easily be considered.
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4. Application to a cantilever beam
We now revisit the FE model of the cantilever beam considered in §2(b) (figure 1(b)). We compare
ROMs obtained using the standard ICE method, equation (2.5), with those obtained using the
extended ICE-IC method, equation (3.8). The first and second backbone curves of the cantilever
beam are considered separately in the following subsections.

(a) First backbone curve
As in §2(b), we consider single-DOF quintic ROMs of the first mode. The standard ICE ROM is
described by equation (2.12), whilst the ICE-IC ROM includes some additional terms to account
for the kinetic energy of the statically coupled modes, i.e.[

1 +
∑
i

(
∂gi
∂r1

)2
]
Ür1 +

∑
i

∂gi
∂r1

∂2gi

∂r2
1

Ûr2
1 + ω

2
1r1 + A2r2

1 + A3r3
1 + A4r4

1 + A5r5
1 = F1, (4.1)

where gi(r1) = si = B(i)2 r2
1 + B(i)3 r3

1 + B(i)4 r4
1 + B(i)5 r5

1 and i spans the indices of the statically coupled
LNMs. In this case, only the three most strongly coupled axial modes are included in the statically
coupled basis (i.e. S = 3, s ≈

[
q27, q59, q90

]Ë). The coefficients in the quasi-static coupling functions,
Bk , are computed according to equation (2.9) using the same static solution dataset that is used
to compute the nonlinear stiffness coefficients, Ak . As before, this consists of four load cases,
where the applied force in the first mode is F1 = {−45,−22.5,+22.5,+45}. The resulting quasi-static
behaviour of the cantilever beam for the range of applied loads is shown in figures 2(b) and 3(b).

Figure 7(a) shows the computed backbone curves of the ICE (blue) and ICE-IC (red) ROMs. It
can be seen that the inertial compensation terms have a softening effect on the model, bringing the
nonlinear response frequency very close to the underlying linear natural frequency even at large
vibration amplitudes—this observation is in agreement with results in the literature [50,58,59]. As
in §2(b), we estimate the accuracy of each ROM by computing the free response of the FE model
with the initial conditions and period of integration predicted by the ROM. The results obtained
from ten different free response runs are shown in figure 7(b,c) for the ICE and ICE-IC ROM,
respectively. It can be seen that the novel ROM is able to predict the response frequency of the
first NNM of the cantilever beam remarkably well, as it gives rise to nearly perfect free response
loops in phase space, for the whole range of amplitudes considered here. It should be noted that,
for this system, the computational cost associated with solving the EOMs of the ICE-IC ROM
using the MATLAB built-in ode45 solver, is increased by only ∼ 4% relative to the ICE ROM.

(b) Second backbone curve
We now consider the second backbone curve of the cantilever beam by computing two-DOF
quintic ROMs. As before, the statically coupled basis consists of the 27th, 59th and 90th LNMs,
whilst the reduction basis includes both the 1st and 2nd LNMs. The 2-DOF EOMs for the ICE and
ICE-IC ROMs are given, respectively, by[

Ür1
Ür2

]
+

[
ω2

1 0
0 ω2

2

] [
r1
r2

]
+

[
f̃r1(r1, r2)

f̃r2(r1, r2)

]
=

[
F1
F2

]
(4.2)

and[
Ür1
Ür2

]
+

[
ω2

1 0
0 ω2

2

] [
r1
r2

]
+

[
f̃r1(r1, r2)

f̃r2(r1, r2)

]

+
∑
i


(
∂gi
∂r1

)2 ∂gi
∂r1

∂gi
∂r2

∂gi
∂r1

∂gi
∂r2

(
∂gi
∂r2

)2


[
Ür1
Ür2

]
+

∑
i


∂gi
∂r1
∂gi
∂r2


(
∂2gi

∂r2
1

Ûr2
1 + 2

∂2gi
∂r1∂r2

Ûr1 Ûr2 +
∂2gi

∂r2
2

Ûr2
2

)
=

[
F1
F2

]
, (4.3)
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Figure 7: (a) First backbone curve of the C-F beam, predicted by the quintic single-DOF ROMs
without (blue) and with (red) inertial compensation. These are plotted in the projection of
response frequency against amplitude. Bottom: Comparison between the periodic response
predicted by the ROMs (dashed lines) and the response of the FE model (solid black line), plotted
in the physical phase space, for (b) the ICE ROM and (c) the ICE-IC ROM. Ten different sets of
initial conditions are considered for each ROM, and these are marked with black dots on the
backbone curves. For each free response run, the FE states at time t = 0 and t =TΩ are marked
with circles and crosses, respectively.

where f̃r1, f̃r2 and gi are fifth-order nonlinear polynomial functions of r1 and r2.
The coefficients in the nonlinear stiffness functions and in the quasi-static coupling functions

were computed using a set of 24 unique static solutions of the FE model. The distribution of the
static loads applied in each mode, as well as the corresponding static displacement of the tip node,
are shown in figure 8. The magnitude of the maximum load applied in the second mode, F2 = 270,
was set to four times that in the first mode, F1 = 4511. Table 2 shows the relative displacement
amplitudes of the reduced modes (q1, q2), as well as the most strongly coupled bending mode
(q3) and axial modes (q27, q59), for four of the considered load cases. It can be seen that, when a
force is applied in the second mode, the response of the first mode is significant, which suggests
that it must be retained in the reduction basis. As before, the coupling with higher transverse
modes is weak, whilst the lowest axial modes are strongly coupled and are thus included in the
statically coupled basis.

Figure 9(a,b) shows the backbone curves for the second mode of the computed two-DOF
ROMs, shown in the projection of response frequency against the amplitude of each retained
mode. It can be seen that, as expected, the traditional ICE ROM fails to capture the softening

11Even though the relative scaling of the applied loads was chosen semi-arbitrarily, a posteriori computations have confirmed
that the ROMs are not greatly dependent on the precise tuning of force scaling factors—as discussed in [47], this is related to
the higher orders of nonlinearity considered in the ROMs.
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Figure 8: Plot of the vertical displacement of the tip of the C-F beam, as a function of the static
forces applied to the first and second modes. The load cases used for calibrating the two-DOF
ROMs are marked with black asterisks.

Table 2: Relative modal displacement amplitudes of the most strongly coupled bending and axial
modes, for different combinations of static forces applied in the first and second modes.

Mode no.
F1 F2 1 2 3 27 59
0 270 1.2 × 10−1 1.0 × 100 2.9 × 10−3 1.5 × 10−1 5.2 × 10−2

45 0 1.0 × 100 6.3 × 10−3 3.8 × 10−4 1.7 × 10−1 6.7 × 10−2

45 -270 1.0 × 100 1.6 × 10−1 1.4 × 10−3 1.7 × 10−1 2.3 × 10−2

45 270 1.0 × 100 1.7 × 10−1 5.9 × 10−3 1.9 × 10−1 1.2 × 10−1

behaviour of the second NNM, which arises due to the effect of in-plane inertia. The dominance of
the inertial over the geometric nonlinearities in the second backbone curve, as well as in all higher
backbone curves of the cantilever beam, is a classical observation in the literature [50–53,58,59].
Figure 9(c,d) shows the phase space plots of ten different free response runs of the FE model,
with the initial conditions and period of integration predicted by the ICE and ICE-IC ROMs,
respectively. In the case of the ICE ROM, it can be observed that not only is the response
frequency overestimated, but the initial conditions predicted by the ROM are such that the full-
order response is not periodic, regardless of the period of integration, i.e. the loops gradually
shift in phase space. Conversely, the periodic solutions predicted by the ICE-IC ROM satisfy the
FE model with excellent accuracy.

5. Conclusion
In this paper, we consider the indirect reduced-order modelling strategy commonly referred to as
Implicit Condensation and Expansion, which is applicable to geometrically nonlinear structures
modelled using commercial FE software. We have demonstrated its effectiveness, by employing
it for the reduction of an FE model of a clamped-clamped beam, as well as its limitations, using a
cantilever beam. We have shown that, in the latter example, the large in-plane displacements can
give rise to significant amounts of kinetic energy in the high-frequency, statically coupled axial
modes. In the ICE method, in-plane kinetic energy is neglected, which leads to results which are
quantitatively and qualitatively inaccurate. We have used the concept of an underlying nonlinear
manifold to show, using a Lagrangian approach, how the effect of the in-plane kinetic energy
can be accounted for in the reduced dynamics. This gives rise to additional terms in the reduced
EOMs, relative to the standard ICE ROM, which we term Inertial Compensation—the proposed
extended method is referred to as ICE-IC. The additional functions in the ICE-IC ROM are
formulated using the existing static solution dataset that is used to calibrate the standard ROM.
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Figure 9: Top: Second backbone curve of the C-F beam, predicted by the quintic two-DOF
ROMs without (blue) and with (red) inertial compensation. These are plotted in the projection
of response frequency against (a) amplitude of the second mode, and (b) amplitude of the first
mode. Bottom: Comparison between the periodic response predicted by the ROMs (dashed lines)
and the response of the FE model (solid black line), plotted in the physical phase space, for (c) the
ICE ROM and (d) the ICE-IC ROM. Ten different sets of initial conditions are considered for
each ROM, and these are marked with black dots on the backbone curves. For each free response
run, the FE states at time t = 0 and t =TΩ are marked with circles and crosses, respectively. The
numbers in brackets in the legends denote the modes included in the reduction basis.

Specifically, the additional terms are expressed in terms of the functions which describe the quasi-
static coupling between the dynamically important transverse modes and the statically coupled
in-plane modes—these are used in the Expansion step of the standard ICE method in order to
recover the physical displacement of the full-order model, but they are not taken into account
when considering the reduced dynamics. We have demonstrated the proposed method using the
common engineering example of a cantilever beam example, and shown that excellent accuracy
can be obtained. In practical applications, the inertial compensation approach can significantly
improve the accuracy and efficiency of ROMs of engineering structures which have similar
properties to a cantilever beam, such as wind turbine blades and flexible wings, as well as any
other structures where a significant amount of kinetic energy is present in the condensed modes.
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A. Reduction through a nonlinear projection
Here, we demonstrate that the Lagrangian-based approach presented in §3, is equivalent to
projecting the EOMs of the full-order system onto an underlying nonlinear manifold. We start
by considering the EOMs of the full-order model, split into the reduced, statically coupled, and
unmodelled modal coordinates, i.e. equation (2.4). When the response of the third group of modes
is neglected, the full-order EOMs can be approximated12 as[

Ür
Üs

]
+

[
Λr 0
0 Λs

] [
r
s

]
+

[
f̂r (r, s)
f̂s(r, s)

]
=

[
Fr
0

]
. (A.1)

Then, since the coordinates in s are assumed to be statically coupled to the coordinates in r
(equation (2.6)), the system can be reduced using a nonlinear mapping Γ, defined as[

r
s

]
=

[
r

g(r)

]
= Γ(r). (A.2)

Differentiating this twice with respect to time, leads to[
Ûr
Ûs

]
=
∂Γ

∂r
Ûr[

Ür
Üs

]
=
∂Γ

∂r
Ür +

(
∂2Γ

∂r2
Ûr
)
Ûr,

(A.3a)

(A.3b)

where
∂Γ

∂r
and

∂2Γ

∂r2 are, respectively, the Jacobian and vector Laplacian of the nonlinear mapping,

with dimensions of (R + S) × R and (R + S) × R × R. These can be rewritten as

∂Γ

∂r
=


I
∂g
∂r

 ,
∂2Γ

∂r2 =


0
∂2g
∂r2

 , (A.4)

where
∂g
∂r
[i, j] =

∂gi
∂rj

,
∂2g
∂r2 [i, j, k] =

∂2gi
∂rj∂rk

, I is the R × R identity matrix and 0 is the R × R × R

zero tensor. Substituting equations (A.2) and (A.3) into equation (A.1) and premultiplying by the

transpose of the tangent subspace [22,23],
(
∂Γ

∂r

)Ë
, leads to(

∂Γ

∂r

)Ë [ ∂Γ
∂r
Ür +

(
∂2Γ

∂r2
Ûr
)
Ûr
]
+

(
∂Γ

∂r

)Ë [
Λr 0
0 Λs

]
Γ +

(
∂Γ

∂r

)Ë [f̂r (r, g)
f̂s(r, g)

]
=

(
∂Γ

∂r

)Ë [Fr
0

]
. (A.5)

Finally, after substituting equations (A.4) into equation (A.5), and some algebraic manipulation,
equation (3.8) is obtained.
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