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Abstract 

We present a new methodology for the generation of discrete molecularly-dispersed enzyme–

polymer-surfactant bioconjugates. Significantly, we demonstrate that a more-than three-fold 

increase in the catalytic efficiency of the diffusion-limited phosphotriesterase arPTE can be 

achieved through sequential electrostatic addition of cationic and anionic  polymer surfactants, 

respectively. Here, the polymer surfactants assemble on the surface of the enzyme via ion 

exchange to yield a compact corona. The observed rate enhancement is consistent with a 

mechanism whereby the polymer-surfactant corona gives rise to a decrease in the dielectric 

constant in the vicinity of the active site of the enzyme, accelerating the rate-determining 

product diffusion step. The facile methodology has significant potential for increasing the 

efficiency of enzymes and could therefore have a substantial positive impact for industrial 

enzymology. 

 

Main text 

Phosphotriesterases (PTEs, also known as organophosphate hydrolases) have evolved to 

rapidly detoxify organophosphates (OPs). This has attracted significant interest as a potential 

means to counteract poisoning from OP-based chemical warfare agents and pesticides.(1, 2) 

These highly toxic compounds are still used as a tool of conflict and covert action, with recent 

examples including sarin attacks in Syria and the use of a Novichock agent in the United 

Kingdom.(3) The effectiveness of PTEs are directly dependent on the rate at which they can 

detoxify these compounds, as well as the lifetime of the enzyme.(4) The real-world 

performance of enzymes can often be improved through covalent modifications such as 

PEGylation,(5, 6) or immobilization and entrapment of enzymes at surfaces.(7-9) Indeed, 

enzyme immobilization can offer great improvements to thermostability, enable enzymes to 

be integrated into large-scale high-throughput production systems, and crucially, allow these 

enzymes to be recycled multiple times.(10-12) However, these approaches often impart 

detrimental effects such as a decrease in enzyme activity, which can preclude an enzyme 

from practical use.(10, 11, 13, 14) Here, this decrease in activity can result from surface-

induced denaturation, obstruction of the active site, or reduction in the rate of substrate/ 

product diffusion.  

We have previously developed a methodology to modify protein surfaces via electrostatic 

assembly of a polymer surfactant corona.(15-18) This process involves chemical cationization 

via nucleophilic addition of diamines to the solvent-exposed acidic residues to generate super-

cationic proteins, followed by electrostatic grafting of anionic polymer surfactant molecules to 

the surface. Once formed, these complexes were ionically stable, as verified through analytical 

ultracentrifugation in the presence of high salt,(17, 19) and similarly, the presence of fatty 
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substrates such as lipids does not dissociate the enzyme-surfactant complex.(15) 

Significantly, the resulting hybrid constructs were used to produce a portfolio of new 

biomaterials that exhibited a wide range of interesting properties, including biologically-active 

solvent-free biofluids with extreme thermostability,(15, 17, 18) hierarchically self-assembled 

membranes films with recyclable catalytic activities,(20, 21) and artificial cell membrane-

binding proteins with oxygen delivery and extracellular matrix forming capacities.(22, 23) 

However, as commonly reported for other covalent approaches to protein modification, the 

chemical cationization required to supercharge the proteins resulted in a significant loss in 

protein structure and enzymatic activity.(15, 22, 24) Accordingly, we describe a non-covalent 

approach to generate molecularly dispersed protein–polymer surfactant bioconjugates 

(Figure 1). This new methodology involves sequential electrostatic grafting of PEG-based 

cationic and anionic surfactants via ion exchange to the naturally-occurring charged residues 

on the surface of the enzyme. This gives rise to monodispersed enzyme–polymer surfactant 

complexes (denoted [Enzyme][S+][S−]) that are analogous to previously described 

bioconjugates,(15, 22) but can be readily produced without the need for covalent modification. 

Significantly, for the Agrobacterium radiobacter phosphotriesterase (arPTE),(25) we observe 

a more-than three-fold increase in the catalytic efficiency by optimising the composition of the 

polymer surfactant corona.  
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Figure 1. Schematic depicting the conjugation 

process, involving the sequential electrostatic addition 

of polymer-surfactants. First, cationic surfactants 

(Ethoquad, red) are complexed to an unmodified 

protein (arPTE shown above) through electrostatic 

forces to the solvent exposed anionic amino acids (red 

sites on the protein). This is then followed by the 

addition of an anionic surfactant (oxidized IGEPAL, 

blue), which are likewise complexed to the protein 

through electrostatic interactions with the solvent 

exposed cationic amino acids (blue sites on the 

protein). The result is a surfactant corona that 

encapsulates the protein. 
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Kinetic assays of paraoxon hydrolysis using [arPTE][S+][S−] were performed over a range of 

anionic polymer surfactant molecular weights, with higher molecular weight surfactants 

tending towards higher activities (Figure S1). Moreover, no activity enhancement was 

observed after the addition of only the cationic surfactant Ethoquad (Figure S1). Reversing 

the order of addition of the surfactants (i.e., [S−][S+]) for some surfactants resulted in enzyme 

aggregation and precipitation, and accordingly, was not pursued further. Previous 

computational models reveal the formation of micelle-like structures, which limits the 

interactions between the charged heads groups of the different surfactants and thus facilitates 

the formation of the corona despite the potential for surfactant-surfactant ionic 

interactions.(26) The greatest enhancement to catalytic activity occurred after the sequential 

addition of Ethoquad followed by oxidized IGEPAL-890 (Figures 2 and S2), which resulted in 

a two-fold increase in the substrate turnover rate (kcat) when compared to unmodified arPTE 

(267 ± 12 s-1 to 575 ± 23 s-1). Moreover, this was accompanied by an improvement in the 

substrate binding affinity (Km; 56 ± 10 to 36 ± 6 µM), which translates to a more-than three-

fold increase in the specificity constant (catalytic efficiency, kcat/Km; 4.7×106 to 1.6×107 M-1 S-

1). Accordingly, this protocol was used for all subsequent experiments, and the resulting 

bioconjugate is hereafter denoted by [arPTE][S+][S−].  

 

  

Figure 2. a) The Michaelis–Menten curve of 

the enzyme arPTE (blue) compared and 

[arPTE][S+][S−] (red) demonstrating a large 

increase to catalytic rate at room temperature. 

Assays were performed under the conditions 

described in the supplementary methods. b) 

The corresponding kcat and Km of arPTE and 

[arPTE][S+][S−] derived from the Michaelis–

Menten curve shown in in a). 
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To verify polymer-surfactant binding to the surface of arPTE, synchrotron radiation small angle 

X-ray scattering (SR-SAXS) experiments were performed to evaluate the dimensions of the 

unmodified and surfactant complexed enzyme ([arPTE][S+][S−]). A 12.6 Å increase in the radial 

average (rave) was calculated from the pair–distance distribution function (P(r), Figure 3A) of 

[arPTE][S+][S−] relative to arPTE, which is comparable to computational models based on the 

analogous chemically-cationized single-surfactant systems.(26) Additionally, there was a 

small change in the Porod exponent between arPTE and [arPTE][S+][S−] (3.8 to 3.5, Table 

S1), which is to be expected due to the addition of flexible surfactant chains. Bead models 

produced from the SR-SAXS analyses revealed that the size and the shape of the unmodified 

arPTE is commensurate with published crystal structures of the dimeric enzyme (PDB ID: 

2D2J), and that [arPTE][S+][S−] has an increased size corresponding to the addition of a 

compact polymer surfactant corona to the dimer (Figures 3B and S3A-B). This size increase 

supports an electrostatically-driven assembly process to form an encapsulating polymer 

surfactant layer, resulting in discrete, monodispersed surfactant–enzyme dimer 

complexes.(27)  

 

 

Circular dichroism (CD) measurements revealed superimposable spectra for arPTE and 

[arPTE][S+][S−] (Figure S4A), which indicated that surfactant complexation did not affect the 

secondary structure. This suggests that the rate enhancement did not occur via fortuitous 

stabilization of a structural conformation, although conformational changes beyond the 

resolution of CD cannot be discounted. 

The observed catalytic efficiency of many enzymes are dependent on other extraneous 

contributions, such as surface-induced deactivation.(28) This effect can be significant when 

Figure 3. a) The pair-distance distribution function 

(P(r)) of arPTE (blue) and [arPTE][S+][S−] (red) 

obtained through SR-SAXS. The surfactant 

conjugation process increases the radial average 

(rave) of the enzyme from 36.2 Å to 48.8 Å. b) The 

crystal structure of arPTE (PDB ID: 2D2J, purple) 

superimposed on the bead-model obtained from 

SR-SAXS analysis of arPTE (green) and 

[arPTE][S+][S−] (blue). The models confirm that the 

oligomeric state of the enzyme is still maintained 

after conjugation with the surfactant corona, and that 

the surfactant creates a consistent shell around the 

enzyme. 
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working with enzymes at very low concentrations, as is necessary to collect the linear initial 

rate for highly efficient enzymes such as arPTE. Experimentally, these adsorption effects can 

be prevented with the addition of bovine serum albumin (BSA) to block non-specific protein 

binding.(29) Accordingly, both arPTE and [arPTE][S+][S−] were assayed against paraoxon with 

and without the presence of 0.1% w/v BSA. The addition BSA did not initially result in a change 

in the catalytic activity in either system (assay periods < 10 minutes) (Figure 4A). However, 

assays performed over a four-hour period showed a gradual decay in the activity of arPTE, 

which did not occur for [arPTE][S+][S−], [arPTE][S+][S−] with 0.1% w/v BSA, and arPTE with 

0.1% w/v BSA (Figure 4B). To investigate if the loss in activity of the native enzyme was due 

to slow unfolding (rather than surface-induced deactivation), a time-dependent circular 

dichroism thermostability study of arPTE and [arPTE][S+][S−] was performed (Figures S4B-

C). While a high-temperature CD gradient did show that [arPTE][S+][S−] had a slight 

enhancement to overall thermostability, an isothermal time-course experiment at 40 C   

showed that no slow denaturation of either [arPTE][S+][S−] or arPTE occurs even at 

temperatures elevated slightly above ambient conditions. Accordingly, this data supports a 

scenario where either the surfactant corona or BSA stabilised the enzyme, and where the 

presence of BSA did not enhance the activity of the enzyme, but rather, prevented the loss of 

activity over time. Moreover, this loss of activity would only be significant for assays conducted 

over long time periods, and therefore could only represent a small fraction of the improvement 

in the catalytic efficiency observed for [arPTE][S+][S−]. 

 

 

Figure 4. a) The normalized catalytic rate 

(kcat) of arPTE and [arPTE][S+][S−] at room 

temperature with and without the presence of 

0.1% w/v BSA, showing that BSA itself does 

not appear to directly influence catalytic rate. 

b) Activity of a stock of 4 nM enzyme over 

time at room temperature, showing that 

hydrophobic denaturation can significantly 

affect the observed rate of arPTE (blue) over 

extended periods of time. arPTE with BSA 

(red), [arPTE][S+][S−] (green) and 

[arPTE][S+][S−] with BSA (purple) do not 

exhibit this loss in activity. All assays were 

performed as described in the 

supplementary methods in  a buffer of 30 mM 

HEPES, 100 µM cobalt chloride at pH 8.0. 
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Previous studies of PTEs have established that the rate limiting step of these high turnover 

rate enzymes is the diffusion of the reaction product away from the active site.(30) It is 

therefore possible that the formation of a compact amphiphilic polymer-surfactant corona may 

accelerate the diffusion step via product partitioning through a reduction in the local dielectric 

constant at the active site. This mechanism is supported by the conserved tertiary and 

secondary structure reported above (verified through SAXS and CD respectively), and the 

positive correlation between the molecular weight of the surfactant and the enzymatic activity. 

This is not unprecedented, as an increase in activity has previously been noted post-

modification of PTEs,(31) with an in-depth study of PTE nanoparticle complexes also showing 

an increase in activity.(32, 33) The authors attributed this to an increase in the diffusion of the 

product away from the active site, promoted by a change in the immediate microenvironment 

around the enzyme. Using the same theoretical model as Breger et al. that considers changes 

in substrate and product on and off rates,(32) we show that our experimentally observed data 

is consistent with an increase to the product release/diffusion step, rather than a substrate 

binding step (Figure S5). Finally, we observe that compared to paraoxon, the magnitude of 

the rate enhancement is larger for coumaphos (Figures S6A-B), a substrate with a more 

hydrophobic product, further supporting the theory that diffusion of hydrophobic products is 

better enabled by the amphiphilic corona. Enzyme enhancement through substrate/product 

partitioning has been previously described, but through enzyme immobilization,(34) thus the 

retention of enzyme mobility is an important outcome. However, as alterations to the surface 

of arPTE can have impact on activity,(30, 35) we cannot discount the possibility that there is 

some fortuitous enhancement of conformational mobility, resulting in an increase in the rate 

of product release. An additional consideration is a change in the oligomeric equilibrium 

between the monomer and dimer influencing the catalytic rate, however as we see a difference 

in the rate enhancement between different substrates, this is unlikely. 

To further probe the effect of polymer surfactant complexation on enzyme structure 

and function, the dual surfactant complexation method was applied to three other PTEs: 

pdPTE-C23, α-Esterase7 (αEst7) and DFPase (Figure S7A–C).(36-38) Phosphotriesterase-

C23 (pdPTE-C23) is a PTE mutant from Pseudomonas diminuta designed for greater catalytic 

efficiency against the G and V series nerve agents.(36) αEst7 is a carboxylesterase that has 

evolved independently to break down a number of organophosphate pesticides and is 

structurally distinct from the PTE enzyme superfamily.(37) Lastly, DFPase, found in Loligo 

vulgaris, is capable of hydrolysing diisopropylfluorophosphate (DFP), and like αEst7, is 

structurally distinct.(38) All three enzymes successfully formed enzymatically active polymer 

surfactant-complexes through the dual-surfactant method. As with [arPTE][S+][S−], SR-SAXS 

confirmed the formation of discrete enzyme-polymer surfactant complexes with compact 

coronas (Figures S7D–F). Interestingly, polymer-surfactant complexation resulted in a 

decrease in kcat and an increase in Km for pdPTE-C23 and αEst7. As αEst7 has evolved to 

hydrolyse fatty ester substrates akin to the hydrophobic tails of the surfactant, this is likely a 

consequence of steric inhibition of the active site.(15, 24) In a similar fashion, pdPTE-C23 has 

an engineered mutation of a phenylalanine residue to a glutamate (F132E) at the active 

site,(36) which would promote inhibition via electrostatic binding of S+. To confirm that the 

observed inhibition was not due to denaturation and was a result of active site inhibition, we 

also assayed the activity after treating pdPTE-C23 with uncharged surfactants. As expected, 

at high surfactant concentrations (1% w/v of assay) pdPTE-C23 showed inhibition comparable 

to [pdPTE-C23][S-] (Figure S8). However after dialysis, activity was restored to pdPTE-C23 

treated with uncharged surfactants, but not for [pdPTE-C23][S-]. This demonstrates that the 

decreased rate is through active site inhibition by the surfactant, and also verifies that the 

surfactant corona complex is maintained even at dilute concentrations. Finally, for DFPase we 

observed no change in affinity or rate between the unmodified enzyme and the bioconjugate 
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[DFPase][S+][S−]. As the rate limiting step of DFPase is the dissociation of fluorine from the 

phosphorous during the catalytic cycle,(38) the lack of rate enhancement (or decrease) 

observed here supports our proposed mechanism of improved product off rate.  

In conclusion, we have demonstrated that our electrostatic dual surfactant conjugation 

methodology can be readily applied to generate aqueous molecular dispersion of active 

enzyme-polymer surfactant complexes without the need for covalent modifications. Moreover, 

we show that the approach can be tuned to enhance the catalytic efficiency of arPTE by more 

than three-fold, and we reconcile this improvement with an acceleration in the product diffusion 

rate via hydrophobic partitioning. We also show that the surface-bound polymer surfactant 

corona protects arPTE from surface-induced deactivation. Although we could readily apply our 

methodology to other PTEs to give catalytically active complexes, it is clear that rate 

enhancement is dependent on parameters such as catalytic mechanism, surface charge, 

hydrophobicity and active site geometry. In principle, the use of amphiphilic coronas is 

compatible with other beneficial enzyme modifications such as immobilization. The covalent 

linkage of the surfactant or the enzyme to a surface may impart properties such as improved 

selectivity,(34) and may enhance the enzyme beyond what is achievable through simple 

immobilization alone, but at the cost of enzyme mobility. With the correct selection of polymer-

surfactants and rational enzyme design, it should be possible to improve the performance of 

industrially-relevant enzymes under both aqueous and non-aqueous conditions.(39, 40) 

Supporting Information 

The Supporting Information is available free of charge on the 

ACS Publications website at DOI: XXX.  

Contains experimental methods such as protein expression, synthesis and complexation, and 

assay procedures, as well as supplementary figures and tables. (link) 

 

Author information 

Corresponding author: *chawp@bristol.ac.uk; *cjackson@rsc.anu.edu.au 

Acknowledgements 

This research was funded by the EPSRC (EP/N026586/1) that was awarded in collaboration 

with the Defence Science and Technology Laboratory (DSTL). 

We are grateful for the time allotment from Diamond, which allowed SR-SAXS to be performed 

at the Diamond Light Source I22 beamline, and SEC-SR-SAXS to be performed using the 

Diamond B21 mail-in service. We would like to thank Jayne Ede and Ian Shortman from the 

Defence Science and Technology Laboratory (DSTL) for intellectual input and discussion. We 

would also like to thank Eleanor Campbell and Galen Corey (From the Australian National 

University) for supplying the arPTE and αEst7 plasmids respectively. 

References 

(1) Tsai, P. C., Fox, N., Bigley, A. N., Harvey, S. P., Barondeau, D. P., and Raushel, F. M. (2012) 
Enzymes for the homeland defense: optimizing phosphotriesterase for the hydrolysis of 
organophosphate nerve agents. Biochemistry 51, 6463-75. 

(2) Jacquet, P., Daude, D., Bzdrenga, J., Masson, P., Elias, M., and Chabriere, E. (2016) Current and 
emerging strategies for organophosphate decontamination: special focus on hyperstable 
enzymes. Environ. Sci. Pollut. Res. Int. 23, 8200-18. 

mailto:*chawp@bristol.ac.uk


 

9 
 

(3) Vale, J. A., Marrs, T. O., and Maynard, R. C. (2018) Novichok: a murderous nerve agent attack 
in the UK. Clin. Toxicol. (Phila). 56, 1093-1097. 

(4) Gupta, R. D., Goldsmith, M., Ashani, Y., Simo, Y., Mullokandov, G., Bar, H., Ben-David, M., 
Leader, H., Margalit, R., Silman, I., et al. (2011) Directed evolution of hydrolases for prevention 
of G-type nerve agent intoxication. Nat. Chem. Biol. 7, 120-5. 

(5) Swierczewska, M., Lee, K. C., and Lee, S. (2015) What is the future of PEGylated therapies? 
Expert Opin. Emerg. Drugs 20, 531-6. 

(6) Dozier, J. K., and Distefano, M. D. (2015) Site-Specific PEGylation of Therapeutic Proteins. Int. 
J. Mol. Sci. 16, 25831-64. 

(7) Rabuka, D. (2010) Chemoenzymatic methods for site-specific protein modification. Curr. Opin. 
Chem. Biol. 14, 790-6. 

(8) Zhang, Y. F., Ge, J., and Liu, Z. (2015) Enhanced Activity of Immobilized or Chemically Modified 
Enzymes. ACS Catalysis 5, 4503-4513. 

(9) Denard, C. A., Ren, H., and Zhao, H. (2015) Improving and repurposing biocatalysts via directed 
evolution. Curr. Opin. Chem. Biol. 25, 55-64. 

(10) DiCosimo, R., McAuliffe, J., Poulose, A. J., and Bohlmann, G. (2013) Industrial use of 
immobilized enzymes. Chem. Soc. Rev. 42, 6437-74. 

(11) Sheldon, R. A., and Brady, D. (2018) The limits to biocatalysis: pushing the envelope. Chem. 
Commun. (Camb.) 54, 6088-6104. 

(12) Sheldon, R. A., and Woodley, J. M. (2018) Role of Biocatalysis in Sustainable Chemistry. Chem. 
Rev. 118, 801-838. 

(13) Lawrence, P. B., and Price, J. L. (2016) How PEGylation influences protein conformational 
stability. Curr. Opin. Chem. Biol. 34, 88-94. 

(14) Keefe, A. J., and Jiang, S. (2011) Poly(zwitterionic)protein conjugates offer increased stability 
without sacrificing binding affinity or bioactivity. Nat Chem 4, 59-63. 

(15) Brogan, A. P. S., Sharma, K. P., Perriman, A. W., and Mann, S. (2014) Enzyme activity in liquid 
lipase melts as a step towards solvent-free biology at 150 °C. Nat. Commun. 5, 5058. 

(16) Gallat, F. X., Brogan, A. P., Fichou, Y., McGrath, N., Moulin, M., Hartlein, M., Combet, J., 
Wuttke, J., Mann, S., Zaccai, G., et al. (2012) A polymer surfactant corona dynamically replaces 
water in solvent-free protein liquids and ensures macromolecular flexibility and activity. J. Am. 
Chem. Soc. 134, 13168-71. 

(17) Perriman, A. W., Colfen, H., Hughes, R. W., Barrie, C. L., and Mann, S. (2009) Solvent-free 
protein liquids and liquid crystals. Angew. Chem. Int. Ed. Engl. 48, 6242-6. 

(18) Perriman, A. W., Brogan, A. P., Colfen, H., Tsoureas, N., Owen, G. R., and Mann, S. (2010) 
Reversible dioxygen binding in solvent-free liquid myoglobin. Nat Chem 2, 622-6. 

(19) Xiao, W. J., Green, T. I. P., Liang, X. W., Delint, R. C., Perry, G., Roberts, M. S., Le Vay, K., Back, 
C. R., Ascione, R., Wang, H. L., et al. (2019) Designer artificial membrane binding proteins to 
direct stem cells to the myocardium. Chem. Sci. 10, 7610-7618. 

(20) Sharma, K. P., Collins, A. M., Perriman, A. W., and Mann, S. (2013) Enzymatically active self-
standing protein-polymer surfactant films prepared by hierarchical self-assembly. Adv. Mater. 
25, 2005-10. 

(21) Farrugia, T., Perriman, A. W., Sharma, K. P., and Mann, S. (2017) Multi-enzyme cascade 
reactions using protein-polymer surfactant self-standing films. Chem. Commun. (Camb.) 53, 
2094-2097. 

(22) Armstrong, J. P. K., Shakur, R., Horne, J. P., Dickinson, S. C., Armstrong, C. T., Lau, K., Kadiwala, 
J., Lowe, R., Seddon, A., Mann, S., et al. (2015) Artificial membrane-binding proteins stimulate 
oxygenation of stem cells during engineering of large cartilage tissue. Nat. Commun. 6, 7405. 

(23) Deller, R. C., Richardson, T., Richardson, R., Bevan, L., Zampetakis, I., Scarpa, F., and Perriman, 
A. W. (2019) Artificial cell membrane binding thrombin constructs drive in situ fibrin hydrogel 
formation. Nat. Commun. 10, 1887. 



 

10 
 

(24) Perez, B., Coletta, A., Pedersen, J. N., Petersen, S. V., Periole, X., Pedersen, J. S., Sessions, R. 
B., Guo, Z., Perriman, A., and Schiott, B. (2018) Insight into the molecular mechanism behind 
PEG-mediated stabilization of biofluid lipases. Sci. Rep. 8, 12293. 

(25) Ely, F., Hadler, K. S., Gahan, L. R., Guddat, L. W., Ollis, D. L., and Schenk, G. (2010) The 
organophosphate-degrading enzyme from Agrobacterium radiobacter displays mechanistic 
flexibility for catalysis. Biochem. J. 432, 565-73. 

(26) Brogan, A. P., Sessions, R. B., Perriman, A. W., and Mann, S. (2014) Molecular dynamics 
simulations reveal a dielectric-responsive coronal structure in protein-polymer surfactant 
hybrid nanoconstructs. J. Am. Chem. Soc. 136, 16824-31. 

(27) Zhang, Y., Patil, A. J., Perriman, A. W., and Mann, S. (2013) Enhanced catalytic activity in 
organic solvents using molecularly dispersed haemoglobin-polymer surfactant constructs. 
Chem. Commun. (Camb.) 49, 9561-3. 

(28) Brode, P. F., Erwin, C. R., Rauch, D. S., Lucas, D. S., and Rubingh, D. N. (1994) Enzyme Behavior 
at Surfaces - Site-Specific Variants of Subtilisin Bpn' with Enhanced Surface Stability. J. Biol. 
Chem. 269, 23538-23543. 

(29) Goebel-Stengel, M., Stengel, A., Tache, Y., and Reeve, J. R., Jr. (2011) The importance of using 
the optimal plasticware and glassware in studies involving peptides. Anal. Biochem. 414, 38-
46. 

(30) Jackson, C. J., Foo, J. L., Tokuriki, N., Afriat, L., Carr, P. D., Kim, H. K., Schenk, G., Tawfik, D. S., 
and Ollis, D. L. (2009) Conformational sampling, catalysis, and evolution of the bacterial 
phosphotriesterase. Proc. Natl. Acad. Sci. U.S.A. 106, 21631-6. 

(31) Kim, M., Gkikas, M., Huang, A., Kang, J. W., Suthiwangcharoen, N., Nagarajan, R., and Olsen, 
B. D. (2014) Enhanced activity and stability of organophosphorus hydrolase via interaction 
with an amphiphilic polymer. Chem. Commun. (Camb.) 50, 5345-8. 

(32) Breger, J. C., Ancona, M. G., Walper, S. A., Oh, E., Susumu, K., Stewart, M. H., Deschamps, J. 
R., and Medintz, I. L. (2015) Understanding How Nanoparticle Attachment Enhances 
Phosphotriesterase Kinetic Efficiency. ACS Nano 9, 8491-503. 

(33) Hondred, J. A., Breger, J. C., Garland, N. T., Oh, E., Susumu, K., Walper, S. A., Medintz, I. L., and 
Claussen, J. C. (2017) Enhanced enzymatic activity from phosphotriesterase trimer gold 
nanoparticle bioconjugates for pesticide detection. Analyst 142, 3261-3271. 

(34) Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, A., Torres, R., and Fernandez-Lafuente, R. (2013) 
Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 42, 6290-307. 

(35) Campbell, E., Kaltenbach, M., Correy, G. J., Carr, P. D., Porebski, B. T., Livingstone, E. K., Afriat-
Jurnou, L., Buckle, A. M., Weik, M., Hollfelder, F., et al. (2016) The role of protein dynamics in 
the evolution of new enzyme function. Nat. Chem. Biol. 12, 944-950. 

(36) Cherny, I., Greisen, P., Jr., Ashani, Y., Khare, S. D., Oberdorfer, G., Leader, H., Baker, D., and 
Tawfik, D. S. (2013) Engineering V-type nerve agents detoxifying enzymes using 
computationally focused libraries. ACS Chem. Biol. 8, 2394-403. 

(37) Jackson, C. J., Liu, J. W., Carr, P. D., Younus, F., Coppin, C., Meirelles, T., Lethier, M., Pandey, 
G., Ollis, D. L., Russell, R. J., et al. (2013) Structure and function of an insect alpha-
carboxylesterase (alphaEsterase7) associated with insecticide resistance. Proc. Natl. Acad. Sci. 
U.S.A. 110, 10177-82. 

(38) Wymore, T., Field, M. J., Langan, P., Smith, J. C., and Parks, J. M. (2014) Hydrolysis of DFP and 
the nerve agent (S)-sarin by DFPase proceeds along two different reaction pathways: 
implications for engineering bioscavengers. J. Phys. Chem. B 118, 4479-89. 

(39) Klibanov, A. M. (2001) Improving enzymes by using them in organic solvents. Nature 409, 241-
6. 

(40) Ke, T., and Klibanov, A. M. (1998) On enzymatic activity in organic solvents as a function of 
enzyme history. Biotechnol. Bioeng. 57, 746-750. 

 



 

11 
 

 

 


