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Abstract 

 
We propose a tactical model which integrates the replenishment decision in inventory 
management, the allocation of products to warehousing systems and the assignment of products to 
storage locations in warehousing management. The purpose of this article is to analyse the value 
of integrating warehouse and inventory decisions. This is achieved by proposing two methods for 
solving this tactical integrated model which differ in the level of integration of the inventory and 
warehousing decisions. A computational analysis  is performed on a real world database and 
using multiple scenarios differing by the warehouse capacity limits. Our observation is that the 
total cost of the inventory and warehousing systems can be reduced drastically by taking into 
account the warehouse capacity restrictions in the inventory planning decisions, in an aggregate 
way. Moreover additional inventory and warehouse savings can be achieved by using more 
sophisticated integration methods for inventory and warehousing decisions. 
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relaxation. 

                                                             
1 CORE and LSM, Université catholique de Louvain, Belgium. E-mail: Geraldine.strack@uclouvain.be 
2 CORE, Université catholique de Louvain, Belgium.  
 
This paper presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated by 
the Belgian State, Prime Minister's Office, Science Policy Programming. The scientific responsibility is 
assumed by the authors. 



1 Introduction

Nowadays, managers are faced with the need to deliver a high level of service with
minimal warehouse and inventory cost. As it has been shown in surveys (WERC
1986 and [1]), the order picking activity represents 65% of the total cost and 50% of
the workforce of a warehouse. This proportion is even more important if we consider
distribution warehouses where the main activity (the only added value) is to receive
pallets of items from vendors, stock them and deliver customer orders containing
different items. In addition, with the improvement in information technology, it
becomes possible to develop tools which can help managers to handle warehouse
and inventory issues more efficiently.

At all classical levels of decision (strategic, tactical and operational) [13],[14],[9],
warehouse managers have to tackle problems which can be divided into two broad
classes: warehouse management and inventory management problems.

Regarding warehouse management issues, managers have to decide where to
assign the products inside the warehouse. Strategic decisions concern issues such
as the size of the warehouse and the technical specifications of the warehouse.
Tactical decisions concern issues such as the layout of the warehouse and the sizing
of the various areas inside the warehouse [6],[16]. Finally, operational decisions deal
with control policies and routing problems. Concerning inventory management,
managers must decide which product, and how much of each product need to be
stored in the warehouse. In this class, strategic decisions concern the size and
the design of the warehouse (a common decision with warehouse management)
and more specific decisions such as the configuration of the inventory management
decision systems. The tactical decisions concern issues such as the operating hours,
the replenishment policies and work force size. On the last level (operational),
problems such as ”what to produce or deliver”, ”when” and ”on which machine or
by whom” are considered. (see also [11] for more details)

All those decisions are interrelated but are dealt with independently [9]. Up
to now, those issues (strategic, tactical and operational decisions) are handled in a
pyramidal top-down approach where the flexibility of decisions decreases from top
to bottom. Strategic decisions are first taken and then create limits to decisions
taken at the tactical and operational levels. For example, once the size and the
design of the warehouse are fixed, these decisions will have to be respected when
replenishment policies have to be designed as well as when the size of the different
warehousing areas has to be optimized (see [9], [5] for more examples).

On top of this, decisions taken at each level of the pyramid are also handled in-
dependently and sequentially [13]. For example, concerning warehousing decisions
taken at the tactical level, Jeroem P. van den Berg [13] has introduced a classifica-
tion of the different problems faced by managers. He has proposed four different
classes of decisions.

The first class tackles issues related to the assignment of products across ware-
housing systems. Warehousing systems differ by the level of automation used. The
author [13] gives three levels of automation: manual order pickers where pickers
ride along the picking position (picker to product systems), AS/RS order picker
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or carousel where products are picked by machines and sorted by people (product
to picker systems) and totally automated order pickers (robot technology). In ad-
dition, warehouses are often divided in areas according to the unit load retrieval.
Usually, a forward area is used for order picking of units of items frequently ordered
and a reserve area is used either for replenishment of the forward area or for order
picking of cartons or pallets of items or for products not ordered frequently enough.

The second class of problems concern the clustering of correlated products in
such a way that products that are frequently ordered together are assigned to
locations close to each other.

The third class of problems concerns the workload balancing problem across
the warehouse and the last class concern the assignment of products to storage
locations in order to minimize the distance traveled for order replenishment and
picking.

We propose a tactical model which integrates more phases of the decision pro-
cess: the replenishment decision in the inventory management, the allocation of
products to warehousing systems and the assignment of products to storage loca-
tions in the warehousing management. We consider a picker to product distribution
warehouse which is divided in a forward and a reserve area. Our objective is to
minimize all relevant warehousing and inventory costs by optimizing the quantity
of each product allocated to the forward area (by reducing the work load related to
order picking), the location of the product inside the forward area and the inven-
tory replenishment policies. Our tactical model takes the size of the warehousing
systems as given (strategic decision level). Our aim is to test whether or not an
integrated approach to take these inventory and warehousing decisions has some
additional value, compared to the classical sequential approach.

In the second section, we will make a brief review of the literature available on
the subject. The third section will introduce the model formulation and the various
assumptions made. A description of the methodology used to solve the integrated
model will follow in Section 4 and lastly the various computational results will be
presented for an industrial test case in Section 5.

2 Literature review

We give references to the different models in the field of warehouse and inventory
management available in the literature. As written in Section 1, most tactical
issues in warehouse and inventory management are tackled independently and se-
quentially. In consequence, the models developed in those two fields are presented
separately.

2.1 Forward-reserve models

The Forward-reserve problem (FRP) is the problem of assigning products to the
forward and reserve areas in order to reduce the overall work content in order picking
[2]. Nowadays, most warehouses are divided in two areas: forward and reserve. The
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forward area is used for broken-case and full-case picking and the reserve area is
used for pallet picking and reserve storage. Once a product is stored in the forward
area (respectively the reserve area), all picks must be performed from the forward
area (respectively the reserve area). When the inventory of an item stored in the
forward area reaches its reorder point an internal replenishment is performed (from
the reserve area to the forward area).The forward area is usually a smaller area
than the reserve area where order picking takes less time and is then less costly.
The critical decision concerns the choice of the products which will be stored in
the forward area. Indeed, if all products are located in the forward area, the size
of this area increases and the advantage of lower order picking cost vanishes. The
other decision is to allocate space in the forward area for the different products.

Hackman and Rosenblatt [10] were the first to address the issues of deciding
which product to store in the forward area (assignment issue) and how much to store
(allocation issue). They considered a warehouse composed of a small area (forward
area) where picking of products is based on an efficient (less time consuming) AS/RS
automated storage and retrieval system. The reserve area is a large area (infinite
capacity) handled through an inefficient manual/ semi-automated material handling
system. Reception of products is made through the manual/ semi automated area
and can be used to satisfy customers orders or to make internal replenishment of the
AS/RS area. The question tackled in this article is to decide which and how much
product must be stored in the forward area taking into account picking costs and
internal replenishment costs and the capacity constraint of the forward area. They
solve the problem through the greedy heuristic where the products are assigned to
the forward area according to some priori ranking of the products until the space is
full. This ranking is based on the comparison of the savings due to efficient picking
in the AS/RS area and the cost of internal replenishment. They prove a sufficient
conditions for optimality.

Frazelle et al. [3] propose a model that tackles three warehouse decisions: the
size of the forward area and the allocation/ assignment of products to the forward
area. They propose a model which minimizes the total warehousing costs, which
depends on the size of the forward area (replenishment cost of the forward area,
Reserve/forward picking cost and the cost of capital (shelvings)), under forward ca-
pacity and congestion constraints. Firstly, they show that the congestion constraint
is redundant. Consequently, the optimal quantity assignment/allocation solution
can be found based on Hackman and Rosenblatt (1990)[10] work. Secondly, they
show that the optimal assignment for the products (forward or reserve area), con-
sidering the linear relaxation of their model, is the ranking given by Hackman and
Rosenblatt 1990 [10] which is independent of the size of the forward area. They
proposed an algorithm which gives a near optimal solution to their model based on
the linear relaxation of their model.

J.P. van den Berg et al.[2] propose a model to solve the forward-reserve problem
in the case of unit load replenishment. Those replenishments can occur during
busy or idle picking periods. The objective is to minimize the number of urgent
or concurrent replenishments of the forward area arriving during the busy periods.
Such replenishment are needed in case of shortage during the busy period but
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should be avoid because congestion can result. Instead, replenishment activities are
encouraged to take place during the previous idle period. The resulting forward-
reserve model is a binary programming problem which is solved using a greedy
knapsack heuristic procedure based on a linear relaxation of the initial model. In
a second part of the article, they modify the model to incorporate a limit on the
amount of concurrent replenishment.

2.2 Inventory models

The aim of inventory management is to minimize total operating costs while sat-
isfying customer service requirements [4]. In order to accomplish this objective,
an optimal ordering policy will be determined by answering to questions such as
when to order and how much to order. The operating costs taken into account are
the procurement costs, the holding costs and the shortage costs which are incurred
when the demand of a client can not be satisfied (either lost sales costs or backorder
costs)[4] [7]. There exist different inventory policies [7] : periodic review policy and
the continuous review policy. The first policy implies that the stock level will be
checked after a fixed period of time and an ordering decision will be made in order
to complete the stock to an upper limit (order up to point), if necessary. In the
second policy, the stock level will be monitored continuously. A fixed quantity will
be ordered when the stock level reaches a reorder point. The order quantity will
only be delivered after a fixed lead time and shortage can exist if the inventory
is exhausted before the receipt of the order quantity. Those basic policies can be
adapted to take into account special situation such as single or multi item models,
single or multi period models, deterministic or stochastic demands, lost sales or
backorder...(see [7],[11],[4] for more details and examples)

3 Model formulation

3.1 Problem Description

We consider a warehouse composed of a reserve area and a forward area. The
forward area is divided into locations and each product in the forward area is
allocated to a number of locations. Before the picking period, the forward area is
replenished through advance replenishments from the reserve area. The level of the
advance replenishment for each product corresponds to the filling of the allocated
space in the forward area. Nevertheless, if the stock level in the forward area reaches
some reorder point, to avoid shortages, concurrent replenishments will take place.
Meanwhile, the enterprise receives external supply for all products. The issues
that we address simultaneously are the decision of the routes taken by the different
products in the warehouse (external supplies to the reserve area or directly to the
forward area) and the quantity of the products allocated to the forward and/or the
reserve area (warehouse management issues). In addition, the optimal frequency of
the external supplies will be optimized as well as the safety stocks required to offer
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an adequate customer service level (inventory management issues). These issues
are interrelated because the external supply cost will depend on the routes taken
by the product on one hand and the location of the product in the warehouse will
depend on the quantity ordered on the other hand.

3.2 Assumptions

First of all, we assume that the layout of the warehouse is given. By this, we
mean that the size of the warehouse and of the different warehousing systems are
given (forward and reserve areas). Nevertheless, we suppose that it is possible to
rent external storage space if the space available in the warehouse is not sufficient
to store all the products. This additional capacity is usually rented at a higher
cost than the cost of the internal warehouse capacity. We suppose also that this
additional capacity implies the same costs (reception cost, storage cost..) than the
ones linked to the reserve area.

Different storage policies may exist: random storage policy and dedicated stor-
age policy[4]. In a random storage policy, products are randomly assigned to a
location in the warehouse. In a dedicated storage policy, each product is assigned
to a specific location. In the latter case, if the product is not available in the ware-
house then the location of this product will be empty and there will be unused space.
The forward area, due to its purpose, will be handled through a dedicated storage
policy. Concerning the reserve area, we will consider the two storage policies, the
dedicated or the random.

During the picking period, different activities can occur. We have considered
six main activities : concurrent and advance replenishments of the forward area
from the reserve area, picking from the forward area and the reserve area, external
supply of the forward area and the reserve area. We formulate some assumptions
for each of those activities.

Concerning the advance replenishment of the forward area, we suppose that
this activity occurs during some idle period just before the picking period and
does not imply any congestion cost. Whereas, concurrent replenishments occur
during the picking period when there are not enough items of a product in the
forward area to satisfy the demand of that product and therefore induce congestion.
Concurrent replenishment will be performed immediately when the reorder point is
reached. The level of the reorder point corresponds to the average demand during
the concurrent replenishment lead time, plus some safety stock. We suppose that
the internal safety stock is fixed and known for all products.

Concerning the picking activity, we suppose that the time it takes to pick a
product from the forward area (respectively the reserve area) does not depend on
the location of the product inside the forward area (respectively the reserve area)
because products are typically picked during standard picking tours through the
whole areas. Therefore, we won’t make a distinction between the various locations
inside the different areas. Nevertheless, the number of products that we can put in
a location of the forward area will depend on the size or volume of that product.
Each product can be picked either from the forward area or from the reserve area. If
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the product has been allocated to the forward area (respectively the reserve area)
then all the picks have to be performed from the forward area (respectively the
reserve area). Several units of a product can be picked in a single pick. The cost
of picking is proportional to the number of picks.

Finally, concerning the external supply of the products, we assume that the
warehouse manager want to use an inventory control policy based on continuous
review policy (reorder point system). Therefore the order quantity is constant, the
reorder point is constant, the delivery time is fixed and the demand of the various
products during the supply lead time is probabilistic.

3.3 Model

The indexes used are i : 1, ..., I to denote products and j : 1, ..., J to denote a
number of locations in the forward area.

Next, we describe the data and variables used in the model. For each element,
we give the units of measure between brackets.

Data:

αi : number of units of product i that can be stored in a single location of the
forward area.[units]

CostRepA : cost of advance replenishment. [euros/replenishment]
CostRepC : cost of concurrent replenishment. [euros/replenishment]
PickCostF : picking cost in the forward area.[euros/pick]
PickCostR : picking cost in the reserve area.[euros/pick]
SSI : internal safety stock for products in the forward area which are replenished

through the reserve area. [units]
CostR : reception cost for the reserve area. [euros/reception]
CostF : reception cost for the forward area. [euros/reception]
CostCar : inventory Carrying cost [euros/units/picking period]
CostAcqui : acquisition cost of product i [euros/units]
CostShort : shortage cost [euros/units]
CostCapasupp : additional capacity cost [euros/units]
L : supply lead time [picking periods]
CapaF : capacity of the forward area.[locations]
CapaR : capacity of the reserve area.[units]
Ui : random variable representing the demand of product i during one picking

period with expected value E[Ui][units]
di : random variable representing the demand of product i during the supply lead

time.[units]
σL

i : standard deviation of demand of product i during the supply lead time[units]
µL

i : average demand of product i during the supply lead time[units]
pi : random variable representing the number of picks of product i per picking

period[picks]
δij : expected number of concurrents replenishments of product i per picking pe-

riod, if j locations are allocated to product i in the forward area. Then δij
can be computed as δij =

∑∞
s=1 P (Ui ≥ s (jαi − SSI) because there is one

concurrent replenishment each time that (jαi − SSI) units of products have
been picked.
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uij : Using the definition of variable δij , we define uij = δij − δij−1

Variables:

xi,j =


1 if the product i is supplied to the reserve area, picked

from the forward area and if j locations at least are
allocated to product i in the forward area

0 otherwise

yi =


1 if the product i is supplied directly to the forward area

from the suppliers and picked from the forward area only
0 otherwise

zi =


1 if the product i is assigned to the reserve area and picked

from the reserve area only
0 otherwise

Capasupp = number of external storage location rented [units]. (These are identi-
cal to the location in the reserve area)

Qi = replenishment quantity of product i [units]
ri = reorder point of product i [units]

Before stating the objective function, note that xij have been chosen to be binary
variables instead of integer variables because we believe that we get a stronger for-
mulation.
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The objective function is the expected warehousing and inventory costs per
picking period and is defined as follows:

min

I∑
i

CostRepA× xi1 (1)

+

I∑
i

J∑
j

CostRepC × xij × uij (2)

+

I∑
i=1

CostR× zi ×
E(Ui)

Qi
+

I∑
i=1

CostR× xi1 ×
E(Ui)

Qi
+

I∑
i=1

CostF × yi ×
E(Ui)

Qi

(3)

+

I∑
i

PickCostF × E(pi)× (xi1 + yi) (4)

+

I∑
i

PickCostR× E(pi)× zi (5)

+CostCapasupp× Capasupp (6)

+

I∑
i

CostCar × (
Qi
2

+ ri − µLi ) (7)

+

I∑
i

CostAcqui ×
(
E(Ui)

Qi

)
×Qi (8)

+

I∑
i

CostShort×
(
E(Ui)

Qi

)
×
∫ ∞
ri

(di − ri) f(di)ddi (9)

Concerning the warehouse costs, following our assumptions, we have taken into
account the cost of advance replenishment of the forward area (1) and the cost
of concurrent replenishment of the forward area (2). The cost of advance replen-
ishments of product i occurs once per picking period if product i is assigned to
the forward area (i.e, if xi1=1). The cost of concurrent replenishment depends on
the number of concurrent replenishments which occur during the picking period.
We have used the definition of uij to obtain the concurrent replenishment cost as
expressed in (2). The warehouse cost contains also picking cost in the forward area
(4) (respectively the reserve area (5)). The rental cost of the additional storage
capacity is expressed in (6).
The traditional inventory costs are composed of inventory carrying cost (7), acqui-
sition cost (8) and shortage cost (9). We have also reception costs as defined in (3).
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Constraints :

xij ≤ xij−1 ∀i, j : j ≥ 2 (10)

I∑
i=1

⌈(
J∑
j=1

xij

)
+

(
Qi + ri − µLi

αi

)
yi

⌉
≤ CapaF (11)

I∑
i=1

[(
Qi
2

+ ri − µLi
)
zi +

(
Qi
2

+ ri − µLi
)
xi1 −

J∑
j=1

αixij

]
≤ CapaR+ Capasupp

(12)

I∑
i=1

[(
Qi + ri − µLi

)
zi +

(
Qi + ri − µLi

)
xi1 −

J∑
j=1

αixij

]
≤ CapaR+ Capasupp (13)

I∑
i

(xi1 + zi + yi) = 1 (14)

Capasupp ≥ 0 (15)

xij , yi, zi, Qi, ri ≥ 0 ∀i, j (16)

There are sequencing constraints (10) specifying that a jth location can be
assigned to product i only if j−1 locations have already been assigned. The number
of products stored in the different areas (forward and reserve area) must not exceed
the total amount of space available and depends on the storage policy: (11) for the
dedicated storage in the forward area, (12) in case of random storage policy in the
reserve area and (13) in case of dedicated storage policy in the reserve area. So
depending on the policy only one constraint in (12) or (13) should be active. In
addition, following the assumptions, the product can only follow one route in the
warehouse (14). Finally, all the variables must be non negative(15)(16).

4 Methodology

The global model composed of the warehouse and the inventory decisions and con-
straints presented in Section 3.3 is a mixed integer non linear model. Given the
complexity of solving this model to optimality, our aim is to find a procedure to
solve heuristically this model in order to integrate decisions concerning the inven-
tory and warehouse fields. We propose two heuristics methods to solve this problem
offering different levels of decisions integration. The first method is a heuristic se-
quential solution procedure. The second method gives a higher level of integration
and is similar to the method used in the iterative procedure proposed by C.J. Vidal
and M. Goetschalchx [15] for solving bilinear models.

4.1 Heuristic Sequential Solution

In order to solve the model, we solve sequentially the inventory model then the
warehouse model. Firstly, we solve a relaxation of the inventory model then the
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solution obtained for the inventory variables will be fixed and used to solve the
warehouse model.

The inventory sub model (i.e., the original model without costs and constraints
related to the warehouse problem) is the multi-item inventory control model with
two capacity constraints 1 defined by the minimization of inventory costs (recep-
tion inventory, carrying, shortage costs) under inventory and storage capacity con-
straints. The formulation of the inventory sub model is therefore:

min

I∑
i

CostCar ×
(
Qi

2
+ ri − µL

i

)

+
I∑
i

CostAcqui ×
(
E(Ui)
Qi

)
×Qi

+
I∑
i

CostShort×
(
E(Ui)
Qi

)
×
∫ ∞

ri

(di − ri) f(di)ddi

+
I∑

i=1

CostR× zi ×
E(Ui)
Qi

+
I∑

i=1

CostR× xi1 ×
E(Ui)
Qi

+
I∑

i=1

CostF × yi ×
E(Ui)
Qi

+ CostCapasupp× Capasupp

under the constraints

I∑
i=1

 J∑
j=1

xij

+
(
Qi + ri − µL

i

αi

)
yi

 ≤ CapaF
I∑

i=1

(Qi

2
+ ri − µL

i

)
zi +

(
Qi

2
+ ri − µL

i

)
xi1 −

J∑
j=1

αixij

 ≤ CapaR+ Capasupp

Capasupp ≥ 0
xij , yi, zi, Qi, ri ≥ 0 ∀i, j

This is a non linear mixed integer model where the warehouse variables still
appear in order to model the ordering/reception costs and capacity constraints. To
render this model independent of the warehouse decisions variables, we will perform
a relaxation and an approximation.
First of all we will approximate the objective function. The reception cost, which
depends on the routes taken by the products, will be approximated by the following

1the constraint concerning the storage capacity of the reserve area depends on the
storage policy of the reserve. We will develop in this section the methodology concerning
the random storage policy. The methodology is easily adaptable in case of dedicated
storage policy.

10



I∑
i=1

CostRecp× E(Ui)
Qi

where CostRecp is the cost of reception which is independent on the route taken
by the product and is defined as an average of the historical reserve and forward
reception cost.
Secondly, we will approximate the capacity constraints (reserve and forward con-
straints). By this, we mean that instead of having two capacity constraints for the
different areas in the warehouse, we will consider only one global capacity constraint
for the entire warehouse. This global capacity constraint is the aggregation of the
forward and the reserve capacity constraint, and is defined as follows :

I∑
i=1

(
Qi + ri − µL

i

)
≤ Capa+ Capasupp

The new value Capa is the global aggregated warehouse capacity and is defined
as the sum of αCapaF and CapaR, where α is the average historical number of
products in one location of the forward area.
The objective function so obtained is independent on the routes taken by the vari-
ous products. Consequently, the objective function is independent of the warehouse
decisions taken.
The global capacity constraint is also independent of the routes taken by the dif-
ferent products in the warehouse. Nevertheless, the ordering quantity and reorder
point of each product will be dependent on the amount of space globally available
in the warehouse but not on the size of the different areas in the warehouse, the
number of locations allocated to each product in the forward area and on the routes
of the various products. This inventory model is therefore integrating a decision
from inventory and warehouse fields (through the global capacity constraint).
By dualizing the global capacity constraint with multiplier λ and the additional
capacity non-negativity constraint with multiplier µ, we obtain the lagrangian of
this multi product inventory model with three unknown elements, Qi, ri for all
i=1..I and CapaSupp and no constraint:
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L(λ, µ) = min

I∑
i

CostCar ×
(
Qi

2
+ ri − µL

i

)

+
I∑
i

CostAcqui ×
(
E(Ui)
Qi

)
×Qi

+
I∑
i

CostShort×
(
E(Ui)
Qi

)
×
∫ ∞

ri

(di − ri) f(di)ddi

+
I∑

i=1

CostRecp× E(Ui)
Qi

+ CostCapasupp× Capasupp

− λ×

(
Capa+ Capasupp−

(
I∑

i=1

(
Qi + ri − µL

i

)))
− µ× Capasupp

The first order necessary conditions are used to derive the optimal value for
the ordering quantity (Qi), the reorder point (ri) for all i = 1..I and the additional
capacity (Capasupp) for fix λ and µ[8]. The standard necessary conditions for op-
timality give the following results2:

Qi =

√
2× E(Ui)× (CostRecp+ CostShort×

∫∞
ri

(di − ri) f(di)ddi)

(CostCar + 2× λ)
(17)

Prob(di ≥ ri) =
Qi × (CostCar + λ)
CostShort× E(Ui)

(18)

CostCapasupp− λ− µ = 0 (19)

We omit the non negativity constraint on Qi and ri because they are satisfied
by the first order condition. The complementary slackness and feasibility conditions
are used to determine the optimal value of the additional capacity(Capasupp) and
the Lagrangian multipliers (λ, µ):

2In the rest of the paper, for notational convenience, the optimal value of the variables
will be indicated by an upper bar
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λ×

(
Capa+ Capasupp−

(
I∑

i=1

(
Qi + ri − µL

i

)))
= 0 (20)

µ× Capasupp = 0 (21)
I∑

i=1

(
Qi + ri − µL

i

)
≤ Capa+ Capasupp (22)

Capasupp ≥ 0 (23)
µ ≥ 0 (24)
λ ≥ 0 (25)

By combining the necessary optimality condition (19), the complementary slack-
ness condition (21) and the feasibility condition (24) we obtain :

(CostCapasupp− λ)× Capasupp = 0 (26)
λ ≤ CostCapasupp (27)

which replaces (19), (21) and (24).

The resulting first order necessary conditions are defined as :

Qi =

√
2× E(Ui)× (CostRecp+ CostShort×

∫∞
ri

(di − ri) f(di)ddi)

(CostCar + 2× λ)
(28)

Prob(di ≥ ri) =
Qi × (CostCar + λ)
CostShort× E(Ui)

(29)

λ×

(
Capa+ Capasupp−

(
I∑

i=1

(
Qi + ri − µL

i

)))
= 0 (30)

I∑
i=1

(
Qi + ri − µL

i

)
≤ Capa+ Capasupp (31)

0 ≤ λ ≤ CostCapasupp (32)

Capasupp ≥ 0 (33)

(CostCapasupp− λ)× Capasupp = 0 (34)

To find all possible solution to (28) - (34), we must distinguish three possible
cases :
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1. λ = 0
Following (34), the value of the additional capacity (Capasupp) must be
equal to zero.
The optimal order quantity and reorder point can be calculated by equations
(28) and (29).
The value of Qi and ri for all i = 1..I can then be used to see if (31) is
satisfied (i.e. if there is a solution with Capasupp = 0 and the constraint
satisfied). If the constraint is not satisfied then there is no solution with λ=0.
If the constraint is satisfied, we have a solution to the lagrangian.

2. λ > 0
Following (30), the capacity constraint is saturated.
Following (32) and (34), we must distinguish two different cases.

(a) λ = CostCapasupp
The optimal order quantity and reorder point can be calculated by
equations (28) and (29).
From (34), capasupp ≥ 0 and can be calculated with (31)(taking into ac-
count the fact that the constraint is saturated). If the value of Capasupp
obtained is greater or equal to zero then we have a feasible solution oth-
erwise we have no solution.

(b) 0 < λ < CostCapasupp
From equation (34), the value of the additional capacity Capasupp is
equal to zero.
The optimal value of the lagrangian multiplier can be calculated by
solving a system composed of three equations with three unknown el-
ements. Indeed, we obtain a lagrangian composed of three unknown
elements ( Qi, ri and λ). In addition, we know that the global capacity
constraint is binding. In this case, we can derive the three necessary
conditions for optimality ([8],[11]) and calculate the value of the three
unknown elements.
The first order necessary conditions are as follows:

Qi =

√
2× E(Ui)× (CostRecp+ CostShort×

∫∞
ri

(di − ri) f(di)ddi)

(CostCar + 2× λ)

Prob(di ≥ ri) =
Qi × (CostCar + λ)
CostShort× E(Ui)

I∑
i=1

(
Qi + ri − µL

i

)
= Capa (35)

Those three possible solution cases will be analyzed, a possible solution will be
calculated and the best one will be selected(i.e. the one which minimize the most
the objective function of the first subproblem).
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In each of the possible solution cases presented above, the necessary conditions
for optimality (28,29) must be calculated for fixed values of λ. But as the order
quantity depends on the reorder point and conversely, an iterative procedure is used
to find the optimal value of the two unknown elements. The iterative procedure will
stop when the value for the variables from one iteration to the other is relatively
stable. In case of 2.(b), we must in addition find the value λ such that (35) is
satisfied. Therefore, we need to update λ, resolve (28)-(29) until (35) is satisfied.

When the optimal solution of the inventory model is obtained, the optimal
order and reorder quantity are used to solve the warehouse model. The resulting
warehouse model (where the value of the inventory variables (Qi, ri for all i = 1..I)
are fixed based on the solution of the inventory model with one capacity constraint)
is a mixed integer problem which is solved using a Branch&Bound procedure. In
the warehouse model, the two capacity constraints are taken into account in order
to obtain a feasible solution to the warehouse model and the optimal value of the
additional capacity (CapaSupp) is reoptimized. The warehouse model is defined as
follows:

min

I∑
i

CostRepA× xi1

+
I∑
i

J∑
j

CostRepC × xij × uij

+
I∑

i=1

CostR× zi ×
E(Ui)
Qi

+
I∑

i=1

CostR× xi1 ×
E(Ui)
Qi

+
I∑

i=1

CostF × yi ×
E(Ui)
Qi

+
I∑
i

PickCostF × E(pi)× (xi1 + yi)

+
I∑
i

PickCostR× E(pi)× zi

+CostCapasupp× Capasupp

under the following constraints:
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xij ≤ xij−1 ∀i, j : j ≥ 2

I∑
i=1


 J∑

j=1

xij

+
(
Qi + ri − µL

i

αi

)
yi

 ≤ CapaF
I∑

i=1

(Qi

2
+ ri − µL

i

)
zi +

(
Qi

2
+ ri − µL

i

)
xi1 −

J∑
j=1

αixij

 ≤ CapaR+ Capasupp

I∑
i

(xi1 + zi + yi) = 1

CapaSupp ≥ 0
xij , yi, zi ≥ 0 ∀i, j

4.2 Integrated Heuristic method

According to C.J. Vidal and M. Goetschalchx [15], global optimization for bi-linear
problems is only possible for small instances. Medium and large scale supply chain
problems such as warehouse planning and inventory management problems need
to be solved through a heuristic approach. They propose a heuristic based on an
iterative solution of the two linear subproblems. We use the same heuristic approach
to solve our non linear MIP model. We decompose the global model according to
the different variables and we isolate two groups of variables: the inventory and the
warehouse variables. Each of these groups of variables will define a subproblem.

The first subproblem will be composed of the inventory variables and constraints
and the values of the warehouse variables will be fixed (by the value obtained at
the previous iteration). Consequently, the ordering cost and the location of the
products inside the warehouse is fixed by the value of the warehouse variables. We
obtain a classical multi product inventory model with two capacity constraints for
each area in the warehouse (forward and reserve area). The objective function of
the first inventory subproblem is :
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min

I∑
i

CostCar ×
(
Qi

2
+ ri − µL

i

)

+
I∑
i

CostAcqui ×
(
E(Ui)
Qi

)
×Qi

+
I∑
i

CostShort

(
E(Ui)
Qi

)∫ ∞
ri

(di − ri) f(di)ddi

+
I∑

i=1

CostR× zi ×
E(Ui)
Qi

+
I∑

i=1

CostR× xi1 ×
E(Ui)
Qi

+
I∑

i=1

CostF × yi ×
E(Ui)
Qi

+ CostCapasupp× Capasupp

Under the constraints :

I∑
i=1

 J∑
j=1

xij

+
(
Qi + ri − µL

i

αi

)
yi

 ≤ CapaF
I∑

i=1

(Qi

2
+ ri − µL

i

)
zi +

(
Qi

2
+ ri − µL

i

)
xi1 −

J∑
j=1

αixij

 ≤ CapaR+ Capasupp

Capasupp ≥ 0
Qi, ri ≥ 0 ∀i, j

By dualizing the two capacity constraints with multipliers λF (forward capacity
constraint) and λR (reserve capacity constraint) and the non-negativity additional
capacity constraint with multiplier µ, the lagrangian can be written as followed:
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L(λF , λR, µ) =

min

I∑
i

CostCar ×
(
Qi
2

+ ri − µLi
)

+

I∑
i

CostAcqui ×
(
E(Ui)

Qi

)
×Qi

+

I∑
i

CostShort

(
E(Ui)

Qi

)∫ ∞
ri

(di − ri) f(di)ddi

+

I∑
i=1

CostR× zi ×
E(Ui)

Qi
+

I∑
i=1

CostR× xi1 ×
E(Ui)

Qi
+

I∑
i=1

CostF × yi ×
E(Ui)

Qi

+CostCapasupp× Capasupp

−λF × (CapaF −

[
I∑
i=1

[(
J∑
j=1

xij

)
+

(
Qi + ri − µLi

αi

)
yi

]]
)

−λR × (CapaR+ Capasupp−

[
I∑
i=1

[(
Qi
2

+ ri − µLi
)
zi +

(
Qi
2

+ ri − µLi
)
xi1 −

J∑
j=1

αixij

]]
)

−µ× Capasupp

First of all, as we have done in the sequential heuristic solution procedure, the
necessary optimality condition on the variable Capasupp and the complementary
slackness and feasibility conditions on the additional capacity non-negativity con-
straint can be used to derive the different possible values of the variable Capasupp
and the lagrangian multipliers µ and λR.

CostCapasupp− λR − µ = 0 (36)
µ× Capasupp = 0 (37)
µ ≥ 0 (38)
Capasupp ≥ 0 (39)

From the above equations, we can derive the following:

Capasupp ≥ 0 (40)

(CostCapasupp− λR)× Capasupp = 0 (41)

0 ≤ λR ≤ CostCapasupp (42)

This system (41) and (42) gives the different possible value for λR (and con-
sequently µ) and Capasupp which solve the lagrangian. We can then write the
first order necessary optimality conditions defining the optimal order quantity and
reorder point for each product for a fixed value of λR and λF :
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Qi =

√√√√√ 2× E(Ui)× (CostR× zi + CostR× xi1 + CostF × yi + CostShort× E(Ui)×
∫∞
ri

(di − ri) f(di)ddi

2× λF

αi
× yi + 2× λR × zi + 2× λR × xi1 + CostCar

(43)

prob(di ≥ ri) =
Qi

CostShort× E(Ui)
× (CostCar +

λF

αi
× yi + λR × zi + λR × xi1) (44)

In order to solve (40) - (44), we must distinguish three possible situations:

1. λR = 0
We obtain a lagrangian where one capacity constraint (forward capacity
constraint) has been dualized. This lagrangian can be solved by the same
methodology used in the sequential heuristic procedure.

2. λR > 0

(a) λR = CostCapasupp

As the value of λR is fixed, we obtain again a lagrangian with one
capacity constraint (forward capacity constraint) which can be solved
based on the sequential heuristic procedure.

(b) 0 < λR < CostCapasupp

The optimal value of the lagrangian multipliers (λR, λF ) will be de-
termined by lagrangian relaxation where the two capacity constraints
(forward and reserve constraints) will be dualized. The optimal value
of the two lagrangian multipliers will be found by applying the sub-
gradient optimization algorithm on the lagrangian dual. The resulting
lagrangian dual is as follows:

WLD = Max
{
L(λF , λR) : λF , λR ≥ 0

}
Then, the optimal order quantity and reorder point will be calculated
with the system (43) and (44) for fixed values of λR and λF

We have decided that, due to the non monotonicity of the objective function,
we will stop the subgradient optimization phase when we encounter ten iterations
without an improvement in the solution obtained.

In the second subproblem, the warehouse variables will be optimized taking
into account the warehouse capacity, allocation and the routing constraints while
the values of the inventory variables will be fixed. The model obtained is a mixed
integer problem where the reorder point and the ordering quantity are fixed (at
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the value obtained at the previous iteration). This problem is solved by Branch &
Bound. This mixed integer model is the same as the one used to solve the model
with the sequential heuristic procedure.
Those two subproblems are solved iteratively (Figure 1), where the output of one of
the subproblem will become the input of the other subproblem at the next iteration.

Figure 1: The iterative procedure in the integrated model

We decide to stop the iterative process after a limited number of iterations
where the best inventory and warehouse cost has been recorded at each iteration.
Indeed, this stopping criterion is based on two facts. First of all, we want to keep a
reasonable computing time. Secondly, we have observed, in preliminary test, that
the improvement in warehouse and inventory cost was occurring in the first steps
of the iterative process.

This procedure offers a higher level of integration of warehouse and inventory
decisions because we do not only take into account the size of the warehouse in
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the inventory model but also the size of the different areas in the warehouse, the
routes taken by the products and the size of the location inside each areas of the
warehouse.

5 Computational results

In order to present the value of integrating warehouse and inventory decisions, the
different solution methods are tested on a real world database. The different meth-
ods tested differ according to their level of integration.

5.1 Database

The evaluation of the heuristics proposed in Section 4 will be realized through tests
which will be performed on 400 products coming from real world data of the retail
sector 3. In order to be able to implement the heuristics, some information are
needed concerning the products. Concerning the demands of the products, we have
assumed that picking periods demand of product i in the warehouse follows a nor-
mal distribution N(µi, σi). This assumption was made because, in order to derive
the demand probability distribution, we needed the histogram of the expeditions
per picking period and this information was not available. In addition, those prod-
ucts are delivered regularly which supports the assumption.
Secondly, the inventory model that we have considered is a continuous review,
multi-item reorder point with lost sales. This lost sales assumption is made be-
cause, in case of shortage, an urgent order is expedited from another warehouse (so
the order is lost for the warehouse under study) in order to obtain a 100% service
level.
The different costs composing the objective function were not available in the com-
pany. Those costs have been fixed according to the assumptions made in the model
description4.

5.2 Benchmark methods

The different methods used and compared as benchmark are presented below in
increasing level of integration (from left to right).
The first benchmark method is the one that most companies use today. In the first

step, an uncapacited inventory model is solved for each item, where the ordering
quantity and the reorder point is calculated without taking into account the size
of the warehouse, the size of the different areas in the warehouse and the routes
of the products. The inventory decisions are taken independently of the warehouse
decisions, based on ordering and inventory costs trade-offs.

3for more information on the dataset see the appendix
4a sensitivity analysis is performed in Section 5.4 in order to analyse the impact of

changes in the objective function costs
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Uncapacited Heuristic sequential Integrated
method method method

inventory Multi product Multi product Multi product
models inventory control inventory control inventory control

model without model with model with
capacity constraint one capacity constraint two capacity

constraints
warehouse MILP MILP MILP

models

Table 1: Benchmark models

Once the uncapacited multi items inventory control model is solved, the warehouse
model is solved based on the value of the inventory variables found. This warehouse
model is the same as the one use for the sequential heuristic procedure and the
integrated method.
The other two benchmark methods have been presented in the Section 4.

5.3 Description of the computational results

For the presentation of the results obtained with the various methods described in
Section 5.2, we give the difference in cost (expressed in percentage) when we use a
more integrated method. For ease of presentation, we are going to introduce two
new definitions:

- First integration savings
The improvement obtained in the inventory and warehouse costs when we
use, on the same dataset, with the same capacity and storage policy, the
heuristic sequential procedure instead of the uncapacited procedure. This
improvement will be expressed in percentage. A positive value for the im-
provement means an improvement in cost (decrease in cost) when using the
sequential procedure instead of the uncapacited procedure.

- Second integration savings
The improvement obtained in the inventory and warehouse costs when we use,
on the same dataset, with the same capacity and storage policy, the integrated
procedure instead of the uncapacited procedure. This improvement will be
expressed in percentage. A positive value for the improvement means an
improvement in cost (decrease in cost) when using the integrated procedure
instead of the uncapacited procedure.
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5.3.1 Unlimited reserve capacity

When there is unlimited capacity in the warehouse (unlimited reserve area, but lim-
ited size of the forward area), the sequential heuristic procedure and the uncapacited
method give, as expected, the same result for the inventory and the warehouse de-
cisions. Indeed, the only difference between the two models is that the sequential
heuristic procedure takes into account a global capacity constraint which is redun-
dant when there is enough capacity in the warehouse. We can conclude that the
first integration gives 0% improvement in cost. The only improvement in ware-
house and inventory cost is observed when the integrated model is used. In the
integrated model, it is still possible to optimize the amount of products which can
be stored in a location of the warehouse area and optimize the routes taken by the
various products. Consequently, the available space in the warehouse is used more
appropriately. Therefore, tables 2 and 3 show the results for the second integration.

Warehouse Cost Savings (%)
Replenishment Reserve Forward Total

picking picking warehouse
cost &reception &reception cost

cost cost
Second 0.877 -0.584 1.960 0.989

Integration

Table 2: Unlimited capacity warehouse results (expressed in percentage).

Inventory Cost Savings (%)
Reception Carrying Shortage Total inventory

cost cost cost cost
Second 9.460 -0.001 -0.166 0.027

Integration

Table 3: Unlimited capacity inventory results(expressed in percentage).

With the integrated model, the optimal order quantities have increased com-
pared with the result obtained with the heuristic sequential procedure. This implies
a decrease in the reception cost and an increase in the storage cost. Concerning the
shortage cost, an increase in the order quantity implies a decrease in the number
of replenishment cycles. Nevertheless, this decrease is compensated by a decrease
in the safety factor which increases the expected shortage per replenishment cycle.
The decrease of the reception cost can also be explained through the reoptimiza-
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tion of the routes in the integrated procedure. The increase in the order quantities
implies that some products, which were, with the heuristic sequential procedure,
supplied directly to the forward area, must be supplied through the reserve area
because there is not enough space anymore. Consequently, more product are picked
from the reserve area which decreases the replenishment cost and decreases the for-
ward reception and picking cost.
The amount of space consumed in the reserve area has slightly increased. This
increase is mainly due to the shift in routes.
The forward capacity is used totally and better with the integrated procedure be-
cause each location in this area is filled totally.

5.3.2 Limited warehouse capacity

In the case of limited warehouse capacity (in the forward and in the reserve area),
savings can be obtained by using the first integration and the second integration.

Warehouse Cost Savings (%)
Replenishment Reserve Forward additional Total

picking picking capacity warehouse
cost &reception &reception cost cost

cost cost
First 18.056 -3.496 -15.229 100.000 57.946

integration
Second 15.641 2.897 -8.852 100.000 59.325

integration

Table 4: Limited capacity warehouse results (expressed in percentage).

Inventory Cost Savings (%)
Reception Carrying Shortage Total inventory

Cost Cost capacity Cost Cost
First -85.433 13.128 -96.116 1.282

integration
Second -29.549 10.161 -65.176 4.767

integration

Table 5: Limited capacity inventory results (expressed in percentage).
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The improvement obtained by the first integration
As there is limited space in the reserve area, we can observe a reduction in
the order quantity when the sequential heuristic procedure is used. We have
shown that the global capacity constraint used in this solution method is as-
sociated to a lagrangian multiplier (see Section 4.1) which can be interpreted
as an implicit storage cost. Indeed, when there is not enough capacity in the
warehouse, the carrying cost increases due to this lagrange multiplier (see
equation 28 in Section 4.1) which results in a decrease in the order quantity.
Firstly, this order quantity reduction implies higher reception and shortage
cost. Nevertheless, this increase in reception and shortage cost is compen-
sated by the decrease in carrying cost and mostly the decrease of additional
capacity cost. Also observed that the carrying becomes so expensive (the
lagrange multiplier increase because of limited capacity) that it is more in-
teresting to have higher shortage cost (reducing service level).
Secondly, this reduction in the order quantity implies that some product
could be supplied directly in the forward area (when the reduction in the
order quantity allows it) instead of being supplied through the reserve area.
Consequently, we can observe a change in the routes, which combined with
the reduction in the order quantity, allows to decrease drastically the cost of
renting additional capacity and replenishment cost. Concerning the picking
cost, there is an increase in the reserve picking cost and a decrease in the
forward picking cost which is due to the reoptimization of the routes.
The reduction in the order quantity, when using the heuristic sequential pro-
cedure, is drastic. This can be explained by the type of relaxation used for
the inventory model (see 4.1). Indeed, the global capacity constraint used in
this method was based on a dedicated storage policy which is more restrictive
than the real capacity constraints. This implies that the storage capacity is
unadequatly used.

The improvement obtained by the second integration.
With the integrated procedure, the quantity allocated to each location in
the forward area is optimized. This results in a decrease in the order quan-
tity compared to the uncapacited method which results in an increase in the
reception cost and shortage cost and a decrease in the carrying cost. Nev-
ertheless, this decrease in the order quantity is less important than the one
obtained with the first integration because the capacity constraints are more
adequately represented in the integrated method. Consequently, the avail-
able space in the warehouse is more adequately used.
Concerning the routes taken by the various products, this change in the order
quantity allows to fill in better the locations of the forward area for certain
products. For other product, this increase in the ordered quantity does not
justify a location in the forward area anymore which frees some place for other
product which fill in better the space. This optimization of space involves a
change of routes which implies that there is more direct reception through
the forward area and less reception through the reserve area. Consequently,
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the replenishment cost decreases compared to the uncapacited method (in-
troduced in Section 5.2).

5.3.3 Value of integration

Limited Reserve Capacity Unlimited Reserve Capacity
First 8.817 0

integration
Second 12.022 0.079

integration

Table 6: Total savings (in percentage) with limited and unlimited capacity.

Table 6 summarizes the percentage of total savings which can be obtained by
integrating more decisions of the warehouse and inventory fields.
The amount of savings which can be achieved depends on the capacity available in
the warehouse.
When there is enough capacity, only the integrated model allows one to improve the
inventory and warehouse costs due to a better management of the different locations
in the forward area. This involves a reoptimization of the routes. Nevertheless, the
amount of savings realized is relatively small compared to the savings obtained in
the case of limited capacity.
When the capacity available in the warehouse is limited, the major part of the
savings is incurred by using the heuristic sequential procedure. This is mainly due
to the decrease in additional storage capacity rented. With the integrated method,
space is utilized better than when the heuristic sequential method is used due to
the fact that the capacity constraint are better represented and taken into account.

5.4 Sensitivity analysis

The computational tests have been performed without having the real value of the
different cost coefficients composing the objective function. In addition, in business,
changes in the objective function cost coefficients can occur. For example, changes
in the productivity of the pickers which will influence the picking cost or changes
in the carrying cost due to changes in the value of the product [12] . Therefore,
entreprises may be interested in knowing if those changes will have an impact on the
optimal inventory and warehouse configuration (i.e optimal order quantity, reorder
point and optimal routes for each product).
In order to answer to those questions, a sensitivity analysis is achieved.
This sensitivity analysis will be performed by testing various scenarios under limited
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and unlimited reserve capacity 5. The scenarios will differ from one another by the
variation applied to the warehouse and inventory cost coefficients. In order to
have results which can be interpreted, the variation applied to the different cost
coefficients will be no more than 20%.

5.4.1 Warehouse sensitivity test

The first sensitivity test concerns the impact of changes in the warehouse cost co-
efficients on the total savings and on the warehouse and inventory configuration .
There exists a dependency between the warehouse cost coefficients. Therefore, the
value of the warehouse objective function cost coefficients have been fixed according
to their definition and significance.
The warehouse objective function is composed of forward and reserve reception
costs, forward and reserve picking costs and advance and concurrent replenishment
costs. We know that the forward picking cost is lower than the reserve picking cost.
Indeed the forward area is a smaller area than the reserve area where the picking
activity can be preformed faster (cheaper) than in the reserve area. On the other
hand, the reserve reception cost is lower than the forward reception cost because the
replenishment of the reserve area can be technically achieved more easily than in
the forward area (by larger sizes or full pallets). Concerning the replenishment ac-
tivity, advance replenishment is less costly than concurrent replenishment because
this activity does not result in creating congestion. Those relations are important
otherwise it would not be interesting to have a forward and a reserve area. In
addition, the assumptions made on our model would not be valid.(see Section 3.2
for more details)
Therefore, in the sensitivity analysis, we are interested in the impact on the ware-
house and inventory cost and on the inventory and warehouse configuration of the
relative cost difference between the forward and reserve reception cost, the for-
ward and reserve picking cost and the advance and concurrent replenishment costs.
Therefore, we have three relative cost differences in our first sensitivity scenario,
each taking three possible values. For each of these twenty seven sensitivity sce-
narios, we have decided to consider two extreme values.

Table 7 gives the minimum, average and maximum total savings, in percent-
age, obtained with the different sensitivity scenarios (i.e by varying the value of the
warehouse objective function cost coefficients) and with different capacity limits.
Most of the difference in the total savings (except in the case of the second integra-
tion with limited capacity) are relatively stable with no more than 1% difference
between the maximum and minimum total savings for a certain capacity limit and
a certain type of integration. By analyzing in more details the results obtained
with the different sensitivity scenarios, we observe that the optimal order quantity
and reorder point do not change from one scenario to the other. Only in the case
of limited capacity, we can observe that the routes taken by the various products

5The appendix gives a complete description of the different scenarios
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Total Cost Savings (%)
Unlimited Reserve Limited Reserve

Capacity Capacity
First Min 0 8.67

average 0 8.90
integration Max 0 9.10

Second Min 0.06 11.00
average 0.096 13.89

integration Max 0.16 15.60

Table 7: Results of the warehouse sensitivity analysis.

are different from one sensitivity scenario to the other.
An exception can be observed in the case of limited capacity when the integrated
heuristic solution procedure is used. In this case, we can observe a difference of
more or less 4% between the minimum and maximum total savings realized. This
observation can be explained by two remarks. First of all, the methodology used in
the heuristic integrated procedure. Indeed, in order to solve the inventory model,
we have developed a procedure which uses the subgradient algorithm (see Section
4.2 for more details). As said in Section 4.2, the subgradient algorithm will be
stopped after a finite number of iteration without improvement in the value of the
objective function. This stopping criteria does not guarantee that the lagrangian
relaxation of the inventory problem is solved to optimality which can explain the
result obtained with the different sensitivity scenarios. Secondly, with the heuris-
tic integrated solution procedure, the changes in the forward and reserve reception
cost are taken into account at the inventory and the warehouse level. Indeed, this
change is updating the forward and reserve reception cost and the reserve and for-
ward capacity constraints in the inventory model during the successive iterations.
Consequently, minor changes of the optimal ordered and reorder point (sometime
no changes are remarked) are observed combined with changes in the optimal route
for each product.

5.4.2 Inventory and warehouse sensitivity test

The second sensitivity test that we have considered is the relative importance of
the total inventory cost compare to the total warehouse cost (and conversely). The
aim is to analyse the impact of those changes on the value of the total savings
realized with the first and the second integration and on the warehouse and the
inventory configuration (i.e the optimal order quantity, reorder point and route for
each product). During computational tests, we have observed that there is no im-
pact on the optimal order quantity, optimal reorder point and the optimal routes
for each product but there is an impact on the costs. Table 8 gives the minimum,
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average and maximum impact, in percentage, on the total savings realized with the
first and the second integration.

Total Cost Savings (%)
Unlimited Reserve Limited Reserve

Capacity Capacity
First Min 0 25.83

average 0 36.51
integration Max 0 43.96

Second Min 0.24 30.08
average 0.41 39.64

integration Max 0.54 46.31

Table 8: Results of the inventory and warehouse sensitivity analysis.

5.4.3 Inventory sensitivity test

The last sensitivity test analyses the impact on the inventory, warehouse configu-
ration and on the total savings of changes in the inventory objective function cost
coefficients. This sensitivity analysis is important. On the one hand, changes in
the inventory carrying cost and acquisition cost can occur because the value of the
product changes(e.g. reevaluation of taxes, insurance ...). On the other hand, the
shortage and carrying cost is difficult to estimate [12].
Computational tests have been performed and several remarks can be made.

Total Cost Savings (%)
Unlimited Reserve Limited Reserve

Capacity Capacity
First Min 0 -6.85

average 0 11.00
integration Max 0 36.32

Second Min 0 0
average 0.01 15.89

integration Max 0.036 41.24

Table 9: Results of the inventory sensitivity analysis.

In the case of unlimited reserve capacity, we know that the inventory cost
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function is relatively flat around the optimal ordered quantity. This observation
means that small changes in the optimal order quantity and reorder point will
not have a significant impact on the total savings. This is confirmed by the value
obtained with the sensitivity test in the case of unlimited reserve capacity (see table
9).

In the case of limited capacity, the impact on the total savings of changes in
the inventory cost coefficients can be much more important. Indeed, modifications
in the inventory cost coefficients will have an impact on the optimal order quantity,
reorder point and optimal route of each product. This modification will also have
an indirect impact on the value of the lagrangian coefficients through the capacity
constraint (see Section 4 for more details) which leads to a larger modification
of the order quantity and a larger impact on costs. Two particular situations
can be pointed out. First of all, in some cases, no savings are obtained with the
second integration. This can be observed when the modification in the inventory
cost coefficients are such that the reserve capacity limite becomes unlimited (due
to a decrease in the optimal order quantity and reorder point for each product).
Secondly, we can observe in Table 9 that the minimum value obtained for the total
savings with the first integration is negative. This is due to the approximation
made with the global capacity constraint of the heuristic sequential procedure. In
fact, this global capacity constraint overestimate the need of capacity. Therefore,
sometimes, the heuristic sequential procedure estimates that capacity is missing
whereas in reality (when the forward and reserve capacity are considered separately)
there is enough capacity. In this particular case the heuristic uncapacited method
performs better than the heuristic sequential method.

6 Conclusion

Currently, most of the tactical warehouse and inventory issues are tackled inde-
pendently and sequentially. Our aim through this paper was to show the value of
integrating more decisions of the warehouse and inventory fields. Consequently, we
have presented a global model which takes into account the replenishment deci-
sion at the inventory management level, the allocation of products to warehousing
systems and the assignment of products to storage locations at the warehousing
management level. In order to solve this global model, we have presented two
heuristics which illustrate two possible levels of integration.

In the first heuristic solution procedure, the inventory and warehouse models
are solved sequentially, but the inventory model is taking into account a global
capacity constraint for the entire warehouse. This global capacity constraint reflects
the limited space in the warehouse but neither the routes taken by the products
nor the number and capacity of the locations in the forward area are considered in
the inventory model.

In the second heuristic solution procedure, a higher level of integration is
achieved by considering two capacity constraints, one for each area in the ware-
house (forward and reserve area). This made possible to take into account the
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routes taken by the products, the number and capacity of the locations in the for-
ward area. This second heuristic solution procedure is based on an iterative loop
of the two subproblems (inventory and warehouse sub model) where the output of
one of the model at one iteration becomes the input of the other model at the next
iteration.

Computational results were obtained under limited and unlimited capacity sit-
uation in the warehouse. It has been shown that under unlimited capacity (limited
forward capacity and unlimited reserve capacity), savings could be achieved only by
using the second level of integration (second heuristic solution procedure) whereas
in the case of limited capacity the major savings were achieved through the first
level of integration (first heuristic solution procedure), although the higher level of
integration could achieve some additional savings.

A sensitivity analysis was performed to observe the impact of changes in the
objective cost coefficients on the total savings realized and on the warehouse and
the inventory configuration. Three sensitivity tests were realized. The first test
analyses the impact of changes in the warehouse cost coefficients. The second test
analyses the impact of changes in the relative importance of the total warehouse
cost compare to the total inventory cost. Lastly, changes in the inventory cost coef-
ficients were performed and analyzed. The results show that in most cases changes
in the objective cost coefficients were not having a significant impact on the ware-
house and the inventory configuration and the total savings realized. Nevertheless,
two exceptions were observed. The first exception occurred when the warehouse
cost coefficients were modified. In the case of limited capacity, the results obtained
for the inventory model with the heuristic integrated method were not very stable.
This is due to the methodology used to solve the inventory model and to the higher
level of integration between the inventory and the warehouse models.
The second exception is discovered when the inventory cost coefficients are changed
and when the reserve capacity is limited. In this case, sometimes, the integrated
procedure is not better than the heuristic uncapacited method and the heuristic
sequential procedure was performing worse than the heuristic uncapacited method.
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Appendix

Description of the dataset

1. Products

units
Minimum demand mean 0.015
Average demand mean 44.85

Maximum demand mean 636.92
Minimum demand standard deviation 0.015
Average demand standard deviation 26180.84

Maximum demand standard deviation 5073610
Minimum pick mean 0.015
Average pick mean 5.57

Maximum pick mean 44.32
Minimum pick standard deviation 0.015
Average pick standard deviation 40.87

Maximum pick standard deviation 695.54

2. Objective function warehouse and inventory cost description

reserve reception cost 5
forward reception cost 7

advance replenishment cost 20
concurrent replenishment cost 25

forward picking cost 2
reserve picking cost 10

additional capacity cost 50

inventory carrying cost 3
acquisition cost 6
shortage cost 100
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Sensitivity analysis : scenario description

(a) Scenario 1: Warehouse sensitivity test
The relationship between the warehouse cost coefficients can be ex-
pressed as followed :

CostF = β1 × CostR
PickCostR = β2 × PickCostF
CostRepC = β3 × CostRepA

We have construct 27 scenarios by varying the β1, β2 and β3 from 1.5
to 2.5.

(b) Scenario 2: Inventory and warehouse sensitivity test
We have construct 4 scenarios: the inventory cost being one third, half,
three quarter and 1.25 of the warehouse cost.

(c) Scenario 3: Inventory sensitivity test
We have constructed the following relationship:

CostRecp = β4 × CostCar
CostShort = β5 × CostCar

We have construct 9 scenarios by varying the β4 and β5 from 1.5 to 2.5.
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