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Coupled Task-Space Admittance Controller Using
Dual Quaternion Logarithmic Mapping

Mariana de Paula Assis Fonseca,1 Bruno Vilhena Adorno,1 and Philippe Fraisse2

Abstract—This paper proposes a six-DOF task-space admit-
tance controller using the dual quaternion logarithmic mapping,
coupling the translation and rotation impedance in a single
mathematical structure. The controller is designed based on the
energy of the system and the stiffness matrix is build to be
consistent with the task geometry. Moreover, the formulation
is free of topological obstruction and we present a solution for
the unwinding phenomenon based on a switched error function.
The closed-loop system is composed of an inner motion control
loop to ensure the trajectory tracking of the end-effector pose
while an outer loop imposes a desired apparent impedance to the
robot. Experiments executed on a KUKA LWR4+ robot with a
force/torque sensor in the end-effector, together with statistical
analyses, show better performance of the proposed controller
over one of the main six-DOF controllers from the state of
the art. More specifically, our controller presents an exponential
decay in all situations, a task-error closed-loop behavior closer
to the desired one, and it is free from topological obstruction
and unwinding, while presenting a statistically equivalent control
effort.

Index Terms—Compliance and Impedance Control; Physical
Human-Robot Interaction

I. INTRODUCTION

WHEN a robot interacts with the environment, contact
wrenches may appear. For a safe interaction, it is

crucial to ensure a compliant robot behavior, which can
be imposed by controlling its apparent impedance [1], [2].
Considering the execution of six-degree-of-freedom (DOF)
tasks, the end-effector pose (position and orientation) must be
handled, and the mechanical impedance ought to be defined
to have a stiffness that is physically consistent with the task
geometry to prevent unnatural behavior [2]. Hence, a suitable
representation of the end-effector rotation related to the contact
moment must be used [1].

In classic approaches, position and orientation are uncou-
pled in the control law and the orientation is usually based on
minimal representations, such as the Euler angles, which have
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representation singularities [3] and do not lead to a physically
meaningful impedance [1]. Caccavale et al. propose to use
an energy-based argument to develop an impedance equation,
and to use the imaginary part of a unit quaternion for the
orientation displacement, expressing the mutual orientation be-
tween the compliant and the desired frames. However, they use
different control laws for the position and orientation and their
controller presents a stiffness that is geometrically consistent
only for infinitesimal displacements [1]. Furthermore, their
formulation presents the topological obstruction problem as
an unstable equilibrium point.

Caccavale et al. [2] extend that work [1] to propose a
controller where the stiffness is geometrically consistent not
only for infinitesimal displacements but also for finite ones.
However, the new controller still presents the topological
obstruction problem.

We recently have proposed a coupled six-DOF admittance
controller using the dual quaternion (DQ) logarithm [4].1

Although that controller is simple and the experimental results
have shown its effectiveness, we have not shown that the
closed-loop system is stable. Also, poor choices of parameters,
most notably of the stiffness matrix, may result in a controller
that do not have a physical meaning and is not geometrically
consistent with the task. Another drawback of that controller
is the unwinding phenomenon, where the end-effector pose
may be close to the desired pose and yet rotate through large
angles before reaching the equilibrium [5]. This current paper
addresses all the aforementioned problems.

A. Statement of contributions

The main contribution of this work is a new six-DOF
admittance controller based on the DQ logarithmic mapping
of the task-space displacement that has the following features:

1) the stiffness term is designed to be geometrically consis-
tent with the six-DOF task, which makes the controller
have a physical meaning;

2) the DQ logarithmic mapping has shown an exponential
decay of the error norm in all situations of free-motion
thanks to the linearity of the stiffness term, which is not
the case if the imaginary part of the unit quaternion is
used to represent the rotation, as in [2];

3) it does not have the problem of topological obstruction,
as in [2], and a solution for the unwinding phenomenon
is proposed based on a switching error function that

1That work was presented as an extended abstract in the Workshop
Applications of Dual Quaternion Algebra to Robotics, which happened at
ICAR 2019.
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maps the two positive invariant sets (PIS) of the space
of unit DQ into a single PIS in the image of the
logarithmic mapping. Moreover, the trajectories of the
closed-loop system always converge to that single PIS
without exhibiting chattering, which would require a
more complex hybrid control strategy [6];

4) the closed-loop system is proven to be passive and thus
stable.

Experiments are done in a KUKA LWR4+ robot and statistical
analyses are performed to compare our approach with the state
of the art.

II. MATHEMATICAL BACKGROUND

Dual quaternions have a compact representation, do not
have representational singularities, and their coefficients can
be directly used in the proposed control law. Also, they have
strong algebraic properties and can be used to represent rigid
motions, twists, wrenches, and several geometrical primitives
such as planes, lines, etc. Furthermore, the extraction of
geometric parameters such as translation, rotation axis, and
rotation angle is very simple [7].

Quaternions can be understood as an extension of imagi-
nary numbers, where the three imaginary components obey
ı̂2 = ̂2 = k̂2 = ı̂̂k̂ = −1. The set of quaternions is de-
fined as H ,

{
h1 + ı̂h2 + ̂h3 + k̂h4 : h1, h2, h3, h4 ∈ R

}
,

such that, given h ∈ H, the real part is Re (h) , h1 and
Im (h) , ı̂h2 + ̂h3 + k̂h4 is the imaginary part. The subset
of pure quaternions Hp ⊂ H contains the elements whose real
part equals zero and the subset of unit quaternions S3 ⊂ H
contains only elements with unit norm. Similarly, the DQ set
is defined as H ,

{
h1 + εh2 : h1,h2 ∈ H, ε 6= 0, ε2 = 0

}
,

where ε is the nilpotent dual unit. The subset of pure DQ,
Hp ⊂ H, contains only elements whose real part equals zero
and the subset of unit DQ, S ⊂ H, contains only elements
with unit norm.

A. Dual quaternion logarithm and its relations

Considering a translation p =
(
ı̂px + ̂py + k̂pz

)
∈ Hp

and a rotation r = (cos (φ/2) + n sin (φ/2)) ∈ S3, with
φ being the rotation angle around the rotation axis
n =

(
ı̂nx + ̂ny + k̂nz

)
∈ S3 ∩Hp, the unit DQ that com-

bines both p and r can be given by x = (r + (1/2)εpr) ∈ S,
whose logarithm is Hp 3 logx = (nφ+ εp) /2 [8]. More-
over, the inverse of x is given by x∗ such as x∗x = xx∗ = 1.

The DQ logarithmic mapping can be used to translate the
spacial difference x̃ between two unit dual quaternions to the
origin [9]. Considering x̃ , x∗xd, where x,xd ∈ S represent
poses, x→ xd implies x̃→ 1, which implies log x̃→ 0.

Letting y , logx, the time derivatives of y and x are
related by means of the matrix Q8 (x) as [10]

vec8 ẋ = Q8 (x) vec6 ẏ, (1)

where vec6 : Hp → R6 and vec8 : H → R8.
Furthermore, there exists E (x) ∈ R6×6 such that

vec6 ζ = E (x) vec6 ẏ, (2)

where ζ = (ω + εv) ∈ Hp, with ω,v ∈ Hp being the an-
gular and the linear velocities, respectively. More specifi-
cally, since there exists a matrix Q4 (r) ∈ R4×3 such that
vec4 ṙ = Q4 (r) d

dt vec3 (nφ/2) [10], where vec3 : Hp → R3

and vec4 : H→ R4, and ω = 2ṙr∗ [8], we find by inspection

E (x) ,

[
ĪW (r) 03×3
03×3 2I3×3

]
, (3)

with R4×3 3 W (r) , 2
−
H4 (r∗)Q4 (r) and Ī ,[

03×1 I3×3
]
, where In×n ∈ Rn×n is the identity matrix,

0n×m ∈ Rn×m is a matrix of zeros, and
−
H4 (·) ∈ R4×4 is an

operator that satisfies vec4 (ab) =
−
H4 (b) vec4 a [8].

Theorem 1. The inverse of (3) is given by

E−1 (x) ,

[
1
2Q

+
4 (r)

−
H4 (r) Ī

T
03×3

03×3
1
2I3×3

]
, (4)

where Q+
4 (·) is the left pseudo-inverse of Q4 (·).

Proof: By direct calculation of 2
−
H4 (r∗)Q4 (r), we find,

for all r ∈ S3,

W (r) =

[
01×3
W (r)

]
,

where W (r) ∈ R3×3. Also, since rank
−
H4 (r∗) = 4 and

rankQ4 (r) = 3 for all r ∈ S3 [10], from Corollary 2.5.10
of [11] we have that

rankA+ rankB − 4 ≤ rankAB ≤ min {rankA, rankB}

with A ,
−
H4 (r∗) and B , Q4 (r). Hence, rankW (r) = 3

for all r ∈ S3 and thus rankW (r) = 3. Therefore,
ĪW (r) = W (r) is full rank, which implies that for all
r ∈ S3 the inverse of W (r) exists and is given by

W−1 = (1/2)Q+
4 (r)

−
H4 (r) Ī

T . Indeed, since ĪT ĪW = W
then

W−1W =
1

2
Q+

4 (r)
−
H4 (r) Ī

T
ĪW (r) = I

because
−
H4 (r) =

−
H4 (r∗)

−1 and Q+
4 (r)Q4 (r) = I [10].

Moreover, as W is square and full rank, the left inverse
equals the right inverse—i.e. W−1W = WW−1 = I .
Consequently, E (x) is also full rank and thus invertible.

III. CONTROL STRATEGIES

Given the desired pose xd ∈ S of an end-effector that
interacts with the environment, we consider another (ref-
erence) frame specified by xr ∈ S such that a desired
apparent impedance can be imposed on the pose displacements
between xd and xr [1]. The closed-loop system is composed
of a motion controller in the inner loop to control the end-
effector pose according to the reference trajectory xr (t), while
imposing a desired impedance behavior in the outer loop, as
illustrated in Fig. 1.
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Figure 1: Scheme illustrating the control law composed of an outer loop with
an impedance behavior and an inner loop with a motion controller. The wrench
ς measured by the force/torque sensor at the robot end-effector is a result of
the interaction with the environment.

A. Admittance using the logarithmic mapping (ACLog)

To impose the desired apparent impedance behavior to
the robot, we first define an impedance control law that is
physically meaningful and a stiffness matrix that is consistent
with the task geometry. Similarly to what have been done in
[1], [2], we derive the impedance equation based on the energy
of the system, but using elements of dual quaternion algebra.

Consider a desired positive definite inertia matrix
Md = diag (I3×3,mI3×3), where m is the mass and
I3×3 ∈ R3×3 is the inertia tensor. The kinetic energy of the
system is given by

K =
1

2

(
vec6 ζ

r

rd

)T
Md vec6 ζ

r

rd
, (5)

where ζr
rd

= ωrrd+εvrrd is the DQ with the angular and linear
velocities from frame Fr to Fd, with respect to frame Fr.

To obtain the power, we take the time derivative of (5),
which is given by

K̇ =
(

vec6 ζ
r

rd

)T
I# vec6 ς

r
I , (6)

where vec6 ς
r
I , I

#Md vec6 ζ̇
r

rd
is the inertial wrench with

respect to the frame Fr and

I# ,

[
03×3 I3×3
I3×3 03×3

]
.

We also consider a dissipative damping wrench given by
vec6 ς

r
D , I#Bd vec6 ζ

r

rd
, with R6×6 3 Bd > 0.

Now let us give special attention to the stiffness matrix
regarding geometric consistency. Considering a positive def-
inite stiffness matrix K ∈ R6×6, it can be decomposed as
K = UΓUT [12], with Γ = diag (γ1, · · · , γ6) in which γi,
i ∈ {1, . . . , 6} represent the stiffnesses along the principal axes
ui, which are the column vectors of the orthogonal matrix
U ∈ O (6). Therefore, the stiffness matrix can be specified
with respect to a frame with the origin at the center of stiffness
(i.e., the equilibrium point when there is no deformation), in
terms of the stiffness parameters γi and principal axes ui [2].

Furthermore, the potential energy function of an ideal stiff-
ness depends only on the relative pose of the two attached bod-
ies and is port symmetric [2].2 Considering the displacement
yr
d
, logxrd, with xrd , x

∗
rxd, the positive definite matrices

Kφ ∈ R3×3 and Kp ∈ R3×3 that represent the rotational and
translational stiffness matrices, respectively, and that there

2Port symmetry implies that the potential energy is the same whether seen
from Fr or Fd.

is no coupling between translation and rotation, the elastic
potential energy is given by

U =
(

vec6 y
r
d

)T
Kd vec6 y

r
d
, (7)

with Kd = 2 diag
(
Kφ,K

′
p

)
, where3

K ′p ,
1

2
Kp +

1

2
Rr
dKpR

rT
d , (8)

with Rr
d = Ī

+

H4 (rrd)
−
H4 (rr∗d ) Ī

T being the rotation matrix
from frame Fr to Fd, which guarantees that the potential
energy is port symmetric.

Deriving (7), the power is given by4

U̇ = 2
(

vec6 ẏ
r

d

)T
Kd vec6 y

r
d

+ 2
(

vec6 y
r
d

)T [03×3 03×3
03×3 Ṙ

r

dKpR
rT
d

]
vec6 y

r
d
. (9)

Using (2) in (9) and the fact that Ṙ
r

d = S (vec3 ω
r
rd)R

r
d [13],

we obtain

U̇ =
(

vec6 ζ
r

rd

)T (
E−T (xrd) 2Kd

+

[
03×3 K ′′p
03×3 03×3

])
vec6 y

r
d
. (10)

with K ′′p = ST (vec3 p
r
rd)R

r
dKpR

rT
d . Substituting (4) in

(10) yields

U̇ =
(

vec6 ζ
r

rd

)T
I# vec6 ς

r
E , (11)

where vec6 ς
r
E , I#K ′d vec6 y

r
d

is the elastic wrench with
respect to Fr, with

K ′d =

[
K ′φ K ′′p
03×3 2K ′p

]
, (12)

where

K ′φ = 2Ī
−
H4 (rr∗d )Q+T

4 (rrd)Kφ. (13)

Hence, the impedance equation is given by
vec6 ς

r
I + vec6 ς

r
D + vec6 ς

r
E = − vec6 ς

r, which leads
to

Mdζ̇
r

rd +Bdζ
r
rd+K

′
dy

r
d = −I#ςr, (14)

where ςr = r∗rςrr is the external wrench acting on the robot
end-effector expressed in relation to Fr. Also, ζrrd , vec6 ζ

r

rd
,

yrd , vec6 y
r
d
, and ςr = vec6 ς

r.
The dual of the impedance is the admittance equation [14],

which is given by

ζ̇
r

rd = M−1
d

(
−I#ςr −Bdζ

r
rd −K

′
dy

r
d

)
. (15)

Remark 2. The orientation part of the stiffness term in (14)
and (15) (i.e., K ′φ vec3 (nrrdφ/2)) is linear with respect to the

3This transformation is only needed for translation because log rrd =
− log rdr , but logxrd 6= − logxdr .

4It can be verified by direct calculation that Ṙ
r
dKpR

rT
d is a symmetric

matrix.
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angle φ. As a result, the closed-loop error decays exponen-
tially, which is not true for other controllers in the literature,
as better discussed in Section IV-E.

Lemma 3. The matrix K ′d in (12) is invertible.

Proof: To prove that K ′d is invertible, it is sufficient to
prove that K ′φ (13) and K ′p (8) are full rank. Since Kp

is positive definite, then Rr
dKpR

rT
d is also positive definite.

Also, the sum of two positive-definite matrices is also positive-
definite, thereforeK ′p is positive definite and thus has full rank
[12]. By (13), K ′φ = 4W−TKφ and since W and Kφ are
full rank, so it is K ′φ [11]. Hence, (12) is full rank and thus
invertible.

Theorem 4. Assuming that the inner motion controller ac-
curately tracks the trajectory generated by the admittance
controller in the outer loop—i.e., the inner loop dynamics is
not taken into account—the closed-loop system given by (14)
is passive, hence stable. Moreover, when in free-motion, the
only equilibrium point is given by yr

d
= 0, which implies that

xr = xd.

Proof: Given the Hamiltonian E = K + U , we use (6),
(11), and (14) to obtain

Ė = K̇ + U̇ = − (ζrrd)
T
I#ςr − (ζrrd)

T
Bdζ

r
rd,

where E is the stored energy and thus positive, −I#ςr is the
system input, ζrrd is the output, and ζrTrdBdζ

r
rd ≥ 0. Therefore,

the system represents a passive mapping from −I#ςr to ζrrd
and is, hence, stable [15]. Moreover, it is dissipative, with the
dissipative power given by ζrTrdBdζ

r
rd.

Furthermore, in the case of free motion (i.e., ςr = 0), Ė = 0
if and only if ζrrd = 0. Also, because the system is dissipative,
if ςr = 0 and ζrrd = 0, then ζ̇

r

rd = 0. Therefore, from (14) ,
we have

K ′dy
r
d = 0, (16)

which implies that yr
d

= 0 is the only equilibrium
point since by Lemma 3 K ′d is invertible. Moreover,
yr
d

= 0 =⇒ xrd = 1 =⇒ xr = xd.
1) Unwinding problem: Although the only equilibrium

point is yr
d

= 0 =⇒ xrd = 1, both xrd = 1 and xrd = −1 rep-
resent the same pose [6]. Considering the control laws (14) and
(15), if xrd = −1 the robot will move to reach xrd = 1, which
is undesirable (this unnecessary motion is called unwinding).
To prevent this situation, we propose a new definition of yr

d
to be used in the impedance/admittance equation; that is,

yr
d
,

{
logxrd, if ‖xrd − 1‖2 ≤ ‖x

r
d + 1‖2 ,

log (−xrd) , otherwise.
(17)

Therefore, yr
d

will be zero when xrd = 1 and xrd = −1, and the
closed-loop system trajectories will always choose the smallest
spatial distance to the stable points 1 and -1, thus preventing
the unwinding problem.

Theorem 5. The system given by (14) where yrd = vec6 y
r
d
,

with yr
d

defined as in (17) is stable. Furthermore, it has two
stable equilibrium points: xrd and −xrd.

Proof: Considering yr
d

= loga, by Theorem 4 the system
is in equilibrium when a = 1. Since according to (17) a ∈ S
can be xrd or −xrd, this means that we have two equilibrium
points, xrd and −xrd, both stable.

B. Inner-loop controller

Since a large class of robots is actuated in velocity, we
use a kinematic controller in the inner loop to track a desired
end-effector trajectory while controlling the desired apparent
impedance by means of the admittance controller in the outer
loop. Using the relations (1) and (2) and their derivatives, the
reference ζ̇

r

rd from (15) is integrated and transformed into the
reference trajectory given by {xr(t), ẋr(t), ẍr(t)}.

To track the trajectory, we first consider the error x̃ = x∗xr,
where x is the current end-effector pose, which is calculated
by using the forward kinematics (we assume a perfect model),
and xr is the reference pose. Thus,

vec8 ˙̃x =
−
H8 (xr)C8 vec8 ẋ+

−
H8 (ẋr)C8 vec8 x, (18)

where
−
H8 (·) ∈ R8×8 satisfies vec8 (ab) =

−
H8 (b) vec8 a and

C8 = diag (1,−1,−1,−1, 1,−1,−1,−1) [7].
Second, we assume that the forward kinematics model

x = f (q), where q ∈ Rn is the robot configuration and
f : Rn → S, and the differential forward kinematics
vec8 ẋ = J (q) q̇, with J (q) ∈ R8×n being the Jacobian
matrix, are available [8].

Finally, considering (1), the time derivative of (18), and
defining the desired closed-loop task error dynamics as

ay , vec8 ¨̃y = −KD vec8 ˙̃y −KP vec8 ỹ, (19)

with R6×6 3KD,KP > 0, the control law is given by

unom , q̈ = N+ (Q8 (x̃)ay + z) , (20)

where z , Q̇8 (x̃) vec6 ˙̃y− Ȧ vec8 x−AJ (q) q̇− Ṅ q̇, ỹ ,

log x̃, N ,
−
H8 (xd)C8J (q), and A ,

−
H8 (ẋd)C8.

Theorem 6. The closed-loop error dynamics of a system
modeled as vec8 ẍ = J̇ (q) q̇+J (q) q̈ under the control law
(20) is given by

vec6 ¨̃y +KD vec6 ˙̃y +KP vec6 ỹ = 0 (21)

and is asymptotically stable in the Lyapunov sense when
KP ,KD > 0.

Proof: Taking the time-derivative of (18) together with
vec8 ẍ = J̇ (q) q̇ + J (q) q̈ yields

vec8 ¨̃x =
−
H8 (xd)C8

(
J̇ (q) q̇ + J (q) q̈

)
+ 2AJ (q) q̇ +

−
H8 (ẍd)C8 vec8 x. (22)

Since the time derivative of (1) is vec8 ¨̃x = Q̇8 (x̃) vec6 ˙̃y +

Q8 (x̃) vec6 ¨̃y, we replace it in (22) and isolate Nq̈ to obtain

Nq̈ = z +Q8 (x̃) vec6 ¨̃y, (23)
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which implies that z and Q8 (x̃) vec6 ¨̃y are in the range
space of N .5 Therefore, replacing (20) in (23) yields
NN+Q8 (x̃)ay + NN+z = z + Q8 (x̃) vec6 ¨̃y. Thus,
Q8 (x̃)ay = Q8 (x̃) vec6 ¨̃y, which implies ay = vec6 ¨̃y
because Q8 (x̃) is full-column rank [10]. Using (19), we
obtain the closed-loop error dynamics given by (21), which
is asymptotically stable in the Lyapunov sense for the PIS[(

vec6 ỹ
)T (

vec6 ˙̃y
)T ]T

= 0 ∈ R12 provided KP ,KD >

0 [16, pp. 229-230].
In case of redundant robots, the joint velocities can be

different from zero even if the system is in equilibrium.
To prevent that situation, we add a dissipative term as
udis = kdis

(
1n
∥∥vec6 ˙̃y

∥∥− q̇), where 1n is an n-dimensional
column vector of ones and kdis ∈ (0,∞) [17]. Thus, the
control law becomes

u = unom + udis. (24)

Remark 7. The solution (17) to the unwinding problem can
also be applied to the kinematic controller (24) by using ỹ
and x̃ instead of yr

d
and xrd, respectively.

IV. SIMULATION AND EXPERIMENTAL RESULTS6

To evaluate our proposed control architecture, simulations
were run in MATLAB using the DQ Robotics library [18].
Experiments were run on a KUKA LWR4+ robot manipulator,
equipped with a computer with two Intel Xeon 2.4 Ghz
hexacore processors with 32 Gb of RAM each, and a 64-bit
Anarchy Linux version 1.4 (Linux 4.19.50-rt22-2-rt-lts) using
the C++ version of DQ Robotics. The robot is equipped with
one ATI Mini 45 force/torque sensor at its end-effector, and it
only reacts to wrenches applied at the end-effector.7

Since the KUKA LWR4+ is actuated in position, the control
input (24) is numerically integrated twice, using Newton’s
first-order approximation, to obtain velocity (q̇) and position
signals (q). To prevent reaching the joints maximum velocities,
they were saturated in 0.2 rad/s.

Both simulations and experiments were run with a sam-
pling time of 5 ms. The matrices in (15) were cho-
sen as Md = 1.5I6×6, Bd = 300I6×6, Kp = 80I3×3, and
Kφ = 80I3×3, whereas in (24) they were chosen as
KP = 25I6×6, KD = 10I6×6, and kdis = 1. In the kine-
matic controller, the pose x(q) is given by the forward
kinematics, which is obtained by using dual quaternion algebra
[8].

A. Simulation of unwinding

We performed a simulation of a free-flying rigid body to
show that, when using (17), the end-effector follows the small-
est path towards the desired pose, whereas without considering

5Given s∈Rn and G∈Rn×m, if s∈rangeG then GG+s = s. [11]
6See the accompanying video and its extended version at https://youtu.be/

SMXQC6B6DTg.
7If the robot is equipped with torque sensors at the joints, the joint

torques τ may be projected onto the end-effector by using the well-known
relationship τ = JTG (q) vec6 ς , where JG is the geometric Jacobian. Hence,
the admittance controller can be used to encompass compliant motions with
distributed contacts [19].

x0

xd

xd1
xr

(a)

xd1
xr

(b)

xr

xd2

(c)

xr

xd2

(d)

Figure 2: Simulation of a free-flying rigid body under the unwinding phe-
nomenon (a and c), and path using solution (17) (b and d).

ς

Exerting wrench on the end-effector

No wrench acting on the end-effector

1 2 3

Figure 3: The experiments are divided in two parts: from 1 to 2, where a
wrench is applied to the end-effector, which makes xr be different from a
constant xd; and from 2 to 3, where the controllers are applied in free-motion,
such that xr returns to xd.

(17), the end-effector performs an unnecessary rotation. Fig. 2
shows the simulation for two different initial displacements
between xr and xd, namely xrd1 and xrd2 . In the first case,
(Figs. 2a-2b), xrd1 = cos (π + 0.1) + k̂ sin (π + 0.1) is closer
to −1 than to 1. Thus, without using (17), the body executes
a rotation of almost 2π to reach the desired pose (Fig. 2a).
When considering (17), the rotation is much smaller (Fig. 2b).
In the second case (Figs. 2c-2d), xrd2 = −1− ε (1/2) 0.3ı̂ is
closer to −1 than to 1 and consists of a pure translation. In
this case, without the solution for the unwinding problem, the
body executes a rotation of 2π, whereas with the solution it
translates while keeping its orientation.

B. Experimental setup

Consider xr(0) = xd(0) , x0. When an external con-
tact wrench acts on the end-effector, the reference pose xr
becomes different from xd to ensure the desired apparent
impedance, and the end-effector follows the trajectory given by
xr(t) . This situation is illustrated in the movement from 1 to 2
in Fig. 3. When the contact is released, xr (and consequently
x) returns to the desired pose xd, thanks to the dynamics
determined by the admittance controller, as illustrated by
movement from 2 to 3 in Fig. 3.

Two different experiments were performed: first, an external
wrench acts on the end-effector (first part of Fig. 3); second,
the robot performs a free motion (second part of Fig. 3).

The following analyses were made to compare our proposed
controller (15) with one of the main admittance controllers
in the state of art, given by (25), named here as ACIm (see
Appendix A). The inner-loop controller was the same for both
cases and both admittance controllers.

C. Experiments with an external wrench

To apply a wrench at the end-effector, a person pushes the
manipulator, which moves complacently. The translation and
orientation of the current end-effector pose x, the reference
pose xr, and the desired pose xd are shown in Fig. 4, for
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Figure 4: Results for the experiment in which a contact wrench acts on the
robot end-effector. The figure shows the position and orientation of current,
reference, and desired poses.

both controllers. Being exerted by a human, the wrench is
not exactly the same for the two controllers. However, both
controllers generated a reference trajectory xr different from
xd, as expected, to ensure a compliant behavior according to
the desired impedance, and this trajectory was followed by the
end-effector, thanks to the inner-loop controller. Moreover, the
results showed a control signal u with similar magnitude for
both controllers.

D. Experiments in free-motion

Since the experiment of human-robot interaction with a con-
tact wrench is limited for comparison, as it is more susceptible
to variations in the interaction wrench, deeper analyses were
made in the second part of the movement, when there is no
wrench acting on the end-effector. As a way to see if there
is a significant difference between the performance of the two
controllers ((15) and (25)), statistical analyses were performed
considering

1) the difference between the desired error dynamics and
the experimental one;

2) the control effort, maximum and mean values of the
control signal, regarding the admittance controller;

3) the control effort, maximum and mean values of the
control signal, regarding the kinematic controller.

Given an initial pose, different desired poses are generated
randomly and each generated pose is the same for each
controller to allow for a fair comparison.

1) Statistical methodology: We used the Wilcoxon Rank
Sum Test [20], which is a nonparametric test used to check
whether two independent samples are from populations with
the same distribution. Also, we use the following concepts:

1) p-value, which is the lowest significance level that would
lead to the rejection of the null-hypothesis. This occurs
if and only if the p-value is smaller than the significance
level α, which is the probability of occurrence of a false
positive;

2) power of the test, which is given by (1− β), where β
is the probability of occurrence of a false negative;

3) minimally interesting effect, which is the smallest dif-
ference between the controllers we are interested in
detecting, regarding each one of the aspects 1, 2, and
3.

2) Estimation of the appropriate number of samples: Each
controller was initially run 30 times to determine the necessary

Table I: Minimally interesting effect, for each comparison.

Error discrepancy Control signal of outer
loop

Control signal of inner
loop

δ∫ ẽ 20 δ∫ ‖ẍr‖ 10 δ∫ ‖u‖ 25
δµẽ 0.01 δµ‖ẍr‖ 0.01 δµ‖u‖ 0.1
δmax(ẽ) 0.02 δmax(‖ẍr‖) 10 δmax(‖u‖) 25

number os samples based on the variance of the data. To
generate these 30 pairs of initial/final end-effector poses, one
initial robot configuration q0 was arbitrarily chosen and 30
different configurations were generated by a normal distribu-
tion N (q0, 0.5), and the end-effector poses were calculated
by using the forward kinematics. We calculated the variance
for each run, and chose a significance level of α = 0.05, a
power of 0.85, and a minimally interesting effect as shown in
Table I. With those parameters and the variance, the number
of samples was calculated using the two-sample t-test power
calculation available in R, resulting in a value lower than 30 for
all cases. Hence, the analyses were made with the 30 samples
already collected.

3) Statistical analyses of the error dynamics: We first
analyze the difference between the desired and the actual
error norm decay. More specifically, the error is given by

e , 2 vec6 (logxrd) =
[
(vec3 (nrrdφ

r
d))

T
(vec3 p

r
rd)

T
]T

,
and the desired error dynamics ed(t) is given by the solu-
tion of the equation Mdë+Bdė+Kde = 0, with Kd =
diag(Kφ,Kp). Therefore, given a discrepancy function de-
fined as ẽ (t) ,

∥∥‖ed (t)‖ − ‖e (t)‖
∥∥,8 the first analysis

concerns the total discrepancy, given by
√∫ T

0
ẽ (t)

2
dt, for

T = 35 s, along the trajectory. Fig. 5 shows that the total
discrepancy is very small for the ACLog, but this difference
presents larger values for the ACIm. The same is observed
for the maximum value of the discrepancy function (Fig. 5a)
and its mean value µẽ(t) (Fig. 5a). Moreover, the ACIm
presents outliers in all three cases, indicating a even larger
discrepancy for some cases. The p-values for the Wilcoxon
Rank Sum Test were respectively 1.675 × 10−12, 2.753×−9,
and 5.998 × 10e−13, all smaller than the significance level
α = 0.05, therefore the null hypothesis that the population are
of the same type is rejected. By the box-plot and the Wilcoxon
Rank Sum Test, we conclude that the ACLog obtained a better
performance. The larger error discrepancy of the ACIm over
the ACLog may be partially explained by the non-linearity
of the former, as described in Section IV-E. Nonetheless, this
difference may not be critical for general applications.

4) Statistical analyses of the outer-loop control signal:
A similar analysis was done for the control signal of the
admittance controller. We considered the control signal as the
DQ acceleration ẍr, since it represents the trajectory passed
to the inner loop, and is directly related to the ζ̇

r

rd through the
relations (2), (1), xrd = x∗rxd, and their derivatives. Figs. 6a—

6c show the control effort
√∫ T

0
‖ẍr (t)‖2 dt, the maximum

value of the control signal maxt (‖ẍr (t)‖), and its mean value

8The norm of the error has an exponential decay, but the same is not always
true for each individually coefficient of the error. Therefore, the discrepancy
function is defined as the difference between the error norms instead of the
norm of the difference between the errors.
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each controller.
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‖ẍ

r
(t
)‖

2
d
t

ACLog ACIm

10
20

30
40

(a)
ACLog ACIm

10
20

30
40

m
ax

t
(‖
ẍ
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Figure 6: Outer-loop control signal: (a) control effort, (b) maximum value,
and mean.

µ‖ẍr(t)‖, respectively. The hypothesis tests resulted in p-values
equal to 0.328, 0.328, and 0.3817 for the effort, maximum, and
mean values, which are all greater than the significance level
α = 0.05. Therefore, the null-hypothesis cannot be rejected
and there is no significant statistical difference between the
control signals of the two controllers.

5) Statistical analyses of the inner loop control signal:
The same analyses were made for the control signal of the

kinematic controller, that is, control effort
√∫ T

0
‖u (t)‖2 dt,

maximum value of the control signal maxt (‖u (t)‖), and its
mean value µ‖u(t)‖. The p-values for the Wilcoxon Rank
Sum Test were 0.7412, 0.7191, and 0.8776, for the control
effort, maximum value, and mean value, respectively. Again,
all the values were larger than α, indicating that there is no
significant statistical difference between the control signal of
both controllers. This is expected because the reference signal
for the inner loop is generated by the outer loop, and the outer
loop generates statistically equivalent control signals for both
ACLog and ACIm, as shown in Section IV-D4.

6) Analyses of special cases: Besides the statistical analy-
ses with 30 different samples, we also analyzed four special
cases:

1) the closed-loop system under the admittance controller
ACIm starts in the unstable equilibrium set (i.e., when
φ(0) = π);

2) the closed-loop system starts near this unstable equilib-
rium point;

3) a situation where the unwinding phenomenon appears
(xrd = −1);

4) a situation where xrd is closer to −1 than to 1.
For case 1, we considered an initial displacement of
xrd = cos (π/2) + k̂ sin (π/2), which consists of a pure ro-
tation of π around the z axis. Fig. 7a shows that, whereas
the error norm decays when using the ACLog, it remains un-
changed for the ACIm, which is undesirable as the current pose
is different from the desired one. This is due to the topological
obstruction [5], which means that, when the initial state of
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Figure 7: Closed-loop system during free-motion: time-evolution of the error
norms in the four special cases.

the closed-loop system is within the unstable equilibrium set,
the control signal is zero, trapping the system in that set.9

This situation is common in bimanual tasks, in which the end-
effectors may be symmetric to the manipulated object, with an
initial rotation angle of π rad, and have to align themselves,
such as the tasks of folding a sheet of paper, closing or opening
a bottle, and also in tasks such as rotating a crank by π rad.
Although a small perturbation around the unstable equilibrium
set may remove the system from it [1], case 2 occurs.

For case 2, we initialize the displacement
near the unstable equilibrium point (i.e.,
xrd = cos (π/2− 0.002) + k̂ sin (π/2− 0.002)). In that
case, the closed-loop error decays when using the ACIm,
but much slower than when the ACLog is used, as shown
in Fig. 7b, because the control signal near the unstable
equilibrium point tend to be very small.

In case 3, the initial pose already equals the desired one, but
the closed-loop system under the control law ACLog is in the
PIS −1. Fig. 7c shows that the error is always zero, indicating
that the end-effector does not move for any controller. More
specifically, the ACLog does not drive the system towards the
PIS 1, which would make the end-effector move. Therefore,
there is no unwinding.

Lastly, we considered xrd = cos (π + 0.5) + k̂ sin (π + 0.5)
to represent case 4. In this case the error norm for both
controllers decay at the same rate, which indicates that the
end-effector is converging to −1 instead of 1, performing the
smallest path, as desired.

Remark 8. Simulation results show that when there is an
external wrench applied at the end-effector under special
cases 1–4, both controllers behave analogously to when they
are in free-motion. More specifically, ACIm suffers from the
problem of topological obstruction and loses performance near
the unstable equilibrium set, whereas ACLog neither suffers
from topological obstruction nor unwinding. Those simulation
results were omitted due to space constraints.

E. Qualitative comparison between ACLog and ACIm

Besides the problem of topological obstruction in the
ACIm (25), which is not present in the ACLog (15), another
difference in both formulations is the stiffness term. More

9To verify that behavior, consider (25) with ςr = ζrrd(0) = 0, φ = π,
prrd = 0, and nrrd ∈ Hp ∩ S3 such that Kφ vec3 nrrd = λφ vec3 nrrd
with λφ ∈ (0,∞). Then ζ̇

r
rd = −M−1

d K′′dh
r
d, with K′′dh

r
d =

[(2λφS(vec3 n
r
rd) vec3 n

r
rd)

T 01×3]
T = 06×1. Therefore, ζ̇

r
rd = 0.
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specifically, because the stiffness term in the ACIm is given
by

K ′′dh
r
d = K ′′d

[(
vec3

(
nrrd sin

(
φ
2

)))T
(vec3 p

r
rd)

T

]T
,

the term related to the orientation is nonlinear due to the sine
function, differently from the stiffness term in the ACLog,
which is linear in the orientation angle (see Remark 2).
This non-linearity in the ACIm stiffness generates a non-
exponential error decay, which may explain why the error
discrepancy is larger for the ACIm, as shown in Fig. 5.
Moreover, in case 2 of Section IV-D6, the error decay is slower
for the ACIm than the ACLog due to the small values of the
control signal close to the unstable equilibrium point.

V. CONCLUSION

This paper proposed a six-DOF coupled task-space ad-
mittance controller using dual quaternion algebra. Based on
the energy of the system and on an appropriate algebraic
representation, the proposed controller has a clear physical
meaning and the stiffness term is consistent with the ge-
ometry of the 6-DOF task for arbitrary rigid motions. The
use of unit DQ prevents the occurrence of representational
singularities and, thanks to the use of the DQ logarithmic
mapping, there are no trigonometric functions in the vector of
motion displacement in the stiffness term, which improves the
closed-loop error dynamics. Theoretical analyses, simulations,
and experimental results show that, whereas one of the main
controllers of the state of the art (ACIm) [2] suffers from
topological obstruction, our switched controller (ACLog) does
not. A thorough statistical analysis showed that when the
ACLog is used, the closed-loop task error dynamics is closer to
the desired specification than when the ACIm is used, whereas
their control efforts are statistically equivalent.

APPENDIX

A. Admittance control using the imaginary part of the rotation
quaternion (ACIm)

Caccavale et al. [2] proposed a similar controller as (14),
but they used the imaginary part of a unit quaternion to
represent the rotational displacement in the stiffness term.
More specifically, their admittance controller is given by10

ζ̇
r

rd = M−1
d

(
−I#ςr −Bdζ

r
rd −K

′′
dh

r
d

)
. (25)

where hrd ,
[
(vec3 Im (rrd))

T
(vec3 p

r
rd)

T
]T

, with
Im (rrd) = nrrd sin (φ/2), and

K ′′d =

[
2E′T (rrd)Kφ

1
2K
′′
p

03×3 K ′p

]
, (26)

with E′ (rrd) = Re (rrd) I3×3 − S (vec3 Im (rrd)) and
Re (rrd) = cos (φ/2) [2]. As shown by Caccavale et al. [1],
the closed-loop system has two sets of equilibrium points,
one stable and the other one unstable. The latter consists

10We changed the order of the rotational and translation terms in hrd and
ζrrd to be consistent with our notation.

of rotations of π rad around a rotation axis parallel to any
eigenvector of Kφ. If the initial state is inside this unstable
set, the system gets trapped. This is the so-called topological
obstruction [5].
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