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Berwick and Weinberg: Deterministic Parsing: A Modern View

DETERMINISTIC PARSING: A MODERN VIEW

ROBERT C. BERWICK
Artificial Intelligence Lab, Massachusetts Institute of Technology
AMY S. WEINBERG
Department of Linguistics, University of Maryland, College Park

In the past five years there has been a dramatic conceptual shift in character of
transformational grammars. No longer do grammars consist of extensive rewrite rules,
tailored to particular languages. This leaves open the question of what parsers for
these newer theories look like. In recent work, summarized in the Grammatical Basis
of Linguistic Performance, we argued that one can gain considerable insight into
parser design and the functional explanation of linguistic constraints if one assumes
a direct match between grammatical principles and parser. We showed that if one
is willing to make a few strong but natural assumptions about constraints on human
parsing abilities and how grammars are used as parsers, then one can show, in part,
why locality constraints like Subjacency must be a part of grammatical descriptions.
Our assumptions were these:

* Parsing is deterministic, in the sense that once information about the struc-
ture of a sentence is written down, it is never retracted. This means that the
information about a sentence is monotonically preserved as we analyze it.

¢ Grammatical representations are embedded directly into parsers, without inter-
vening derived predicates or multiplied-out rule systems. This is an assumption
of transparency.

e The human brain is fnite.
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In this paper we refine both parts of this argument. In the first half of the paper,
we will show that grammatical theory can help parser design. We will show that if one
embeds X theory directly into a parser, one gets a better parser. In the second part
of the paper we turn to the functional explanation of locality principles. Here we will
show that a deterministic parser can explain some of the properties of grammatical
constructions. In particular, we show that our parsing model explains why parasitic
gaps must be licensed at S-structure, and governed by Subjacency.

1. DETERMINISTIC PARSING and GRAMMAR

To begin, we discuss the new parser design. We use roughly the same bounded-
context design outlined by Marcus (1980) and modified in Berwick and Weinberg
(1984). At any given point in the analysis of a sentence, the parser has access to
certain bounded left- and right-context information; this is used to fix the parser’s
next move. The parser is deterministic, in a sense made precise below. The left-
context represents the analysis of the sentence seen so far, while the right-context
holds words. In the Berwick and Weinberg model, left-context could consist of at
most a single constituent domain plus at least one addition cyclic node domain; within
these constituent domains, only nodes c-commanding the current token scanned are
accessible. Thus the left-context is literally bounded in this model. We shall adopt
these restrictions here. In the Marcus design, and in Berwick and Weinberg (1984), the
right-context was taken to be at least the current word being analyzed plus (usually)
two lookahead symbols. In the new model, there will be no lookahead; only the
current token scanned is visible.

The new parser will be deterministic, in the following sense. At any step ¢ in a
parse we denote the representation of the sentence analysis at that point by A;. A
parser will be said to be deterministic if and only if the sequence of sets Ay, Ag, ..., 18
monotonically increasing in an information theoretic sense: each set in the sequence
is either the same as or is a refinement of its predecessor. This means that one cannot
remove information from an analysis set once it is placed there; one may, of course,
refine this information. We shall see that this constraint has important implications
for what grammatical operations can and cannot be represented in the new parser
design.

So far, aside from the lack of lookahead, the parser design we have sketched is
identical to that in Berwick and Weinberg (1984). We now turn to the key difference
between the two models. Instead of reconstructing explicit tree structure as a part
of its left-context representation and as its final representation of sentences, the new
parser will build as its output representation a phrase marker in the original sense
used in transformational grammar: a set representing all and only the ts-a and left-to-
right precedence relations in a sentence. This representation is augmented to directly
encode the key X constraint identifying heads of phrases with lexical heads and the
indexing of, e.g., traces.

An example that will be used later on will help to pin this notation down. Suppose
we have the sentence, I know that block supports the pyramid. First, we shall number
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the positions between the word tokens:
0 11 know 2 that 3 block 4 supports 5 the 6 pyramid 7 ¢ §

Here is the output set (using traditional is-a symbols for now) that we want. Each
element of the set is a triple, consisting of first the phrasal name, followed followed
by its start and stop positions. (Nothing crucial hinges on the exact details of this
phrasal analysis.)

{(S07) (NP0 1) (PRONOUN 0 1) (INFL 1 1)
(V12) (VP 17) (DET 2 3) (NP 2 4) (NBAR1 3 4) (NOUNA 3 4)
(S27) (INFL 4 4) (V 4 5) (VP 47) (NP 5 7) (DET 5 6)

(NBAR 6 7) (NOUN 6 7) }

Note that this information will allow one to reconstruct hierarchical relationships
among the elements, if desired, though remaining ambiguous in the case of non-
branching domination, since then we would have, e.g., (NP 1 3), (NP 1 3). (Indeed, in
the output representation these two NPs would be merged and thus be quite literally
indistinguishable.)

This representation, in fact, is exactly that used by so-called “tabular” parsing
methods, such as Earley’s algorithm. At every step in a parse, we simply assert which
phrasal analyses are compatible with the input seen so far. Note that at any stage
the analysis is simply a set of assertions comprising is-a and left-to-right precedence
relationships compatible with the input seen so far. In fact, this is entirely equivalent
to the prefizes of phrase markers, in the traditional sense (only prefixes, of course,
since the parser cannot tell us anything about input that it has not seen so far). By
the end of the parse, the assertion set will simply be the phrase markers compatible
with the input string.

Information recorded at every step in the parse will be monotonically preserved.
Once a recorded decision about the is-q or start and end points of an element can
no longer be refined, this commitment cannot be revoked. That is, once we have
fixed that an element of the assertion set is an NP, that cannot be changed to VP.
Similarly, a decision that the NP extends between positions 1 and 3 of the input
cannot be retracted once it is made. However, it is possible to refine a decision in
an information theoretic sense, in two ways: first, one can add features to an is-a
element, using the X features (e.g., changing an XP, with no features, to a +N item,
toa +N -V item), provided that the element is still part of the left-context; second,
we introduce a special asterisk notation, *, indicating that the end of a constituent has
not yet been seen (this is apparently inevitable in a left-to-right analysis); third, we
may add a new assertion, provided that the relevant left-context is still visible. The
asterisk, since it represents no information about the end position of a constituent,
may be refined by replacing it with a specific numerical value, but of course, once this
is done, the numerical value may not be retracted.

Unlike the Marcus machine, the parser will not use lookahead. Instead, its parsing
decisions are based entirely on the current word token scanned and the representation
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of the input built up so far (the so-called left context of the parse). We may restrict
the left-context, as is done in Berwick and Weinberg, to a literal encoding of what
amounts to one S, but this won’t be necessary in the sequel here. At each step in
the parse, the assertion set of triples maintained will simply be the intersection of all
triples compatible with the input seen so far. Thus at each step, the assertion set
will encode just what is known for certain given the input so far processed. (This is
a precise way to formulate the “wait and see” approach suggested by Marcus.)

Finally, the parser will be able to make top-down predictions (as in Marcus’s
parser) based on, e.g., subcategorization information, as when the lexical entry for
a verb of a certain type sparks an expectation that a certain argument structure is
expected. And, as in Marcus’s design, the parser can certainly create assertions based
on the actual words it finds in the input.

The best way to see how this works is to follow an example, comparing the oper-
ation of the new machine to the Marcus design. We'll do a very simple example first,
just to get the idea down, and then show how X theory helps.

Our simple example uses conventional category names and a rather conventional
context-free grammar. We now parse the sentencel know that block supports the
pyramid. At step 0, before any input is seen, the parser can make the following
different assertions (all output from here on is from an actual working version of the
parser, written by Ed Barton). The control mechanism is simply that of a standard
Earley-type parser. Nothing hinges on the details of this grammar, which is meant
just to illustrate the operation of the machine; it is a typical context-free grammar
for these sorts of phrases. “PL” stands for plural, and “SG” for singular.

(Active structure assertions in state set 0, after input () consumed.)
There are 11 assertion sets:

1. ((SBAR 0 *) (S 0 *) (NP PL) 0 *) (ADJ 0 *))

2. ((SBAR 0 *) (S 0 *) (NP PL) 0 *) ((PL DET) 0 *))

3. ((SBAR 0 *) (S 0 *) ((NP PL) 0 *))

4. ((SBAR 0 *) ((NP SG) 0 *) (S0 *) (NP PL) 0 *))

5. ((SBAR 0 *) (NP SG) 0 *) (5 0 *) (NP PL) 0 *) ((PL DET) 0*))
6. ((SBAR 0 *) (NP SG) 0 *) (S0 *) (ADJ 0 %)

7. ((SBAR 0 *) (NP $G) 0 *) (30 *) (NP PL) 0 *) (ADJ0¥))
8. ((SBAR 0 *) (NP $G) 0 *) (8 0 *) ((SG DET) 0 *))

9. ((SBAR 0 *) ((NP SG) 0 *) (8 0 *) ((SG PRONOUN) 0 %))
10. ((COMP 0 *) (SBAR 0 *) (NP §G) 0*) (80 %))

11. ((COMP 0 *) (SBAR 0 *))

These possibilities correspond simply to all the possible initial expansions, given no
input has been seen. (E.g., we could have an NP starting an S, with or without a
determiner; a pronoun; etc. We have excluded many other possibilities for the sake
of illustration.)

Now comes the key step: we intersect all these potential assertion sets to come up
with what the parser can say it knows for certain. Here, this yields just one element,
which becomes the first assertion set:
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Here’s the grammar for the example.

SBAR ==> COMP S
| 8
§ ==> (NP SG) (SG VP)
| (NP PL) (PL VP)
(NP SG) ==> (SG PRONOUN)
| SBAR
| (SG DET) ADJ (SG NBAR)
| (SG DET) (SG NBAR)
| ADJ (SG NBAR)
| (5G DET) (SG NBAR)
(NP PL) ==> (PL PRONOUN)
| (PL DET) ADJ (PL NBAR)
| (PL DET) (PL NBAR)
| ADJ (PL NBAR)
| (PL DET) (PL NBAR)
(SG NBAR) ==> (SG NOUN)
(PL NBAR) ==> (PL NOUN)
(S8G DET) ==> THE
| THAT
(PL DET) ==> THE
| THOSE
COMP ==> THAT
ADJ ==> GREEN
| BIG
| RED
(SG NOUN) ==> BLOCK
| PYRAMID
| SHEEP
(PL NOUN) ==> BLOCKS
| PYRAMIDS
| SHEEP
(SG PRONOUN) ==> I
| ME
(sG VP) ==> (SG V) NP
(PL VP) ==> (PL V) NP
(SG V) ==> SUPPORTS
|  KNOW
| SURPRISES
(PL V) ==> SUPPORT
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((SBAR 0 *))

Now we read I.
(Active structure assertions in state set 1, after input (I) consumed.)

1. (((S6 V)1 %) ((SG VP)1%) (S0

*
There are 2 assertion sets: Emg 28 g 1;) ((SG PRONOUN) 01)  (SBAR 0 *)

2. (((SGV)1% ((SGVP)1%) (S0%-
((NP'SG)01)  ((SG PRONOUN) 01) (SBARO *))

Assertion set #2 is a subset of #1. The 2 sets have the following assertions in common:

(((SGV)1*) ((SGVP)1*) (S0*
((NP SG) 01) ((SG PRONOUN) 01) (SBAR 0 *))
The common assertions coincide with assertion set 2.

After reading know, we can make the following assertions. Note here that NP is a
proxy for the verb complement of know; we shall see how to fix this in a minute.

(((SGVP) 1% ((SGV)12) (50*
((NP SG) 01)  ((SG PRONOUN) 01) (SBAR 0 *)
(NP 2 %))

The next word is that. Here, the most that can be asserted for certain is the following.
Note that that cannot be fixed as any sort of element as yet.

(NP SG) 2*) ((SG VP) 1¥) (SGV)12) (S0%)
(NP SG)01) ((SG PRONOUN) 01) (SBAR 0 *))

Now we’ll cover the rest of the parse in rapid-fire fashion, just to show the output.

After block:
(((NP SG) 2 4) ((SG DET) 23) ((SG NBAR) 3 4)
((SG NOUN) 3 4) ((SGV)12) ((NP SG) 0 1)

((SG PRONOUN) 0 1))

After supports:
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(((SG vP) 4 %) ((SG V) 45) - (s0%)
(NP SG) 01) ((SG PRONOUN) 01) ((SG V)1 2)
((NP SG) 2 4) ((SG DET) 2 3) ((SG NBAR) 3 4)
((SG NOUN) 3 4) . (SBAR 0 ¥) (NP 5#))
the:
(((SGvP) 4 ¥ ((SG V) 4 5) (So0*
((NP SG) 0 1) ((SG PRONOUN) 01) ((SG V)12)
((NP SG) 2 4) ((SG DET) 2 3) ((SG NBAR) 3 4)
((SG NOUN) 3 4) (SBAR 0 *) (DET 5 6)
(NP5 %))
pyramid:
((SBAR 0 7) (so07) ((NP SG) 0 1)
((SG PRONOUN) 01) ((SG V)1 2) ((NP SG) 2 4)
((SGvP)4T) ((SG DET) 2 3) ((SG NBAR) 3 4)
((SG NOUN) 3 4) ((SG V) 4 5) (NP SG)57)
((SG DET) 5 6) ((SG NBAR) 6 7) ((SG NOUN) 6 7))

So far, this may seem mundane and uninspiring. Note, though, how the system does
not make any decisions it needs to retract. This will be true even if the sentence is
ambiguous. So for instance, in such well-known examples as PP attachment ambigu-
ity, since several analyses are equally possible, none will be asserted and the sentence
will be left with its minimal phrasal analysis, without deciding at all that the PPs
ought to be attached “high” or “low.” What is good about this modular approach is
that since the assertion sets are simply that—sets—we are free to filter them via any
predicate whatsoever, in order to fold in the effects of lexical preferences, or whatever
one wants.

Now consider some examples that Marcus claimed demanded lookahead. Note
that our current design doesn’t use lookahead at all—just the current token of the
input (Marcus erroneously calls this a single cell of lookahead). We shall show that
the X theory comes to the rescue here.

In English, words such as for and that are ambiguous. For can be either a prepo-
sition or a complementizer; that can be a pronoun, determiner, or complementizer.
What must happen for a parser to successfully distinguish between these various uses?

I know that block supports a pyramid. (that is a determiner)
I know that blocks support the pyramid. (that is a Complementizer)

Examples such as these led Marcus (1980) to argue that one cannot parse determin-
istically without looking at one or more tokens ahead into the input, to see whether
blocks is singular or plural. If we cannot use lookahead, and we must decide whether
to parse that as part of a Noun Phrase or a new Sentence, we are stuck. This is
also true of our explicit rewrite rule approach, as used in the new parser design. If

Published by ScholarWorks@UMass Amherst, 1985



North East Linguistics Society, Vol. 15 [1985], Iss. 1, Art. 3

22 R. BERWICK and A. WEINBERG

the only nonterminals names are objects such as Complementizer and NP, and if we
must choose between these without retraction, then we are in trouble. (This isn’t
to say that Marcus wasn’t in trouble here. His parser does work on these examples,
but rather bizarrely. Indeed, the “diagnostic” rule to handle that is among the most
baroque in his entire grammar: it specifically violates the general left-to-right operat-
ing principle of his machine, attaching the first item in the input buffer to the second.

Suppose, though, the the X representational format is directly incorporated in
the parser. Then parsing can proceed deterministically, or, rather, monotonically. In
particular, suppose that we adopt the idea that a verb such as know subcategorizes
for some XP, and that all Heads project to form phrases of some kind. Now let us
see what happens when the parser analyzes a sentence such as, I know that the block
supports a pyramid. We pick up the action at the time just after know is scanned.
Since know predicts that an XP starts after it, we add the assertion triple (X-max 2,
8) to the assertion set.

Now what? Reading that, the parser’s compatible assertions include: (that, with
no features, or perhaps +N, 2, 3); (X-max, 2, *) (projected from that, now assuming
the X theory); (X-max, 2, *); and the remainder from the earlier portions of the parse.
Note that the features of the X-max, and that remain underdetermined; this is the
best the machine can do at this point.

The parser now scans block. We add the triple (block +N -V, 3, 4); but we can
now also refine the earlier triples, (X-max, 2, *) to (X-max +N -V , 2, *). Finally,
by scanning support we can then add whatever refinement we want to the first X-max
triple, turning it into an S-bar (or S, as one might wish in some cases). Eventually,
the X-max (NP) will span positions 2 through 4; the S-type phrase, 2 through 7.

Now let us try I know that blocks support the pyramid. Again we predict a (X-
max 2, *) triple after know, and (X-max, 2, *); (that, 2, 3). Now the parser sees a
plural Noun, blocks. Based on this information, it can now refine the X-max triple to
(X-max + whatever feature complex S-bars have, 2, *); (that + features for COMP,
2, 3). We also add the new projection (X-max +N -V, 3, *) (for the NP headed by
blocks), and one for an S; note that this is always allowed. Eventually, the S-bar will
stretch from position 2 through 7; the S, from position 3 through 7.

Note that no lookahead is required to resolve these cases, nor any abnormal rule
that attaches items in a peculiar fashion. The “wait and see” or “attention shifting”
behavior of the Marcus parser does not need to be stipulated; rather, it falls out of
the normal behavior of the parser, operating with X type rule features. Where the X
system underdetermines feature complexes, we get the effect of wait-and-see behavior,
but it is part and parcel of the normal operation of the machine—nothing special at
all need be said in order to get this effect.

The same approach resolves for ambiguities. If the grammar has to use the cat-
egories PP, S, and so forth, then our deterministic parser must fix this categorial
status correctly, without extra lookahead in the proposed model. But then the parser
cannot correctly decide between for as the Head of a Prepositional Phrase and for as
the a Complementizer—the Head of an §, in some theorics. Now suppose that the X
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schema is directly used by the parser. Then, given that for is a Head of some kind,
the parser can create a maximal projection, with a kind of “operator” status (the
Head element). The features of this projection can remain partially determined until
the following material is analyzed as either an NP followed by verbal material (then
for heads an §) or just an NP (for heads a PP). In fact, on this alternative, there is
no “PP” or “8” at all, just the Head with whatever features it has.

Let’s take one more example and then stop. Consider another sentence type where
a verb can subcategorize for either NP or Sbar, e.g, I ezxpect John /I ezpect John to
leave. Exactly the same approach will work here as before. In the first sentence, the
X-max Recipient triple will eventually be co-identified with the N-max projection, via
refinement. In the second, the X-max will be refined to be an S-bar spanning positions
2 to 5, while the N-max will stretch only from position 2 to position 3 in the input.
Refinement occurs automatically as each token is scanned: when the infinitive fo is
reached, the N-max is closed off at position 3 and its N-max features not percolated
to the X-max. No lookahead is required. ,

The framework sketched here is perfectly compatible with constraints that allow
the order among complements to, e.g., a verb, to be free, if there is no other constraint
on them. That is, in order to establish what constituents are to be expected after a
verb, we simply project, directly, the lexical subcategorization frame of the verb; there
is no need for an ordered right hand side as in a traditional context-free rule. Whatever
assertions are compatible with the (unordered) subcategorization frame will simply be
made as before. Of course, if there are constraints, such as case assignment/adjacency
considerations, these may be enforced and the resulting assertion sets filtered; no
change in the basic parsing machinery is required. Also, because no lookahead is ever
used, “short” garden paths, such as the boat floated sank are at least possible; the
Marcus parser had to deliberately ignore its own lookahead information in an ad hoc
way in order to garden path in such cases.

The new parsing design takes X theory seriously. By doing so, it can avoid prob-
lems that plague parsers built on explicit rule systems. It exhibits the right kind of
“wait and see” behavior, while remaining true to the principle of determinism.

2. Parsing and grammatical constraints

In the previous section we showed how the problem of encoding grammatically rele-
vant information can help us constrain the design of the parsing algorithm. We can
approach the problem from the opposite perspective. We can ask what conditions
efficiency imposes on grammatical theories. In this section we will show that two
otherwise mysterious properties of the parasitic gap construction receive a functional
explanation—if we assume that the grammar is embedded with no additional ad hoc
mechanisms into a deterministic parser.! In particular, we can explain why parasitic
gaps must be licensed at S-structure. In addition, we explain why the parasitic gap
construction is governed by subjacency.

In Berwick and Weinberg (1984) we discussed a subclass of parsers known as
Bounded Context parsers. The three most relevant properties of these parsers are:
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1. They are extremely efficient. They can parse sentences in linear time.
2. This efficiency is guaranteed in part by their deterministic operation.

3. They use only a literal representation of the left contezt of a parse, that is, a
representation of the structure seen so far that does not use essential variables.?

We argued that if we could show that natural language could be parsed by such a
machine, then it could be parsed efficiently. We then examined problems that natural
language presents to such a device.

As described in the previous section, cases of structural ambiguity pose the great-
est challenge to a deterministic parser. Consider a sentence like (1) in this light.

1. What; do you think Fred ate e;.

A correct analysis of this sentence entails that the parser inserts an empty category
after the verb. Note however that this verb has an ambiguous subcategorization and
takes an intransitive reading as well.

2. Did you think Fred ate?

A deterministic answer to the question of whether to insert an empty category
after the verb cannot be obtained simply by the analysis of the local subcategorization
environment. Rather, the only firm evidence for the expansion of an empty category
in (1) is the presence of the wh operator at the beginning of the sentence. But this
disambiguating element can be arbitrarily far from the empty category, as examples
like (3) show.

3. What; do you believe Fred said that Bill believed that John expected Sue to
eat ¢7?

4. Do you believe that Fred said that Bill believed that John expected Sue to
eat?

This suggests that if the parser had to consult the wh element at the beginning
of the sentence, it might have to store a potentially unbounded left context. This is
because we cannot guarantee that a finite number of symbols intervene between the
trace and antecedent. (We can’t encode the left context using essential variables.)
This entails some kind of bound on the distance between the empty category and the
element that binds it.3. This gives us the effect of cyclic movement and subjacency.
Assuming the parsing analog of successive cyclic movement, the decision to insert a
trace in a structure like (3) can be made by looking at a finite amount of left context.
If there is a trace in the subjacent COMP we can expand the phrase structure with
a trace; if not, we don’t.4.

5. What; do you believe [ e; [John said .. .[e; [Bill would eat ...]]]]
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In addition we made the assumption that the parser shunted nodes from the
left context as they were completed. For example, as a verb phrase is completed
its daughters are removed from the left context. In Berwick and Weinberg (1984)
we showed that this gives the effect that only c-commanding elements can serve as
the left context for phrase structure expansion. In our book we presented some
psycholinguistic evidence for this assumption and also showed that it could be used
to correctly delimit why binding relationships are governed by c-command.

As pointed out by Janet Fodor (forthcoming) and contra Berwick and Weinberg
(1984), parasitic gaps present our parser design with the same ambiguities that mo-
tivated subjacency for regular wh movement. That is, there are structures where the
decision to create a parasitic gap or not must depend on the presence or absence of
certain left context material. This is illustrated in (6) and (7):

6. This is the meal; that I cook without eating e;.

7. Can you cook a meal without eating?

Chomsky (contra Fodor (forthcoming) and Berwick and Weinberg (1984)) provides
the following examples demonstrating that in fact parasitic gap constructions are
governed by Subjacency. Examples (8), (9), and (10) parallel overt movement in that
movement from complex noun phrases is unacceptable. '

8. Who—1 did you read a book about e; to e;?
9. Which man; did you interview e; without reading up on e;?

*10. Which man; did you interview e; without reading [np [the file]; [s you
made e; on ¢]]?

In (8), both gaps are subjacent both from the complementizer, and from each other.
This is shown by both (11) and (12), where overt movement from both the parasitic
and regular gap positions is acceptable.

11. Who; did you read a book about e;.
12. Who; did you read the book (that Mary bought yesterday) to ;.

Chomsky uses the contrast in (9) and (10) to argue that parasitic gaps are bound
to empty operators and are licit only if they are subjacent to these operators. These
empty opcrators are interpreted as marks of predication and so must appear at the
head of the adjunct clause. Put in terms of our parsing model, we can use the presence
of the overt operator to signal the presence of the “real” gap. The placement of the
empty operator is governed by the independent principles of either predication or
A’ binding. The presence of the empty operator, in turn, can be used to signal the
presence of the parasitic gap, if it is in a subjacent position. In addition, Chomsky
assumes that every ungoverned category counts as a bounding node.® This analysis
predicts that (10) is bad because, as a sign of predication between the relative clause
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and the head of the complex NP, the empty operator inside this relative must be
bound to (coindexed with) the head. Coindexing the parasitic gap to this operator as
well will result in an ill-formed structure, because quantifiers cannot be bound to two
variables, (13). Neither the overt operator at the head of the sentence, nor the empty
operator at the head of the adjunct are subjacent to the gap, and so they cannot
license it. Therefore this structure is ruled out. This contrasts with (9), where every
trace is subjacent to the operator that licenses it, as shown in (14).

*13. Which man; [s did you [yp, interview e;][pp without [OP2; [s PRO reading
[xp the file; [ OP; [s that you made on; e

14. Who; [s did you [vp interview ¢i][pp without [¢ OP; [PRO reading up on

eill]l?

Assuming that we can show that the creation of empty operators causes no problems
for a deterministic system, we can use their presence to license parasitic gaps in the
appropriate structures. Thus we can make the parsing model predict the properties
of this construction in a straightforward and independently motivated way. It is
important to note at this point that we are not changing assumptions in an ad hoc
way simply to model the facts. The problem with our first attempt was that we
did not follow the logic of our predictions clearly. The model actually predicts that
parasitic gaps should be governed by Subjacency, as Fodor notes in her forthcoming
article.

We now present an algorithm to create empty operators that is also compatible
with a deterministic approach. Note that the case of empty operators in adjuncts is
similar to the case of factive Noun Phrases cited by Fodor in her criticism of Marcus.
As in factives, the presence of the overt operator makes parasitic gaps possible in
adjunct positions, but it does not make them obligatory in these structures. Consider
(15)-(17).

15. Who did you meet without greeting.
16. Who did you meet without greeting him.

17. Who did you meet without clearing the rendezvous with security.

In a case like (15), the parser must place an empty operator in the complementizer
of the adjunct phrase in order to bind the empty parasitic object of the verb greeting.
In (16) and (17) by contrast, we do not want to place an empty operator in this
position, because there is no parasitic gap in the adjunct for the operator to bind.®
In (16) the parasitic gap is filled by a pronoun and in (17), there is no corresponding
gap position at all. Because of the possibility of successive cyclic movement however,
the parasitic gap can be indefinitely far away on the surface from the empty operator
position. A deterministic parser with limited lookahead will not be able to wait for
the disambiguating right context. Therefore, there will be certain cases where it will
incorrectly place an empty operator in the adjunct’s COMP.
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Fodor implies that these facts pose a problem solely for deterministic parser,
suggesting that a nondeterministic solution is called for. In fact, the determinis-
tic/nondeterministic issue is beside the point. If the distinction is between a deter-
ministic parser and a nondeterministic parser that backtracks (Fodor’s choice), then
both will have problems because they both at least superficially predict that such cases
cause people to have noticeable difficulties in comprehending these sorts of sentences.
But none of (15)-(17) are difficult to understand.

Nondeterministic parsers with backtracking partially equate the difficulty in com-
prehending a sentence with the amount of backtracking needed from the point of
disambiguation to the point where a parsing error was made.” Thus, John was hit by
Mary is easy to comprehend even under the assumption that the parser would first
hypothesize that this is an active sentence, because the parser recognizes its mistaken
characterization of John as an Agent as soon as it sees the passive predicate. In con-
trast, Who did you ask to sing that stupid song for is more difficult, because there is
a tendency to interpret who as the Subject of ask. The disambiguation point is quite
far from this decision point, so when the parser realizes its mistake it must unwind
through a long stretch of material to make the appropriate corrections.®

Cases like (15)-(17) cause problems for the backtracking approach because they
break the association between the extent of backtracking necessary to correct false
starts and perceived sentence complexity. None of the examples in (15)-(17) produce
processing complexity. This shows that there is not even a preference for adjuncts
with or without parasitic gaps. Whatever the first hypothesis of the (deterministic or
backtracking) parser—whether it inserts an empty operator in the adjunct’s comple-
mentizer or not—one of the structures is incorrectly predicted to be difficult to process
because of extensive backtracking from the site of the disambiguating parasitic gap
or end of the adjunct needed to correct the mistake. (18a) and (18b) show that no
extra processing complexity is observed even in cases where the disambiguating right
context is very far away from the point where the decision about whether to insert
an empty operator must be made.

18a. Who did you search for without telling Sue to convince Bill to ask Harry
to come with you?

18b. Who did you search for without telling Bill to ask Sue to inform Harry
that you would meet?

It seems then that these kind of sentences are problems for both deterministic and
nondeterministic (backtracking) parsers. We could solve them if we could design an
algorithm in which the semantic component simply didn’t interpret empty operators
unless they were eventually bound to elements in argument positions. Since these
elements have no phonetic content, if they received no semantic interpretation, it
would be as if these elements never existed.® In that case we could insert the empty
operator in all sentences, but we would be sure to be right because an unbound empty
operator would simply be ignored, because it is invisible. In fact the two stage parsing
model discussed in our book provides just such a mechanism.
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We argued on conceptual and psycholinguistic grounds that the natural language
processor was a two stage mechanism. The first stage dealt with tree expansion
and the second dealt with indexation. In addition to having a different function,
the second stage worked on a different representation. During the first stage, the
completion of a category signaled the parser to shunt the category’s daughter into a
separate stack, which we called the Propositional Node Stack (PNS). The intuition
behind this shunting was that once a category’s thematic role was established from
its position in the syntactic tree, the parser wouldn’t need to retain many of the
details of syntactic structure. We showed that elements in the same c-command
domain are not put in the PNS until all categories in the domain are complete.
This algorithm allowed the parser to correctly compute c-command relations between
categories. This was crucial since these relations govern the application of the binding
operations on the previously expanded tree. Pursuing the intuition that the PNS was
a representation concerned with purely semantic aspects of the interpretation, we
placed a semantic visibility condition on the categories appearing in this component.
We claimed that to be interpreted by the semantic component (PNS), a category had
to have semantic features. These were the features that allowed a Noun Phrase to
either denote an individual or a set of individuals or allowed a quantifier to delimit a
scope.!0 Assuming a category had such features it would be given a “referential index”
and be visible in the PNS. If a category did not intrinsically have such features, it
could obtain a referential index by being linked to an element that did.! Given the
shunting procedure, an element would have to be in the same c-command domain
as its antecedent in order to receive a referential index before being shunted into the
PNS. If an element did not receive an index before shunting, it would become invisible
and receive no interpretation. This allowed us to provide a principled explanation for
the fact that grammatical conditions specifying c-commanding antecedents seem to
apply only to categories with no independent referential status.!? Chomsky (1981 and
1984 class lectures) has suggested that association with a thematic (theta) role is also
a necessary condition on visibility for semantic interpretation roles. We will adopt
Chomsky’s suggestion and state the combined condition on visibility as follows.

(Visibility Condition) To be visible in the PNS, an element must be associated
with a theta role (either by occupying a theta position or binding an element in a
theta position) and must have referential features (features that either designate
an individual or set of individuals or that delimit a range).

We will now show that the independently motivated shunting procedure and visi-
bility conditions give an account of empty operators that explains why they cause no
processing difficulties.

Let us reconsider sentences (15)-(17). In (15), the parser recognizes that part of
the sentence is an adjunct phrase. This signals the possibility of a parasitic gap in the
subsequent structure. The parser therefore inserts an empty operator in the COMP
position, as shown in (19):

19. Who; did you meet e; without [g» OP;...
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If the parser subsequently finds a gap position in a subjacent domain, it can create
a trace and bind the operator to it, thus associating the operator with a theta position,
as in (20).

20. Who; did you meet e; without [OP; [s greeting e;]]

Before shunting into the propositional node stack, the operator must locate an’
antecedent in the c-command domain with a referential index. If it does not find'
one, then neither it nor its trace will be interpreted, because even though they are
associated with a theta role, they are not associated with a category that delimits a
range. In this case the overt operator who is present in the c-command domain, so
both the empty operator and the trace can receive the category’s referential index (%)
and so be interpreted in the PNS.

Compare this to (21). In (21) below, the parser will also detect an adjunct and so
create an empty operator. Assuming the verb in the adjunct can take an argument,
the subjacent empty operator will license a parasitic gap.

21. Did you watch the movie without [s» OP; [g eating e;]]

In this case there is no overt operator in the c-command domain (or anywhere
else in the structure for that matter). Therefore, the empty operator and its trace
are not associated with referential features and so will not be interpreted at PNS.

In cases like (17) above, the adjunct again triggers the creation of an empty opera-
tor. Since there is no gap in the adjunct phrase, the operator is not associated with a
theta role. Therefore, even though there is an overt operator to link with, the empty
operator does not meet the criterion for visibility at PNS and so is not interpreted.l‘“?
Since empty operators are not interpreted unless both conditions on visibility are
met, a deterministic parser can always create these categories because they can never,
force it to simulate nondeterminism either by backtracking or parallelism in order to
correct for past mistakes. Note that this solution will only work for empty operators.
Lexically specified elements will receive a phonetic interpretation but no semantic
interpretation, a situation that will lead to unacceptability. An empty element with
no semantic features, however, is neither semantically nor phonetically interpreted
and so simply plays no role in the interpretation of the sentence.

The astute reader will have noted an apparent problem created by this solution.
Why, one might ask, if empty categories can become invisible at later stages of inter-
pretation, must we cue their creation to the presence of overt operators? The cases
that motivated the account in the first place were those in which the local subcate-
gorization of a verb was indeterminate. Before positing an empty element after such
a verb, we claimed that we had to make sure that an actual operator was present in
the previously analyzed structure. However, given our present approach, one might
be tempted to argue that if a verb that can be optionally transitive turns out to be
used intransitively in a given structure, the gap will simply not be associated with
an operator and so become invisible in the PNS. This seems to dash the motivation
for restrictions on left context, crucial for the functional motivation of Subjacency
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in the first place. But it is only elements with no phonetic features that can escape
unacceptability if they are not semantically interpreted. Since wh elements have case
features,!4 they will be visible in the phonological component.!® This makes certain
predictions about the applicability of Subjaceny to NP movement. As noted in Las-
nik and Saito (1984), all the cases where we seem to need Subjacency to rule out
unacceptable NP movements are actually also ruled out redundantly by the Empty
Category Principle. Under our approach, we predict that NP movement should not be
governed by Subjacency, thus ruling out this redundancy, always a welcome result.!6

Looking at the distribution of parasitic gaps from the parsing perspective allows us
to supplement Chomsky’s analysis in important ways. It allows us to derive the fact
that parasitic gaps must be licensed at S-structure. That is, we derive as a theorem
the fact that quantifiers and wh operators that move to COMP or some other pre-S
position at LF do not create acceptable parasitic gap structures, as shown by examples
(22) and (23).

*22. [s You [yp [vp met who;] [pp without greeting e]]]

*93. [Everyone [yp [vp met someone; |[pp Without greeting &]l]

We know independently that parasitic gap constructions are not licit if the real gap
occurs in Subject position.!” In addition, if our analysis is correct, the overt operator
must occur in a c-commanding COMP. As mentioned, the c-command requirement
is ensured by the shunting design of the parser. If an element does not c-command
a category it is not visible to it and so cannot be used to create that category as we
expand the parse tree. Neither the wh element, nor the quantifier in (22) or (23) c-
commands the adjuncts containing the parasitic gaps. Given the above account, there
will be no binder to give referential features to.the empty operator in the COMPs
of these adjuncts and thus neither they nor their traces will be interpreted in the
PNS. Given that the input for parsing decisions is the S-structure of the sentence, the
subsequent movement of a category to a c-commanding position at a post S-structure
level cannot help the parser decide how to expand the parse tree. Our parsing theory
can derive both the fact that Subjacency is an S-structure property and the Subjacent
government of parasitic gaps along with their licensing at S-structure—the central
properties of the construction.

Conclusions

We have seen that by linking grammatical theory and parsing theory closely together,
we can help both. Parsing theory benefits from the constraints given by grammars:
if it were not for locality principles and X theory, deterministic parsing would be
difficult, if not impossible. On the other side, the pattern of locality constraints seems
best explained as a fact about deterministic parsing, not a fact about the grammar.
As expected, the more we learn about the representations underlying knowledge. of
language, the more we can know about how those representations are used, and why
they take the form that they do. '
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FOOTNOTES

1This is a greatly condensed version of Weinberg (forthcoming).

21t is possible to obtain the effect of an essential variable by encoding left context
generatively. This is the method used in GSPG. By adding complex nonterminal sym-
bols (so-called “slashed categories”) we can pass information that a potential filler
has been encountered indefinitely far. This solution would be ad hoc for a parser
implementing a GB style grammar. The only categories grammatically motivated are
those independently generated by the X system (Head and their projections). The
X system does not distinguish between projections of empty and lexical categories.
In GB phrase structure configurations are purely theoretical constructs derived from
independent subsystems, and there is no independent way to justify complex non-
terminals. See Chomsky (1981) for justification. Since generative encoding is not
available, we must ensure that there is a literal bound on the number of nonterminals
that intervene between a trace and its antecedent.

3We cannot go into the argument here, but in Berwick and Weinberg (1984) we
show that the noncounting property of grammars entails that this restriction applies
to zero or one phrase domain, as opposed to say, six bounding nodes.

4This situation contrasts with lexical anaphors or LF movement. In structures
like (a) or (b) below, the binding of the italicized element is indeterminate, but the
decision about whether to create these categories is fixed without left context because
they are phonetically realized. Therefore, we correctly predict that Subjacency doesn’t
apply here.

(a) Who do you think e ate what
(b) The men liked each other.

S Alternatively, following Aoun and Clark (1985), we can claim that empty op-
erators count as A' anaphors and so obey the locality conditions that apply to this
class. See Weinberg (forthcoming) and Aoun, Hornstein, Lightfoot, and Weinberg
(forthcoming) for details.

The analysis in the text contrasts with Chomsky (1982) where parasitic gaps are
considered underlying PROs. Brody (1983) provides independent arguments showing
this account of the distribution of parasitic gaps is inadequate because it relies on the
so-called functional definition of empty categories. In addition, the earlier analysis
would obviously not predict the observed distribution of the data, since PROs are
typically not bound by operators, empty or otherwise.

81f these operators are available at all stages of comprehension then the fact that
'Eh;a empty operator has no variable to bind should make the sentence as bad as in
a):

(a) Who did John meet Mary?
TThese are parsers like the standard ATN designs proposed by Woods (1970).
83ee Frazier, Clifton, and Randall (1983) for details.
9An Alternative would obviously be to come up with an analysis that did not
posit empty operators in these and related cases. Such an account is difficult to

conceive of, because we would also have to account for the subjacency effects that
these constructions exhibit. By this we do not mean coming up with an alternative
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functional explanation for Subjacency in these cases. We mean allowing the parser
(or the grammar) to distinguish those cases that are grammatical from those that do
not obey the constraint.

0Examples of categories with intrinsic semantic features are proper names like
John, pronouns like him wh phrases like what or which man.

1 Categories that have no intrinsic semantic features and so can receive referential
indices only by linking are bound anaphors like each other or herself , empty NP and
wh traces, and certain non-wh quantified expressions. See Weinberg (forthcoming)
for details.

12See Berwick and Weinberg (1984, pp. 173-182) for the conceptual arguments
and Weinberg (forthcoming) and Weinberg and Garrett (forthcoming) for psycholin-
guistic results and additional consequences of this approach.

13This approach will also handle empty operators in tough movement, topical-
ization, relative clauses, and the factive NPs that Fodor discusses in her criticism of
Marcus. As should be obvious, since all these structures also involve predication be-
tween a phrase and a head, topic, or adjective phrase, exactly the same logic applies.
See Weinberg (forthcoming) for details.

14Gee Chomsky (1981) for justification of this assumption.
15Gee Aoun and Lightfoot (1984) for discussion.

163ce Weinberg (forthcoming) for details. Note that the non-government of NP
movement by Subjacency reinforces the point made in Berwick and Weinberg (1984)—
namely, that Subjacency governs a natural class from the parsing perspective., The
example just given shows that Subjacency only governs a subset of the movement
constructions, the gapping examples discussed later on in this section show that Sub-
jacency governs a subset of the deletion constructions. From a grammatical viewpoint,
this is an entirely unnatural result.

This approach also makes sense of some preliminary results reported by Frazier (1984
Nels proceedings). Frazier claims that eye movement tasks suggest that subjects try
to fill gaps using operators that are not subjacent to them, if the verbs governing the
gap position are strongly subcategorized for direct objects. The cases are like those
in (a):

a. *What; did [the girl [s who won e; ]| receive ¢

Given our approach we might claim that the gap inside the island is created on
the basis of the empty operator in the COMP of the relative COMP. The fact that
experimental subjects seem to look back to the overt wh element is compatible with
our approach if we claim that this is the result of the attempt to bind this operator
(an operation not governed by Subjacency) to the overt operator.

17See Chomsky (1982).
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