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THE BOUNDING DISCRETE PHASE-TYPE METHOD

JEAN-SEBASTIEN TANCREZ'! AND PIERRE SEMAL'

Abstract. Models of production systems have always been essential. They are needed at a
strategic level in order to guide the design of production systems but also at an operational level
when, for example, the daily load and staffing have to be chosen.

Models can be classified into three categories: analytical, simulative and approximate. In this
paper, we propose an approximation approach that works as follows. Each arrival or service distri-
bution is discretized using the same time step. The evolution of the production system can then be
described by a Markov chain. The performances of the production system can then be estimated
from the analysis of the Markov chain.

The way the discretization is carried on determines the properties of the results. In this paper,
we investigate the “grouping at the end” discretization method and, in order to fix ideas, in the
context of production lines. In this case, upper and lower bounds on the throughput can be derived.
Furthermore, the distance between these bounds is proved to be related to the time step used in the
discretization. They are thus refinable and their precision can be evaluated a priori. All these results
are proved using the concept of critical path of a production run.

Beside the conceptual contribution of this paper, the method has been successfully applied to a
line with three stations in which three buffer spaces have to be allocated. Nevertheless, the complexity
and solution aspects will require further attention before making the method eligible for real large
scale problems.

Key words. Production line, Discretization, Bounds, Critical path.
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1. Introduction. Production systems follow various types of organization,
among which the job—shop and the flow line are most typical [5, 12]. In this pa-
per, we focus on production lines although we strongly believe the approach and the
method presented here can be applied to any production system. The details of the
production line we study are described below in §1.1.

Models of production systems have always been essential. They are needed during
the design phases, when the following elements have to be selected: the type of
production equipments and their power, the layout of the different stations and the
mechanisms of synchronization (equipment, transfer lot size, buffer size, ...). At a
more operational level, models are also needed to provide support for daily production
decisions like the load, the sequence of jobs or the necessary staffing, and for customer
oriented decisions like accepting a new job or promising some delivery time. Refer to
[4] and [2] for an overview of manufacturing systems models. A systematic review of
the literature for models of production lines is given below in §1.2.

The model presented in this paper is approximate in the sense that it simplifies
the system to be studied, without changing its general structure, in order to facilitate
the evaluation of its performance. The model has two peculiar features: it provides
not only an approximation of the performance of interest but bounds on it, and these
lower and upper bounds can be tightened. This will be illustrated by determining
bounds on the throughput of a production line, which are valid both in the transient
and in steady—state. The approach seems to be applicable to other performances like
the buffer utilization, the job flow time or the work in progress.

TUniversité Catholique de Louvain, Place des Doyens, 1, 1348 Louvain-la-Neuve, Belgium,
{tancrez,semal@poms.ucl.ac.be}.
fFacultés Universitaires Catholiques de Mons.
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Fic. 1. Production line including four stations and three buffers.

Practically, the paper is organized as follows. Here below, §1.1 details the type
of production lines we focus on and §1.2 provides a short literature review of models
used for such lines. Section 2 and 3 are the heart of the paper. Section 2 describes the
BDPH method and §3 states its properties. Section 4 provides an example. Finally,
85 focuses on possible extensions of the method.

1.1. Production Lines. This paper focuses on production lines with asyn-
chronous part transfer, in other terms tandem queueing systems. As shown on Figure
1, production lines have a very special structure. It is a linear network of m service
stations (57,52, ...,S,) separated by m — 1 buffers storages (Bs, Bs, ..., B,,). The
manufacturing of one item consists in the sequential processing of this item by the
stations S to S,,. The item enters the system at station S; and leaves at S,,. After
its processing by a station, let us say S;, the unit is stored in the buffer B;y; if a
space is available. There it waits until the next station, S;;1, finishes its job on the
previous item and gets rid of it. At this moment, the processing of the unit on station
S;+1 starts. This is repeated until the item gets its last processing at station S, and
then leaves the system.

Such lines experience productivity losses due to blocking and starving. First, a
station is said to be blocked when it cannot get rid of an item because the next buffer
is full. Second, a station is to be starved when it cannot begin to work on a new
item because the previous buffer is empty. Increasing buffer sizes allows to limit these
productivity losses.

Here is the list of assumptions we make on the lines we analyze, in order to fix
ideas. None of these assumptions is restrictive.

e General finite service time distributions. The service times are generally dis-
tributed but finite. Successive processing times are independent and identi-
cally distributed. The finiteness assumption is not restrictive since it is always
the case in practice.

o Finite buffer sizes. We do not make any assumption on the buffers sizes
except their finiteness.

o Infinite arrival. With this assumption, the first station is never starved. This
assumption can be relaxed by using an initial station that models the arrival
process.

e Infinite demand. With this assumption, the last station is never blocked.
Again, this assumption can be relaxed by using a last station that models the
real demand or the real storage space.

e Blocking after service. This means that if the next station is full, a job is
blocked in its current station after having been processed. A blocking before
service policy can be modeled by adapting the buffer size.

1.2. Models for Production Lines. Several good comprehensive reviews of
models for production lines are available (see for example [2], [4], [17], [7], [10], and
[16]). In order to situate precisely our method in the state of the art, let us review the
main approaches used for the evaluation of production line performance. As already
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said, there are three kinds of models: exact analytical models, approximate analytical
models and simulations.

Ezact analytical models are the richest since they allow a direct and exact un-
derstanding of the influence of a decision variable on the performance of interest.
Unfortunately, most production systems are too complex to be modeled analytically.
In our case, exact models can be used for simple production lines only. Three methods
are significant:

o Closed—form models. Closed—form results are available for very simple con-
figurations, e.g. two stations lines and exponentially (or sometimes Erlang)
distributed service times.

e State models. These models build continuous (rarely discrete) Markov chains
to analyze lines with exponential or phase—type distributions. Based on the
identified state space, a transition matrix is derived and the stationary equa-
tions are solved numerically to obtain the steady-state probabilities. The
main difficulty lies in the explosion of the state space size. A first paper [13]
dates from 1967.

e Holding time models. Introduced by Muth, this method aims to be compu-
tationally more efficient than state models for tandem queues without inter-
mediate buffers. It considers the sequence of holding times (blocking time
added to processing time) for successive jobs at each station, and constructs
recursive relationships. For an overview, see [15].

Simulation is at the other end of the continuum. It does not rely on any as-
sumption and is therefore very general. Almost all systems can be simulated. The
weakness of the simulation approach mainly lies in its development cost. An example
of simulation for production lines is given in [8].

Approzimate analytical models are in between: the system to be analyzed is sim-
plified in order to be analytically modeled. This keeps the development costs low.
However, the uncertainty about the results is the weakness of the approach. The
method presented in this paper is approximate but tries to give certainties about the
results, by proving bounds. Here are the two main approximate methods:

e Decomposition. The idea is to decompose a system into smaller subsystems.
Solving more, but much easier, subproblems, allows to approximately analyze
the global system much more quickly. A set of equations that determines the
unknown parameters and the links between subsystems is first derived. An
iterative procedure is then used to solve the equations. This method has
initially been created for exponentially distributed production lines, see [9]
and [3] for examples or [6] for a good review. Some authors then extended it
to lines with phase-type processing times, see [1] for continuous PH and [11]
for discrete PH.

o FEzpansion. The Generalized Expansion Method (GEM) is also based on
the idea of decomposing the system, but it adds the concept of an artificial
node that registers the blocked jobs. For a description and an example of
application, see [14].

2. The Bounding Discrete Phase—Type Method. The method presented
in this paper works as follows. First, each distribution is discretized using the same
time step. The evolution of the production system can then be described by a Markov
chain whose states describe the stages of the different service centers and the current
utilizations of the various storage areas (buffers). The performance of the production
system can then be estimated from the analysis of the Markov chain. The production
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Fic. 2. Stages of the BDPH method applied to a two station line: discretization of the original
service time distributions by “grouping at the end”, PH representation and Markov Chain.

rate and the buffer utilization, for example, can be derived from the steady—state
probabilities. Transient characteristics can also be determined.

The originality comes from the discretization method we use. Using a discretiza-
tion step 7, we transform the original distributions into a discrete one by concentrating
the probability mass distributed in the interval [k, (k + 1)7] on a single value. The
choice of this value is open. Here, we chose a “grouping at the end” principle, that
is, the probability mass is carried forward on the point (k + 1)7. This discretization
creates a bias, as each job length is increased. However, it has the advantage to keep
an intelligible link with the original distributions.

The method is best illustrated on an example. Let us look at a simple line made of
two stations separated by a buffer of size one depicted on Figure 2.a. Figure 2.b shows
the exact service time distributions for the two servers. The discretized distributions
by “grouping at the end” are shown in Figure 2.c and their phase-type representation
in Figure 2.d.

The behavior of the complete system can now be modeled by a Markov Chain,
i.e., using a state model. The Markov chain given in Figure 2.e lists all the possible
recurrent states of the system (the first symbol refers to the first station, the second
to the buffer and the third to the second station) and the possible transitions between
these states. Each station can be starved (S), blocked (B) or in some stage of service
(1 means, for example, that the station already spent one time step working on the
current job). Each buffer is described by its utilization (0 or 1 with a buffer of size
one). For example, state B12 means that the first station is blocked, that the buffer is
full and that the second station already worked during two time steps on the current
job. Two transitions are possible from B12, depending if the second station continues
to work on the same job or ends. In the first case, the new state will be B13. The
probability of this transition is 0.3/0.4, the probability that the processing time is
greater or equal to three knowing that it is greater or equal to two. It is easily
deduced from the discrete distribution given in Figure 2.c. In the second case, the
second station ends his job, picks up the next item in the buffer and begin to work on
it. The first station can thus get rid of its blocking item and begins a new job. The
new state is thus 111.

Transient performances, like the throughput at some time ¢, can be derived from
the matrix of transition probabilities. The steady—state performances can be com-
puted from the steady—state probabilities derived from the Markov chain. Steady—
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state productivity, work in progress or buffer utilization, for example, can be approxi-
mated. The size of the Markov chain® and the complexity problems are not addressed
in this paper. They require attention in the future.

The method is approximate. However, it has the advantage to offer some theo-
retical control. Indeed, it is proven here below that the time needed to achieve any
production target will be overestimated by the method. Furthermore, the amount by
which this time is overestimated can also be bounded. Finally, these bounds can be
tightened, by reducing the time step 7.

The method is named “Bounding Discrete Phase—type” (BDPH) since it relies on
a discrete phase type approximation of the various distributions of the system to be
studied and since it leads to bounds.

3. Properties. In this section, we try to better understand the behavior of the
production line and the effect of the discretization by “grouping at the end”. We
indeed have the intuition that the BDPH method leads to a pessimistic estimation of
the productivity. In the next two subsections, we will lay the foundations that allow
this result to be formally proved. These foundations rely on the concept of critical
path.

3.1. Structural Properties. Let us consider a random infinite real time pro-
duction run. To construct such a run, we only need a sequence of random processing
times drawn according to the original service distributions. The jobs then find their
places in the run according to the structure of the production system. We simply
denote this infinite real time production run by r. We have:

(I"(Wig)} Vo r,

where W, ;, denotes the job k at station ¢ and {"(W; ) the time it takes in this
particular run r.

If the original service times {"(W; ;) are discretized, giving the discretized service
times {"(W; ), we get the discretized production run, denoted 7:

{0 (Win)} B {T(Win)} = 7
When using the “grouping at the end” discretization, we have, V1, k:

= V(W“f)-‘ T

T

(1) I"(Wik

)

with, by construction, the following property, Vr,1, k:
(2) Ir(Wig) —17 <U"(Wig) <I"(Wig).

Before stating a first result, we define the moment a job is started and the moment
it is ended. Obviously, a job length, in a particular run r, is given by the difference
between these moments:

ZT(WiJf) = t:nd (Wi,k) - tgtart (W%k)

Since the production system has a definite structure, i.e., a line in our case, these
moments are subject to structural constraints, stated in the following lemma.

IThe size of the Markov chain is, in first approximation, proportional to (a + 2)™(b+ 1)™~1,
with m the number of machines, a the number of steps and b the buffer size.
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LEMMA 1 (Structural properties of a production line). Given a production line
including a buffer of size b; before each station i, the jobs verify the following inequal-
ities, Vr, k:

(3) t:tart (Wi7k) > thd (Wi_lvk) Vi>2

(4) 2 tong (Wik-1) Vi

(5) Ztgnd(Wi+1, k— by —2 ) Vi<m—1
142, k—bi+1—b¢+2—3 Vi<m-—2

1+3, k—biy1 —big2—bijz—4 Vi<m-—3

with at least one equality.

Intuitively, the proof works as follows. Because of the line structure, a job k can
only be started on station i: (3) if its processing on the previous station 7 — 1 is
ended, (4) if the processing of the previous job k — 1 in station ¢ is ended and (5) if
this previous job k —1 is not blocked in station ¢ by some unfinished jobs downstream.
Furthermore, since there is no reason to wait once all these conditions are satisfied,
e (Wik) will be given by the maximum of the right hand sides of Lemma 1. The
formal proof is given in the Appendix.

Note that the inequalities of Lemma 1 are valid for any run: the job W; ;. cannot
be started before all the jobs on the right hand sides are finished. These are just static
structural properties of the line, independent of the run. However, which precise job
end will trigger the start of job W; j, depends on the processing times and thus on the
particular run we consider.

3.2. Productivity and Critical Path. In this subsection, we are interested
in the time needed to produce p units in a particular run r. This time is given by
0,4 (Wi p) if we fix, without loss of generality, that the run has been started at time
02.

For the determination of ¢7, , (W, ;), it is first clear that not all the events of the

run 7 are relevant. From Lemma 1, we see that t7_, (W,, ) only depends on job p or
on previous jobs (by any station). We can thus restrict our attention to the following

part of the run r, called its p-part and denoted r:
(W) |1<i<m,1<k<p}r,

The length of r,, denoted (1), equals t7 ; (Wi, p), i-e., the time needed to produce
p units in 7. We thus focus on determining the length of this part of the run.
Second, the structural properties given in Lemma 1 allow us to introduce a useful
concept. We define the critical path of ry,, cp(rp), as the sequence of jobs that covers
rp. It can be built quite easily. Starting with the last job that leaves the system, job
Win,p, we can look which job end, in this precise run, has triggered its start, in other
words which inequality of Lemma 1 is satisfied at equality®. Repeating this process,
we can proceed backward in time until the start time of the run. It is obvious by

Lemma 1 that every run r, has at least one critical path.

2The start time may correspond to various situations. In most cases, it will be given by the start
of the first job on the first workstation, t7, .., (W1,1). However, arbitrary loaded lines at start time
may also be considered. For simplicity, we will just assume that the run is started with no job being
partially processed.

3Tt can happen that several equalities are satisfied at the same time. In this case, one of them is
chosen arbitrarily (let us say the one corresponding to the preceding state in the same station, see
Figure 5).
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station 1 |W5 |B |W6 W7 |Wg Wg W10 VV11|B_:_Vy1_2__ __:\{\/_13___ : VWi
buffer 1 0 |1]0 1 o1 [l K CIE.

station 2 |W3 | B IW4 W5 Ws S |W7 Wa W9 VV10| B W11 _Vy1_2_ _
buffer 1 0 |1 0]1 0]1[0 1]0 1 0
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Fic. 3. Gantt chart of the 11—part of a run on a production line with three stations and buffers
of size one. The critical path is given in gray.

This critical path ¢p(r,) has some nice properties. It is a set of jobs W; ;, which
covers the time of this part of the production run r, without overlap and without
gap. In other words, the length of r, equals the length of its critical path, denoted
l(ep(rp)). It is given by:

(6) Urp) = thna Wnp) = Uep(rp) = > UWir)= Y V().

Wi k€cp(ry) j€ep(rp)

As already said, the inequalities of Lemma 1 are valid for any run. The absence
of overlap in the critical path ¢p(r,) is thus a property independent of the considered
run. Therefore, in another run, the sequence of jobs cp(r,) will just be one non-
overlapping path (maybe with gaps) whose total length is shorter or equal to the
length of the p—part of this other run.

The notion of critical part can be best illustrated on the Gantt chart (see Figure
3) associated to a particular run. In this chart, the time goes from left to right. The
state of a station at a given time is represented either by a letter (B for blocked, S for
starved) or by the job currently processed. The state of a buffer is represented by the
number of jobs waiting inside. For the run depicted, the line is fully loaded at time
0, with one job waiting in each buffer. The critical path (in gray) of the 11-part is
made of the following backward sequence:

ep(rin) = { Wa 11, Wo 11, Wa g, Wa 7, Wa 7, Wi 7, Wi 6, W1 3}

It can be checked that each couple of successive jobs satisfies one of the inequalities
of Lemma 1 at equality.

The concept of critical path offers a useful tool to understand what is happening in
a production system. Its ability to cover the time allows to express the time to produce
p units in a run r as the sum of job lengths. When an intelligible transformation
is operated on the job lengths, i.e., on their distribution, it allows to relate this
transformation and its effect on the global length of a production run. We believe the
concept of critical path can be generalized to other production systems and used for
other transformations of the service distributions.

In the case of production lines and discretization by “grouping at the end”, the
critical path leads us to the following result, where the p—part of 7 is defined similarly :

(FWip) |[1<i<m1<k<p}rsr,.

LEMMA 2. The time an m—station line takes to produce p units in a random real
time production run r can be bounded as follows:

W(Tp) —T(p+m—1) <U(rp) <UTp).
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Proof. Using equations (6) and (2) and the fact that ¢p(rp) is just a non-
overlapping path in the discretized production run (smaller than the critical path,
cp(Tp)), we can write:

(rp)= Y TG)< Y TG Y, G =1,

j€ep(rp) j€cp(ryp) jeep(Tp)

that states the right inequality of the lemma. For the left inequality, using the same
equations and the fact that ¢p(7,) is non—overlapping in the original run, we get:

() —rlep@)l = Y (-1 < Y UG Y UG =Ur,

Jj€ep(Tp) Jj€Eep(Tp) Jj€ep(rp)

where |cp(7,)| denotes the cardinality of the critical path ep(7,), i.e., the number of
jobs making it up. The proof ends by showing that this cardinality is smaller than
p+m —1 (see Lemma 8 in the Appendix). O

Lemma 2 provides a major result. Considering any random production run, we
have upper and lower bounds on the time it would take to produce a given production.
Unfortunately, this result cannot yet be directly used since it refers to a given random
production run. For the results to be useful, we need to be able to say something
about an average production run. This point is tackled in the next subsection.

3.3. Bounds on the Throughput. Let us first consider the mean time Tp
necessary to reach a given production P. By definition,

Tp Z/f(TP)l(TP)dTP,

where f(rp) is the density function of the p—part of the production runs. This time
can be bounded as follows.

THEOREM 3. The mean time Tp an m—station line takes to produce P units can
be bounded on the basis of the information computed by the BDPH method. If Tp is
the mean time to produce P units using the “grouping at the end” discretized times,
we have:

Tp—T(P—l—m—l)STpSTp.

The proof detailed in the Appendix relies on Lemma 2 and on the fact that the
probabilities of rp and T7p are the same since they are both derived from the same
run 7.

If we are interested in a fixed time instead of a fixed production, bounds can quite
easily be derived from the previous theorem.

THEOREM 4. The mean production Pr produced by an m—station line during a
fixed time T can be bounded on the basis of the information computed by the BDPH
method. If Pr is the mean production during time T using the “grouping at the end”
discretized times, and P is the mean production during discrete time T*, where cho-
sen minimal such that T" —7(P" +m — 1) > T, we have:

Pr<Pr<P.
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The formal proof given in the Appendix relies on the following simple argument.
Since the average time to produce a given production is longer with discretized times
than with the original times, the quantity produced in a given time is smaller with
discretized times than with the original times.

When focusing on the steady—state productivity, the results get even simpler.
Indeed, in this case, simple bounds are derived from Theorem 3. The average time
between the completion of two units, in steady-state, is called the cycle time ¢ where
¢ =limp_,Tp/P. If ¢ denotes the cycle time measured using the “grouping at the
end” discretized times (BDPH method), we have the following result.

COROLLARY 5 (BDPH bounds for a production line). When it measures the pro-
ductivity of a production line in steady—state, the BDPH method is pessimistic, i.e.,
the cycle time is overvalued. Moreover, the error is smaller than the discretization
time step:

(7) c—1t<c<e

The proof is given in the Appendix.

Theorems 3 and 4 and Corollary 5 show that our method allows to bound the pro-
ductivity, in transient or in steady—state, from below and from above. Moreover, these
bounds become tighter and converge to the exact productivity when the discretization
step is decreased.

These results also show another feature of the method: the accuracy of the bounds
is directly related to the selected discretization step. Of course every accuracy im-
provement will require additional computational efforts caused by the increase of the
state space size.

The BDPH bounds lead to two simple approximations of the cycle time. More
precise approximations are goals for future research. Inequality (7) leads quite intu-
itively to a first approximation.

APPROXIMATION 6. The cycle time of a line can be approrimated by:

T
cRC— 5
This approximation can be seen as an approximation of the cycle time we would
obtain by grouping “at the middle”, i.e., by concentrating the probability mass at
the middle of the step instead of at the end. More rigorously, it can be seen as a
converging approximation of the following better approximation.
APPROXIMATION 7. The cycle time of a line can be approximated, Vi, by:

c~¢—ew(i),

with ew (1) = E[I"(W; )] — E[I"(Wi.x)], the discretization bias on the service distri-
bution of station 1.

This result comes from the fact that the cycle time can be divided up into two
components: the processing time and the blocking/starving time. A good approxi-
mation of the cycle time can thus be obtained by removing the known discretization
bias on the service time distribution. When the discretization step 7 decreases, the
bias tends to 7/2 and Approximation 7 tends to Approximation 6. Note that both
approximations converge to the exact cycle time as they are between the converging
bounds.
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Fi1Gc. 4. Bounds and approximations on the cycle time for a three station line with various
buffers configurations. The upper part shows the service distributions, with first station on the left.

The cycle time in discretized time, ¢, can easily be computed from the steady—
state probabilities given by the BDPH method. Let us define p; as the steady—state
probability that a station, the last one for example, is in first stage of service. As
every job on this station pass through this first stage during one time step, p; equals
one step length divided by the cycle time. We get: ¢ = 7/p;.

4. An Example. In this section, we briefly show how the bounding discrete
phase—type method performs on a simple example. More realistic examples are not
in the scope of this paper.

Let us consider a three station line with the processing times depicted on top
of Figure 4. Different buffer configurations are being studied : [11], [12] and [21].
The minimization of the cycle time is the objective here. The chart of Figure 4 gives
the bounds on the cycle time for the original buffer configuration and for the two
configurations with one more buffer space. The Approximation 7 is also given (with
i = 3). We see that the bounds and the approximation regularly converge when the
step size decreases. Moreover, the accuracy of the approximation can be assessed by
comparing it to a simulation result. The [1 1] buffer configuration leads to a cycle time
of 0.5786, with a 99% confidence interval given by [0.5780,0.5792]. In this case, the
approximation makes an error of 1% with seven steps and 0.47% with fifteen steps.
The other buffer configurations lead to similar accuracy.

As expected, the configuration with a buffer of size two in first position turns
out to be better, as the beginning of the line is more variable. The benefit in term of
productivity can be estimated. Moreover, as the BDPH method offers a quite complete
modeling, other performances (like the work—in—progress, i.e., the average number of
items in the system, and the buffer occupancy for example) can be estimated.
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5. Conclusion and Future Work. In this paper, we presented a new method,
called BDPH method, to determine bounds on the performance of a production line.
The method relies on a discrete phase-type approximation of the service time distri-
butions with a “grouping at the end” approach. The study of the critical path of a
part of a production run allowed the main results to be stated.

In this paper, we sticked to simple production lines and to simple performance in
order to present rigorous results. It is clear that the BDPH approach calls for various
extensions and future research.

The method has been used to compute bounds on the throughput and on the
productivity of a production line. These bounds are valid both in the transient and
in the steady—state. It should now be investigated how other performances of interest
like the buffer utilization or the average job flow time can be bounded by the BDPH
method.

A second direction for future research is related to the “approximation” methods.
Indeed, on the basis of the stated BDPH bounds, very obvious approximation methods
have been derived (Approximation 6 and 7). A more thorough analysis of the critical
path could open the door to more subtle approximation approaches.

In terms of production systems, more complex organization can be studied. In-
deed, Lemma 1 states the structural conditions of a line system. In case of an assem-
bly tree, i.e., a set of production lines converging to a unique final workstation, these
structural conditions can be very easily updated so that similar conclusions can be
drawn. For job—shops, the door is still open. However, the notion of critical path will
still constitute the heart of the proofs.

Finally, a large field of research is related to the solution methods to be imple-
mented in order to solve the generated discrete time Markov Chain. It is clear that
iterative methods [18] that take advantage of the sparsity of the transition matrix
constitute promising ways in that respect. Moreover, the decomposition methods
presented in §1.2 offer another way to accelerate the solution.

Appendix. Here are the formal proofs of the results presented in the paper.

P7"00f Of Lemma 1. We first show the three inequalities, simply giving their practical signif-

icance:

(3) A station ¢ cannot begin to work on an item k before the preceding station ¢ — 1 has done his
job on this item k.

(4) A station ¢ cannot begin to work on an item k before it has done his job on item k — 1.

(5) To begin to work on an item k, station 7 has to finish its job on item k — 1 (inequality (4)) and
get rid of it. There is space in the next buffer if station i + 1 already began to work on
item k — bi+1 —1:

totart Wik) 2 torare Wit1,k—b; 1 —1)-

Combining this and inequality (4), we get inequalities (5).
The fact that one of the inequalities is always satisfied at equality comes from the fact that

a job always begins due to the end of another job. As each possible state preceding W; , on the

same station corresponds to one of the inequalities (satisfied at equality), the inequalities give all the

possibilities:

(3) Before W; i, the station was starved, (3) is thus satisfied at equality: W; ; begins when the
previous station pass the item on (see Figure 5.b).

(4) The station was already working previously, (4) is thus satisfied at equality: the station begin
to work on item k directly when it ends on k — 1 (see Figure 5.a).

(5) The station was blocked, it had thus to pass the blocking item on, what is possible when the
start of a job in a next station vacate a space in the buffers between. According to the
number of blocked states one after the other, it corresponds to one of the inequalities (5)
satisfied at equality (see Figure 5.c). O
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FiG. 5. Predecessors of W; , in the critical path, according to the preceding state in station i
and corresponding to inequalities (4), (3) and (5).

Lemma 8 and Proof. Here, we give the result needed in proof of Lemma 2.
LEMMA 8. The number of jobs in the critical path is smaller than the number of
productions plus the number of workstations in the line, m, minus one:

lep(rp)| <p+m —1.

Proof. The construction of the critical path begins on job W, ,. To count the number of jobs
in cp(rp), we relate them to the underlying items. Let us call ¢ the difference between item indexes
of the first and the last job of ¢p(rp) plus one. We study d = |ep(rp)| — § which counts the number
of items counted twice minus those omitted when the critical path is constructed. Three possibilities
exist, corresponding to the inequalities of Lemma 1.

(8) The predecessor is a job on the same item, by the previous station (see Figure 5.b). The same
item is thus counted twice.

(4) The predecessor is a job by the same station, on the previous item (see Figure 5.a). No item is
thus omitted or counted twice.

(5) The predecessor is on a next station (see Figure 5.c). Depending on the number of stations
skipped, the number of omitted items follow from the inequality (5).

The value of d is thus maximal when the critical path jumps upward a lot without jumping
downward. We thus get d < m — 1 and |cp(rp)| < d +m — 1. As the first and last items of the
critical path are part of the production, as each item between, we have § < p and the lemma is proved.

P7’00f Of Theorem 8. To get the mean time to produce P, we consider each possible P—part
rp of the possible runs and weight its length by its probability, giving:

Tp = /f(’"P)l(TP)dTP,

where f(rp) is the density function of the P—parts. Aiming to use Lemma 2, we have to relate rp
to its discrete correspondent, 7p (which also produce P). Let us note v(7p) the set of continuous
P-parts (in infinite number) which have the same discrete correspondent 7p. We can decompose
the previous integral:

(8) Tp = Z /rpewp) f(rp)l(rp)drp.

By Lemma 2, we get:
T <3 Ue) [ F(rp)dre.
T rp€Y(Tp)

As the discretization by “grouping at the end” simply concentrates the probability masses in intervals,
the integrals in the last equation give the probabilities of the P—parts in discrete time. We get:

Tp <> U(Fp)P[Fp] =Tp.
Tp
The way to the lower bound is very similar. By Lemma 2, (8) becomes:

Te > 3 (Ge) = 7P+ m - ) [ Srp)drp.

rpeY(Tp)

For the same reasons as previously and as ZFP ITPE’Y(?P) f(rp)drp =1, we get the lower bound.

O
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P?”OOf Of Theorem 4. The lower bound, Pt < Pr, follows from the upper bound in Theorem
3, Tp <Tp. As the mean time to produce a given production is longer in discretized time, the mean
quantity produced in a given time 7T is smaller in discretized time.

Similarly, the upper bound, Pp < ﬁ*, comes from the lower bound in Theorem 3. The time T
to produce P* respects T — ‘r(ﬁ* +m —1) < T*, where T* is the mean time, in continuous time, to
produce P By definition of ﬁ*, we get T < T*. Consequently, the production in T', Pp, is smaller
than the one in T*, P". O

Proof of Corollary 5. Let us divide the equation of Theorem 3 by the production P, in
steady—state case (when P — o0). First, the last term becomes the cycle time computed by the
BDPH method. Second, the middle term becomes the exact cycle time. Finally, the first term sim-
plifies to the cycle time in discretized time minus the step length, as the term (m — 1) disappears
when the time becomes infinite. O
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