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Quantification without Cardinality

David Iaw, Peter Ludlow

MIT, Columbia University

Recent treatments of quantification in natural language
have been, for the most part, denotational in character. This
is unsurprising, perhaps, since it has been fashionable for some
time in semantics to regard virtually every expression in a
language as denoting. While this lends itself readily to the
investigation of certain semantic questions, it closes the door
to others—for example: how does one account for semantic
variation within a basic category C. The only answer available
in a denotational framework is that the expressions of C denote
objects which are distinguished by properties characteristic of
their kind. For example, a quantifier-expression Q denotes a
quantifier Q--i.e., a mapping which assigns truth-values to
possible extensions of predicates. The expression 'most', then,
denotes the quantifier M which assigns truth to a pair of sets
(A,B) just in case |AN B| > |a - B].1
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It is a familiar fact that elementary quantification
theory fails to meet the needs of natural language semantics.
We describe a method of expanding a first-order language L to a

*
language L in which a variety of non-elementary quantifiers can

be defined. In brief, L* is obtained fram L by introducing
substitutional quantifiers and a class of non-denotational terms
(QS-terms) which may appear as subscripts in
quantifier-expressions. QS-terms are built from O and a stock
of substitutional variables with numeral substituends. The

*
chief distinction of L. is that its semantics incorporates a set
of explicit camputation procedures defined on QS-terms which
induce variation in quantifier sense.

L is a first-order language with variables Vor Vyree- and
a (finite) stock of descriptive symbols. The following is a

*
description of an expansion L of L. (Boldface variables
abbreviate sequences of indefinite (finite) length.)

(A) Vocabulary.

In addition to that of L:

1.0, ', > .
2. fi’ for i » O.
3. Xs for i » O.

4. a,, for i » O (substitutional variables).

H

5. T (universal substitutional-quantifier symbol).

(B) Quantifier-subscript terms (QS-terms).

1. O and a, . for i > O.
2. If t is a S—term, so is t'.
3. If tl""'tr are QS—-terms, so is fi(tl,...,tr).

Among the QS-terms, the numerals 0, 0', 0'',... are
distinguished as the substituends of the variables a, .

(5(n) will be abbreviated by the appropriate arabic numeral.)
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A OS-termm is closed if it contains no occurrences of the
variables ai.

(C) Quantifier expressions.

In addition to those of L:

E| >,txi and IIai .

(D) Formulae.

*
1. L-formulae are L -formulae.
2. Any expression obtained by substituting a variable X,

for every free occurrence of an L-variable in an L-formula

*
is an L -formula.
3. If Q is a quantifier expression and A is an

* *
L -formula, then QA is an L -formula.
(To 1-3 add any rules for the formation of L-formulae—e.gq.,

those for sentential connectives.)

*
An elementary formula (e-formula) is an L -formula which
contains no occurrences of a substitutional variable.

A pure substitutional formula (ps-formula) is an

*
L -formula in which no substitutional quantifier occurs within
the scope of an objectual quantifier.

*
L(f) is the sublanguage of L. obtained by restricting (A)2
to the symbols f. (Below, £ will be an initial segment of the
list (A)2.)

(E) Same abbreviations:

Zai for —-.Ilai—1.
3=txA for 3>,txA& — 3

3>txA for Hat'XA'

S+ XA
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3 xA for — 3 _ xA.
>t
3‘ xA for — 3 >t'XA'
V)txA for — 1 tx"')A.

(F) Examples.

1. Tal 3>axAx —_—> x(Ax & Bx)].

3 zf(plql a)

2. dvnal 3 >axAxv —> 3 x(Axv & Bxv)].

>f(a)

(G) A (partial) f-interpretation of 1" is a list € of equations
in the f-symbols of a finite initial segment of the list (A)2.
We assume here that each equation in € is of one of the
following types.

n, N0 a fixed numeral.

1. fi(u)
2. fi(u) = ug, uy among u.
3. fi(u) = g(hl(u),...,hr(u)), where

1

g andhj are among £.,..., fi—l' and '.
4. fi(O,u) = g(u),
fi(u',u) = h(fi(u,u),u,u).
where g and h are among £, ..., fi—l’ and ‘.

If € contains an equation for fi it must contain one for each
fj' j < i. (The variables u, are auxiliary notations used in
specifying f-interpretations.) An f-interpretation in £, ...,
f., together with an interpretation of L, affords a camplete

i
interpretation of L(fo, e, fi) .

(H) A relation |—- of reduction of QS-terms to numerals is defined
(relative to € ) as follows.

1. i —1, i a numeral.
2. If t L—ﬁ then t'}—1
3. £ (t) 1, if the equation for £, is of type
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(G)1.

4. fi(t) —n, if the equation for £; is of type
(G)2 and £y - A.

5. fi(t) —1, if the equation for £, is of type
(G)3 and tj I—lj, hk(l) l-—mk, and

g(m) —nA. -
6. If the equations for f; are of type (G)4, t -1 and
£y i——-—ij, then
a. if T is O and g(f) %, then fi(t,t) —f, and
b. if T is k', £, (k,m) T, and h(® k&) g,
then £(t,t) l—n.

(I) Truth for e-sentences and ps-sentences can be defined in
terms of an f-interpretation and a primitive predicate To for

truth in L. Let € be an f-interpretation in fqreves fi and S be

a e-sentence of L(f_, ""fi)'

*
1. If S contains no QS-terms other than numerals obtain S

as follows: starting with the innermost, replace each subformula

of S of the form HzﬁxA by 3v1, ceey an[(&i;éjvi # Vj) &
(&lsisnA(Vi)]' where Vyr+eer Vv are the first n L-variables
which do not occur in A and A(vi) is the result of substituting

v, for x in A. Then,

T(S) iff To(s*).

2. If to, cees tk are all the QS-terms occurring in S and
t; I——'rii, let s* be the result of substituting A, for every
occurrence of ti in S, 0 ¢ i< k. Then,

T(S) iff T(S#) .

3. If S is of the form IIaS', then
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T(S) iff for every numeral A, T(S'(RA)),

where S'(T1) is the result of substituting n for a in S'.

4. (Clauses for connectives, as usual.)

(J) Ssatisfaction for L(f).

Let € be an f-interpretation in £, and M be a model for L. (For
simplicity, assume that the descriptive vocabulary of L consists
of a sole unary predicate symbol R. Subscripts on 'k="' are
dropped.) Below, A and B contain no free substitutional
variables unless otherwise noted.

1. s = Ry, iff s, € R,

2. s = =A iff s B= A.

3. s P A&Biff s = Aand s = B.

4. s = EIViA iff for some s' =, s, s' = A.
5. s

= ]'[aiA iff for all numerals fi, s k&= A(A),
where A contains at most ai free.

6. S b amxpu

7. s &= 3, 7%A iff s = 3ViA(vi), where \ is
7
the first L-variable which does not occur in A.
8. s k= 3 XA iff
>0
s = Elvi Elm—_-lx(vi # X & A(vi) & A),
where Vi is the first L-variable which does not occur

in A and A is other than O or 1.
9. s = 3>txAiff for some fi, t 8 and s I=3>r_1xA.
v 7.

Remarks and explanation

f-interpretations are primitive recursive "camputation

sequences". A function g: wk--—> w is primitive recursive just
in case there is an f-interpretation €, in fO’ .. "fs say, such

that for any m and n,
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gm) =n iff fs(x_n) I——E- fi.

(€ introduces the function g.) Consider the function g defined

by
[p'n/q] +1 if, for same k, p-n=qg'k + r
g(p'q’n) = where r < gand r # 0,
Cp-n/ql if, for some k, p-n = g-k.

([x] is the greatest integer ¢ x.) g is primitive recursive.
Let € introduce g. Relative to €, example (F)1 expresses that
more than p/q of the A's are B's.

There is no special reason to restrict functions which may
be introduced by f-interpretations to those which are primitive
recursive. We might have used a stronger collection of
algorithms. However, this would not enhance the expressive

*
power of L . (In fact, it is possible to significantly restrict
the the class of functions which can be introduced by

*
f-interpretations without affecting the expressive power of L .)

We distinguished e- and ps-formulas in order to illustrate

*
(in (I)) the way in which the semantics of L depends of that of
the base language L. e-formulas amount to little more than
abbreviations of first-order formulas. ps-formulas are quite a
bit more than abbreviations of first-order formulas. (The
sentence S in the proof of proposition (2) below is a
ps—sentence.) There are English statements, however, which
cannot be expressed by ps-sentences. Example (F)2 has no
ps—equivalent. Samething like (F)2 is needed to capture the
sense of, "There is sameone whom most people employed by him
dislike."

*
Quantifiers definable in L

A unary (unrestricted) quantifier on a set D is a map
Q:P(D)--->2 vwhich respects permutations of D—i.e., for any
bijection m:D-—->D,

Published by ScholarWorks@UMass Amherst, 1985



North East Linguistics Society, Vol. 15 [1985], Iss. 1, Art. 19

282 LAW/LUDLOW

Q(m"A) = Q(a).

(P(D) is the set of subsets of D. m"A = {m(x) | x € A} is the
image of A under m.)

Let L contain a unary predicate R, and M(L,D) be the set
of L-structures with domain D. A unary quantifier Q on D is
definable in L(f) relative to an f-interpretation & if there is
a sentence S of L(f) such that for each M € M(L,D),

M E )=s iff o) =o.

(S is a definition of Q. We use 'O' for truth, 'l' for
falsehood.)

Mostowski supplied the following simple (but useful)
characterization of quantifiers on D. If K is a cardinal, let
p( k) be the set of pairs of cardinals (a ,B ) with

a+ B =x. Let k = |D|. For each T:p(k )-——>2, define Qn by

Qp(a) = T(lal, ID - A]).

Proposition 1. The map T —-> Qp is a bijection between

Zp(K ) and the set of unary quantifiers on D.

IfQ= QI" Q is said to be determined by T. We shall call
T (andQT) finitary if T(a,B) = T(k .,k ) whenever o, 8 3w .

If T is finitary, it can be identified with the triple (A,B,i),
where A={ne€wl|l T(n,k) =0}, B={newl| T(k,n) = 0}, and
i =T(x,k). A (finitary) quantifier Q on D is arithmetical if
it is determmined by a triple (A,B,i) where A and B are both
arithmetical. Q is Zn if A and B are both Zn. (For a

discussion of the arithmetical hierarchy see Rogers.)

Proposition 2. For each n, there is a fixed
f-interpretation £ such that every I n quantifier on D is

definable in L(f) relative to E .
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Proof. By the enumeration theorem for Zn predicates,

there is a primitive recursive (n+2)-ary relation C such that
for every I n set A there is an e such that

k€A iff 3x1 sz...anC(e,k,xl, ...,xn)

(where Q is 3 ifn is odd, and ¥ if n is even). e is called
an index for A.

Let E be an f-interpretation in fo, .o .,fs such that

£ (8,k,m) l——éﬁ if C(e,k,m),
£ (8,k,m) I——Ei if not—C(e,k,m).

Now let Q be determined by (A,B,i) where A and B are I L sets,
and e and ey be indices for A and B, respectively. Let RO be R
and Rl be —R, and let Sj, j = 0,1, be the sentence

ral 3=aij & Zal Haz... AanEI xF]

zf(ej,a,a], .. .,an)

(where A is I ifn is odd, 1 if n is even, and F is the
propositional constant for falsehood.) Let S, be the sentence

TTa 3>axR & Ila EI)ax —-IR.

Finally, let

SOvSle2 if i =0,
S =
SOVSl if i = 1.

Then, for all M € M(L,D), (M,E) = s iff o(®R"Y) = 0. []

Remarks. The arithmetical quantifiers on D are precisely
the quantifiers on D definable over the collection of
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hereditarily finite sets on D, HF(D) (using membership,
identity, a predicate for D, and a unary predicate R). (See
Barwise, ch.II.2.) Also, any quantifier definable in L(f)
relative to an f-interpretation &€ is definable over HF(D). It
follows from these facts, together with proposition (2), that

*
the quantifiers on D which can be defined in L. relative to
f-interpretations are precisely the arithmetical ones.

A quantifier Q:P(D)--->2 is monotone increasing
(decreasing) if Q(A) = 0 and A= B (B< A) imply that Q(B) = O.

*
For quantifiers definable in L , monotonicity can be expressed

*
as a syntactic property. An L definable Q is monotone
increasing (decreasing) if it has a definition S(R) in which R
has only positive (negative) occurrences. This is easy to see

*
for unary unrestricted quantifiers. The only L. definable
monotone quantifiers of this type are those which are defined by
one of the following sentences: 3>ﬁxR' ' V>ﬁxR' (new), and
7: 14

MTa EI}axR' , where R' is either R or —R.

The preceding discussion can be adapted, more or less
straightforwardly, to restricted unary, and binary quantifiers
on D. (For analogues of proposition 1, see the appendix of
Higginbotham and May.)
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FOOTNOTE

We have chosen to confine our attention to describing the
*
language L and some of its properties. Our introductory

*
remarks are meant only to be suggestive. We plan to explore L
more broadly in a future paper.
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