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1        Woods Hole Oceanographic Institution, Woods Hole, MA, USA, 2     Department of Geosciences, University of

   Massachusetts, Amherst, MA, USA, 3          New York State Department of Environmental Conservation, Hudson, NY, USA

           Abstract Nonlinear turbidity discharge relationships are explored in the context of sediment sourcing

           and event driven hysteresis using long term ( 12 year) turbidity observations from the tidal freshwater  ≥ 

               and saline estuary of the Hudson River. At four locations spanning 175 km, turbidity generally increased

                with discharge but did not follow a constant log log dependence, in part due to event driven adjustments in 

            sediment availability. Following major sediment inputs from extreme precipitation and discharge events in

                 2011, turbidity in the tidal river increased by 20 50% for a given discharge. The coherent shifts in the–

               turbidity discharge relationship along the tidal river over the subsequent 2 years suggest that the 2011 events

            increased sediment availability for resuspension. In the saline estuary, changes in the sediment discharge

             relationship were less apparent after the high discharge events, indicating that greater background turbidity

               due to internal sources make event driven inputs less important in the saline estuary at interannual time

scales.

           Plain Language Summary Turbidity is a widely accepted proxy for suspended sediment

              concentration and an important factor for contaminant transport and water quality. Here we show that

              turbidity depends on river discharge in long term observations at multiple locations in an estuary. Such

                relationships are often used in rivers, but have not been commonly used in estuaries and tidal rivers,

               where tides and salinity also contribute to variability. Turbidity in the freshwater tidal region was more

                sensitive to discharge than in the saline estuary. Massive inputs of sediment due to extreme precipitation and

              ooding in 2011 resulted in increased sediment availability in the tidal river over multiple years.

                Turbidity throughout the tidal river was elevated for 2 years following the events, but changes were not

               apparent in the saline estuary. The observations provide guidance on recovery time scales for estuaries and

                tidal rivers to event driven sediment inputs, which affects the delivery of material from the watershed to the

         coastal ocean as well as other impacts on water clarity.

 1. Introduction

             Due to the challenges in continuously monitoring suspended sediment concentration (SSC), SSC and sedi-

             ment discharge in rivers are often empirically related to volumetric freshwater discharge (Helsel &

               Hirsch, 2002). Volumetric discharge varies by orders of magnitude at event and seasonal time scales, and

             it is the dominant factor controlling variability in sediment discharge. Sediment discharge increases nonli-

              nearly with volumetric discharge, commonly increasing to approximately the cube of river discharge at high

            ow (Nash, 1994; Syvitski et al., 2000). Consequently, large, relatively infrequent events disproportionately

    contribute to cumulative sediment discharges.

             Sediment discharge rating curves are often treated as static, and yet variability in precipitation patterns,

             vegetation, land use, and tectonic activity can all affect sediment delivery and sediment discharge relation-

                ships (Morehead et al., 2003; Walling, 1977; Warrick & Rubin, 2007; Yellen et al., 2016). Disturbance from

               extreme oods can increase sediment concentrations for months to years as rivers adjust to bed incision

                 and landslide scarps revegetate (Ahn et al., 2017; Dethier et al., 2016; Gray, 2018; Warrick et al., 2013).

              The duration and timing of low discharge conditions can affect in stream storage and SSC during subse- 

                quent higher discharge periods (Gray et al., 2014; Walling et al., 1998). Sampling frequency can also contri-

               bute to uncertainty or introduce bias into sediment discharge measurements (Coynel et al., 2004), and the

                variability in time scales of watershed response that can be diagnosed depends on the functional form of

      the sediment discharge relation (Ahn & Steinschneider, 2019).
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              Rivers supply sediment to coastal regions, where tides, waves, and density driven circulation also play cen-

             tral roles in sediment transport. In estuaries, salinity gradients drive landward near bottom circulation that

             leads to sediment trapping and regions of higher sediment concentration, or estuarine turbidity maxima

              (ETMs) (Burchard et al., 2018; Postma, 1961). River discharge alters sediment input from the watershed

                but also affects the salinity distribution and thus the location and magnitude of sediment trapping at seaso-

               nal and event time scales. Tidal currents also contribute to variability in SSC, directly through sediment

               resuspension and indirectly by affecting the salinity distribution. In the tidal freshwater part of an estuary,

                tidal resuspension and sediment supply from the river are the key factors in SSC variability (Dalrymple &

                Choi, 2007; Ralston & Geyer, 2017). Tidal freshwater regions provide crucial links in the movement of mate-

                rial to the coastal ocean, and yet they have received less study than uvial or estuarine environments

   (Hoitink & Jay, 2016).

            This study uses long term ( 12 year) observations to characterize turbidity discharge relationships in a tidal ≥  

              river and estuary, including the response following sediment inputs from major discharge events. Because it

                      is easier to measure, turbidity is often used as a proxy for SSC (Ahn et al., 2017; Yellen et al., 2014), and tur-

                   bidity has been shown to correlate well with SSC in the tidal river (Ralston & Geyer, 2017) and within the

                watershed of the study (McHale & Siemion, 2014). In late summer 2011, tropical cyclones Irene and Lee

             delivered intense precipitation over much of the U.S. Northeast, increasing discharge and sediment delivery.

                  In the Delaware estuary, sediment input of 1.4 Mt in 2 weeks was similar to the long term annual average,

                  and SSC in the ETM of the Delaware remained elevated for several months (Sommer eld et al., 2017). In the

                Connecticut River estuary, input from Irene of 1.2 Mt was twice the annual average, and the sediment

                 discharge relationship in the tidal river was elevated for the following 2 years compared to before the storm

                   (Yellen et al., 2014). In the Hudson River estuary, sediment input from Irene and Lee was about 2.7 Mt, more

                  than twice the annual average (Ralston et al., 2013; Wall et al., 2008). The events increased turbidity in the

                 months following the events, but the response to this sediment input has not been examined at longer time

               scales. In this study, we use long term monitoring data to assess the turbidity discharge relationships at mul- 

                tiple locations along the tidal Hudson River and quantify the time scales over which the discharge events

    altered turbidity in the system.

 2. Methods

  2.1. Site Description

                 The Hudson River estuary extends about 265 km from the Atlantic Ocean to tidal limit at Troy (NY).

               Along estuary distances in the Hudson are typically reported with respect to The Battery in New York

                   Harbor as 0 river km (rkm), but The Battery is located about 25 km landward of the natural mouth between

                  Sandy Hook and Rockaway Peninsula. The tidal range averages about 1.5 m at the mouth, decreases to 1 m

                  midestuary, and increases to 1.5 m at the head of tides (Ralston et al., 2019). The salinity intrusion varies

                 from about 40 rkm during high river discharge to 120 rkm during low discharge (Bowen & Geyer, 2003;

   Ralston et al., 2008).

                  The primary ETM in the Hudson is located near 20 rkm, formed by bottom salinity fronts associated with a

               constriction (Geyer et al., 2001; Traykovski et al., 2004). During moderate and low discharge, a secondary

                  ETM forms near 55 rkm (Nitsche et al., 2010; Ralston et al., 2012). In the primary ETM, near bottom sedi-

      ment concentrations can exceed 1 g L−1         , and concentrations are greater than 100 mg L−1     in much of the sal-

              ine estuary. In the tidal river, sediment concentrations are generally less than 100 mg L−1    and vary with river

                 discharge and tidal forcing (Ralston & Geyer, 2017; Wall et al., 2008). Sediment inputs come from the two

              largest tributaries, the Mohawk and Upper Hudson Rivers, which converge just above the tidal limit.

            Numerous smaller tributaries also discharge into the tidal Hudson, cumulatively increasing the sediment

      load by 30 70% (Wall et al., 2008).–

 2.2. Observations

             Turbidity data were collected from monitoring stations located along the estuary. Data were accessed

          through the Hudson River Environmental Conditions Observing System (www.hrecos.org), which organizes

            monitoring data from multiple partner organizations, and the Centralized Data Management Ofce (cdmo.

           baruch.sc.edu). Monitoring stations were at Schodack Island (212 rkm, available 2008 2019, partner–
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             organization Cary Institute of Ecosystem Studies), Tivoli North Bay (156 rkm, 2000 2019, Hudson River– 

           National Estuarine Research Reserve, HRNERR), Norrie Point (132 rkm, 2008 2019, HRNERR), and–

            Piermont (37 rkm, 2008 2019, Lamont Doherty Earth Observatory) (Figure 1). Under most forcing condi-– 

                  tions, Piermont is in the saline estuary and the other three stations are in the tidal freshwater (Hoitink &

 Jay, 2016).

              All stations recorded near surface turbidity. Time series were processed for quality control based on visual

             inspection to remove spurious outliers or anomalous trends indicative of instrument fouling. The quality

                control removed 0.3% to 2.8% of the measurements, depending on the station. The Tivoli North Bay sensor

                 is located in a small channel connecting to a side embayment, so we only used measurements during ood

               tides. Daily median turbidity values were used to minimize the in uence of individual bad measurements on

               longer term variability. At Tivoli, water samples were collected, ltered, dried, and weighed to measure sus-

             pended solids concentration for comparison with turbidity. The regression slope for total suspended solids

 (mg L
−1

       ) was 1.2 times the turbidity (NTU, r
2

           = 0.52, = 219). Turbidity sensors at the other stations weren

                 not calibrated to SSC, but previous studies in the saline estuary and tidal river have also found calibrations

            with slopes of around 1 (Ralston & Geyer, 2017; Ralston et al., 2013).

  Volumetric discharge (Q r     ) and sediment discharge (Q s       ) measurements were collected from U.S. Geological

              Survey (USGS) gauging stations on the Mohawk and Upper Hudson. The Mohawk (at Cohoes, 01357500)

           has volumetric discharge 1917 2019 and sediment discharge 1954 1959, 1976 1979, and 2002 2019. The– – – –

            Upper Hudson (Waterford, 01335770) has volumetric discharge 1887 1956 and 1976 2019 and sediment dis-– –

           charge 1976 2014. Mean daily mean SSC were calculated with =– SSC Q s/Q r.

    Turbidity was related to Qr           by locally weighted scattered smoothing, or LOWESS (Cleveland, 1979; Helsel &

               Hirsch, 2002). The LOWESS approach has been used for sediment discharge rating curves in rivers, includ-

              ing in trend analyses following discharge events (Gray, 2018; Warrick et al., 2013). LOWESS regressions

              were calculated for log transformed discharge and turbidity with a smoothing factor of 0.25. A bias

                 Figure 1. Turbidity at monitoring stations along the estuary. (a) Station locations, (b) daily average discharge from the
                 Upper Hudson and Mohawk, noting tropical storms Irene and Lee in 2011, and (c f) daily median turbidity from–

        Schodack Island, Tivoli North Bay, Norrie Point, and Piermont.
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             correction factor was included to calculate turbidity from discharge using the regression (Cohn, 1995;

       Ferguson, 1986), with the form = 10^(C C out  + σ
2   /2), where C out      is the output from the LOWESS

  regression to log10 (Qr   ) and σ
2             is the variance of the residual. The variance of the residual was calculated

    in fractional subsets of Q r            similar to the LOWESS smoothing factor to account for variability in the

 regression t.

 3. Results

              Over the observation period (2008 2019), Irene and Lee accounted for the highest river discharge and–

              observed turbidity (Figure 1). The turbidity during and immediately following the 2011 events was greatest

                   in the upper tidal river at Schodack Island, with 1,000 NTU during Irene and 500 NTU during Lee. At the

                 Tivoli North Bay and Norrie Point stations in the tidal river, turbidity was 200 300 NTU during the events.–

             Increased turbidity was recorded during other high discharge periods, including spring freshets in 2013,

                 2014, and 2016, but those maxima were less than half than during Irene. In the saline estuary, the

              Piermont station was not operational during the 2011 events. During other years, the maximum turbidity

               at Piermont was typically around 100 NTU, with generally higher turbidity during the winter and spring

    and lower in the summer.

               Turbidity from the four stations is plotted against discharge, and all the locations have positive slopes

                (Figure 2). At Schodack Island, the turbidity dependence on discharge has a form similar to many rivers

         (Nash, 1994), with a greater slope at higher discharge (Qr   > 400 m
3

s
−1

     ) and weaker dependence at lower

Qr                     . Schodack is in a shallow and sandy part of the tidal river (Collins & Miller, 2012; Nitsche et al., 2007),

                so resuspension of ne sediment is limited and turbidity varies strongly with river inputs. The slightly nega-

                   tive slope at low discharge may be an artifact of limited data or may be due to increased organic particles

                during summer low discharge (Ralston & Geyer, 2017). Farther seaward, at the Tivoli and Norrie Point sta-

              tions, turbidity increases more gradually with discharge (Figures 2b and 2c). Discharge varies annually by

                  about an order of magnitude, and turbidity in the tidal river varies by more than an order of magnitude.

                 The turbidity variability in the tidal freshwater river is greater than that in the saline estuary, where the

                annual range typically spans a factor of 2 3 (Bokuniewicz & Arnold, 1984; Ralston & Geyer, 2017; Ralston–

             et al., 2012). Correspondingly, the turbidity discharge regression at Piermont has a narrower range than

      Figure 2. Turbidity versus river discharge (Qr             ) at (a) Schodack Island, (b) Tivoli North Bay, (c) Norrie Point, and

                (d) Piermont. Daily turbidity data are in black, and LOWESS regressions are colored. Marker shading represents tidal

           amplitude based on the water level at The Battery (NOAA # 8518750).
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                those at the tidal river stations, and discharge dependence is weaker (Figure 2d). The LOWESS ts between

           discharge and turbidity at the tidal river stations had higher correlations (r
2

     = 0.42 at Schodack, 0.24 at

            Tivoli, and 0.19 at Norrie) than at Piermont in the saline estuary (r 2  = 0.12).

               Scatter in the turbidity discharge relationships is due to the many processes that affect turbidity in addition

              to discharge. Tidal amplitude affects sediment resuspension, and residuals in the LOWESS ts were posi-

              tively correlated with tidal amplitude at all four locations, but the correlations were weak (r2   < 0.005 at

     the tidal river stations and r
2

          = 0.02 at the estuarine Piermont station). Sediment resuspension and trapping

               can also vary with the salinity distribution, wind, and bed sediment properties. Lags in sediment transport

                can be weeks to months (Ralston & Geyer, 2009, 2017), distorting the correspondence between the daily dis-

             charge and turbidity along the estuary. Antecedent discharge conditions affect sediment availability in the

            estuary, with ne sediment accumulating during higher discharge and subsequently increasing tidal resus-

           pension, potentially changing the relationship with daily discharge (Wall et al., 2008).

                To evaluate whether inputs from Irene and Lee affected sediment availability in the estuary and thus turbid-

               ity over longer time scales, the turbidity versus discharge relationship is considered on a yearly basis.

                 Turbidity time series are segmented by water year (1 October to 30 September) to re ect the seasonality of

                higher discharge in the late fall, winter, and spring and lower discharge summer. As an example, observa-

                  tions for individual years are shown for Tivoli North Bay and compared to the regression for the entire record

                 (Figure 3). Clustering of median daily observations above or below the LOWESS t of the full 12 year record 

            represents a shift in the turbidity discharge relationship. Increased sediment availability following Irene and

                   Lee corresponds to higher than average turbidity (for a given discharge) in 2012 and 2013, as well as a few

              anomalously high turbidity observations during water year 2011 (Figures 3d and 3e). In contrast, turbidity

               tends to be less than the long term regression for most discharge conditions in 2015 (Figure 3g).

                              Figure 3. (a h) Turbidity versus river discharge at Tivoli North Bay by water year from 2009 to 2016. The full record is in black, and data for each year are colored.–

        The LOWESS t to the full record is gray.
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             Over the turbidity observation period, the combined annual average discharge from Upper Hudson and

             Mohawk Rivers varied by almost a factor of 2, from 350 to 650 m
3

s
−1

     , and the maximum combined daily

            discharge varied by about a factor of 3, from 1,460 to 4,460 m
3

s
−1

     (Figure 4a). Annual sediment inputs from

             the rivers were calculated based on observed discharge and regressions to long term sediment discharge

                observations (Ralston et al., 2020), since the direct measurements of sediment discharge did not span the full

                period (Figure 4b). The most notable variability in sediment inputs over this period was the large increase

        from the Mohawk with the storm events in 2011.

                   Annual averages of turbidity in the tidal freshwater and saline estuary varied by about a factor of 2 over the

                  same period (Figure 4c). The interannual variability in average turbidity is in part due to variation in river dis-

                charge, with higher turbidity during years with greater average discharge. However, the goal here is to assess

             whether hysteresis in the turbidity discharge relationship may also contribute. To quantify this, we calculate

                the annual average of the ratio of the measured turbidity to that predicted by the turbidity discharge regres-

                 sions shown in Figure 2. This turbidity ratio represents the factor by which the turbidity differed from the

            long term regression, accounting for interannual variations in discharge (Figure 4d). Discretization at semi-

           annual and quarter annual intervals was also examined, with similar (but noisier) results.

              Similar interannual variation in turbidity relative to the long term regression was observed among the three

                tidal freshwater stations (i.e., Schodack, Tivoli, and Norrie Point), despite separation of about 80 km and dif-

                 ferences in local bed sediment. In 2012 and 2013, turbidity at all three locations was greater than expected

                   based on the long term regression, by factors of about 1.4 at Schodack, 1.3 at Tivoli, and 1.5 at Norrie. In

                    2010 and prior years, the turbidity factors were close to or less than 1 at all three stations. The turbidity factor

                  increased at Tivoli and Norrie Point in 2011, but this could be due to large sediment inputs from tributaries

                  Figure 4. Discharge and turbidity by water year. (a) Mean and maximum discharge of the Upper Hudson and Mohawk

                   rivers, (b) annual sediment input from the Mohawk and Upper Hudson, (c) annual average turbidity in the tidal river and

                 estuary, and (d) annual average of the ratio of measured turbidity to that predicted by the long term Qr regressions

 (Figure 2).
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                    near these stations during Irene and Lee at the end of 2011 water year (Ralston et al., 2013). After 2013, the

               turbidity ratios returned to values similar to 1, representing a return to long term average conditions. Values

               less than 1 before and after 2011 2014 re ect that the long term regression includes the elevated turbidity–  

              from Irene and Lee. Average turbidity in the tidal river thus depended both on Qr     that year and on hysteresis

        in the turbidity discharge relationship. For example, the mean Qr    in 2012 (390 m
3

s
−1

    ) was less than average

 (460 m 3 s−1                  ), and yet the average turbidity that year was the second highest overall (Figure 4c). In 2013, the

              turbidity increased in part because the discharge increased, but also because of the above average turbidity 

   discharge relationship (Figure 4d).

             Another approach to characterizing the temporal variability in the turbidity discharge relationship is to cal-

              culate the slope of the cumulative residual between the observed and predicted turbidity (Gray, 2018).

               Periods when observed turbidity was greater than expected have a positive slope for the cumulative residual,

              and periods with turbidity less than expected have negative slopes. Results using the cumulative residual

               slopes were consistent with the turbidity ratios, with positive slopes during years with turbidity ratio greater

                than 1 and negative residuals for turbidity ratios less than 1 (Figure S1 in the supporting information).

                Similarly, the cumulative residual slopes at the tidal river stations were maximum in 2012 and 2013, after

               Irene and Lee, and decreased to zero or negative values in 2014 or 2015 and after.

             The temporal variability in the turbidity discharge relationship was coherent among the freshwater tidal sta-

                tions, but observations in the saline estuary did not exhibit the same interannual response (Figure 4c). For

              example, the turbidity ratio at Tivoli was strongly correlated with that at Norrie Point (r2     = 0.93, < 0.001,p

           n r= 11) and had a weaker correlation with Schodack Island ( 2           = 0.63, = 0.028, = 12), but the correlationp n

         with Piermont in the saline estuary was not signi cant ( r2           = 0.33, = 0.35, = 10). The Piermont stationp n

                   exhibited only a modest increase in the turbidity ratio in 2012 after Irene and Lee (with a data gap in

          2013) and in general has less variability in the turbidity discharge relationship.

              The turbidity ratios in the estuary were not signi cantly correlated with the year to year variability in  

                the sediment mass inputs from the Mohawk and Upper Hudson (Figure 4b). To evaluate the in uence of

              the variability in watershed inputs, we also calculated the residual of the LOWESS regressions of

log10   ( ) versus logSSC 10(Qr              ) for the tributaries on an annual basis. Precipitation from Irene and Lee was

                focused in the Mohawk watershed and the Catskill Mountains east of the Hudson, leading to mass wasting,

             increased erosion, and potential hysteresis in the sediment discharge relationship for these regions (Ahn &

              Steinschneider, 2019). In water years 2012 2014 following the events, the average in the Mohawk– SSC

                  increased by a factor of about 1.2 above the regression values, but the Mohawk turbidity ratio was not sig-

              ni cantly correlated with the turbidity ratios in the estuary. As expected from precipitation patterns during

           Irene Lee, the turbidity discharge ratio for the Upper Hudson did not change post event.  

   4. Summary and Discussion

            Long term monitoring data allow for characterization of turbidity discharge relationships in the estuary that 

                might be obscured by variability at tidal to seasonal time scales. In the tidal freshwater, turbidity depended

              strongly on discharge (Figure 2). Average residuals between observed turbidity and that predicted from the

                discharge regressions were coherent among stations in the tidal river, with increased turbidity in the 2 years

              following tropical storms Irene and Lee (Figure 4). Similarly, in New England watersheds, adjustment time

              scales for channel morphology following Irene, and for subsequent, smaller discharge events, were found to

                be 1 2 years (Renshaw et al., 2019). Watershed sediment supply depends in part on revegetation of land-–

                 slides and bank failures, which adjusts at multiyear time scales (Dethier et al., 2016; Gray et al., 2014;

              Yellen et al., 2014). Watershed sediment supply from the Mohawk increased relative to discharge during

              2012 2014 due to these geomorphic adjustments in its steep tributaries (Ahn & Steinschneider, 2019) and–

                thus may contribute to the 2012 2013 increase in the turbidity factor in the tidal river (Figure 4d).–

                However, we observed a similar increase in the SSC factor relative to the discharge relation for the

                  Mohawk in 2017, when the turbidity factors at tidal river stations were less than or equal to 1. Therefore,

                   the increased turbidity in the tidal river was at least in part determined by the pulsed input to the mobile

               pool, the signal of which relaxed over 2013 2014 (Figure 4d). The similar response among stations separated–

                   by 80 km suggests that the increased sediment availability was not limited to a small region or due to loca-

     lized in uence of a particular tributary.
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             Increased turbidity suggests an increase in SSC, particularly for a xed particle size distribution.

              Alternatively, temporal decreases in the dominant particle size could increase turbidity and change the rela-

                 tionship to SSC (Downing, 2006). Seasonal variation in the slope between turbidity and SSC of about a factor

                   of 2 has been noted in the tidal Hudson, likely due to changes in particle size with discharge (Ralston &

               Geyer, 2017). Thus, the shift toward higher turbidity ratios may re ect a combination of greater availability

                and ner grain size following discharge events (Yellen et al., 2016). The contribution of organic material to

                turbidity also varies seasonally, as on average SPM samples in summer and fall had higher organic fractions

                  than in the rst half of the year. However, our averaging of turbidity ratios at annual time scales reduces

              effects of seasonal variation in the relationship between turbidity and SPM on discharge dependence. Due

               to the relatively turbid conditions and low light availability in the Hudson, phytoplankton are also not

           expected to contribute signi cantly to the turbidity signal (Cole et al., 1992).

              The turbidity responses differed between the tidal river and saline estuary, where changes in the

             turbidity discharge relationship were less apparent following the discharge events. In the tidal river, SSC

                    tends to be lower and the bed less muddy than in the saline estuary (Nitsche et al., 2007). The sediment avail-

                 able for resuspension at event to seasonal time scales has been termed the mobile sediment pool (Geyer &

                Ralston, 2018; Schoellhamer, 2011; Wellershaus, 1981). While the size of the mobile pool is dif cult to quan-

                 tify, the persistent increase in turbidity in the tidal river following Irene and Lee suggests that the sediment

                  input from the storms represented a major increase in the size of the mobile pool. Based on sediment uxes

                   measured in the lower tidal river, about two thirds of the sediment input by the events remained in the tidal

                 river several months after the events (Ralston et al., 2013), and the 2 year period of increased turbidity may

               be indicative of the time scale for the tidal river to adjust back to pre storm conditions.

                    In the saline estuary, turbidity on average is greater, the bed is muddier, and the mobile pool is larger than in

               the tidal river. Previous studies have highlighted the seasonal to annual variation in SSC and deposition

                  (Geyer et al., 2001; Woodruff et al., 2001). Observations in the lower ETM found that the freshets in 1998

                and 1999 each deposited about 0.3 Mt of new sediment, despite large differences in the watershed sediment

              inputs in those years (Woodruff et al., 2001). The limited interannual variability in the turbidity discharge

                residual at Piermont found here is consistent with this decoupling between deposition in the ETM and the

                  watershed inputs. If the mobile pool in the saline estuary is many times the annual average input, then the

                 fractional increase from Irene and Lee may be minor. Similarly, in San Francisco Bay, a decrease in sediment

              supply associated with dam construction did not affect sediment concentrations until decades later, rst in

               the tidal freshwater Delta and subsequently in the saline estuary (Hestir et al., 2013; Schoellhamer, 2011;

                 Schoellhamer et al., 2013). In the Penobscot estuary, the mobile sediment pool was estimated to be 6 8 times–

              the annual average input based on recovery time scales following a contaminant release (Geyer &

 Ralston, 2018).

              Differences between the tidal river and saline estuary in the hysteresis of the turbidity discharge relationships

               re ect the relative coupling between sediment supply and river discharge. In the saline estuary, the mobile

                 pool is large compared to the annual supply, such that a major discharge event does not drastically increase

                sediment availability. In contrast, ne grained bed sediment in the tidal river is more limited, so event inputs 

                 represent a fractionally bigger change, and turbidity is increased for a couple of years as the added sediment

               gradually moves seaward and deposits in lower energy shoals and wetlands (Ralston & Geyer, 2017; Yellen

               et al., 2020). For comparison, the hysteresis in turbidity discharge relationship in the tidal river is similar

                in duration to observations on steep streams following Irene (Renshaw et al., 2019) but shorter in duration

              than observed in rivers along the U.S. West Coast, where sediment concentrations remained elevated for

                5 years or longer after events (Gray, 2018; Warrick et al., 2013). Long term measurements at stream gauging

           stations allow for assessment of the variability in turbidity/sediment discharge relationships in the

                watershed, but such long term measurements are far less common in estuaries. These results point to the uti-

               lity of such measurements for assessing the multiple time scales of sediment variability in other estuaries.

  Data Availability Statement

              The data used in this study were all downloaded from publicly available sources (USGS, https://waterdata.

         usgs.gov/nwis; HRECOS, https://hrecos.org/; or CDMO, http://cdmo.baruch.sc.edu/) as described in the

          Methods section. Data used in the gures are available at http://doi.org/10.5281/zenodo.3936047
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