
The University of Manchester Research

An effective, secure and efficient tagging method for
integrity protection of outsourced data in a public cloud
storage
DOI:
10.1371/journal.pone.0241236

Document Version
Final published version

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Almarwani, R., Zhang, N., & Garside, J. (2020). An effective, secure and efficient tagging method for integrity
protection of outsourced data in a public cloud storage. PLoS ONE, 15(11), e0241236.
https://doi.org/10.1371/journal.pone.0241236

Published in:
PLoS ONE

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:09. Jun. 2022

https://doi.org/10.1371/journal.pone.0241236
https://www.research.manchester.ac.uk/portal/en/publications/an-effective-secure-and-efficient-tagging-method-for-integrity-protection-of-outsourced-data-in-a-public-cloud-storage(ac89de7b-d094-4653-9714-a7e0db9ba06e).html
https://doi.org/10.1371/journal.pone.0241236

RESEARCH ARTICLE

An effective, secure and efficient tagging
method for integrity protection of outsourced
data in a public cloud storage
Reem ALmarwaniID

1,2*, Ning ZhangID
2, James Garside2

1 College of Computer Science and Engineering (CCSE), Taibah University, Medina, Saudi Arabia,
2 Information Management Research Group, The Department of Computer Science, The University of
Manchester, Manchester, United Kingdom

* reke77@hotmail.com, rmarwani@taibahu.edu.sa

Abstract

Data Integrity Auditing (DIA) is a security service for checking the integrity of data stored in a

PCS (Public Cloud Storage), a third-party based storage service. A DIA service is provided

by using integrity tags (hereafter referred to tags). This paper proposes a novel tagging

method, called Tagging of Outsourced Data (TOD), for generating and verifying tags of files.

TOD has a number of unique properties: (i) it supports both public and private verifiability,

and achieves this property with a low level of overhead at the user end, making it particularly

attractive to mobile users with resource-constrained devices, (ii) it protects data confidential-

ity, supports dynamic tags and is resilient against tag forgery and tag tampering (i.e. by

authorised insiders) at the same time in more secure and efficient, making the method more

suited to the PCS environment, (iii) it supports tags deduplication, making it more efficient,

particularly for the user who has many files with data redundancy. Comprehensive security

analysis and performance evaluation have been conducted to demonstrate the efficacy and

efficiency of the approach taken in the design.

1 Introduction

Public Cloud Storage (PCS) is one of the commonly used Cloud Computing services. Out-

sourcing data in a PCS can bring benefits to PCS users. Data managed by a PCS provider can

be accessed anywhere, anytime and with any device, significantly increasing the accessibility

and availability of data. Furthermore, the storage capacities can easily be scaled up and down

based on the size of storage space subscribed by the PCS users, making the storage service pro-

visioning more scalable and cost-effective. However, as data in PCS are managed by the PCS

provider which is a third party, there are additional security concerns, and one of these con-

cerns is how to ensure the integrity of data managed by the PCS provider.

Outsourced data can be vulnerable to accidental and intentional alterations, and these alter-

ations may be performed by external entities as well as authorised insiders, e.g. an employee

working for the PCS provider. To check the integrity of data in such an environment, a Data

Integrity Auditing (DIA) service is typically used. Two integrity checking techniques have

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 1 / 47

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: ALmarwani R, Zhang N, Garside J (2020)
An effective, secure and efficient tagging method
for integrity protection of outsourced data in a
public cloud storage. PLoS ONE 15(11): e0241236.
https://doi.org/10.1371/journal.pone.0241236

Editor: Pandi Vijayakumar, University College of
Engineering Tindivanam, INDIA

Received: May 22, 2020

Accepted: October 9, 2020

Published: November 5, 2020

Copyright: © 2020 ALmarwani et al. This is an
open access article distributed under the terms of
the Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the manuscript.

Funding: The authors of this publication receive
research support from University of Manchester.
Reem Almarwani was a Phd student at the
University of Manchester and works at Taibah
University. Ning Zhang and James Garside work at
the University of Manchester.

Competing interests: The authors have declared
that no competing interests exist.

been proposed to use in the DIA, i.e., Proof of Retrievability (POR) [1] and Provable Data Pos-

session (PDP) [2], without downloading the whole data from the PCS. These are based on

spot-checking. As we are interested in dynamic data, and the PDP can support dynamic data

integrity verification more efficiently; thus the paper only focuses on the PDP-based DIA solu-

tions (use DIA to indicate PDP-based solutions).

With DIA, a PCS user generates tags for their data before uploading the data along with the

tags on to a PCS server. The tags serve as the authenticators for the data, protecting its integ-

rity. Whenever the integrity of the data is to be verified, some computations are performed on

the data, and the result of the computation is compared with the associated tags. If the data

have been altered, the verification will produce a negative result. Tags are generated and veri-

fied using a tagging method. For DIA to be effective, secure and efficient, we need an effective,

secure and efficient tagging method.

A tagging method typically consists of two algorithms, one for tag generation (tag genera-

tion algorithm) and the other for tag verification (tag verification algorithm). Usually, a tag

generation operation is performed by a PCS user (a data owner) using a tag generation algo-

rithm to generate tags for her/his data. A tag verification operation, on the other hand, may

either be performed by the data owner him/herself, in which case, the tagging method is said

to support private verifiability, or by a trusted third party (Third Party Auditor (TPA)) dele-

gated by the data owner, in which case, it is said to support public verifiability.

Over the past few years, a number of tagging methods have been proposed in the literature

[3–14] to used in DIA, some [3–7] supporting private verifiability, while others [8–14] sup-

porting public verifiability. The main focus of the existing work is on how to support public

verifiability and/or to make the methods more secure or more efficient.

While existing work has made some major contributions to knowledge, there are three

aspects in which the work can be further improved. The first is that existing tagging methods

are largely designed to counter threats from external entities. They assume that third parties

(PCS provider and/or TPA) are trustworthy. With some of the methods, the verification of the

integrity of data even requires that a designated third party access plaintext data. This places

unconditional trust on the third party. Should the third party misbehave, the confidentiality of

data or the privacy of data owners may be put at risks. The second is that existing methods, to

address the tag collision and/or data confidentiality, are not designed to support dynamic data

efficiently. When modifications are made to any single data block, e.g. when a new data block

is inserted, or an obsolete block is deleted, multiple tags (not just the tag associated to the

affected data block) are affected and need to be re-computed. The third is that existing meth-

ods do not differentiate identical data from non-identical data, and they generate tags for iden-

tical data in the same way as for non-identical data. As a result, they generate duplicated tags

for identical data, resulting in unnecessary overheads. The data deduplication is applying at

the file-level, not block-level, and even that the duplication is detected, the PCS user still should

generate tags. On other words, the deduplication property is not considered in designing the

tagging method.

By supporting both public and private verifiability on the same platform, we can get rid of

the assumption that the third parties are trustworthy. By supporting the function of public ver-

ifiability, users can delegate the tasks of data integrity verification to a third party, say TPA, to

reduce overhead costs imposed on the users. By also supporting the function of private verifi-

ability, users will have the option of performing the verifications themselves anytime to moni-

tor the integrity of the third parties which manage their data (PCS provider and/or TPA). In

this way, we can reduce overhead costs on users while at the same time also reduce trusts on

third parties.

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 2 / 47

By ‘secure’, we mean that, while providing the integrity protection function, the method

should also ensure the protection of data confidentiality and be resilient to attacks on tags. By

‘efficient’, we mean that the overhead costs, in term of computational cost, incurred in tag gen-

eration and verification, should be as low as possible, particularly for the user end, thus making

the DIA service also suited to users with resource-constrained devices.

TOD achieves the above properties by making a hybrid use of cryptographic primitives,

namely homomorphic encryption, algebraic signature and BLS short signature, as well as the

ideas of tag deduplication and decoupling block indices from tag generations. TOD has been

analysed and evaluated in terms of security and performance, and the results of the analysis

and evaluation have been compared with related methods, demonstrating that our method is

more secure and more efficient while supporting a richer set of functionality. Accurately, our

contributions can be summarised as the following:

• Analyse threats to data integrity verification in a DIA system and specify a set of require-

ments for the design of an effective, secure and efficient tagging method.

• Analyse the existing tagging methods critically against the requirements to identify their

strengths and weakness.

• Design a novel tagging method, i.e. TOD method.

• Prove the correctness of the TOD, and it can satisfy the security requirements through theo-

retical analysis.

• Justify the performance of TOD through theoretical and experimental analysis and compari-

sons with the related works.

The rest of the paper is structured as follows. Section 2 analyses security threats in relation

to data integrity, and, based on the threat analysis, the section presents a set of requirements

for an effective, secure and efficient tagging method. Based on the requirements, section 3 crit-

ically analyses related methods published in the literature, highlighting their limitations and

the need for further work. Section 4 presents the TOD method addressing the limitations. The

security analysis and performance evaluation of the method are given in Section 5 and Section

6, respectively. Finally, Section 7 concludes the paper.

2 Threat analysis and requirement specification

This section first analyses insider threats to data integrity verification in a DIA system. It

then specifies a set of requirements for the design of an effective, secure and efficient tagging

method.

2.1 Insider threat analysis

Fig 1 shows a typical DIA system model. From the figure, it can be seen that the model consists

of the following entities: multiple PCS users, a PCS provider and a TPA. A PCS user is usually

the owner of a data file and is responsible for generating tags for his/her data file and uploading

the data file along with the tags onto the PCS. The PCS provider manages data and their associ-

ated tags for PCS users, as part of the PCS service provided to the PCS users. A verifier is an

entity that verifies the integrity of the data managed by the PCS provider. A verifier can be a

PCS user, i.e. the owner of the data to be verified, or a TPA. A verification operation performed

by a verifier involves accessing the data and their associated tags, both of which are managed

by the PCS provider, and verifying whether the tags can authenticate the given data.

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 3 / 47

In this system model, threats to data integrity can come from external entities as well as

internal entities. Threats imposed by internal entities are more difficult to counter, as they are

authorised insiders and have privileges to manage or access data and/or verify the integrity of

data. Three types of insider threats that are related to DIA which are data integrity verification

fraud, unauthorised data disclosure, and repudiation of tag generations or data updating.

• Data Integrity Verification Fraud: Data integrity verification fraud occurs when an attempt

is made to cover the fact that certain PCS users’ data integrity have been compromised, such

as there is loss of data or it has been altered or tampered in an unauthorised manner. It is

possible that the PCS provider will manipulate or forge tags that are utilised for generating

proof so that they can hide these attacks to protect their reputation. The PCS provider can

do this through using three possible methods. The first is a forgery attack where tag(s)

related to the data requested for a data integrity verification process is forged to ensure that

the data integrity verification delivers a positive result despite the tag that is used differs

from the tag that the data owner generates. For example, the PCS provider can achieve this

by manipulating flaws present in a tagging method. The second is implementing a replace

attack where the PCS provider utilises a tag that is generated for a piece of data different

from that which is requested for verification. This replace attack is executed by using colli-

sions between tags that are developed for data that the same user or different users own. If,

for example, two PCS users have the same data blocks as well as the same tags generated for

these data blocks, the PCS provider can implement the tag as well as the related data block

owned by a PCS user to verify data owned by a different PCS user. Moreover, this attack can

also work in case of two different data blocks having the same tags. The third way is imple-

menting a replay attack in which the PCS provider can cache the proofs of certain data as

well as tags. Upon receiving a verification request, the PCS provider dispatches the values of

proofs that is cached instead of freshly generated proofs through stored data and tags within

the file storage.

• Unauthorised Data Disclosure: If the user data that a PCS provider manages is not thor-

oughly protected, it can be disclosed because of data integrity verification operations. Both

the PCS provider and the TPA have the authority to manage as well as verify the data integ-

rity. They must not be able access the data content. If, however, they are able to access the

data because of the integrity verification process, the data confidentiality and/or the data

owner’s privacy can be at risks. For example, the TPA or the PCS provider’s internal

Fig 1. The DIA system model.

https://doi.org/10.1371/journal.pone.0241236.g001

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 4 / 47

employee can gain access to user data and sell it to other individuals or organisations or use

it for unauthorised purposes that can hurt the users.

• Repudiation of Tag Generation: A PCS user can repudiate (falsely deny) the creation of tags

for certain data to discredit or obtain certain financial gains from the TPA and/or the PCS

provider. However, their denial of the tag generation can also be sincere because a PCS user

(e.g., user A) could be attempting to learn another PCS user’s (user B) data by offering proof

that certain tags were generated by user A when they were, in fact, generated by user B.

2.2 Requirement specification

Based on the threat analysis and usecase study, we have specified a set of requirements for an

effective, secure and efficient tagging method. The requirements can be classified into three

groups, functional, security and performance requirements.

(F). Functional Requirements: Two functional requirements are specified, F1 and F2.

(F1). Public and Private Verifiability: The method should support both public and pri-

vate verifiability, i.e. to allow both a TPA and the owner of data to verify the integ-

rity of data.

(F2). Dynamic Tag Support: The method should minimise the number of tags that

need to be modified or re-computed when any changes are being made to a data

file. When some data blocks in a file are modified, new data blocks are inserted, or

obsolete data blocks are deleted, the associated tags should also be changed. Such

changes should be kept as small as possible.

(S). Security Requirements: Five security requirements are specified.

(S1). Tag Forgery Resistance: It should be computationally infeasible for a PCS provider

to forge a tag for some data, which could produce a positive tag verification result.

(S2). Tag Collision Resistance: It should be computationally infeasible to generate identi-

cal tags for different data blocks that are owned by the same PCS user or tags gener-

ated for the same data blocks but owned by different users should be different too.

This is for countering tag replace attacks that may be launched by a PCS provider.

(S3). Non-repudiation of Tag Generation: It should be computationally infeasible for a

PCS user to falsely deny that she/he has generated a valid tag for a data block(s).

(S4). Data Confidentiality Preservation: The method should allow the PCS provider

and a TPA to verify the validity of a tag without them accessing plaintext data

blocks. This requirement is for preserving the confidentiality of data while provid-

ing the DIA service.

(S5). Unbounded Verifiability: The method should be such that the security level of a tag

is independent of the number of times the tag has been verified. In other words, the

verification of tags should not make them more vulnerable to security attacks.

(E). Performance Requirements: Two performance requirements are specified.

(E1). Minimising Tag Generation Cost: The cost incurred in tag generation should be

as low as possible.

(E2). Minimising Tag Verification Cost: The cost incurred in tag verification should be

as low as possible.

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 5 / 47

3 Related work

This section provides an overview of related tagging methods published in the literature.

Depending on the tagging methods, one or more tags may be generated for a single data file. If

one tag is generated for a data file, then when verifying the tag (i.e. the integrity of the file), the

entire file has to be downloaded from the PCS server. This could be costly in terms of band-

width, particularly if the file size is large. To reduce this cost, a fragmentation approach is used.

With this approach, each data file is divided into multiple data blocks, and a tag is either gener-

ated by using multiple data blocks, i.e. the so-called One Tag for Multiple data Blocks (OTfMB)

approach, or by generated by using a single data block, the One Tag for a Single data Block
(OTfSB) approach. Depending on which of these two approaches they use, existing tagging

methods can largely be classified into two groups: OTfMB based methods and OTfSB based

methods. Table 1 provides a summary of the advantages and disadvantages of existing works.

3.1 OTfMB based methods

A file to be integrity protected is usually divided into multiple blocks. With the OTfMB

approach, each tag is generated using two or more data blocks, and these data blocks are ran-

domly selected from the blocks of the file. The number of tags that are generated for a file is

dependent on the number of data blocks the file has and the number of data blocks that are

used in generating each tag. The more the data blocks a file has and/or the fewer the blocks

that are used in generating each tag, the more the tags that will be generated for the file.

Each integrity verification of a file typically involves the random selection and verification

of one tag of the file. Only the selected tag along with the data blocks that are used to generate

the tag will need to be downloaded from the PCS server when carrying out the verification. As

the downloaded data blocks is a subset of the data blocks a file has, this approach is cheaper, in

terms of bandwidth cost, than the non-fragmentation approach.

The two most notable OTfMB-based tagging methods are those proposed in [3, 4]. The two

methods differ in the cryptographic algorithms used. In the method proposed by Ateniese

et al. [3] (hereafter referred to as the Ateniese_1 method), a conventional hash function, such

as MD5 and SHA, and a symmetric cipher, such as AES, are used. To generate a tag for a file, a

randomly selected subset of data blocks are concatenated and hashed. The hash value is then

encrypted using a symmetric key. To verify the integrity of a file, a tag is randomly selected

from the tags of the file, and a fresh hash value is generated based on the data blocks associated

to the tag. The fresh hash value is then compared with the one decrypted from the selected tag.

If the two hash values are equal, then the integrity of the file is said to be assured. In this

method, the symmetric encryption is used to protect the tags against forgery attacks. As the

symmetric key should only be known to the PCS user, it is computationally hard for any

unauthorised entities to make any alteration to, or forge, the data file or the tag, such that a

freshly computed hash value is identical to the one recovered from the downloaded tag.

The Ateniese_1 method does not support dynamic tagging efficiently. When there is a

change in a data file, the associated tag needs to be recomputed from scratch. To improve on

this, Ateniese et al. revised their method by replacing the concatenation operation with an

XOR operation. In this way, when new data blocks are added, only the XORing operations

involving the hash values of the new data blocks and the encryption operation would need to

be re-computed.

Longer tags impose a higher storage requirement and also consume more bandwidth when

they are downloaded from the server. To reduce the overhead costs in DIA, Chen et al. [4] (the

Chen method) proposed to use the algebraic signature function [15] to replace the conven-

tional hash function in the Ateniese_1 method. The algebraic signature function, which is,

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 6 / 47

sometimes, also referred to as an algebraic hash function, differs from a conventional hash

function in the following three aspects. Firstly, it is faster to compute. According to [16], it

takes about half of the time SHA-1 takes to generate a tag. Secondly, it generates a shorter hash

value (thus a shorter signature or tag) than SHA-1. For example, a hash value produced by an

Table 1. Advantages and disadvantages of existing methods.

Tagging Methods Advantages Disadvantages

Ateniese_1 [3] • Less computational cost in a tag verification • High storage cost

• Support bounded verifiability (venerable to replay attacks)

• Support private verification only

• Venerable to repudiation of tag generation attack

Chen [4] • Less storage and communication costs • Support bounded verifiability (venerable to replay attacks)

• Support private verification only

• Venerable to a repudiation of tag generation attack

Krishra [5] • Less computational cost in tag generation and verification attacks • Support bounded verifiability (venerable to replay attacks)

• Support private verification only

• Venerable to repudiation of tag generation attacks

Luo_1 [6] • Support batch verification

• Support unbounded verification

• Venerable to replace attacks

• Support private verification only

• Venerable to repudiation of tag generation attacks

Sookhak [7] • Support batch verification

• Support unbounded verification

• Resist to replace attacks

• Support private verification only

• Venerable to repudiation of tag generation

Ateniese_2 [8] • Support public verification

• Support non-repudiation of tag generation

• Support data confidentiality against provider

• High computational cost in tag generation and in private tag verification

• High storage and communication cost

• Not support dynamic data

• High storage and communication

Ni [9] • Support public verification

• Support non-repudiation of tag generation

• High storage and communication costs

• Support static data

Erway [23] • Support data confidentiality against provider

• Support public verification

• Support non-repudiation of tag generation

• High storage and communication costs

• Support static data

Hanser [10] • Less storage and communication costs

• Support public verification

• Support non-repudiation of tag generation

• High computational cost in a private tag verification

Li [11] • Less storage and communication costs

• Support public verification

• Support non-repudiation of tag generation

• Support static data

• High computational cost in a private tag verification

Liu [12] • Support public verification

• Support Non-repudiation of tag generation

• High computational cost in a private tag verification

Wang [17, 30, 31] • Support public verification

• Support non-repudiation of tag generation

• Support static data

• High computational cost in a private tag verification

Yang [32] • Support public verification

• Support non-repudiation of tag generation

• Support static data

• High computational cost in a private tag verification

Luo_2 [13] • Support public verification

• Support non-repudiation of tag generation

• High computational cost in a private tag verification

• Support static data

Salim [13] • Support public verification

• Support non-repudiation of tag generation

• High computational cost in a private tag verification

• Support static data

https://doi.org/10.1371/journal.pone.0241236.t001

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 7 / 47

algebraic signature function [15] is 16 bits long, which is one-tenth of the size (160 bits) gener-

ated by SHA-1. Thirdly, it has an algebraic property that allows multiple signatures to be aggre-

gated in a numerical manner, rather than a simple concatenation of multiple hash values as in

the case of conventional hash functions. This signature aggregation property can be exploited

to support batch verification of multiple tags so that the verifications of multiple signatures

can be carried out by verifying a single aggregated signature.

The above two methods also differ in the size of the verification data, i.e. the data that is

used for verifying a tag, which is also the data that is transmitted from the PCS server to a PCS

user upon the receipt of a file integrity verification request. With the Ateniese_1 method, the

size of the verification data is dependent on the size of a hash value which, in turn, is depen-

dent on the hash function used, or the data blocks number used in a tag generation in case of

the PCS user who is generating the hash value, whereas, with the Chen method, it is dependent

on the size of a data block; it increases linearly with the data block size.

A major limitation with the OTfMB approach is that, if there are too few tags for a file, e.g.

if a file is short and/or if too many blocks are used for each tag generation, the approach is vul-

nerable to replay attacks. This is because, repeated integrity verifications of the file will lead to

repeated use of the same tag(s) and the associated data blocks. This will make it easier for the

PCS provider to guess or cache the hash values, or the sum of the hash values, of the data

blocks and their associated tags. When a verification request is received, the PCS provider

could just dispatch the cached values and the tags, rather than what are actually stored in the

file storage. In such cases, unauthorised alterations made to a data file and its tags may go

undetected.

To make the guesses harder, or to give a stronger resistance to replay attacks, more tags

should be generated for each file. In an extreme case, one tag is generated for each data

block in a file, i.e. only one data block is used in each tag generation. This leads to the OTfSB

approach. With this approach, for countering replay attacks, each integrity verification can

require the use of multiple tags and these tags are typically randomly selected from the whole

set of the tags for the file. Obviously, the more tags that are generated for each file, the harder

it is for the PCS provider to guess the subset of tags that may be selected for an integrity

verification; thus the harder it is to launch a successful replay attack, and the stronger the

unbounded verifiability of the method. For this reason, most of the existing methods use the

OTfSB approach.

3.2 OTfSB based methods

Krishra et al. [5] proposed tagging method (Krishra Method), which is one of OTfSB based

methods. The method uses symmetric encryption algorithm to compute tags. For each tag,

random bits of its associated data block are encrypted. In each verification, the positions of

the random bits are disclosed to the provider to retrieve their values and their associated tag.

However, the method can save the cost at the user and provider, but it still cannot support

unbounded verifiability even it is based on the OTfSB approach. In each time, the positions

of the random bits can be disclosed to the provider. Therefore, tagging methods described in

[6–12, 17–19] have been proposed, where a whole block content is used in a tag generation.

Depending on the cryptographic algorithms used, these methods can be further classified into

algebraic signature based, MAC based, and digital signature based methods.

As mentioned above, an algebraic signature function [15] takes shorter time to generate a

signature (tag), and it also generates shorter signatures, in comparison with a conventional

hash function. In addition, an algebraic signature function has an additive homomorphic

property, i.e. a signature of the sum of multiple data blocks is equivalent to the sum of the

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 8 / 47

signatures of the corresponding data blocks. By using an algebraic signature function, we

can generate homomorphic verifiable tags, so for integrity verification, only the sum of the

requested data blocks and the sum of the tags corresponding to the data blocks need to be

downloaded. The computational and communication costs in DIA are, therefore, independent

of the number of data blocks used in verifying a tag. For this reason, it is a popular method

used for tagging method designs. The tagging methods proposed by Luo et al. [6] (the Luo_1

method) and by Sookhak et al. [7] (the Sookhak method) are based on an algebraic signature

function [15].

Once tags are generated using the Luo_1 method [6], the PCS user in DIA uploads the

data blocks onto the PCS server but should keep their associated tags in the local storage for

enhancing the security level. When verifying the integrity of the file, the sum of the random

data blocks, i.e. a data value, (each block is encoded into a numerical value) and their associ-

ated tags are taken as inputs. Then, the algebraic signature function is applied to the data value

to generate a fresh algebraic signature (i.e. a fresh tag) and compares it with the one that is

computed using the corresponding tags stored in the local storage to see if the two values are

equal. However, no measure has been taken to address the issue of tag collisions. If the PCS

user in DIA, for reasons such as short of local storage space, wishes to upload the tags onto the

PCS server, the method can be vulnerable to tag collisions, i.e. tags generated for different files

owned by the same PCS user or by different PCS users may be identical. Because of this, the

DIA is vulnerable to integrity fraud.

To overcome this limitation, Sookhak et al. [7] proposed a revised method (the Sookhak

method), in which, a file ID and a block index are used to randomise the input of the tag gener-

ation algorithm. In addition, the method uses a sector/block fragmentation idea to optimise

the trade-off between security and costs. For a given file size, if a larger data block size is used,

fewer data blocks thus fewer tags the file will have. This will reduce the security level and the

computational cost but increase bandwidth cost. The idea is to use a larger data block size, but

further divide each data block into multiple sectors. For each sector, a tag is generated. The tag

for a data block is generated by taking the sum (or the product) of the sector tags in the block.

When verifying the integrity of the file, the sum of the sectors is used instead of the sum of the

data blocks. As the size of a sector is shorter than the size of a data block, the bandwidth cost is

lower in DIA.

Tags that are generated by using such an unkeyed function, i.e., conventional hash func-

tions, are not tamper-proof, so they are only suited to trustworthy environments where integ-

rity drifts are caused by accidental errors or non-malicious intent, such as channel or system

errors or innocent human errors. However, in our problem context where data are managed

by third parties, data integrity drifts may also be caused by malicious intents. In such cases,

tags must be tamper-proof, and this can be done by using a secret key to protect the values pro-

duced by an unkeyed function. The secret key can either be a symmetric key (of a symmetric-

key cipher) or a private key (of a public-key cipher).

Symmetric key based tagging methods, i.e. [18, 19], are suited to cases where file integrity

verifications are performed by PCS users (i.e. data owners) themselves, or PCS users trust their

TPAs unconditionally. This is because the same key is used for tag generation and verification.

In cases where these two conditions are not satisfied, asymmetric (public and private) keys

should be used, leading to the so-called asymmetric key (or public-key) based tagging meth-

ods. With such a method, a tag is a digital token signed with a PCS user’s (data owner’s) private

key, and the corresponding public key is used to verify the tag. So these tagging methods are

also called digital signature based tagging methods. There are a number of digital signature

algorithms. The most notable ones are the Rivest–Shamir–Adleman (RSA) algorithm [20],

Elliptic Curve Digital signature algorithm (ECDSA) [21] and Boneh-Lynn-Shacham based

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 9 / 47

(BLS) algorithm [22]. Depending on the digital signature algorithm used, signature based tag-

ging methods can also be classified into three variants, RSA-based, ECDSA-based and BLS-

based.

The tagging methods proposed by Ateniese et al. [8] (the Ateniese_2 method), Ni et al. [9]

(the Ni method), and Erway et al. [23] (the Erway method) are RSA-based. The Ateniese_2

method and the Erway method encrypt the data file before fragmenting into data blocks for

data confidentiality preservation. Furthermore, they use random number and a data block

index in each tag generation for tag collision resistance, whereas the Ni method uses a file ID

in addition to a random number and a data block index for collision resistance. Also, the Ni

method and the Erway method use the blocks/sector fragmentation idea as described in the

Sookhak method above to optimise the trade-off between cost and security.

The RSA algorithm consists of modular exponentiation and inversion operations, so it is

relatively expensive in terms of computational complexity and time it takes to generate and

verify a tag. The computational cost increases sharply as the size of the key increases [24–27].

The average time it takes for the RSA-1024 algorithm (RSA algorithm with 1024-bit key size)

to generate a tag is about 81 milliseconds, and this time increases to about 1254 milliseconds

with RSA-2048 [28]. According to the NIST recommendations [29], RSA-2048 should be used

for an enhanced level of security. In addition to the high computational cost, the RSA algo-

rithm is also relatively more expensive in terms of storage and communication bandwidth

cost; the tag size is 1024 bits with RSA-1024, and 2048 bits with RSA-2048.

With the same security level, the ECDSA algorithm [21] costs less to generate tags and

generates shorter tags than the RSA algorithm [24, 25]. For example, it takes about 41 millisec-

onds for the 192-ECDSA algorithm to generate a tag of 192-bits, and 45 milliseconds for

224-ECDSA to generate a tag of 224-bits. For these reasons, Hanser et al. [10] proposed to use

the ECDSA algorithm for tagging method design.

To further reduce the overhead costs, BLS-based tagging methods were proposed and the

most notable ones are by Li et al. [11] (the Li method), Liu et al. [12] (the Liu method), Wang

et al. [17, 30, 31] (the Wang method), Yang et al. [32] (the Yang method), Luo et al. [13]

(Luo_2 method) and Salim et al. [14] (Salim Method). The BLS short signature [22] scheme,

as indicated by its name, produces short signatures each having a typical length of 160 bits.

This length is shorter than the 192-bits produced by an ECDSA based tagging method and

1024-bits by an RSA-1024 based method. In terms of tag generation cost, according to [24,

25], a BLS-based tagging method has a similar level of cost as an ECDSA-based method. While

they are all BLS-based, the methods differ in terms of how the tag collisions are addressed and

whether a block/sector fragmentation approach is used. The Li and Wang methods use a data

block index to resist tag collisions, whereas the Luo_2 and Salim methods use the hash value of

the underlying data block, the Liu method uses, addition to the hash value of the data block, a

random number to build collision resistance and the Yang method uses the hash value of a

secret hash key, file ID and block index addition to a random number. The Wang and the

Luo_2 methods do not use the block/sector fragmentation approach, whereas the Li, Liu, Yang

and Salim methods do.

From the above discussions of existing tagging methods, we can make the following

observations:

1. None of the existing methods support both public and private verifiability on the same plat-

form in an efficient manner. Symmetric key based methods can only be used to support pri-

vate verifiability, making them unsuited to TPA-based DIA or in environments where third

parties should not be trusted unconditionally or their actions or services should be held

accountable. Although asymmetric key based methods can support both public and private

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 10 / 47

verifiability, they are costly to PCS users, particularly if he has a high number of files in

PCS.

2. There is still room for improvements with regards to protecting data confidentiality in the

design of tagging methods. Some of the existing DIAs were designed under the assumption

that TPAs are trustworthy, so the data confidentiality requirement was not considered

when the methods were designed. To satisfy this requirement, a few DIAs use a random

masking technique. The random masking method disguises the content of data blocks

when they are being released from the PCS upon the receipt of an integrity verification

request. The masking operation needs to be carried out by the PCS provider whenever a file

integrity verification request is received. This imposes an additional run-time overhead to

the PCS provider. Also, this approach does not protect data confidentiality against PCS pro-

viders. On the other hand, some the tagging methods that are designed to support data con-

fidentiality requirement against PCS provider and TPA, they use encryption at a file-level,

where a data file is encrypted and then divided into multiple blocks. Unfortunately, by

using these methods, the DIAs cannot support the dynamic tag efficiently, where a high

computational cost can be introduced at the PCS user.

3. None of the existing methods can support dynamic tag efficiently and provide tag collision

resistance at the same time. Some of the methods using a data block index and/or file ID for

the collision, but this leads to incur a computational cost at the PCS user in updating tags.

On the other hand, other methods used a hash value of the data block for tag collision resis-

tance and dynamic tags. Unfortunately, they are not considering the collision between mul-

tiple PCS users.

The novel tagging method reported in this paper is designed to overcome these limitations,

and, in addition, the method is designed to be cost-efficient, i.e. imposing as less overhead

costs as possible. In the remaining part of this paper, we present the design, analysis and evalu-

ation of this method, i.e. the TOD method.

4 The TOD method

This section describes our novel TOD method. It first gives the design preliminaries, covering

assumptions and notations. It next presents the key features and the building blocks that are

used in the design, before describing the TOD method in detail.

4.1 Design preliminaries

4.1.1 Assumptions. As the focus of this work is on the design of a tagging method, the fol-

lowing assumptions are used in the security analysis of the method.

(A1). All the cryptographic algorithms used, including the pseudo-random number genera-

tor, are secure.

(A2). Cryptographic keys are securely generated, distributed and stored.

(A3). The focus of this work is on tackling insider threats in relation to data integrity. Some

of the external attacks, such as impersonation, are outside of the scope of this work. In

other words, communication channels linking the DIA-ETTP entities are assumed to

be authenticated. This can be achieved by using off-the-shelf technologies such as a

Secure Socket Layer (SSL).

4.1.2 Notations. The notations used in the remaining part of this paper is summarised in

Table 2.

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 11 / 47

4.2 Key features and ideas

The TOD method has five features, and three of these features are novel. This section gives

these features along with the ideas used to achieve the features.

1. TOD supports both public and private verifiability on the same platform efficiently. For

to make DIA more secure, it should not assume that any of the third parties involved in

managing and/or verifying users’ data is trustworthy. TOD achieves this by supporting

both public and private verifiability so that routine, or more frequent, verifications of data

integrity can be delegated to a third party, TPA, but the owner of the data can also verify

the integrity of their data anytime they wish. In this way, we can shift the burden of data

integrity verifications away from data owners, while, at the same time, giving data owners

the option of monitoring the services provided by the third parties by equipping them

with the ability to detect any integrity drift that may be caused by the PCS provider and/

or any forgery of integrity verification results by the TPA. In other words, by supporting

the dual verifiability, we make the integrity protection more effective, protecting against

threats from not only external entities but also authorised insiders. This feature is

achieved through a hybrid use of two cryptographic functions. The former supports pub-

lic verifiability and non-repudiation of tag generations, while the latter supports private

verifiability.

2. TOD supports integrity verification of both plaintext data and ciphertext (encrypted) data.

Tag verifications can be carried without the need to decrypt any encrypted data. This fea-

ture can help to preserve data confidentiality while supporting data integrity and dynamic

data in a more efficient manner. This is part of the measure to reduce trust on the third

Table 2. Notations used in the design of TOD.

Symbol Meaning

DF Data file.

DBi ith data block in a data file.

{DBi} Set of the data blocks.

K Total number of data blocks in a data file.

S Total number of sectors in a data block.

T Number of data blocks used in one tag generation (In the OTfSB approach, T is equal 1).

NT Number of required tags are generated for one data file (In the OTfSB approach, NT is equal to K, the total

number of data blocks in a file).

C Number of data blocks used in each verification.

d Total number of data blocks in a file after eliminating redundant data blocks, where 1� d� K.

{0, 1}

⇤
Set of bit strings.

{0, 1}

n
Set of bit strings of length n.

La Bit-length of a where a 2 {0, 1}

⇤
.

Zp Set of positive integers modulo a large prime p.

a R
A

Randomly and uniformly chosen element a from a finite set A.

sk User’s LiSHE secret key

ppkEn User’s Paillier public key

x User’s BLS private key

ppk User’s BLS public key

UserID ID of the owner of the file.

RNi Random number generated using a secure pseudorandom number generator.

https://doi.org/10.1371/journal.pone.0241236.t002

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 12 / 47

parties. This feature is provided by using a homomorphic encryption scheme to encrypt

any data block, that used in tags generation, uploaded onto PCS.

3. TOD supports tag deduplication. Tag deduplication means that a single tag can be used to

authenticate multiple copies of the same data can be authenticated by using a single tag.

This can reduce the number of tags generated, thus reducing computational and storage

overheads.

4. TOD achieves tag collision resistance without coupling the tags and files are used to protect.

This decoupling allows tag deduplication and also allows us to support dynamic data more

efficiently. To achieve collision resistance, we use a PCS user ID along with a random num-

ber, alternative of using data block index or a file ID. In this way, different tags for the same

file or different files are completely decoupled. If one tag is to be updated, other tags will

not be affected. Furthermore, for identical data blocks that appear in multiple files, only one

tag needs to be generated. This can help to reduce the number of tags generated across all

the files a user has on the PCS, further reducing computational and storage overheads.

5. TOD is designed to achieve the above properties with as less overhead costs (computational,

storage and communication costs) as possible, especially for the user end. This is done by

taking the following two measures. The first is, we have chosen to use more efficient signa-

ture functions, the algebraic signature and BLS signature function, to achieve the property

of private and public verifiability. The algebraic signature and BLS signature functions gen-

erate shorter tags, and are also computationally cheaper than other signature functions. The

second measure is to use signature aggregation in supporting private and public verifiabil-

ity, allowing a PCS user and TPA to verify multiple tags in one operation, thus reducing

verification costs imposed on the PCS user and TPA.

4.3 Cryptographic building blocks

The design of the TOD method has made use of four cryptographic schemes as its underlying

building blocks. The schemes are the LiSHE (it is a symmetric key based additive homomor-

phic encryption scheme) [33], the Paillier (it is an asymmetric key based additive homomor-

phic encryption scheme) [34], the algebraic signature [15] and the BLS [22]. The LiSHE

scheme is used for protecting the confidentiality of data files, while the other three schemes are

for the generation and verification of tags. In the following, we give an overview of these

schemes and justifications for their selections.

Homomorphic encryption is a type of encryption algorithm [35–37] that allows computa-

tion to be carried out on ciphertext data, thus preserving the confidentiality of data while them

being computed. There are two types of homomorphism, additive homomorphism and multi-

plicative homomorphism. In this work, we need additive homomorphism. An encryption

scheme is said to be additively homomorphic if the encryption of the sum of two (or more)

plaintext data blocks is equivalent to the sum of the ciphertexts of the corresponding data

blocks. Mathematically, this can be expressed as: HE(DB
1

+ DB
2

) = HE(DB
1

) + HE(DB
2

),

where DB
1

and DB
2

are two plaintext data blocks, HE denotes the additive homomorphic

encryption scheme, and ‘+’ addition operation.

Depending on the types of keys used, a homomorphic encryption scheme can be either a

Symmetric Homomorphic Encryption (SHE) scheme or an Asymmetric Homomorphic

Encryption (AHE) scheme. A SHE scheme uses the same key for encryption and decryption,

whereas an AHE scheme uses two different keys, one for encryption and the other for decryp-

tion. To the best of the authors’ knowledge, there are four SHE schemes published in the

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 13 / 47

literature, and these are respectively proposed by Li et al. [33], Dasgupta et al. [38], Chan et al.

[37] and Xiao et al. [39]. With regard to AHE schemes, the most popular ones are the RSA [20]

and Paillier [34] scheme. The RSA scheme supports multiplicative homomorphism, whereas

the Paillier scheme supports additive homomorphism.

Generally, SHE schemes are computationally cheaper than AHE schemes. As shown in

Table 3, for encryption, the SHE scheme, proposed by Li et al. (hereafter referred to as the

LiSHE scheme) uses one exponentiation operator, whereas the Paillier scheme uses two expo-

nentiation operators. But an SHE scheme does have downside, i.e. the need for the key distri-

butions. However, this is not an issue for data files encryptions in our problem context, as a

data file is both encrypted and decrypted by the same entity, i.e. its data owner (PCS user). For

these reasons, we have decided to use an SHE scheme for confidentiality protection of PCS

users’ data files.

The next question is which SHE scheme we should go for. Among the four known SHE

schemes [33, 37–39], the LiSHE scheme, proposed by Li et al. [33], is the most efficient one.

The scheme is based on integer operations (with the computational complexity of matrix oper-

ations), which is computationally cheaper than the matrix multiplication and matrix inversion

operations used in the schemes designed by Chan et al. [37] and Xiao et al. [39] (the computa-

tional complexity of a matrix multiplication operation is O(n3

) for multiplying two matrices of

size (n × n) [40]). With regard to the SHE scheme proposed by Dasgupta et al. [38], a boot-

strapping process is required after a certain number of addition/ multiplication operations to

ensure that ciphertexts can be decrypted correctly. This requirement is not desirable and also

the bootstrapping process imposes additional overhead.

The Paillier scheme [34] is chosen because it is an asymmetric key based and supports addi-

tive homomorphism. The algebraic signature scheme [15] allows signature aggregation and

aggregated signature verification. The BLS scheme [22] is the most efficient signature scheme.

So these schemes are selected to support public and private verifiability in a secure and efficient

manner.

LiSHE scheme. The LiSHE scheme consists of three algorithms, a key generation algo-

rithm (LiSHE-KeyG) for generating a symmetric key used to encrypt and decrypt data files, an

encryption algorithm (LiSHE-Enc) for encrypting plaintext data files, and a decryption algo-

rithm (LiSHE-Dec) for decrypting ciphertext data files. The details of these algorithms are

given below.

LiSHE-KeyG algorithm: Given a security parameter, λ, this algorithm generates a secret

key, sk = (s, q), and a public parameter, p, where q and p are prime numbers, p� q,

0�0 denot-

ing p should be much greater than q, i.e. the length of q, Lq� λ bits, and length of p, Lp = 120 ×
d + Lq bits, d is a small positive integer called ciphertext degree and s is a random number

from Z⇤p.
LiSHE-Enc algorithm: Given sk and a plaintext data block (DB) 2Fq, choose a number, r,

where r is a large random positive integer called random ingredient of ciphertext, encrypt the

Table 3. Computational complexities of the Paillier, RSA and LiSHA schemes.

Paillier RSA LiSHA

Encryption Complexity 2 ExpZn2
ExpZn ExpZp

Decryption Complexity ExpZn2
ExpZn ExpZp

Expx: Modular exponentiation in x

https://doi.org/10.1371/journal.pone.0241236.t003

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 14 / 47

data block to produce the ciphertext output, c, as:

c à LiSHE� EncÖsk;DBÜ
à sd ⇥ Ör ⇥ qá DBÜ mod p

Ö1Ü

LiSHE-Dec algorithm: Given sk, a ciphertext, c, and d, recover the plaintext data block, DB,

from the ciphertext, c, as:

DB à LiSHE� DecÖsk; c; dÜ
à Öc⇥ s�d mod pÜ mod q

Ö2Ü

Paillier scheme. The second homomorphic encryption scheme used in the TOD design is

the Paillier scheme which is an asymmetric additive HE scheme. The Paillier scheme consists

of three algorithms, a key generation algorithm (Paillier-KeyG) for generating a pair of keys, a

public key for encryption and a private key for decryption, an encryption algorithm (Paillier-

Enc) for encrypting plaintext data, and a decryption algorithm (Paillier- Dec) for decrypting

ciphertext data. The details of these algorithms are given below.

Paillier-KeyG algorithm: Given two prime numbers, p and q, this algorithm generates a

public key, ppkEn = (n, g), and a private key, pkD = (λ, μ), where n = p × q, and g is an random

integer, and g 2 Z⇤n2 . λ = lcm(p − 1, q − 1), where lcm means least common multiple, and μ =

(L(gλ mod n2

))

−1

mod n, where LÖxÜ à x�1
n .

Paillier-Enc algorithm: Given a public key, ppkEn, and a data block (i.e. the message to be

encrypted), DB, where 0 DB< n, select random integer, r, where 0< r< n and r 2 Z⇤n2 ,

encrypt the message, DB, to produce the ciphertext output, c, as:

c à EÖDB; ppkEnÜ à gDB ⇥ rn mod n2 Ö3Ü

Paillier-Dec algorithm: Given a private key, pkD, a ciphertext, c, recover the plaintext mes-

sage, DB, from the ciphertext, c, as:

DB à DÖc; pkDÜ à LÖcl mod n2Ü ⇥ m mod n Ö4Ü

As mentioned earlier, the Paillier scheme supports the additive homomorphism. This

means that, given ciphertexts of DB
1

and DB
2

, one can compute the ciphertext of DB
1

+ DB
2

,

i.e. the following equation holds:

EÖDB1 á DB2Ü à EÖDB1Ü ⇥ EÖDB2Ü Ö5Ü

Algebraic signature scheme. The third cryptographic building block used in the TOD

design is the algebraic signature function proposed by Thomas Schauer et al. [15]. This func-

tion is defined in a Galois field (GF(2

m
)). For a data block (DB) consisted of wm-bit binary

strings, {si}, 0� i� w − 1, its algebraic signature is calculated as:

ASÖDBÜ à
Xw�1

ià0

si ⇥ ai Ö6Ü

where α is a primitive element of GF(2

m
).

The length of a signature generated by this function is equal to the length of α, which is an

element in GF(2

m
). For example, using GF(2

16

), where the length of α is 16-bits, the resulting

signature would be an element in GF(2

16

) with a signature length of 16-bits (2 bytes). The

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 15 / 47

algebraic signature scheme is a type of hash function with an algebraic property: a signature of

the sum of data blocks is equivalent to the sum of the signatures of the corresponding data

blocks, i.e., AS(DB
1

) + AS(DB
2

) = AS(DB
1

+ DB
2

).

ASÖDB1Ü á ASÖDB2Ü à
Xw�1

ià0

s1;i ⇥ ai á
Xw�1

ià0

s2;i ⇥ ai

à
Xw�1

ià0

ai ⇥ Ös1;i á s2;iÜ

à ASÖDB1 á DB2Ü

Ö7Ü

BLS scheme. The fourth cryptographic building block used is the BLS signature scheme

[22]. The BLS signature scheme is based on a bilinear pairing, and generates short signatures.

In addition, it has an important property, i.e. it allows the aggregation of multiple signatures

and the verification of the aggregated signature. In other words, it allows multiple signatures

being verified in one operation, the so called batch verifiability property.

The bilinear pairing can be defined as follows. Let G
1

, G
2

and GT be three multiplication

cycle groups of prime order p, g
1

is a generator of G
1

and g
2

is a generator of G
2

. The bilinear

pairing is a map e: G
1

× G
2

! GT. It has the following properties:

(P1). Bilinear: e(Wa
, R) = e(W, Ra

) for W 2 G
1

, R 2 G
2

and a 2 Zp.

(P2). Non-degeneracy: e(g
1

, g
2

) 6à 1.

Given the bilinear pairing definition, the BLS signature scheme can be defined as follows.

Let (G
1

, G
2

, GT, g
2

, p, e, H()) be the system parameters, where G
1

, G
2

, GT, g
2

, p, e have been

defined above, and H() is a BLS hash function, H() = {0, 1}

⇤! G
1

. The BLS signature scheme

consists of three algorithms: a key generation algorithm (BLS-KeyG) for generating signature

signing and verification keys, a signature generation algorithm (BLS-SigG) for generating a

BLS signature, and a signature verification algorithm (BLS-SigV) for verifying the signature.

BLS-KeyG algorithm: Select a random number, x R Zp, where x is the private key, and

compute the corresponding public key (ppk), where ppk à gx2 .

BLS-SigG algorithm: Given a data block, DB 2 {0, 1}

⇤
, and a private key, x, compute a sig-

nature, DBSig, for the data block, DB, where DBSig = BLS-SigG (DB) = H(DB)

x
and DBSig

2G
1

.

BLS-SigV algorithm: Given a data block, DB, its signature, DBSig, and the public key, ppk,

compute and verify if this equation holds, i.e., e(DBSig, g
2

) = e(H(DB), ppk).

The BLS signature scheme can be extended into an aggregated signature scheme by which

multiple BLS signatures can be aggregated into a single aggregated signature, and the verifica-

tions of the multiple signatures are transformed into the verification of the aggregated signa-

ture. This aggregated signature scheme consists of four algorithms: a key generation algorithm

(the BLS-KeyG algorithm) for generating signature signing and verification keys; a BLS signa-

ture signing algorithm (the BLS-SigG algorithm) for generating a BLS signature, a signature

aggregation algorithm (the BLS-AggSigG algorithm) for aggregating multiple BLS signatures

into a single aggregated BLS signature, and an aggregated signature verification algorithm (the

BLS-AggSigV algorithm) for verifying the aggregated signature. The BLS-KeyG and BLS-SigG

algorithms are defined above, the BLS-AggSigG and BLS-AggSigV algorithms are defined

below.

BLS-AggSigG algorithm: Given w BLS signatures, i.e. {DBSigi}, where, 0� i� w−1, each

signed on a distinct data block, {DBi}, using the BLS-SigG algorithm, this algorithm generates

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 16 / 47

an aggregated BLS signature, AggDBSig, using the equation:

AggDBSig à BLS� AggSigGÖfDBSigigÜ à
Yw�1

ià0

DBSigi:

BLS-AggSigV algorithm: Given an aggregated signature, i.e. AggDBSig, a public key,

ppk, and w data blocks, {DBi}, that have been signed, where {0, w − 1}. This algorithm

verifies the aggregated signature by computing a hash value for each of the w data blocks,

i.e. H(DBi), where i 2 {0, w − 1}, and confirming if this equation holds, e(AggDBSig, g
2

) =

eÖ
Qw�1

ià0 HÖDBiÜ; ppkÜ. If yes, the aggregated signature is accepted. Otherwise, it is rejected.

4.4 The TOD method in detail

A major novelty of the TOD method lies in that it supports both private and public verifiability

securely and efficiently. This means that, once tags are generated for a file, both the owner of

the file and a third party representing the owner can do the integrity verification of the file

securely and independently at any frequencies. This property is achieved by using four types of

tags that are generated and secured by making a hybrid use of the algebraic signature (AS)

scheme, a MappingFunction, the BLS signature scheme, and the Paillier scheme. The four

types of tags are, respectively, an identifier tag (IDTag), a data tag (DataTag), a data block tag

(DBTag), and a DBTag tag (DBTagTag). Fig 2 shows the relationship of these tags, and the

input and the scheme that are used for generating each.

The IDTag serves as an identifier for differentiating different DBTags. It is also used as an

input for the generation of DBTags to resist tag collisions. IDTags are generated by using the AS

scheme which defined in Eq (6), along with two parameter values, the ID of the user (i.e. the

owner of the data block) and a random number that is unique for each IDTag. In this way, any

change made to a data file would only affect the tag(s) of the data block(s) that have been

affected by the change. This can reduce tag generation overhead. In addition, in our design, the

Fig 2. Four types of tags, their relationship and inputs and schemes used to generate them.

https://doi.org/10.1371/journal.pone.0241236.g002

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 17 / 47

IDTags are encrypted. The encryption is done by using the Paillier scheme to protect the confi-

dentiality of the IDTags to counter potential IDTag forgeries by authorised insiders, i.e. the PCS

provider or the TPA. The DataTag of a data block represents the digest of the data block,

whereas the DBTag of a data block is the digest of the IDTag and DataTag associated to the data

block. Similar to the case for IDTags, DataTags and DBTags are also generated by using the AS

scheme. The DBTags of a data file are used to support the private verifiability of the data file.

The DBTagTag of a data block provides an extra layer of protection protecting the integrity

of IDTag and DBTag associated to the data block against fraud that may be committed by

authorised insiders (the PCS provider and the TPA). It is generated by using the BLS scheme

on an encrypted form of the IDTag and the DBTag. DBTagTags of a data file are used to sup-

port the public verifiability of the data file.

Algorithm 1: SetUp

Input: DF, sk
Output: {En_DBi}, 0 � i � d − 1

1. Divide a data file (DF) into K data blocks, {DBi}, 0 � i � K
− 1.

2. Eliminate any additional identical data blocks among K data
blocks, i.e. only keep one copy of any identical blocks. The output of
this step is d non-duplicated data blocks, {DBi}, 0 � i � d − 1.

3. Encrypt each of d non-duplicated data blocks, {DBi}, using the
LiSHE-Enc algorithm and a key, sk, to produce a set of encrypted data
blocks, {En_DBi}, 0 � i � d − 1.

for i = 0 ! d − 1 do
Compute: En_DBi = LiSHE-Enc(DBi, sk)

end
In the following, we describe, in detail, four functional components of the TOD method,

namely, data pre-processing, tag generation, tag private verification (for private verifiability)

and tag public verification (for public verifiability). Fig 3 shows the functional components of

the TOD method and their algorithms (inputs and outputs).

Fig 3. The functional components of the TOD method.

https://doi.org/10.1371/journal.pone.0241236.g003

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 18 / 47

Data pre-processing. A data file is first pre-processed before tags are generated for the

file. The pre-processing involves fragmenting the data file into multiple data blocks, eliminat-

ing any redundant (or duplicated) data blocks producing the so-called non-duplicated data

blocks (DBs), and encrypting them producing the encrypted data blocks (En_DBs). Data dedu-

plication is done by comparing data block values and then removing any additional blocks

that have identical values. The encryption is done by using the LiSHE-Enc algorithm described

in Section 4.3 above. This encryption operation is to protect the confidentiality of the data file

ensuring that the content of the data file can only be accessed by the user (i.e. the owner of the

file) him/erself even if the file is being managed by third parties. These data pre-processing

operations are implemented in the SetUp algorithm. The algorithm takes a data file (DF) and a

symmetric key, sk, as its input and outputs a set of encrypted data blocks {En_DBi}.
Algorithm 2: MappingFunction

Input: DBTagi, MappingSecretKey
Output: DBTagMapValuei

1. Compute: S = DBTagi || MappingSecretkey.
2. Compute:

t à H1ÖSÜ Ö12Ü

3. Convert t to integer, a.
4. Compute:

DBTagMapValuei à a mod p Ö13Ü

Tag generation. As mentioned earlier, each data block has four tags: IDTag, DataTag,

DBTag, and DBTagTag. The math formulas for the generations of these tags are summarised

in Table 4.

From the Table, it can be seen that an IDTag, IDTagi, for a data block, DBi, is generated by

applying the concatenation of the user’s ID, UserID, and a random number, RNi to the AS
scheme, as shown in EQ (8).

Algorithm 3: TagGen

Input: {En_DBi}, 0 � i � d − 1, UserID, v, x, ppkEn
Output: {IDTagi}, {En_IDTagi}, {DBTagi}, {DBTagTagi}, 0 � i � d − 1

1 for i = 0 ! d − 1 do
1. Generate a random number, RNi, using pseudo-random number

generator.
2. Compute IDTagi by applying UserID and RNi to EQ (8).
3. Compute DataTagi by applying En_DBi to EQ (9).
4. Compute DBTagi by applying IDTagi and DataTagi to EQ (10).
5. Compute En_IDTagi by applying IDTagi and ppkEn to Eq (3).
6. Compute DBTagMapValuei by using DBTagi and MappingFunction

algorithm.
7. Compute DBTagTagi by applying υ, x, En_IDTagi and DBTagMapVa-

luei to EQ (11).
2. end

A DataTag, DataTagi, is a signature token on the ciphertext of a data block, En_DBi, gener-

ated using EQ (9). A DBTag, DBTagi, is a tag generated by taking the numeric sum of the

IDTag, i.e. IDTagi, and the DataTag, i.e. DataTagi, of the block, as shown in EQ (10).

The set of data block tags, {DBTagi}, generated for a set of encrypted data blocks, {En_DBi},
are for integrity verification of the data blocks by the data owner, i.e. for achieving private

verifiability.

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 19 / 47

DBTagTags are for supporting public verifiability. The generation of a DBTagTag is by

making a hybrid use of the BLS-SigG scheme (defined in Section 4.3 above) and a Mapping-

Function defined in Algorithm 2. This MappingFunction uses a hash function, H1() (e.g.

SHA256), to generate a hash value of DBTag concatenated with a secret key, MappingSecret-
Key, and then converts the hash value into an element in Zp. In detail, given an encrypted

IDTag, En_IDTagi, a Map value of DBTagi, DBTagMapValuei, a random number from G
1

, υ,

and the file owner’s BLS private key, x, the associated DBTagTag is generated using EQ (11) as

shown in Table 4.

The tag generation methods for all the four types of tags are implemented in the TagGen

algorithm (Algorithm 2).

{IDTagi} should be kept secret (known only to the file owner, i.e. the generator of the tags)

and their encrypted copies, i.e. {En_IDTagi}, can be uploaded onto TPA for public verifiability.

The following three sets: {En_DBi}, {DBTagi} and {DBTagTagi}, are loaded onto the PCS

server. {En_DBi}, {IDTagi} and {DBTagi} are used for file integrity private verifications,

whereas {En_IDTagi}, {En_DBi}, {DBTagi} and {DBTagTagi} are used for file integrity public

verifications.

File integrity private verification. The private verification of the integrity of the data file

refers to the verification of the integrity of the data file by the owner of the data file. This is also

referred to as tag private verification. The verification can either be performed on per tag basis,

in which case, it is called Single Tag Private Verification (STagPriVer), or in an aggregated

manner (i.e. multiple tags are verified in one verification operation), in which case, it is called

Batch Tag Private Verification (BTagPriVer).

Algorithm 4: STagPriVer

Input: En_DBi, IDTagi, DBTagi
Output: 0/1

1. Compute a fresh DataTagi, DataTag0i, by applying En_DBi to EQ (9).
2. Compute a fresh DBTagi, DBTag0i, by applying IDTag and DataTag0i to

EQ (10).
3. if

DBTag 0i àà DBTagi Ö25Ü

then
The private verification is positive, i.e. 1.

else
The private verification is negative, i.e. 0.

end

Table 4. Math equations for the generations of different tags.

Tags Equations

Identifier Tag IDTagi = AS(UserID k RNi) (8)

Data Tag DataTagi = AS(En_DBi) (9)

Data Block Tag DataTagi = IDTagi + DataTagi (10)

DBTag Tag DBTagTagi à âHÖEn IDTagiÜ ⇥ uDBTagMapValuei äx Ö11Ü

En_DBi is an encrypted data block, En_IDTagi is an encrypted form of IDTagi, H() is a BLS hash function, υ is chosen

uniformly at random from G
1

, AS() is the function defined in Eq (6), DBTagMapValuei is the output from the

MappingFunction algorithm, and x is the file owner’s BLS private key.

https://doi.org/10.1371/journal.pone.0241236.t004

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 20 / 47

A tag private verification involves the use of three data items, i.e. En_DBi, IDTagi and

DBTagi, in the STagPriVer case, or three sets of items, i.e. {En_DBi}, {IDTagi} and {DBTagi}, in

the BTagPriVer case. The math formulas for these verifications are summarised in Table 5. In

a tag private verification operation, a secret item involved is IDTagi that should only be known

to the verifier, i.e. the user. The rest of the items are fetched from the provider. The verification

process of STagPriVer is as follows. The user computes a fresh DataTag, DataTag 0i , by applying

En_DBi to EQ (9), then computes a fresh DBTag 0i by applying IDTagi and DataTag 0i to EQ

(10), and compares the freshly computed DBTag 0i with the one retrieved, DBTagi. If the two

values are equal, then the verification is positive or true (denoted as 1). Otherwise, it is negative

or false (0). The algorithm for this verification is summarised in STagPriVer algorithm (Algo-

rithm 4).

Algorithm 5: BTagPriVer

Input: AggDB, AggIDTag, AggDBTag
Output: 0/1

1. Compute an algebraic signature of AggEn_DB, producing an aggre-
gated data tag, AggEn_DBTag, using EQ (15).

2. Compute a fresh AggDBTag, AggDBTag0, by applying AggIDTag and
AggEn_DBTag to EQ (18).

3. if

AggDBTag 0 àà AggDBTag Ö26Ü

then
The private verification is positive, i.e. 1.

else
The private verification is negative i.e. 0.

end

Table 5. Math equations for tag verifications (private and public).

Equations

An aggregated En_DB value of C

En_DBs, {En_DBi} AggEn DB à
XC�1

ià0

En DBi Ö14Ü

A tag of AggEn_DB AggEn_DBTag = AS(AggEn_DB) (15)

An aggregated IDTag value of C

IDTags, {IDTagi} AggIDTag à
XC�1

ià0

IDTagi Ö16Ü

An aggregated DBTag value of C

DBTags, {DBTagi} AggDBTag à
XC�1

ià0

DBTagi Ö17Ü

A fresh value of AggDBTag AggDBTag0 = AggIDTag + AggEn_DBTag (18)

A fresh value of En_DBTagi En DBTag 0i à En IDTagi ⇥ En DataTagi Ö19Ü
DBTagTagi verification eÖDBTagTagi; g2Ü à eÖHÖEn IDTagiÜ ⇥ uDBTagMapValuei ; ppkÜ Ö20Ü

An aggregated En_IDTag value of C

En_IDTags, {En_IDTagi} AggEn IDTag à
YC�1

ià0

En IDTagi Ö21Ü

A fresh value of En_AggDBTag En_AggDBTag0 = AggEn_IDTag × En_AggEn_DBTag (22)

An aggregated DBTagTag value of C

DBTagTags, {DBTagTagi} AggDBTagTag à
YC�1

ià0

DBTagTagi Ö23Ü

AggDBTagTag verification

eÖAggDBTagTag; g2Ü à eÖ
YC�1

ià0

HÖEn IDTagiÜ ⇥ u
PC�1

ià0
DBTagMapValuei ; ppkÜ Ö24Ü

https://doi.org/10.1371/journal.pone.0241236.t005

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 21 / 47

Different from that of STagPriVer, in a BTagPriVer process, multiple tags, {DBTagi}, are

verified in a single verification operation. In such a verification, three aggregated data items

are freshly computed based on {En_DBi}, {IDTagi} and {DBTagi}, respectively. These aggre-

gated data items are AggEn_DB (an aggregated data value of C data blocks, {En_DBi}, com-

puted using EQ (14)), AggIDTag (an aggregated identifier tag value of C IDTags, {IDTagi}, are

computed using EQ (16)), and AggDBTag (an aggregated data block tag value, AggDBTag, of

the set {DBTagi} using EQ (17)), where 0 i C−1, C is the number of tags being selected

randomly for this verification and C d, where d is the total number of data blocks.

AggEn_DB and AggDBTag are calculated based on the respective items, i.e. {En_DBi} and

{DBTagi}, by the provider, while AggIDTag is computed based on the secret items, i.e. {IDTagi},
by the user. Based on AggEn_DB and EQ (15), AggEn_DBTag is computed. Using the com-

puted AggIDTag and AggEn_DBTag and EQ (18), a fresh AggDBTag0 is computed, and then

compare it with the one retrieved, AggDBTag. If the two values are equal, then the integrity of

the file is preserved. This verification operation is summarised in the BTagPriVer algorithm

(Algorithm 5).

File integrity public verification. The public verification of the integrity of a data file

refers to the verification of the integrity of a data file by a third party on behalf of the owner of

the data file. This is also referred to as tag public verification. Different from the tag private

verification method described above, a tag public verification is performed by verifying a BLS

signature that has been signed with the file owner’s private key, x, with the corresponding pub-

lic key, ppk. Similar to tag private verifications, tag public verifications can also be performed

on per tag basis, in which case, it is called Single Tag Public Verification (STagPubVer), or in

an aggregated manner, in which case, it is called Batch Tag Public Verification (BTagPubVer).

Algorithm 6: STagPubVer

Input: En_IDTagi, En_DBi, DBTagi, DBTagTagi, ppk, ppkEn
Output: 0/1

1. Compute DataTagi by applying En_DBi to EQ (9).
2. Compute En_DataTagi by applying DataTagi and ppkEn to EQ (3).
3. Compute En_DBTagi by applying DBTagi and ppkEn to EQ (3).
4. Compute En DBTag0i by applying En_IDTagi, En_DataTagi, to EQ (19).
5. if

En DBTag 0i àà En DBTagi Ö27Ü

then
The Verification_1 is positive, i.e. 1.

else
The Verification_1 is negative, i.e. 0.

end
6. if Verification_1 == 1

(a) Compute DBTagMapValuei using DBTagi and MappingFunction
algorithm (Algorithm 2).

(b) Apply En_IDTagi, DBTagMapValuei, DBTagTagi and ppk to EQ
(20) (Verification_2).

(c) if Verification_2 == 1 then
The public verification is positive, i.e. 1.

else
The public verification is negative, i.e. 0.

end
else

The public verification is negative, i.e. 0.
end

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 22 / 47

A tag public verification involves the use of four data items, i.e. En_IDTagi, En_DBi, DBTagi
and DBTagTagi, in the STagPubVer case, or four sets of items, i.e. {En_DBi}, {En_IDTagi},
{DBTagi} and {DBTagTagi}, in the BTagPubVer case, where En_IDTagi is the encrypted form

of IDTagi, and DBTagTagi is the tag of DBTagi.
It should be emphasised that as {IDTagi} are confidential items, so tag public verifications

involved the use of encrypted IDTags, i.e. {En_IDTagi}. The detailed verification process is as

follows. DataTagi is computed by applying En_DBi to AS(), while En_DataTagi and En_D-
BTagi are computed by applying DataTagi and DBTagi to EQ (3), and a fresh En_DBTag, i.e.

En DBTag0i , is computed by applying En_IDTagi and En_DataTagi to EQ (19). It then con-

firms if the freshly computed En DBTag0i is equal to the encrypted form of the retrieved

DBTagi, i.e. En_DBTagi. If this verification is positive, it computes DBTagMapValuei using

DBTagi and MappingSecretKey, as shown in Algorithm 2, and then applies En_IDTagi, DBTag-
MapValuei, DBTagTagi and the public key, ppk, to EQ (20). If EQ (20) holds, then the verifica-

tion is positive or true (1). Otherwise, it is negative or false (0). The algorithm for this

verification is detailed in Algorithm 6 (i.e. STagPubVer algorithm). Similar to the case of

BTagPriVer, batch tag public verification (BTagPubVer) also allows multiple tags (i.e. {DBTag-
Tagi}) to be verified in a single verification operation. The algorithm for this verification is

summarised in Algorithm 7 (i.e. BTagPubVer algorithm).

Algorithm 7: BTagPubVer

Input: AggEn_DB, AggDBTagTag, {En_IDTagi}, {DBTagi}, where 0  i  C
− 1, ppk, ppkEn
Output: 0/1

1. Compute AggEn_IDTag and AggDBTag by applying {En_IDTagi} and
{DBTagi} to EQs (EQ (21)) and (EQ (17)), respectively.

2. Compute AggEn_DBTag by applying AggEn_DB to EQ (15).
3. Compute En_AggEn_DBTag and En_AggDBTag by applying AggEn_DBTag,

AggDBTag and ppkEn to EQ (3).
4. Compute a fresh En_AggDBTag, En_AggDBTag0, by applying AggEn_ID-

Tag and En_AggEn_DBTag to EQ (22).
5. if

En AggDBTag 0 àà En AggDBTag Ö28Ü

then
The Verification_1 is positive, i.e. 1.

else
The Verification_1 is negative, i.e. 0.

end
6. if Verification_1 == 1 then

(a) Computes {DBTagMapValuei} using {DBTagi} and Mapping-
Function algorithm (Algorithm 2).

(b) Apply {En_IDTagi}, {DBTagMapValuei}, AggDBTagTag and ppk
to EQ (24) (Verification 2).

(c) if Verification_2 == 1 then
The public verification is positive, i.e. 1.

else
The public verification is negative, i.e. 0.

end
else

The public verification is negative, i.e. 0.
end

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 23 / 47

5 Correctness and security analysis

In this section, we analyse the correctness and security of the TOD method. The analysis

makes use of the security requirements specified in section 2.2.

5.1 Correctness

Theorem 1: Given a data file and its tags, the verifier can verify the integrity of the data file.

Proof: Proving the correctness of the TOD method is equivalent to proving the correctness

of equations, EQs (26), (28) and ((24)). Based on property of the algebraic signature, i.e. AS
(DB

1

) + AS(DB
2

) = AS(DB
1

+ DB
2

) as indicated in EQ (7), the homomorphic addition prop-

erty in Paillier as indicated in EQ (5) and the bilinear pairing described in Section 4.3, all the

three equations, as verified below, hold.

EQ (26):

AggDBTag0 = AggDBTag
Left Side: AggDBTag0

à AggIDTag á AggEn DBTag; Öbased on EQÖ18ÜÜ

à
XC�1

ià0

IDTagi á ASÖAggEn DBÜ; Öbased on EQÖ15Üand EQÖ16ÜÜ

à
XC�1

ià0

IDTagi á ASÖ
XC�1

ià0

En DBiÜ; Öbased on EQÖ14ÜÜ

à
XC�1

ià0

IDTagi á
XC�1

ià0

ASÖEn DBiÜ; Öbased on EQÖ7ÜÜ

à
XC�1

ià0

IDTagi á
XC�1

ià0

DataTagi; Öbased on EQÖ9ÜÜ

à
XC�1

ià0

âIDTagi á DataTagiä

à
XC�1

ià0

DBTagi; Öbased on EQÖ10ÜÜ

à AggDBTag; Öbased on EQÖ17ÜÜ

EQ (26) holds.

EQ (28):

En_AggDBTag0 = En_AggDBTag

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 24 / 47

Left Side: En_AggDBTag0

à AggEn IDTag ⇥ En AggEn DBTag; Öbased on EQÖ22ÜÜ

à
YC�1

ià0

En IDTagi ⇥ EÖAggEn DBTagÜ; Öbased on EQÖ21Ü and EQÖ3ÜÜ

à
YC�1

ià0

En IDTagi ⇥ EÖASÖAggEn DBÜÜ; Öbased on EQÖ15ÜÜ

à
YC�1

ià0

En IDTagi ⇥ EÖASÖ
XC�1

ià0

En DBiÜÜ; Öbased on EQÖ14ÜÜ

à
YC�1

ià0

En IDTagi ⇥ EÖ
XC�1

ià0

ASÖEn DBiÜÜ; Öbased on EQÖ7ÜÜ

à
YC�1

ià0

En IDTagi ⇥ EÖ
XC�1

ià0

DataTagiÜ; Öbased on EQÖ9ÜÜ

à
YC�1

ià0

En IDTagi ⇥
YC�1

ià0

En DataTagi; Öbased on EQÖ5ÜÜ

à EÖ
XC�1

ià0

ÖIDTagi á DataTagiÜÜ; Öbased on EQÖ5ÜÜ

à EÖ
XC�1

ià0

DBTagiÜ; Öbased on EQÖ10ÜÜ

à EÖAggDBTagÜ; Öbased on EQÖ17ÜÜ
à En AggDBTag; Öbased on EQÖ3ÜÜ

EQ (28) holds.

EQ (24):

eÖAggDBTagTag; g2Ü à eÖ
YC�1

ià0

HÖEn IDTagiÜ ⇥ u
PC�1

ià0
DBTagMapValuei ; ppkÜ

Left Side: e(AggDBTagTag, g
2

)

Right Side:

eÖ
QC�1

ià0 HÖEn IDTagiÜ ⇥ u
PC�1

ià0
DBTagMapValuei ; ppkÜ

à eÖ
YC�1

ià0

HÖEn IDTagiÜ ⇥
YC�1

ià0

uDBTagMapValuei ; ppkÜ;

based on ppk à gx2 ; as described in the BLS�KeyG Algorithm
in section 4:3 :

à eÖ
YC�1

ià0

âHÖEn IDTagiÜ ⇥ uDBTagMapValuei ä; gx2Ü;

based on property ÖP1Ü of the bilinear pairing; as described in
the BLS scheme in section 4:3 :

à eÖ
YC�1

ià0

âHÖEn IDTagiÜ ⇥ uDBTagMapValuei äx; g2Ü

à eÖ
YC�1

ià0

DBTagTagi; g2Ü; Öbased on EQÖ11ÜÜ

à eÖAggDBTagTag; g2Ü; Öbased on EQÖ23ÜÜ
EQÖ24Ü holds:

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 25 / 47

5.2 Tag forgery resistance

In this section, we analyse the cost for circumventing private verifiability via tag forgeries. The

notations used in this security analysis are summarised in Table 6.

As indicated in our assumptions (see assumptions, A1 and A2), the cryptographic algo-

rithms used are secure and cryptographic keys used are securely generated, distributed and

stored, so the analyses in this section assume that the attacks on the tags are mounted by using

brute-force attacks. The computational cost for forging a tag using brute-force attacks (hereaf-

ter referred to as the BFA cost) is measured by in terms of server-years required to forge a tag

using BFA successfully, i.e. given one server or one device, the number of years it takes for an

attack to succeed.

The BFA cost can be calculated by using EQ (29), which converts the number of all possible

combinations (N) into one that is measured in the unit of server-year, and this is done by

dividing the value of N multiplied by the Estimated Cycle Number (ECN) per combination

check by the Device-Year (DY), i.e.

BFA Cost à ÖN ⇥ ECNÜ=DYÖserver� yearsÜ Ö29Ü

where DY is a unit used to measure the performance of a device per year; it is defined as the

number of cycles per year a device can execute.

Typically, each instruction execution requires a number of cycles. DY can be computed by

multiplying the following values: the Total number of Cycles per Second per Core (TCSC), the

Total number of Cores per Processor (TCP), the Total number of Processors per Device (TPD)

and the Total number of Seconds per Year (TSY), i.e.

DY à TCSC⇥ TCP⇥ TPD⇥ TSY Ö30Ü

To give a more detailed idea about the BFA cost, we here use two types of devices as exam-

ples to calculate the cost in the unit of server-years: device type 1 is a server with four (= 2

2

)

processors (4ProcDevice), and device type 2 is a PC with one processor (1ProcDevice). Each

processor is assumed to have 16 (= 2

4

) cores, and each core has a speed of 2.6 GHz (= 2

31

).

According to EQ (30), the DY for 4ProcDevice is 2

31 × 2

4 × 2

2 × 2

25

= 2

62

, while the DY for

1ProcDevice is 2

31 × 2

4 × 1 × 2

25

= 2

60

. It should be emphasised that the BFA cost decreases as

the value of DY of the used device increases.

Table 6. Notations used in the security analysis.

Notation Description

LX Bit-length of X

BFAX Computational cost on brute force attack on X

PZ Probability of finding a collision in Z

m Degree of GF(2

m
)

PE Primitive elements in GF(2

m
)

TCSC Total number of Cycles per Second per Core

TCP Total number of Cores per Processor

TPD Total number of Processors per Device

TSY Total number of Seconds per Year

NY Total Number of all possible combinations of Y, i.e. the space size of Y
ECN Estimated Cycle Number per combination check

DY Device-Year

https://doi.org/10.1371/journal.pone.0241236.t006

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 26 / 47

The forgery attack may be performed by using multiple devices. In this case, the attack is a

distributed BFA attack. The BFA with distributed attacks can be estimated by using the follow-

ing equation, where NUD is the number of devices used in the attack.

Distributed BFA Cost à BFA=NUD Ö31Ü

It should be emphasised that while the Distributed BFA cost decreases as the number

of devices used increases, the monetary cost in mounting the attack will increase too. For

example, using one 4ProcDevice for an hour from the AWS Amazon service costs around

£0.23 [41]. Using the device for one year, the cost would be £0.23 × £8,760 = £2,014.8. Using

100 4ProcDevice for one year would put this cost at about 100 × £2,014.8 = £201,480 in one

year.

The following analysis is based on the assumption that non-distributed BFA attacks and

4ProcDevice are used.

IDTags are secret and they are kept by the data owners themselves. Depending on whether

the PCS provider knows the public parameter value, m (the degree of GF(2

m

)), used in IDTag
generations and how the attack is performed, the BFA cost will be different. There are three

scenarios:

• IDTag-Scenario-1: The PCS provider tries to guess IDTag without knowing m.

• IDTag-Scenario-2: The PCS provider tries to guess IDTag with the knowledge m.

• IDTag-Scenario-3: The PCS provider tries to guess IDTag via guessing RN, the secret ran-

dom number, and a primitive element used in its generation.

In IDTag-Scenario-1, the attacker needs to guess the length, as well as the value of the tag.

The length of an IDTag, i.e. m for GF(2

m
), can be set to different values, e.g. m = 8, 16, 32,

. . ., etc. Given m, the length of an AS tag is m-bits long, thus there are 2LAS à 2m
possible val-

ues of an IDTag (and this is also referred to as the space of IDTag or AS tags, denoted as

NAS). Using EQs (29) and (30), we can calculate the BFA for each of the m values, m
0

, m
1

, . . .,
mn as BFAm0

, BFAm1
,. . ., and BFAmn

. Then the total cost for Scenario-1 is the sum of the BFA
s, i.e.

BFAIDTag�Scenario�1 à
Xn
ià0

BFAmi Ö32Ü

In IDTag-Scenario-2, the PCS provider knows the length of an IDTag, i.e. the m value in

GF(2

m
), so only need to guess this value of the tag. The BFA cost in this case is:

BFAIDTag�Scenario�2 à BFAmi Ö33Ü

In IDTag-Scenario-3, the PCS provider tries to guess IDTag via guessing its input values,

RN, the secret random number, and the primitive element used in IDTag generation as shown

in EQ (8). As shown in EQ (8), IDTagi is computed by applying the algebraic signature to the

concatenation of the PCS user’s ID, UserID, and a random number, RNi, and this random

number is unique for each data block. The random number is a secret value, i.e. it is only

known to the PCS user (the data owner). As UserID is not secret, the PCS provider needs to

guess RNi as well as the primitive element chosen by the PCS user. Given m, the total number

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 27 / 47

of primitive elements (NPE) in GF(2

m
) can be computed using the following equation:

NPE à
FÖ2m � 1Ü

m
Ö34Ü

where F(n) is the Totient function [42]. For example, GF(2

8

) has 16 primitive elements, GF
(2

16

) has 2048’ 2

11

primitive elements and GF(2

32

) has 67108864’ 2

26

primitive elements,

etc.

Under the assumption that the PCS provider knows the degree of GF(2

m
) (the weakest link

principle), the BFAIDTag can be calculated using EQ (29), where, N = NRN × NPE, NRN is the

range size of the random number, i.e. NRN à 2LRN
, where LRN is the bit-length of the random

number and NPE is the total number of primitive elements of GF(2

m
). NPE can be computed by

using EQ (34).

Based on the above analysis and the weakest link principle, we denote the lowest cost of the

three scenarios as the BFA cost for IDTags, i.e.

BFAIDTag à minÖBFAIDTag0Scenario01;BFAIDTag0Scenario02;BFAIDTag0Scenario03Ü Ö35Ü

As cost for IDTag-Scenario-1 is the most expensive scenario, so EQ (35) can be written as:

BFAIDTag à minÖBFAIDTag0Scenario02;BFAIDTag0Scenario03Ü / minÖ2m; 2LRN ⇥ NPEÜ Ö36Ü

Fig 4, plotted based on EQs (29) and (36), shows the costs of two scenarios, i.e. Scenario-2

and Scenario-3, for forging IDTag vs the value of m using LRN = 64 bits and 160 bits. Based on

the figure, we can see that, given other parameter values fixed, BFA is determined by N which

is, in turn, dependent on the length of binary value concerned. This means that IDTag-Sce-

nario-2 is dependent on m, the length of IDTag, and IDTag-Scenario-3 is dependent on LRN,

the length of RN, addition to m. The cost of Scenario-2 increases as the value of m increases.

For example, the cost for IDTag-scenario-2 increases from 7.379 × 10

19

to 1.361 × 10

39

, when

the value of m increases from 64 to 128. The case for IDTag-scenario-3 is similar as LRN and m
increase. For example, given m = 64, the cost of scenario-3 increases from 5.317 × 10

36

to

9.808 × 10

55

, where the bit-length of RN increases from 64 to 160. Furthermore, the figure

Fig 4. Costs of brute-force attack on IDTag versus the value of m.

https://doi.org/10.1371/journal.pone.0241236.g004

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 28 / 47

shows that using the scenario-2 can incur the minimum cost compared with the scenario-3,

where the bit-length of RN is not shorter than m. As IDTag-scenario-2 can produce the lower

cost,

BFAIDTag à BFAIDTag�Scenario�2 Ö37Ü

Therefore, from the results in Fig 4, it can be seen that, to resist BFA attack on IDTags with the

cost more 7.379 × 10

19

server-years, the m value should be more than 64 bits, e.g. 128 bits or

more should be chosen for m.

As shown in EQ (9), DataTagi is computed by applying the algebraic signature to the

ciphertext of the data block, En_DBi, for which the tags are used to protect. As En_DBi is

public, so as long as the PCS provider knows the length of DataTagi and IDTagi is compro-

mised, it can compute the tag. In other words, the minimum BFA cost for DataTags is zero, i.e.

BFADataTag = 0.

Based on EQ (10), DBTag is the numerical sum of the corresponding IDTag and DataTag,

i.e. DBTagi = IDTagi + DataTagi. As, to the PCS provider, DataTagi is a known value, if IDTagi
is compromised, then DBTagi will be compromised. In other words, the BFA cost for a DBTag
is identical to that of an IDTag, i.e. BFADBTag = BFAIDTag.

DBTagTag is a BLS tag. As shows in EQ (11), the generation of DBTagTagi for a data block,

En_DBi, involves the use of four items, the hash value of the encrypted IDTagi, i.e. H(En_ID-
Tagi), a public random element, i.e. υ, a map value of DBTagi, i.e. DBTagMapValuei, and the

user’s BLS private key, x. Among these items, three of them are, or involve the use of, secrets,

and these are IDTagi, a mapping key, MappingSecretKey, used in DBTagMapValuei generation,

and the BLS private key, x. There are three possible ways in which the PCS provider may forge

a DBTagTag. These scenarios are:

• DBTagTag-Scenario-1: The PCS provider tries to guess the three secrets, i.e. IDTagi, Map-
pingSecretKey, and the BLS private key, x.

• DBTagTag-Scenario-2: The PCS provider tries to find a collision in H(En_IDTag) (rather

than guessing the IDTagi), and guess MappingSecretKey, and x.

• DBTagTag-Scenario-3: The PCS provider tries to find a collision in DBTagTagi.

In DBTagTag-Scenario-1, the PCS provider needs to brute-force attack on the three secret

items, IDTagi, MappingSecretKey, and x, to successfully forge DBTagTagi. The BFA cost on

IDTagi, i.e. BFAIDTag, has been devised above and is expressed in EQ (37). MappingSecretKey is a

randomly selected value with the length of LMappingSecretKey bits, its range space is NMappingSecretKey,

which is equals 2LMappingSecretKey
. With regard to x, the BLS private key, it is randomly chosen from Zp.

Given a prime p, Zp = {0, 1, 2, . . ., p−1}, the total number of elements in Zp is (p−1), i.e. Nx = (p
−1). The cost for DBTagTag-Scenario-1, i.e. BFADBTagTag-Scenario- 1

, can be calculated using EQ

(29), where N à NIDTag ⇥ NMappingSecretKey ⇥ Nx à 2m ⇥ 2LMappingSecretKey ⇥ Öp� 1ÜÜ, where m is the

length of the tag. BFADBTagTag-Scenario- 1

can be expressed as follows:

BFADBTagTag�Scenario�1 / â2m ⇥ NMappingSecretKey ⇥ Nxä

à 2m ⇥ 2LMappingSecretKey ⇥ Öp� 1Ü
Ö38Ü

With regard to the cost in DBTagTag-Scenario-2, the difference between this scenario and

DBTagTag-Scenario-1 is that, in this scenario, H(En_IDTagi) is guessed via finding collisions,

rather than the brute forace attack on IDTagi, i.e. finding H(En_IDTagj) for a different En_ID-
Tag (En_IDTagj) that is diffrent from En_IDTagi, but H(En_IDTagj) = H(En_IDTagi). H

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 29 / 47

(En_IDTagi) is an element in G
1

, its length is LEG1
, and the average number of trials for finding

a collision is 2
ÖLEG1

=2Ü
. So, we now have:

BFADBTagTag�Scenario�2 / â2
ÖLEG1

=2Ü ⇥ 2LMappingSecretKey

⇥Öp� 1Üä
Ö39Ü

In DBTagTag-Scenario-3, the PCS provider tries to guess DBTagTag via finding a collision,

i.e. finding DBTagTagj for a different data block, En_DBj, that is different from En_DBi, but

DBTagTagj = DBTagTagi. DBTagTagi is an element in G
1

, its length is LEG1
. So, the cost for

DBTagTag-Scenario-3 is:

BFADBTagTag�Scenario�3 / 2
ÖLEG1

=2Ü Ö40Ü

Considering the costs estimated for the three scenarios and the weakest link principle, we

have the BFA cost for DBTagTag, i.e. BFADBTagTag, as shown in EQ (41).

BFADBTagTag à minÖBFADBTagTag�Scenario�1;

BFADBTagTag�Scenario�2;

BFADBTagTag�Scenario�3Ü

/ minÖ2m ⇥ 2LMappingSecretKey ⇥ Öp� 1Ü; 2ÖLEG1
=2Ü

⇥2LMappingSecretKey⇥Öp�1Ü; 2ÖLEG1
=2ÜÜ

Ö41Ü

Fig 5, plotted based on EQs (38) and (39), shows the costs of two scenarios, i.e. Scenario-1

and Scenario-2, for forging DBTagTag vs the value of p using GF(2

128

), LEG1
à 192 bits, and

LMappingSecretKey = 160 bits. The two costs increase as the value of p increases. The figure shows

that using DBTagTag-scenarios-2, the BFA cost is the lowest cost, where LEG1
=2 is shorter than

Fig 5. BFADBTagTag cost: Scenarios-1 vs Scenarios-2 (GF(2128), LEG1
à 192 bits and LMappingSecretKey = 160 bits).

https://doi.org/10.1371/journal.pone.0241236.g005

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 30 / 47

m. On the other hand, Fig 6, plotted based on EQs (39) and (40), shows the costs of two scenar-

ios for DBTagTag, i.e. Scenario-2 and Scenario-3, for forging DBTagTag vs the bit-length of

the element in G
1

, LEG1
, using the value of p 2

160

. The two costs increase as the value of LEG1

increases. The two figures show that, by finding collisions, i.e. DBTagTag-scenarios-3, the BFA
cost is the lowest cost. From the results in Fig 6, it can be seen that, to resist BFA attack on

DBTagTags using Scenario-3 with the cost more 3.169 × 10

29

server-years, LEG1
should be

more 192 bits long, This means that, in this case, the length of an DBTagTag should be longer

than 192-bits, e.g. 256 bits.

As indicated in Algorithms 4 and 5, private verifications involve the use of three data items,

En_DBi, IDTagi and DBTagi, in the case of single tag verification (the STagPriVer case), or

three sets of items, i.e. {En_DBi}, {IDTagi} and {DBTagi}, in the case of batch tag verification

(the BTagPriVer case). Among the three sets of tags, only {IDTagi} are secrets. The computa-

tional cost for circumvent private verification is thus dependent on how many IDTags are used

in a file integrity verification, how the tags are chosen and how hard it is to compromise each.

In the STagPriVer case, only a single IDTag is used per verification and it is chosen ran-

domly. The probability for choosing the right IDTag is dependent on the number of such tags

that are generated for the file. Assuming that there are d sets of tags generated for a file, then the

probability for selecting the right IDTag is Ps à 1
d [43]. The Average Number of Trials attempted

(ANT) before selecting the right IDTag can computed by the following equation: ANT à 1�Ps
Ps

[44]. Taking into account that BFAIDTag/ 2

m
, the cost for circumvent STagPriVer is:

BFASTagPriVer / ANT ⇥ 2m Ö42Ü

Obviously, the higher the value of d, the higher the cost of the attack for given values of m.

Fig 7, plotted based on EQs (29) and (42), shows the effects of the total number of IDTags,
d, that are generated for a data file and the bit-length of the tag, m, on BFASTagPriVer. By increas-

ing the number of IDTags generated per file or the length of the tag, the BFA cost increases.

This is because the more the IDTags that are generated per file, d, the lower the chance a cor-

rect set of IDTags will be selected, and the longer the bit-length of the tags, the more possible

combination number of tags. For example, given m = 64, the BFASTagPriVer increases from

Fig 6. BFADBTagTag cost: Scenarios-2 vs Scenarios-3 (LMappingSecretKey = 160 bits).

https://doi.org/10.1371/journal.pone.0241236.g006

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 31 / 47

1.327 × 10

154

to 2.568 × 10

154

as the value of d increases from 500 to 1000. Furthermore,

given d = 500, the BFABTagPriVer increases from 1.327 × 10

154

to 5.31 × 10

154

as the value of m
increases from 64 to 256.

With regard to the BTagPriVer case, there are two ways to circumvent the verification pro-

cess, one is via finding the values of individual IDTags that are used in a BTagPriVer verifica-

tion, and the other is via finding the value of the AggDBTag via collisions. In the former case,

in addition to the need for finding the values of the set of IDTags used in a verification, one

also need to find the right set of IDTags. Given that the bit-lengths of an IDTag and an AggDB-
Tag are identical, and IDTag-scenario-2 is the minimum cost and proportional to 2

m

, the min-

imum BFA cost for BTagPriVer is equal to the BFA cost for finding a collision in AggDBTag,

which is proportional to 2

m
.

Based on the above analysis, we can remark that the security level of private verifiability is

determined by the security of IDTags, which is, in turn, determined by the bit-length of the

IDTags. This means that the bit-length of the tag should be sufficiently long, e.g. 256-bits.

As tag public verification are based on tags that are all public (i.e. that all can be accessible

by the third parties), attempts to circumvent public verifications can only be performed via

finding collisions in the tags. The analysis with regard to tag resistance to collision is given in

the next section.

5.3 Tag collision resistance

In this section, we analyse the level of tag resistance to collisions and this is done by estimating

the probabilities for having collisions. A collision refers to two (or more) identical tags that are

generated for different data blocks of different PCS users (Collision Type 1, or CT1) or for dif-

ferent data blocks of the same PCS user (Collision Type 2 or CT2). If there are collisions, then

it is possible for the PCS provider to use tags that are generated for one data block (of the same

user or a different user) for the verification of another data block. Such an attempt is also called

a replace attack. As Collision Type 2 is a subset of Collision Type 1, in the following, our analy-

sis will be based on Collision Type 1. Tag collisions may be exploited by third parties to cir-

cumvent public verifications.

We use PZ to denote the probability for finding a collision in Z in the worse-case scenario

(i.e. the scenario with the highest probability), where Z can be any of these tags, En_DB,

Fig 7. BFASTagPriVer vs the length of tag (m) and the total number of IDTags for a data file (d).

https://doi.org/10.1371/journal.pone.0241236.g007

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 32 / 47

En_IDTag, DBTag, DBTagTag. For each such tag, there are two ways of finding a collision, one

is via finding collisions in their respective inputs (the resulting probability is denoted as Input-
PZ), and the other is via finding collisions in the Z value itself (this probability is denoted as

Output-PZ). What we are interested in is the factors that influence the values of these probabili-

ties, and the probability, PZ, for the most likely avenue, where

PZ à maxÖInput � PZ;Output � PZÜ Ö43Ü

Probability for finding collisions in En_DB (Z = En_DB). The generation of a ciphertext

data block, En_DBi, involves the use of the LiSHE scheme and a secret key, sk. Each PCS user

chooses his/her own secret key independently. Encrypting the same plaintext data block with a

different secret key will generate a different ciphertext data block. Given two identical plaintext

blocks and assuming that the bit-length of the secret key, sk, is Lsk and that the secret key are

selected uniformly and randomly, the probability for two or more users to select the same

secret key thus generating the same ciphertext data block can be estimated based on the gener-

alised birthday problem [45] and can be calculated as follows:

Input�PEn DB à 1� eÖ�NU⇥ÖNU�1ÜÜ=Ö2⇥NskÜ

⇡ 1� eÖ�ÖNU Ü2Ü=Ö2⇥NskÜ
Ö44Ü

where NU is the total number of users managed by the PCS provider and Nsk is the space (i.e.

range size) of sk.

With regard to the value of Nsk, this can be calculated as follows. As mentioned in Section

5.2, the secret key, sk, in the LiSHE scheme, consists of two values, s and q. So the number of

possible combinations (i.e. Nsk) is Ns × Nq, where Ns is the space of s and Nq is the space of q.

For a given block length, LEn_DB, of En_DB, there are NEn_DB possible values of En_DB,

where NEn DB à 2LEn DB
. If the total number of encrypted data blocks managed by the PCS pro-

vider is NDB, and it is larger than NEn_DB, the space of En_DBs, then it is possible that there are

two or more En_DBs with the same value (i.e. En_DB collisions) regardless of their inputs.

Also, as NDB� 1, we have this probability as follows:

Output�PEn DB à 1� eÖ�NDB⇥ÖNDB�1ÜÜ=Ö2⇥NEn DBÜ

⇡ 1� eÖ�ÖNDBÜ2Ü=Ö2⇥NEn DBÜ
Ö45Ü

Based on EQs (44) and (45), we have the worse-case probability of En_DB collisions as

shown in EQ (46). It is reasonable to assume that NDB� NU, as each user typically has multi-

ple files and each file is typically divided into multiple data blocks.

PEn DB à maxÖ1� eÖ�ÖNU Ü2Ü=Ö2⇥NskÜ;

1� eÖ�ÖNDBÜ2Ü=Ö2⇥NEn DBÜÜ
Ö46Ü

Probability for finding collisions in DataTag (Z = DataTag). DataTags are used for

computing DBTags, as indicated in EQ (10). DataTags are computed by applying the algebraic

signature to encrypted data blocks, En_DBs, using the primitive elements chosen by the PCS

user. The probability of having collision on these inputs is, Input-PDataTag = PEn_DB × PPE =

max(1 − e(−(N
U)

2

)/(2 × Nsk), 1 − e(−(N
DB)

2

)/(2 × NEn_DB) × (1 − e(−(N
U)

2

)/(2 × NPE)).

The probability of finding a collision in DataTags is via finding collisions in the values of

these tags is, Output-PDataTag⇡ (1 − e(−(N
DB)

2

)/(2 × NAS)). AS an easier way to find a collision

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 33 / 47

in DataTags is via finding collisions in the values of these tags, rather than via finding collisions

in their input values, so we have,

PDataTag à maxÖInput � PDataTag ;Output � PDataTagÜ

à Output � PDataTagÜ ⇡ Ö1� eÖ�ÖNDBÜ2Ü=Ö2⇥NASÜÜ
Ö47Ü

Probability for finding collisions in DBTag (Z = DBTag). For the similar reasons as

stated for DataTags above, the worse-case probability for finding a collision in DBTags is as

follows:

PDBTag à Output � PDBTag à Output � PDataTag

⇡ 1� eÖ�ÖNDBÜ2Ü=Ö2⇥NASÜ
Ö48Ü

Probability for finding collisions in En_IDTag (Z = En_IDTag). En_IDTags are pro-

duced based on IDTags and using Paillier scheme, so an easier way to find a collision in

En_IDTags is via finding collisions in the values of these En_IDTags, rather than via finding

collisions in their input values. The probability for finding collisions in En_IDTags is depended

on the number of tags that are generated, NDB, and the total number of possible values an

En_IDTag may be set to, NPaillier. Paillier scheme can produce a ciphertext 2 Z⇤n2 , so NPaillier =

n2 − 1, as shown in EQ (3). So, the probability is:

PEn IDTag à 1� eÖ�ÖNDBÜ2Ü=Ö2⇥NPaillierÜ

à 1� eÖ�ÖNDBÜ2Ü=Ö2⇥Ön2�1ÜÜ
Ö49Ü

Probability for finding collisions in DBTagTag (Z = DBTagTag). DBTagTags are BLS

tags. Similar to the analysis of AS tags (i.e. DBTags), there are also two ways of generating two

identical BLS tags for two different data blocks. One is by finding collisions in the inputs of the

tag generation algorithm (the probability is denoted as Input-PDBTagTag), and the other is by

finding collisions in DBTagTag values (the probability is denoted as Output-PDBTagTag).
The generation of DBTagTag involves the use of the following items (see EQ (11)): (1) H

(En_IDTag) which is an element in G
1

, (2) DBTagMapValue which is a hash value of DBTag
using MappingFunction, (3) a random number, υ, which is an element in G

1

, and (4) a user-

dependent private BLS key, x. Successfully mounting a replace attack via finding collisions on

the input values requires one to find collisions on the values of all the four items. This proba-

bility, Input-PDBTagTag, is the multiplication of four further probabilities. As NH(En_IDTag)

=

NDBTagMapValue = NDB and Nυ = Nx = NU, so the Input-PDBTagTag can be as follows.

Input � PDBTagTag à PHÖEn IDTagÜ ⇥ PMappingFunction⇥
Pu ⇥ Px

à Ö1� eÖ�ÖNDBÜ2Ü=Ö2⇥2
LEG1 ÜÜ ⇥ Ö1� eÖ�ÖNDBÜ2Ü=Ö2⇥p�1ÜÜ

⇥Ö1� eÖ�ÖNU Ü2Ü=Ö2⇥2
LEG1 ÜÜ ⇥ Ö1� eÖ�ÖNU Ü2Ü=Ö2⇥p�1ÜÜ

Ö50Ü

The probability of having a collision in the value of DBTagTag is:

Output � PDBTagTag à 1� eÖ�ÖNDBÜ2Ü=Ö2⇥2
LEG1 Ü

, where LEG1
is the bit-length of DBTagTag. As

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 34 / 47

Output-PDBTagTag produces a bigger value than Input-PDBTagTag, so we have,

PDBTagTag à maxÖInput � PDBTagTag;Output � PDBTagTagÜ

à Output � PDBTagTag ⇡ 1� eÖ�ÖNDBÜ2Ü=Ö2⇥2
LEG1 Ü

Ö51Ü

Probability for circumventing public verification via collisions. To successfully mount

a replace attack on the public verification of a data block, En_DBi, the PCS provider needs to

find another ciphertext data block, En_DBj, where En_DBj 6à En_DBi, that is tagged with

En_IDTagj, DBTagj and DBTagTagj, but the tags satisfy the following condition, i.e. En_IDTagj
= En_IDTagi, DBTagj = DBTagi and DBTagTagj = DBTagTagi. The probability for satisfying

this condition can be expressed as PPubVer and it is:

PPubVer à PEn IDTag ⇥ PDBTag ⇥ PDBTagTag

à Ö1� eÖ�ÖNDBÜ2Ü=Ö2⇥NPaillierÜÜ ⇥ Ö1� eÖ�ÖNDBÜ2Ü=Ö2⇥NASÜÜ ⇥ Ö1� eÖ�ÖNDBÜ2Ü=Ö2⇥NEG1
ÜÜ Ö52Ü

It can be seen from the equation that the collision probability is dependent on four parame-

ter values. The first is the total number of data blocks (NDB) manged by the PCS provider, and

this number is, in turn, dependent on the total number of the users (NU) served by the system

and the average number of data blocks uploaded per user (NADB
), i.e. NDB à NU ⇥ NADB

. The

second is the length of AS tag, i.e. m, where NAS = 2

m

. The third is the length of EG1
, where,

NEG1
à 2

LEG1
. The fourth is the total possible number of the ciphertexts can be produced using

Paillier scheme, NPaillier.

Fig 8 shows the collision probability vs the bit-length of the tags, under the assumptions

that the number of users managed by the PCS provider are respectively, 50,000 and 500,000

(so the NDB values are respectively 2.5 × 10

8

and 2.5 × 10

9

given NADB
à 5; 000). Based on the

figures, we can see that, the probability of collision increases as the bit-lengths of the tags

Fig 8. PPubVer vs. the bit-lengths of DBTag, En_IDTag and DBTagTag.

https://doi.org/10.1371/journal.pone.0241236.g008

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 35 / 47

decreases and the total number of data blocks, NDB, increases, which is, in turn, dependent on

the total number of the user, NU, and the average of data blocks of each PCS user, NADB
.

5.4 Non-repudiation of tag generation

In this section, we analyse how a repudiation attack may be mounted by a PCS user and the

level of efforts required in resisting such an attack.

A dishonest PCS user may repudiate (i.e. falsely deny) the generation of some tags in an

attempt such as seeking some benefits from the service provider. In TOD, this can be thwart

by using the BLS tags, i.e. DBTagTags. As the key used to generate a DBTagTags is a BLS pri-

vate key that is only known to its owner, a PCS user, and the verification key is the correspond-

ing BLS public key, provided that (i) each public key is certified, (ii) that there is a public key

certificate revocation system so that any compromised or suspected to have been compro-

mised keys can be revoked promptly, and (iii) that the hash functions used in the tag genera-

tions are strong collision resistant [46], it is hard for the PCS user to repudiate the generation

of DBTagTags. Conditions (i) and (ii) can be satisfied by implementing proper key manage-

ment procedures and facilities. In the following, we discuss satisfying condition (iii).

However, if the hash functions used in the DBTagTags generation are not strong collision

resistant, it is possible for a PCS user to exploit hash value collisions to repudiate the genera-

tion of a DBTagTag. A user may construct an alternative explanation [47] to argue that a

DBTagTag is mathematically valid, but she/he has never generated the tag, thus succeeding in

repudiating the generation of the tag. The alternative explanation attack is via finding colli-

sions in hash values used in DBTagTag generation (the resulting cost is denoted as BFA for the

Alternative Explanation via finding Collisions in Hash values (BFAAECH)).

Based on EQ (11), two hash values are used in DBTagTag generation, i.e. H(En_IDTag) and

DBTagMapValue. H(En_IDTag) is an element in G
1

and its length is LEG1
, and DBTagMapVa-

lue is a map value of DBTag using MappingFunction, which is 2Zp. The BFAAECH can be calcu-

lated using EQ (29), where, N à 2
ÖLEG1

Ü=2 ⇥ Öp� 1Ü=2.

Fig 9 shows the cost, BFAAECH, versus the bit-lengths for EG1
and the value of p. The cost

increases as the length of the LEG1
and the value of p increase. Therefore, for a given the larger

the values of LEG1
and (p−1), the higher cost of BFAAECH.

Fig 9. Cost of BFAAECH vs. the bit-lengths of the element in G1 and p.

https://doi.org/10.1371/journal.pone.0241236.g009

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 36 / 47

Furthermore, as DBTags are used in generating and verifying DBTagTags, DBTags can also

help to protect against repudiation attacks.

5.5 Data confidentiality preservation

Each of the data blocks in a data file is encrypted with a symmetric key, and this key is only

known to the PCS user (i.e. the data owner). In addition, tag verifications do not require the

access of plaintext data (as shown in Algorithms 4 and 6). Provided that the symmetric key is

secure, it is computationally hard for any entities, including the PCS provider and TPA, to

access the plaintext data. Also, in TOD, a PCS user does not need to share the symmetric key

with other entity, eliminating the need for symmetric key distribution, making the protection

of the confidentiality of the data blocks more secure.

However, one may try to guess the symmetric key using a brute-force method. The LiSHE

scheme, the encryption algorithm used to protect the confidentiality of data blocks in TOD, is

an existential forgery-secure under known-plaintext attacks as proved in [33]. As mentioned

in Section (5.3), the secret key, sk, in this scheme, consists of two values s and q. So, the number

of possible combinations (i.e. key space) Nsk is Ns × Nq, where Ns is the space of s and Nq is the

space of q. For estimating the cost for brute-force attack on sk, EQ (29) can be used. By increas-

ing the length of the key, the key space will increase and so is the cost of cracking it (Fig 10).

For example, with an 80 bit security level (Nsk = 2

280

), the cost is 9.046 × 10

74

server-years.

5.6 Unbounded verifiability

Unbounded verifiability is the property for resisting tag replay attacks. In such an attack, the

PCS provider dispatches cached aggregated values, AggEn_DB, AggDBTag, and AggDBTagTag
for batch verification (private or public), rather than freshly compute values. To reduce the

success rate of such attacks, in TOD, a random sampling strategy is used when selecting data

blocks and their associated tags in each verifications. The selections are made by the verifier,

the PCS user in the private verifications and the TPA in the case of public verifications. Each

file is divided into K data blocks. In each verification, C out of K blocks are randomly select,

Fig 10. Level of efforts on brute-force attack on a LiSHE key vs. the key length and the key space.

https://doi.org/10.1371/journal.pone.0241236.g010

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 37 / 47

where 1� C� K. The number of possible combinations in the selection (i.e. selection space)

is K!/C!(K − C)!, where! is a factorial notation [43]. For example, given a file size of 100 data

blocks, the maximum number of possible combinations for randomly selecting C = 30 data

blocks in the verification is 100!/30!(100 − 30)! = 2.93 × 10

25

. Obviously, the selection space is

dependent on the size of a file and the length of each block. The bigger the file size or the

smaller the data block, the larger the K, which means the bigger the selection space, thus the

higher the resistance against the tag replay attacks.

Fig 11 shows selection space versus of the file size, assuming C = 50 blocks. It is worth men-

tioning that C can be a variable, in which case the selection space can further increased.

6 Performance analysis

This section evaluates the overhead cost of the TOD method. The evaluation is performed by

using the following metrics, TagGenerationCost (the computational cost incurred in genera-

tion a tag), TagVerificationCost (the computational cost incurred in verifying a tag), and Tag-

Size (the size of one tag). The last metric is for measuring storage cost at entities in the system.

In this evaluation, we assume that there are K data blocks in each data file, DF. After remov-

ing any redundant data block (as we only keep one copy of each data block, should there be

multiple identical data blocks, the redundant or duplicated ones will be removed), the number

of data blocks in a data file is reduced to d blocks. In each tag verification, the verifier requests

C data blocks and the associated tags, which are randomly chosen from d data blocks, from the

PCS provider.

When generating a tag, a number of operations are performed. The operations are for

encryptions (symmetric and asymmetric), algebraic signature signing, BLS signature signing

and modular additions in GF. These operations each consist of different types of basic opera-

tions, and each basic operation imposes a different level of computational cost. Table 7 lists the

basic operations. The computational cost of each TOD operation is measured in terms of the

numbers of different basic operations. Based on EQs (3), (8), (9), (10), (12) and (11), we have

TagGenerationCost for d without data blocks excluding the block encrytion opertions as:

d ⇥ Ö2⇥ AS� Gá AddAS á 2⇥ ExpZn2
áMultZn2

áH1á HG1
áMultG1

á 2⇥ ExpG1
Ü,

Fig 11. Given C = 50 blocks: Selection space (number of possible combinations) vs. file size (number of data
blocks).

https://doi.org/10.1371/journal.pone.0241236.g011

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 38 / 47

where d is the number of data blocks in a file. When the data block encryption operations

are included, TagGenerationCost is d ⇥ Ö2⇥ AS� Gá AddAS á ExpZp á 2⇥MultZpá
AddZp

á 2⇥ ExpZn2
áMultZn2

á H1áHG1
áMultG1

á 2⇥ ExpG1
Ü. The computational com-

plexity is O(d).

The effect of tag deduplication on TagGenerationCost is captured by (K − d). In other

words, the reduction in overhead cost as the result of tag deduplication is ÖK � dÜ ⇥ Ö2⇥
AS� Gá AddAS á 2⇥ ExpZn2

áMultZn2
áH1á HG1

áMultG1
á 2⇥ ExpG1

Ü in the cases

where encryption operations are included. Fig 12 illustrates overhead reductions due to the

use of data deduplication in TOD by the total number of tags generated per file using our

TOD method aginst two existing tag generation approaches, OTfMB and OTfSB. As shown

in the figure, if there is no redundant data in a file, the total number of tags generated by the

TOD method is identical to that by the OTfSB method. The more the redundant data it con-

tains, the fewer the tags the TOD method generates. With the highest redundancy rate, the

number of tags generated by the TOD method is closer to that with the OTfMB method. This

indicates that TOD, by using data deduplication, can harvest the merits from both OTfSB and

OTfMB. OTfSB offers a better level of security, in terms of unbounded verifiability, but pro-

duces more tags, whereas OTfMB produces less tags but is weak in assuring unbounded verifi-

ability. TOD offers the same level of security, in terms of unbounded verifiability, as that by

OTfSB but keeping the number of tags that need to be generated to the lowest level. It is worth

mentioning that the cost saving by tag deduplication can also be applied across different files

owned by the same PCS users. Excluding file ID and data block index number from tag gener-

ations allows us to achieve tag deduplication, which brings us the benefit of overhead cost

reduction.

As both the algebraic signature and BLS signature algorithms have homomprphic property,

the TOD method can perform both private and public tags verifications in an efficient and

secure (without the need to access plaintext data) manner. A private tag verification only

involves an algebraic signature generation cost and an addition operation to GF elements,

which is considered fast and low cost, as it does not use any costly operations, such as modular

exponentiation as in the case of RSA or pairing operations as in the case of BLS. According to

EQ (9), EQ (16) and EQ (18), the computational cost incurred to a PCS user in verifying a sin-

gle private tag, STagPriVerCost, is AS-G + AddAS and the computational cost incurred to a

Table 7. Basic operations: Symbols and meanings.

Notation Descriptions

MultG1
Multiplication in G

1

EXPG1
Exponentiation in G

1

PairG1 ;G2
Bilinear pairing e(x, y), x 2 G

1

, y 2 G
2

H1 Cryptographic hashing, i.e. H1()

HG1
Hashing to G

1

(i.e H())

AddZp Addition in Zp

MultZp Multiplication in Zp

ExpZp Exponentiation in Zp

MultZn2
Multiplication in Zn2

ExpZn2
Exponentiation in Zn2

AddAS Addition in GF(2

m
)

AS-G Cost of tag generation in AS

https://doi.org/10.1371/journal.pone.0241236.t007

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 39 / 47

PCS user in verifying C private tags, BTagPriVerCost, is AS-G + C × AddAS. The

computational cost incurred to a TPA in verifying a single tag, STagPubVerCost, is

AS� Gá 2⇥ EXPZn2
á 2⇥MultZn2

áH1áHG1
á ExpG1

áMultG1
á 2⇥ PairG1G2

, and

in verifying C public tags, BTagPubVerCost, is AS� Gá ÖC � 1Ü ⇥ AddAS á ÖC á 2Ü⇥
MultZn2

á 4⇥ EXPZn2
á C ⇥H1á C ⇥MultiG1

á C ⇥ HG1
á ExpG1

á ÖC � 1Ü⇥
AddZp á 2⇥ PairG1G2

. So the computation complexity is O(C) for both the private verification

and the public verification. Furthermore, applying the encryption operation for data confi-

dentiality do not introduce any verification cost, as tags can be verified without decryption.

Table 8 summarises the computational cost introduced to verifiers, i.e. the PCS user and TPA,

in the TOD method. Table 9 compares TOD method with related tagging methods based on

the specified requirements specified in Section 2.2.

Addition to the above theoretical analysis, we have also carried out experiments to evaluate

the computational costs of the TOD method further and compared the costs with those of

related tagging methods. For this, we have produced a prototype of the TOD method using

Fig 12. TOD method vs the OTfMB and OTfSB approaches: The number of tags generated against data
redundancy percentage, K = 1000, total number of blocks in a data file, 4 Data Blocks are used in generating one
tag in OTfMB approach.

https://doi.org/10.1371/journal.pone.0241236.g012

Table 8. Tag generation and verification costs.

PCS User TPA

TagGenerationCost

⇤ K ⇥ Ö2⇥ AS� Gá AddAS á 2⇥ ExpZn2
á

MultZn2
áH1áHG1

áMultG1
á 2⇥ ExpG1

Ü
-

TagGenerationCost

⇤⇤ K ⇥ Ö2⇥ AS� Gá AddAS á ExpZp á 2⇥MultZp á AddZp á 2⇥
ExpZn2

áMultZn2
á H1áHG1

áMultG1
á 2⇥ ExpG1

Ü
-

STagPriVerCost AS-G + AddAS -

BTagPriVerCost AS-G + C × AddAS -

STagPubVerCost - AS� Gá 2⇥ EXPZn2
á 2⇥MultZn2

áH1á
HG1
á ExpG1

áMultG1
á 2⇥ PairG1G2

BTagPubVerCost - AS� Gá C� 1⇥ AddAS á C á 2⇥MultZn2
á 4⇥ EXPZn2

á C⇥H1á
C ⇥MultG1

á C ⇥HG1
á ExpG1

á ÖC � 1Ü ⇥ AddZp
á 2⇥ PairG1G2

⇤
Use non-encrypted data blocks,

⇤⇤
Use encrypted data blocks

https://doi.org/10.1371/journal.pone.0241236.t008

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 40 / 47

Java. The experiment is run on a system with Intel Core i5 at 2.4 GHz and 4GB RAM. For

implementing cryptographic primitives required in the TOD, e.g. a secure random number

generator, a hash function (e.g. SHA3-384), and digital signatures (e.g. RSA and BLS), Java

Cryptography Extension (JCE) [48] and Java Pairing-Based Cryptography (JPBC) [49] are

used. The data block size used is 25 kilobytes (KB). We have evaluated the benefit brought by

data deduplication by measuring the times required for encrypting 1000 data blocks, i.e.

K = 1000, versus different levels of data redundancy. Fig 13 shows the effect of data deduplica-

tion on reducing the encryption time under different data redundant percentages.

We have evaluated the tag generation times for a single tag and for a whole file (consisted of

1000 data blocks) and compared the results from the TOD method with those from the related

tag generation methods. The results are shown in Table 10. From the table, it can be seen that

among the eight tag generation methods, the RSA based method takes the longest time, so it is

the most expensive method. The cheapest methods are those symmetric key based, e.g. MAC

and AS based methods. However, these methods do not provide non-repudiation service. In

comparison with other public key based methods, such as the BLS based, the TOD method is

more expensive, 2.7 times higher. This is the price for providing enhanced functionality, as

TOD offers both public and private verifiability. Furthermore, Fig 14 compares the tag genera-

tion times with and without encrypting the data blocks. The results show that the additional

cost introduced by the encryption operation is negligible.

Table 11 compared the TOD method with the BLS based method in terms of tag verifica-

tion times. From the figure, it can be seen that the times taken about twice as much as what is

taken by the BLS method for public verifications, but only 0.39% of the time taken by the BLS

method for private verifications.

Table 9. Comparing TOD method with existing tagging methods against the specified requirements.

Tagging Methods F1 F2 S1 S2 S3 S4 S5 E1 E2 Cryptographic Schemes

A PCS User A PCS User + TPA

Ateniese_1 method [3]

⇤
Private No Yes Yes No No No O(T×NT) O(1)/O(NT) - HF+SC

Chen method [4]

⇤
Private No Yes Yes

⇤⇤⇤
No No No O(T×NT) O(1) - AS+SC

Krishra method [5] Private No Yes No No No No O(K) O(1) - SC

Luo_1 method [6]

⇤⇤
Private No Yes No No No Yes O(K) O(C) - AS

Sookhak method [7]

⇤⇤
Private No No No No No Yes O(K×S) O(1) - AS

Zhang method [18]

⇤⇤
Private No Yes Yes No No Yes O(K) O(C) - MAC

Xu method [19]

⇤⇤
Private No Yes Yes No No Yes O(K×S) O(1) - HomMAC

Ateniese_2 method [8]

⇤⇤
Public No Yes Yes Yes Yes Yes O(K) - O(1) RSA

Ni method [9]

⇤⇤
Public No Yes Yes Yes No Yes O(K×S) - O(1) RSA

Erway method [23]

⇤⇤
Public No Yes Yes Yes Yes Yes O(K×S) - O(1) RSA

Hanser method [10]

⇤⇤
Public No Yes Yes Yes Yes Yes O(K) - O(1) ECDSA

Li method [11]

⇤⇤
Public No Yes Yes Yes No Yes O(K×S) - O(C) BLS

Liu method [12]

⇤⇤
Public Yes Yes Yes Yes No Yes O(K×S) - O(C) BLS

Wang method [17, 30, 31]

⇤⇤
Public No Yes Yes Yes No Yes O(K) - O(C) BLS

Yang method [32]

⇤⇤
Public Yes Yes Yes Yes No Yes O(K×S) - O(C) BLS

Luo_2 method [13]

⇤⇤
Public Yes Yes Yes

⇤⇤⇤
Yes No Yes O(K×S) - O(C) BLS

Salim method [13]

⇤⇤
Public Yes Yes Yes

⇤⇤⇤
Yes No Yes O(K) - O(C) BLS

TOD method Both Yes Yes Yes Yes Yes Yes O(d) O(C) O(C) HE + AS + BLS

⇤
OTfMB approach,

⇤⇤
OTfSB approach approach, + in the case of private variability,

⇤⇤⇤
only the collision between data blocks of one User, SC is Symmetric Cipher, HF is Hash Function, AS is Algebraic Signature, HE is Homomorphic Encryption.

https://doi.org/10.1371/journal.pone.0241236.t009

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 41 / 47

Fig 13. The required time of encryption vs. data redundancy percentage.

https://doi.org/10.1371/journal.pone.0241236.g013

Table 10. Comparing the TOD method and the related works: The required time of tag generation (in seconds).

Methods One Tag 1000 Tags

Hash based 0.0495 12.6741

AS based

⇤
0.0413 10.5789

AS based

⇤⇤
0.0021 2.0466

MAC based 0.0096 9.5461

RSA based 0.4080 408.0272

ECDSA based 0.0355 35.4468

BLS based 0.0075 7.5000

TOD 0.0280 28

⇤
OTfMB approach,

⇤⇤
OTfSB approach

https://doi.org/10.1371/journal.pone.0241236.t010

Fig 14. Tag generation cost vs data blocks number.

https://doi.org/10.1371/journal.pone.0241236.g014

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 42 / 47

Fig 15 compares the batch tag public verification time with single tag public verification

time. From the figure it can be seen that, by using batch verifications, the time taken in verify-

ing the integrity of a file can be reduced significantly; the more the data blocks a file consisted

of, the higher the reduction. For example, for a file consisted of 1000 data blocks, the verifica-

tion time is reduced by nearly 45% when batch verification is used. Fig 16 compares batch tag

private verification time with that of batch tag public verifications. The results show that batch

tag private verification time is virtually independent of the number of tags involved, whereas

batch tag public verification time increases linearly as the number of tags involved increases,

and the former is only a fraction of the latter.

The above results are significant. It indicates that, in supporting both public and private

verifiability, TOD mainly introduces additional cost to the TPA. The integrated support of pri-

vate verifiability, which allows PCS users to monitor the integrity of their service provider,

Table 11. TOD method vs. BLS based tagging method: The required time (in seconds) of private and public tag
verification.

TOD BLS-based

Public Verification 0.0514 0.0259

Private Verification 0.0001 0.0259

https://doi.org/10.1371/journal.pone.0241236.t011

Fig 15. Public tag verification cost: Individual vs batch verifications.

https://doi.org/10.1371/journal.pone.0241236.g015

Fig 16. Batch verification cost: Private vs public.

https://doi.org/10.1371/journal.pone.0241236.g016

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 43 / 47

only imposes a negligible level of verification cost on the PCS users. In other words, TOD does

not require that PCS users should trust the service providers and additional cost introduced to

the users as the result of having this feature is negligible.

The sizes of tags influence security levels as well as storage and communication costs. In

TOD, each data block is tagged with five tags, i.e. IDTagi, En_IDTagi, DBTagi and DBTagTagi,
where {IDTagi}, {DBTagi} are used for private verifications and {En_IDTagi}, {DBTagi} and

{DBTagTagi} are used for public verifications. IDTagi, and DBTagi are generated using the

AS scheme, using GF(2

m
), meaning that each tag size is m-bits long. En_IDTagi is encrypted

IDTag. DBTagTagi is generated using the BLS signature, and its length varies with the security

level the signature provides. As discussed in Section 5, the sizes of these tags should also take

into account of forgery and collision resistance levels. Based on the security analyisis, to ensure

a strong level of collision resistance, both tags (i.e each AS tag and BLS tags) are assumed to

have the length of 32 bytes long (i.e. m = 256 bits and LEG1
à 256 bits). {IDTagi} are stored

locally at the user-side and {En_IDTagi} with TPA, thus, the total size of a tag that is stored at

the PCS server is DBTagi + DBTagTagi = 32 bytes + 32 bytes = 64 bytes. Table 12 compares the

tag size in bytes of the TOD method with those of existing methods. In this comparison, the

SHA3-384 (i.e. 48 bytes) is used as the underlying hash function for MAC-based tags. As

shown in the table, algebraic signature and BLS based methods generate the shortest tag size,

whereas RSA based method generates the longest. The tag size of our TOD method is 64 bytes

which is higher than the tag sizes produced by the algebraic signature based and BLS based

methods. However, different from the algebraic signature and BLS based methods, which only

supports private verifiability and public verifiability, receptively, the TOD method supports

integrated public and private verifiability. The storage cost complexities of the user and TPA

are based on whether IDTags and En_IDTags are kept by the user and TPA, respectively, in

DIA, or not. If yes, the storage cost complexity is O(d) at both the user and TPA.

7 Conclusion

This paper has proposed and evaluated a novel method, called Tagging of Outsourced Data

(TOD), that can be used in DIA to address the issue of how to check the integrity of data that

are managed by third parties periodically without downloading the whole data from PCS. The

paper has also presented a comprehensive security analysis and theoretical and experimental

evaluation of the overhead costs of the method. The evaluation results are compared with

those of related tagging methods. The analysis and comparison results indicate that, in

Table 12. TOD method vs the related work: The tag size generated (in bytes).

Works Tag Size

Hash function-based 48

Algebraic Signature based

⇤
32

Algebraic Signature based

⇤⇤
32

MAC-based 48

RSA-based 384

ECDSA-based 64

BLS-based 32

TOD Method 64

⇤
is OTfMB approach,

⇤⇤
is OTfSB approach

https://doi.org/10.1371/journal.pone.0241236.t012

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 44 / 47

comparison with related methods, TOD is more efficient, particularly for the user ends, and

provides richer functionality, including providing a stronger level of security protections to

data.

Our future work includes the design of DIA framework that employs the TOD method. As

TOD method is based on spot-checking, like the existing methods, it should emphasise there is

a required number of picked data blocks for verification, i.e., C, to detect misbehaviour of the

PCS provider with high probabilities. Thus, it can use nonces as the second layer to prevent

replay attacks. Furthermore, the design of a data structure to support dynamic data and data

deduplication among the user’s data file in PCS. Finally, we can try to find a solution to release

the PCS user from keeping IDTags locally with the DIA design.

Author Contributions

Formal analysis: Reem ALmarwani.

Methodology: Reem ALmarwani.

Supervision: Ning Zhang, James Garside.

Validation: Reem ALmarwani.

Writing – original draft: Reem ALmarwani.

Writing – review & editing: Reem ALmarwani, Ning Zhang.

References
1. Juels A, Kaliski BS. Pors: Proofs of retrievability for large files. Proceedings of the ACM Conference on

Computer and Communications Security. 2007; p. 584–597. https://doi.org/10.1145/1315245.1315317

2. Ateniese G, Burns R, Curtmola R, Herring J, Kissner L, Peterson Z, et al. Provable data possession at
untrusted stores. Proceedings of the 14th ACM conference on Computer and communications security
CCS 07. 2007; p. 598. https://doi.org/10.1145/1315245.1315318

3. Ateniese G, Di Pietro R, Mancini LV, Tsudik G. Scalable and efficient provable data possession. Pro-
ceedings of the 4th international conference on Security and privacy in communication netowrks—
SecureComm’08. 2008; p. 1. https://doi.org/10.1145/1460877.1460889

4. Chen L; https://doi.org/10.1016/j.future.2012.01.004

5. Ajith Krishna R, Arjunan K. An Efficient Method for Data Integrity in Cloud Storage Using Metadata.
2020; p. 958–965.

6. Luo Y, Fu S, Xu M, Wang D; https://doi.org/10.1109/CC.2014.7004529

7. Sookhak M, Akhunzada A, Gani A, Khurram Khan M, Anuar NB. Towards dynamic remote data auditing
in computational clouds. Scientific World Journal. 2014; 2014. https://doi.org/10.1155/2014/269357
PMID: 25121114

8. Ateniese G, Burns R, Curtmola R, Herring J, Khan O, Kissner L, et al.; https://doi.org/10.1145/1952982.
1952994

9. Ni J, Lin X, Zhang K, Yu Y, Shen XS. Secure outsourced data transfer with integrity verification in cloud
storage. 2016 IEEE/CIC International Conference on Communications in China, ICCC 2016. 2016;
https://doi.org/10.1109/ICCChina.2016.7636866

10. Hanser C, Slamanig D. Efficient Simultaneous Privately and Publicly Verifiable Robust Provable Data
Possession from Elliptic Curves. 10th International Conference on Security and Cryptography
(SECRYPT 2013), Reykjavik, Iceland, 29-31 July 2013 Note: This is the full version which is available
as Cryptology ePrint Archive Report 2013/392. 2013; p. 15–26.

11. Li A, Tan S, Jia Y. A method for achieving provable data integrity in cloud computing. Journal of Super-
computing. 2016; p. 1–17. https://doi.org/10.1007/s11227-015-1598-2

12. Liu C, Chen J, Yang LT, Zhang X, Yang C, Ranjan R, et al.; https://doi.org/10.1109/TPDS.2013.191

13. Luo X, Zhou Z, Zhong L, Mao C Jian and Chen. An Effective Integrity Verification Scheme of Cloud
Data Based on BLS Signature. Security and Privacy for Smart Cyber-Physical Systems. 2020.

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 45 / 47

14. Salim A, Kumar Tiwari R, Tripathi S. An Efficient Public Auditing Scheme for Cloud Storage with Secure
Access Control and Resistance Against DOS Attack by Iniquitous TPA. Wireless Pers Commun (2020).
2020.

15. Thomas Schwarz SJ, Miller EL. Store, forget, and check: Using algebraic signatures to check remotely
administered storage. Proceedings—International Conference on Distributed Computing Systems.
2006; 2006. https://doi.org/10.1109/ICDCS.2006.80

16. Litwin W, Schwarz T. Algebraic signatures for scalable distributed data structures. 2004; p. 412–423.
https://doi.org/10.1109/ICDE.2004.1320015

17. Wang Q, Wang C, Li J, Ren K, Lou W. Enabling Public Verifiability and Data Dynamics for Storage
Security in Cloud Computing Computer Security—ESORICS 2009. Ieee Transactions on Parallel and
Distributed Systems. 2009; 5789(5):355–370. https://doi.org/10.1007/978-3-642-04444-122

18. Zhang Y, Blanton M. Efficient dynamic provable possession of remote data via balanced update trees.
Proceedings of the 8th ACM SIGSAC symposium on Information, computer and communications secu-
rity—ASIA CCS’13. 2013; p. 183. https://doi.org/10.1145/2484313.2484339

19. Zhang X, Xu C, Zhang X. Efficient Pairing-Free Privacy-Preserving Auditing Scheme for Cloud Storage
in Distributed Sensor Networks. International Journal of Distributed Sensor Networks. 2015; 2015.
https://doi.org/10.1155/2015/593759

20. Rivest RL, Shamir A, Adleman L; https://doi.org/10.1145/359340.359342

21. Koblitz N; https://doi.org/10.1090/S0025-5718-1987-0866109-5

22. Boneh D, Lynn B, Shacham H. Short signatures from the weil pairing. Journal of Cryptology. 2004; 17
(4):297–319. https://doi.org/10.1007/s00145-004-0314-9

23. Erway CC, Küpçü A, Papamanthou C, Tamassia R. Dynamic Provable Data Possession. ACM Trans-
actions on Information and System Security. 2015; 17(4):1–29. https://doi.org/10.1145/2699909

24. Rifà-Pous H, Herrera-Joancomartı́ J. Computational and Energy Costs of Cryptographic Algorithms on
Handheld Devices. Future Internet. 2011; 3(1):31–48. https://doi.org/10.3390/fi3010031

25. Ali AI. Comparison and Evaluation of Digital Signature Schemes Employed in NDN Network. Interna-
tional Journal of Embedded systems and Applications(IJESA). 2015; 5(2):15–29. https://doi.org/10.
5121/ijesa.2015.5202

26. Quirino GS, Moreno ED. Architectural Evaluation of Asymmetric Algorithms in ARM Processors. In:
International Journal of Electronics and Electrical Engineering. vol. 1; 2013. p. 39–43. Available from:
http://www.ijeee.net/index.php?m=content&c=index&a=show&catid=27&id=23.

27. Bafandehkar M, Yasin SM, Mahmod R, Hanapi ZM. Comparison of ECC and RSA algorithm in resource
constrained devices. 2013 International Conference on IT Convergence and Security, ICITCS 2013.
2013;(April 2016):10–13. doi: 10.1109/ICITCS.2013.6717816

28. Vincent OR, Folorunso O, Akinde AD. Improving e-payment security using Elliptic Curve Cryptosystem.
Electronic Commerce Research. 2010; 10(1):27–41. https://doi.org/10.1007/s10660-010-9047-z

29. Barker E. Recommendation for Key Management Part 1: General. 2016; 4.

30. Wang C, Wang Q, Ren K, Lou W. Privacy-preserving public auditing for data storage security in cloud
computing. Proceedings—IEEE INFOCOM. 2010; p. 1–9. https://doi.org/10.1109/INFCOM.2010.
5462034

31. Wang C, Chow SSM, Wang Q, Ren K, Lou W. Privacy-preserving public auditing for secure cloud stor-
age. IEEE Transactions on Computers. 2013; 62(2):362–375. https://doi.org/10.1109/TC.2011.245

32. Yang K, Jia X. An efficient and secure dynamic auditing protocol for data storage in cloud computing.
IEEE Transactions on Parallel and Distributed Systems. 2013; 24(9):1717–1726. https://doi.org/10.
1109/TPDS.2012.278

33. Li L, Lu R, Choo KKR, Datta A, Shao J. Privacy-Preserving-Outsourced Association Rule Mining on
Vertically Partitioned Databases. IEEE Transactions on Information Forensics and Security. 2016; 11
(8):1547–1861. https://doi.org/10.1109/TIFS.2016.2561241

34. Paillier P. Public-key cryptosystems based on composite degree residuosity classes. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bio-
informatics). 1999; 1592:223–238. https://doi.org/10.1007/3-540-48910-X16

35. Acar A, Aksu H, Uluagac AS, Conti M. A Survey on Homomorphic Encryption Schemes: Theory and
Implementation. CoRR. 2017;abs/1704.03578.

36. Yi X, Paulet R, Bertino E. Homomorphic Encryption and Applications; 2014. Available from: http://link.
springer.com/10.1007/978-3-319-12229-8.

37. Chan ACF. Symmetric-key homomorphic encryption for encrypted data processing. IEEE International
Conference on Communications. 2009; p. 1–5. https://doi.org/10.1109/ICC.2009.5199505

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 46 / 47

38. Dasgupta S, Pal SK. Design of a polynomial ring based symmetric homomorphic encryption scheme.
Perspectives in Science. 2016; 8:692–695. https://doi.org/10.1016/j.pisc.2016.06.061

39. Xiao L, Bastani O, Yen IL. An Efficient Homomorphic Encryption Protocol for Multi-User Systems. IACR
Cryptology ePrint Archive 2012. 2012; p. 193–212.

40. Wikipedia contributors. Computational complexity of mathematical operations—Wikipedia, The Free
Encyclopedia; 2018. https://en.wikipedia.org/w/index.php?title=Computational_complexity_of_
mathematical_operations&oldid=846516782.

41. TCO Calculator;. https://awstcocalculator.com/.

42. Fernandez CK. Pascal polynomials over GF(2); 2008. https://calhoun.nps.edu/handle/10945/4065.

43. GINSBURG J, Smith DE. RABBI BEN EZRA ON PERMUTATIONS AND COMBINATIONS. The Math-
ematics Teacher. 1922; 15(6):347–356.

44. Geometric distribution—Wikipedia;. https://en.wikipedia.org/wiki/Geometric_distribution.

45. Wikipedia contributors. Birthday problem—Wikipedia, The Free Encyclopedia; 2018. Available from:
https://en.wikipedia.org/w/index.php?title=Birthday_problem&oldid=858127526.

46. Rogaway P, Shrimpton T. Cryptographic Hash-Function Basics: Definitions, Implications, and Separa-
tions for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance. In: Roy B,
Meier W, editors. Fast Software Encryption. Berlin, Heidelberg: Springer Berlin Heidelberg; 2004. p.
371–388.

47. Rosa T. Key-collisions in (EC)DSA: Attacking Non-repudiation. IACR Cryptology ePrint Archive. 2002;
2002:129.

48. Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files for JDK/JRE 8 Down-
load;. https://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html.

49. JPBC—Java Pairing-Based Cryptography Library: Introduction;. http://gas.dia.unisa.it/projects/jpbc/#.
XaWq80ZKiUk.

PLOS ONE Tagging method for integrity protection of outsourced data in a public cloud storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0241236 November 5, 2020 47 / 47

