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Abstract. Variability is present within the stress-life (S-N) fatigue analysis pro-

cess. This variability propagates through the analysis process into the accumu-

lated damage computed using Miner’s Rule. This paper aims to characterise the 

probability distribution type of the accumulated damage from Miner’s rule when 

accounting for variability in fatigue design parameters using a case study. Whilst 

the distribution type could not be conclusively selected, considerations regarding 

the future application of probabilistic methods for fatigue design are presented.  

Keywords: Probabilistic Fatigue, Miner’s Rule, Skewed Distribution. 

1 Introduction 

Within the sector of fatigue design, many metallic components are designed to mit-

igate fatigue failure using ‘classical’ analysis approaches based upon stress-life (S-N) 

curves and Miner’s Rule. This approach is known as the safe-life fatigue analysis pro-

cess and is currently used for aircraft landing gear [1], along with components from 

many other industries. The component ‘safe-life’ represents the number of applied cy-

cles after which the component must be removed from service. However, the safe-life 

fatigue analysis process contains many sources of variability within fatigue design pa-

rameters, such as materials data, loading and component dimensions [2]. This variabil-

ity propagates through the process, resulting in significant variation in the accumulated 

fatigue damage from Miner’s Rule and hence the component safe-life. Current research 

work by the authors aims to develop a probabilistic approach that will compute the 

probability of failure (𝑃𝑓) associated with a component safe-life, to better represent the 

statistical nature of fatigue. A probabilistic approach would model design parameters 

as probability distributions (e.g. Normal, Weibull, etc.) and would use probabilistic 

methods to propagate the variability through to the accumulated damage, enabling the 

computation of 𝑃𝑓 [3]. As the accuracy of the damage probability distribution is vital 

for producing an accurate value of 𝑃𝑓, this paper aims to characterise the probability 

distribution type of the accumulated damage from Miner’s Rule using a case study.  
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1.1 Stress-Life Fatigue Analysis Process 

Stress-Life (S-N) fatigue analysis is a classical approach to fatigue analysis [2]. The 

loads applied to the component are “blocked” into ‘𝑖’ blocks defined by the maximum 

and minimum load-levels (𝑃𝑚𝑎𝑥𝑖
 , 𝑃𝑚𝑖𝑛𝑖

) and the number of times a pair of load levels 

is applied (𝑛𝑖). The loads are converted into stress-levels and subsequently into cyclic 

stress amplitudes (𝜎𝑎𝑖
) and their associated mean stresses (𝜎𝑚𝑖

). To convert the stress 

cycles into equivalent fully-reversed (i.e. 𝜎𝑚𝑖
 = 0) stress amplitudes (𝜎𝑠𝑖

) a model, such 

as the Goodman correction, is applied [2]. S-N curves represent how the number of 

cycles to failure (𝑁𝑓) varies with the applied cyclic stress of a material. S-N curves are 

typically based on fully-reversed testing of material coupons. Miner’s Rule can then be 

used to compute the fatigue damage accumulated (𝑑𝑖) for a cyclic load ‘𝑖’ as shown in 

Equation 1 [2]. The total accumulated fatigue damage (𝐷𝑇) is computed by the summa-

tion of the individual damages [2] and failure is assumed to occur when 𝐷𝑇  = 1 [2]. 

 𝐷𝑇 = ∑ 𝑑𝑖 = ∑
𝑛𝑖

𝑁𝑓𝑖

= ∑
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑐𝑦𝑐𝑙𝑖𝑐 𝑠𝑡𝑟𝑒𝑠𝑠 `𝑖` 𝑎𝑝𝑝𝑙𝑖𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠 𝑡𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑓𝑜𝑟 𝑐𝑦𝑐𝑙𝑖𝑐 𝑠𝑡𝑟𝑒𝑠𝑠 `𝑖` 𝑓𝑟𝑜𝑚 𝑆−𝑁 𝑐𝑢𝑟𝑣𝑒
 (1) 

1.2 Probabilistic Methods: Monte Carlo Simulation 

A Monte Carlo Simulation (MCS) is a probabilistic method that performs often thou-

sands of evaluations of a process or model, each time randomly sampling different val-

ues from the input variables, which are modelled using probability distributions [3]. 

This results in many values being generated for each individual output of the process. 

The values for each output can also be statistically characterised using a probability 

distribution. In the context of this paper, the input variables are the fatigue design pa-

rameters (see Section 2.1), the process/model is the S-N analysis process, and the output 

value is the total accumulated damage from Miner’s Rule ‘𝐷𝑇’. 

1.3 Previous Literature on the Probability Distribution Type for the 

Accumulated Fatigue Damage from Miner’s Rule 

Previous studies within the literature have proposed the Normal [4], Log-Normal [5], 3 

Parameter Weibull [6] and Fréchet [5] distribution types for the accumulated fatigue 

damage from Miner’s Rule. However, these studies have relied on an assumed distri-

bution type of ‘𝑁𝑓’ from S-N data sets [4, 5, 6], along with an assumed S-N curve shape 

[5]. However, the choice of distribution type for  𝑁𝑓 is often debated [2] and cannot be 

assumed a-priori for new S-N data sets. Previous studies have also not accounted for 

variability in fatigue design parameters other than 𝑁𝑓, such as loading and dimensional 

variability. To extend the work presented in previous studies, this paper aims to present 

a general method for generating and identifying the probability distribution type of the 

accumulated damage from Miner’s rule, when accounting for material (S-N data), load-

ing and dimensional variability. This objective will be achieved through the use of an 

MCS applied to an S-N case study. The use of an MCS means that assumptions regard-

ing the 𝑁𝑓 distribution type and S-N curve shape do not need to be made a-priori.  
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2 Case Study Definition 

The case study geometry shown in Figure 1 [7] is the SAE Keyhole specimen, manu-

factured from 4340 steel [8], a typical aircraft landing gear material [1]. The hypothet-

ical load case shown in Figure 1 was constructed to achieve a spread of stress ampli-

tudes across the S-N curve and to ensure that stresses due to loading variability would 

not exceed the material Ultimate Tensile Strength (𝜎𝑈𝑇𝑆).  Stress analysis equations 

were sourced from “eFatigue” [7] and a notch stress concentration factor from ref [9]. 

1 24.75 - 11.00 50

2 18.70 - 11.00 100

3 22.00 - 16.50 100

4 24.75 - 19.80 25

5 13.75 - 22.00 100000

6 22.00 -5.50 500

7 13.75 - 22.00 100000

8 23.1 - 11.00 150

9 24.75 - 16.50 50

10 24.75 - 22.00 10

P

P

W

L(a)
(b)

 
Fig. 1.  (a) SAE Keyhole Geometry [7]. (b) Applied loading. 

 

2.1 Statistical Characterisation of Fatigue Design Parameters 

In order to provide inputs to the MCS, typical fatigue design parameters were statisti-

cally characterised, as shown in Table 1. Unless stated, all distributions were assumed 

to be Normal, based on the mean (𝜇) value and a Coefficient of Variation (𝐶𝑜𝑉) defined 

in Equation 2, where ‘𝑠’ is the sample standard deviation (𝑠 values for tolerances were 

computed assuming the tolerance represented ±3𝑠 as described by Haugen [3]). 

 𝐶𝑜𝑉 =
𝑠

𝜇
 (2) 

Table 1. Statistical characterisation of case study fatigue design parameters. 

Design Parameter Statistical Characterisation 

Load Levels 

(𝑃𝑀𝑎𝑥𝑖
, 𝑃𝑀𝑖𝑛𝑖

) 

Mean load level from Figure 1 with 𝐶𝑜𝑉 = 0.08 (typical variabil-

ity of aircraft landing gear loads during touchdown [10]). 

Number of Cycles (𝑛𝑖) A discrete uniform distribution from 0.8𝑛𝑖 to 1.2𝑛𝑖. 

Nominal Width (𝑤) 𝜇𝑤 = 68.6mm with ± 0.508mm tolerance for sawing [3]. 

Thickness (𝑡) 𝜇𝑡 = 9.5mm with ±  0.254mm tolerance for rolled steel [3]. 

Hole Diameter (∅) 𝜇∅ = 9.5mm with ±  0.254mm tolerance for drilling [3]. 

Load Offset (L) 𝜇𝐿 = 62.1mm with ±  0.381mm tolerance for hole location [3]. 

UTS (𝜎𝑈𝑇𝑆) 𝜇𝑈𝑇𝑆 = 875 MPa [8] with 𝐶𝑜𝑉 = 0.0112 [11]. 

 

To capture variability in 𝑁𝑓 at a given stress-level on the S-N curve, 2 Parameter 

(2P) Log-Normal distributions were fitted to the coupon results at each tested stress-

level in the ESDU 4340 S-N data (see Figure 2) [8]. For stress-levels that presented 

‘run-outs’ (i.e. tests where the coupon did not fail before a predetermined 𝑁𝑓) [2], a 

constant 𝐶𝑜𝑉  = 0.0323 was assumed as run-out data requires additional statistical 
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methods [12] beyond the scope of this paper. The fatigue limit (𝜎𝐹𝐿) was modelled as 

a Normal distribution based upon the ‘Probit’ method [2], giving a 𝜇 = 457MPa and 𝑠 

= 13. For each MCS iteration, a Probability S-N (P-S-N) curve [2] was generated based 

upon sampling 𝑁𝑓 and 𝜎𝐹𝐿 values as demonstrated in Figure 2. P-S-N curves assume a 

constant Probability of Survival (𝑃𝑜𝑆) at all stress amplitudes and at the 𝜎𝐹𝐿 [2].  

Fig. 2. Demonstration of P-S-N representation of S-N curves [2], based upon the ESDU 4340 

S-N data [8]. The sampling process used to generate S-N curves for the MCS is also shown.  

3 Results: Statistical Characterisation of Accumulated Damage 

The MCS of the case study was repeated for 25,000 evaluations to ensure convergence 

of the input and output distributions. The resulting histogram of the accumulated fatigue 

damage from Miner’s rule (𝐷𝑇) is shown in Figure 3a. It can be of value to identify the 

distribution of the natural logarithms (𝐿𝑛(𝐷𝑇)) of the values, as shown in Figure 3b. 
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Fig. 3. Histograms of the output from the MCS. (a) shows the distribution shape of the accumu-

lated damage from Miner’s Rule (𝐷𝑇) and (b) shows the distribution shape of 𝐿𝑛(𝐷𝑇) along with 

a Normal distribution to highlight the positive skew in 𝐿𝑛(𝐷𝑇). 

As can be seen from Figure 3a, the shape of the 𝐷𝑇 distribution is positively skewed 

(i.e. right-tailed). Candidate distributions capable of demonstrating positively skewed 

and only zero or positive values (negative damage values are not physically possible) 

were identified [12, 13]: 2P and 3P Weibull, Log-Logistic, Gamma, Fréchet, Birnbaum-

Saunders, Burr Type XII, Inverse Gaussian and Pearson Type III. Log-Normal 
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distributions were rejected due to the skew in 𝐿𝑛(𝐷𝑇) shown in Figure 3b. Maximum 

Likelihood Estimates (MLE) were used to ‘fit’ the distribution parameters (e.g. 𝜇 and 

𝑠) [12]. The Cumulative Distribution Functions (CDFs) of each candidate distribution 

were plotted against the Empirical CDF (ECDF), which is based on the observed fre-

quencies from the MCS [14], to visually assess the ‘fit’ of the candidate distributions. 

Only the 3P Weibull, Birnbaum-Saunders and Inverse Gaussian provided acceptable 

visual fits. All other distributions showed a poor visual fit at the upper tail.  

The distribution selection and MLE fitting process was repeated for the 𝐿𝑛(𝐷𝑇) val-

ues in Figure 3b. Due to the requirement for positive skew and negative values, the 

following candidate distributions were identified [12, 13]: 3P Log-Normal, 3P Weibull, 

Gumbel Maximum, Pearson Type III and Skew-Normal [15]. The Gumbel Maximum 

distribution failed to provide an acceptable visual fit to the 𝐿𝑛(𝐷𝑇) ECDF. 

The distribution types found to provide acceptable visual fits were then assessed for 

‘Goodness-of-Fit’ (GoF) using the Chi-Squared (χ2) test, which compares the frequency 

of observed values from the MCS results with those expected from the fitted distribu-

tion type [14]. This measure is known as the χ2 statistic (χ2S). This value is then com-

pared to the critical value (χ2C) at the 5% significance level and the candidate distribu-

tion was rejected if the computed χ2S exceeded the χ2C [14]. Table 2 shows the χ2S and 

χ2C for each candidate distribution. It can be seen from Table 2 that the χ2 test rejects 

each of the proposed distribution types. Therefore, despite a number of the candidate 

distributions presenting acceptable visual fits, the distribution type for the accumulated 

damage from Miner’s Rule could not be selected conclusively using the χ2 test. 

Table 2. χ2 test statistics and critical values for each of the candidate distributions.  

Result 𝐷𝑇 𝐿𝑛(𝐷𝑇) 

Distribu-

tion 

3P 

Weibull 

Birnbaum 

Saunders 

Inverse 

Gaussian 

3P 

Weibull 

3P Log-

Normal 

Pearson 

Type III 

Skew 

Normal 

χ2S 3478.24 841.11 405.05 981.52 852.16 919.61 849.90 

χ2C 137.70 138.81 138.81 137.70 137.70 137.70 137.70 

Decision Reject Reject Reject Reject Reject Reject Reject 

3.1 Impact of Results on the Development of a Probabilistic Approach 

As Table 2 has shown, the wide range of candidate distributions failed to provide an 

acceptable fit to the accumulated damage from Miner’s Rule when using the χ2 test. 

Therefore, additional distribution shapes should be considered such as Beta and other 

Pearson and Burr type distributions [13]. Regardless, the probability of failure (𝑃𝑓) 

could still be computed from the MCS results, by identifying the number of evaluations 

resulting in failure. As there were 12 ‘failure’ evaluations out of 25,000, 𝑃𝑓 = 4.8x10-4. 

The case study has also demonstrated that there is a pressing need for the development 

of a systematic process to ‘down-select’ the most appropriate distribution type from the 

wide range of candidate distributions. This is the focus of the authors’ future work and 

could be applied to MCS results and the fatigue design parameters in Section 2.1.  
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To identify the cause of the skew in the 𝐿𝑛(𝐷𝑇) values, the variability in each pa-

rameter was isolated one at a time. However, the skew in the distribution persisted. This 

suggests that the skew is caused by a non-probabilistic element of process. This is ex-

pected to be the S-N curve, as it is the single point where all design parameters interact.  

4 Conclusion 

This paper has presented a Monte Carlo Simulation applied to a stress-life analysis case 

study with the aim of selecting the probability distribution type that best characterises 

the accumulated damage from Miner’s rule. Whilst the distribution type could not be 

conclusively selected, this work has demonstrated the need to consider a wider range 

of distribution types than those commonly used in fatigue design, along with the need 

for a systematic ‘down-selection process’ to assist engineers in selecting distributions.   

 

This paper presents work performed as part of the Aerospace Technology Institute (ATI) funded 

“Large Landing Gear of the Future” project in collaboration with Safran Landing Systems. The 

authors would like to thank IHS ESDU for their permission to reproduce the 4340 S-N data. 
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