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Abstract

The main objective consists in endowing the elementary particles with an algebraic space-time
structure in the perspective of unifying quantum field theory and general relativity: this is realized
in the frame of the Langlands global program based on the infinite dimensional representations of
algebraic groups over adele rings. In this context, algebraic quanta, strings and fields of particles are
introduced.
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Introduction

This work is a first attempt for endowing the elementary particles with an algebraic space-time structure.
The quantum essence of the quantum (field) theory is then of algebraic nature and the most adequate
mathematical frame envisaged to carry out this project is the Langlands program which sets up bijections
between the set of equivalence classes of representations of the Weil-Deligne group and the equivalence
classes of cuspidal representations of the general linear group.

The algebraic part of the Langlands program is realized by the Galois cohomology and more particularly
by the Eisenstein cohomology which, being in one-to-one correspondence with the representation of the
general linear group, constitutes a representation of the Weil-Deligne group while the analytic part of the
Langlands program is given by the cuspidal representations of the general linear group. The cuspidal
representation of a general linear group is constituted by the sum of its irreducible representations inflated

from the corresponding unitary irreducible representations of the additive group of IR or C .

But, instead of working with a linear mathematical frame as commonly envisaged in quantum theories,
a bilinear mathematical frame will be considered for describing the structure of the elementary particles.
This is justified mathematically in the sense that the enveloping algebra of a given algebra allows to define
a representation of this algebra. This leads us to consider that if an algebra is supposed to be tractable
physically, for example by a system of observations and measures, its mathematical management will only
be reached by considering its enveloping algebra, i.e. by tensoring the given algebra by its opposite algebra.
Generally, if a given algebra can become “measurable”, its opposite algebra will not be and its enveloping
algebra will constitute the manageable algebra corresponding to an objectivable reality. But then, the
quantum theories should be of bilinear nature as the invariants of the group theory and, more particularly,
as the invariants of special relativity. If bilinearity is taken into account, then the quantum theories can
be merged fashionably with the special relativity: this allows to find a simple solution to the problem
of the interactions between elementary particles in the sense that the inextricable N-body problem [Der]
becomes easily solvable if it is replaced by a N-bibody problem. Owing to that, a new light is brought to

the gravitational force which then results from diagonal interactions between bibodies.

An elementary particle must then be considered as a biobject, called a bisemiparticle: it is composed
of the union of a left and a right semiparticle localized respectively in the upper and in the lower half
space: this constitutes the basis of the model worked out by the author since the end of the seventies.
The fundamental algebraic (space-)time structure of a bisemiparticle is then given by a “physical field”
consisting of a sheaf of rings on a bisemimodule defined by the tensor product of a right and a left

semimodule respectively over a right and a left adele (semi)ring.

Bisemiparticles find a physical conceptual basis in the fact that every action implies and needs a



reaction. This concept of action-reaction was worked out by several authors in the frame of quantum me-
chanics: let us mention the famous paper of R.P. Feynman and J.A. Wheeler [F-W] on the absorber theory
of radiation and other papers [Whe] such as, for example, the paper of C.W. Rietdyk [Rie] conjecturing a

retroactive influence based on the EPR paradox.

The vacuum implicit in the Dirac theory by negative energy levels [Dirl], [Dir2] corresponds in this
bisemiparticle model to the existence of a right semiparticle associated to a left semiparticle. It is likely
that P.A.M. Dirac had several times the presentiment of this hidden reality, especially in his celebrated
paper “the quantum theory of the electrons” [Dirl] and in a more recent paper [Dir6] on the epistemology
of relativity and quantum mechanics. Notice that the set of dual right semiparticles associated to the left

semiparticles in the bisemiparticles could be a candidate for the dark matter.

On the other hand, it is conceptually acceptable to think that elementary particles have an internal
structure which looks pointlike to the observer but which must be very complex in order to explain their

transformations and decays. Furthermore, a spinning particle cannot be pointlike.

The idea then consists in endowing elementary (semi)particles with an internal algebraic space-time
structure from which their “mass” shell could be generated. Indeed, a way of bridging the gap between
quantum field theory and general relativity is to consider that the expanding space-time, to which the
cosmological constant of the general relativity equations can correspond, could constitute the fundamental
structure of the vacuum of quantum field theory [Piel]. As, this vacuum of QFT is generator of matter,
it is natural to admit that its space-time structure will generate matter, i.e. massive elementary particles
due to the fluctuations of these elementary vacua associated to local strong curvatures of the space-
time at the origin of degenerated singularities. So, the vacuum of the QFT becomes peopled of massless
bisemiparticles potentially able to generate their mass shells due to the fluctuations of these bisemiparticles
internal vacua which could contribute to the dark energy. If the geometry of general relativity is envisaged
at the elementary particle level and if elementary particle internal vacua are taken into account, then
the vacuum quantum fields correspond to them in the perspective of the Langlands program. Indeed,
the generation of the “discontinued” algebraic space-time obtained by the (representation of) algebraic
groups resulting from the Eisenstein cohomology of Shimura varieties is in bijection with its analytic
“continued” counterpart given by global elliptic modules (which are truncated Fourier series) included in
the corresponding automorphic forms. So, the “discontinued” behavior of the space-time of quantum field
theory is in bijection with the “continued” geometry of space-time of classical general relativity by means

of the Langlands correspondences.

More concretely, the internal vacuum space-time structure of an elementary bisemiparticle will originate
from its internal time structure which will be localized in the orthogonal complement space with respect to
its space structure. So, the internal time structure of a bisemiparticle, which is its vacuum time field, will
be assumed to be of algebraic nature and will correspond to a bisemisheaf of rings over a general bilinear
algebraic semigroup.

The “time” bilinear algebraic semigroup will decompose into conjugacy “bi” classes which are in one-to-
one correspondence with the “bi”places of the considered algebraic extension (bisemi)field. The functional
representation space of the “time” bilinear algebraic semigroup is given by the bilinear Eisenstein coho-
mology which decomposes following the bicosets of the Shimura bisemivariety such that the conjugacy

“bi”classes of the bilinear algebraic semigroup correspond to the Shimura bisemivariety bicosets which



are G¢(A g x A 1)-subbisemimodules decomposing into one-dimensional irreducible (bi)components. Note
that the conjugacy classes of Gi(A g x A ) are defined with respect to its smallest ramified normal
bilinear subsemigroup which implies that the equivalent representatives of the u-th conjugacy class of
Gi(A g x A ) can be cut into (p) 4+ p equivalent conjugacy subclass representatives having a rank equal
to N2 and interpreted as time biquanta, i.e. the products of right quanta by left quanta. So, the rep-
resentations of the one-dimensional components of the right and left conjugacy classes of Gy(Ar x A )
are one-dimensional subsemimodules whose rank is a multiple of the rank N of a time quantum con-
stituting also the representation of the global inertia subgroup of the considered conjugacy class. These
one-dimensional subsemimodules are isomorphic to one-dimensional (semi)tori constituting the irreducible
analytic representations of G(A g x A ) associated to the considered right or left places of the algebraic

real number semifield and are interpreted physically as elementary “time” waves and strings.

So the vacuum algebraic time structure of a left and of a right semiparticle will be given by a set
of correlated left and right waves represented by a left and a right time semisheaf of rings generated by
Eisenstein cohomology from a 1D-time symmetric splitting semifield LT . The union of these left and
right semisheaves of rings is the vacuum time “physical field” of the particle.

But, the Eisenstein cohomology needs a cuspidal automorphic representation allowing to give an an-
alytic representation to the bilinear algebraic semigroup G¢(A g X A1) . In this purpose, it is assumed
that the space of global elliptic semimodules is included into the space of cusp forms so that the ring
of endomorphisms acting on global elliptic bisemimodules is generated by the tensor product of Hecke
operators whose coset representatives are given in function of the decomposition group associated to the
split Cartan subgroup.

These global elliptic bisemimodules are expanded in formal power series whose coefficients can be
obtained from the eigenvalues of the coset representatives of the tensor product of Hecke operators. Each
term of a global elliptic semimodule is a one-dimensional irreducible torus whose radius can be obtained
from the coefficient mentioned above.

In fact, only global elliptic bisemimodules have a real meaning and decompose into a sum of pairs of
one-dimensional tori constituting irreducible analytic representations on pairs of places of the considered
algebraic extension (bisemi)field.

The algebraic space structure of a semiparticle can also be constructed as the functional representation
of a bilinear algebraic semigroup in the context of the Langlands program or can be generated from its

1D-time wave structure by a (7, o E') morphim where:

a) E is an endomorphism based upon a Galois antiautomorphism which transforms the Eisenstein
cohomology in Eisenstein homology and in a complementary Eisenstein cohomology associated to

the generation of a disconnected complementary 1D-time wave structure.

b) 74—, is a morphism transforming partially the complementary 1D-time wave structure which is a
1D-time semisheaf into a complementary 3D-space semisheaf representing the structure of a spatial

wave.

If the smooth endomorphism E; is such that the complementary Eisenstein cohomology is associated
to the generation of a complementary connected semisheaf which is proved to be three dimensional, then
the resulting complementary 3 D-semisheaf will constitute the basic time structure of the three semiquarks

of a semibaryon.



The fundamental 1D-time structure of a semibaryon is thus composed of a 1D-core time semisheaf
generated by Eisenstein homology on the basis of the smooth endomorphism E; and of three 1D-time
complementary semisheaves generated by the complementary Eisenstein cohomology and constituting
the time structure of the three semiquarks. The space structure of the semiquarks is then obtained by

(Vt;—r; © E;) morphisms, 1 < ¢ < 3, as explained above.

Semiphotons result from the nearly complete transformation of 1D-time wave semisheaves into 1D-
complementary space wave semisheaves by the (y;—, o E') morphism.

The vacuum space-time structure of semiparticles is thus assumed to be given by:
a) the number of sections of the space-time semisheaves representing their structure;

b) the set of ranks of these sections and especially the set of parameters c¢;—.,(p)r,r measuring the

generation of the complementary 3 D-space semisheaf with respect to the reduced 1D-time semisheaf.

Each one-dimensional section representative p of the semiparticle time or space semisheaf of rings has
thus a rank n, = (p + p)N and is composed of (p + ) quanta having a rank N . And, a one-dimensional
spatial section representative p , which is a string, is interpreted as the internal vacuum structure of a
semiphoton at (p + ) quanta. By this way, the vacuum time and space structure of semiparticles is
quantified.

As the vacuum fundamental space-time structure of semiparticles is strongly perturbed because it is
assumed to have likely a spatial extension of the order of the Planck length, singularities are generated
on the sections of the space-time semisheaves 9}{5’ (t,r)sT . Consequently, these sections are submitted to
versal deformations and spreading-out isomorphisms. Recall that a spreading-out isomorphism constitutes
an algebraic extension of the quotient algebra of the corresponding versal deformation such that the base
sheaves of the quotient algebra can be pulled out partially or completely by a blowing-up morphism, called

spreading-out map which depends on a smooth endomorphism based on a Galois antiautomorphism.

As the base sheaves of the versal deformation do not necessarily cover compactly the fundamental

space-time semisheaf, a gluing-up of these base sheaves is envisaged so that they cover it by patches.

Taking into account the codimension of the singularities on the fundamental space-time semisheaf
9}{5’ (t,r)sT , it is proved that a maximum of two successive spreading-out isomorphisms consecutive
to versal deformations can occur leading to the generation of two embedded semisheaves covering the

fundamental space-time semisheaf of a semiparticle.

This allows to give a new light on the nature of the quantum field theory vacuum which is a state
of zero-energy from which elementary particles are created by pairs. Indeed, one of the objectives of the
present algebraic quantum theory is to consider that the vacuum of QFT must be viewed as being part
of the internal structure of bisemiparticles in the sense that the fundamental 4 D-space-time semisheaf
9}{5’ (t,r)sr of a semiparticle and the first covering semisheaf 9}{5’(15, r)ma , obtained from 9}{3 (t,7)sT by
versal deformation and spreading-out isomorphism and called the “middle-ground” structure, constitute
the “vacuum physical semifield” of the semiparticle from which the second covering semisheaf 911?:5 (t,r)m

obtained from 9}{5’(&7“) Mmc by versal deformation and spreading-out isomorphism, constitute the mass



physical semifield of the semiparticle. Note that this way of generating the mass of a (semi)particle

replaces advantageously the Higgs mechanism.

These two space-time and middle-ground structures have likely a spatial extension of the order of the
Planck length to which it is well known that there is a breakdown of the standard quantum field theory
[Pen].

Matter is then created from space-time. This reflects as aspiration of A. Einstein (June 9, 1952): “I
wish to show that space-time is not necessarily something to which one can ascribe a separate existence
independently of the actual objects of physical reality. Physical objects are not in space, but these objects

are spatially extended. In this way, the concept of “empty space” loses its meaning”.

The quantification of the 4 D-semisheaves “ ST 7, “ MG ” and “ M 7, given by their algebraic structure,
involves that the frequencies of vibration of the semisheaves “ ST 7, “ MG ” and “ M ” are quantified.
This allows to demonstrate that the 4D-semisheaf “ M ” of a semiparticle is observable while the 4D-

“

semisheaves “ ST 7 and “ MG ” are unobservable because the vibration frequency of the semisheaf “ M ”

is inferior to the vibration frequencies of the semisheaves “ ST 7 and “ MG ”.

The semisheaves 0}, (t,7)st , 05 ;(t,7)mc and 0 7 (t,7)a constitute commutative algebras while
one of these algebras extended by versal deformation(s) and spreading-out isomorphism(s) becomes non-

commutative.

As it was briefly taken up above, the algebraic structure of the “ ST 7, “ MG ” and “ M ” levels
of an elementary particle is crudely given by bisemisheaves over 10 D-bisemimodules of the corresponding
bisemiparticle composed of the union of a left and of a right semiparticle. It is then demonstrated that a
“ST”,“MG?” or “M " bisemimodule, noted (Mg,s7,ma,m @ Mr.s7,mc,m) can break down under a

blowing-up morphism into:

a) a diagonal bisemimodule (Mpg.s7,mc,.m @b Mr.s7mc,m) of dimension 4, characterized by a flat
geometry and a diagonal orthogonal basis: it gives the diagonal central bistructure of the “ ST 7,
“MG?” or “ M 7 level of the bisemiparticle;

b) a magnetic bisemimodule (M 1%; sT.mc.m Om M LS; st.mg.r) of dimension 3, characterized by a non-
orthogonal basis and a metric called magnetic. It is composed of “ ST 7, “ MG ” or “ M ” magnetic
biquanta and constitutes the magnetic moment of the corresponding level of the bisemiparticle; this
magnetic bisemimodule results from the off-diagonal spatial interactions between a left and a right

semiparticle;

c¢) an electric bisemimodule (MJQE(TSE\JG o De Mfgg%JG ) of dimension 3, characterized by a metric

called electric. It is composed of time-space or space-time biquanta which constitute the electric
charge of the corresponding level of the bisemiparticle. This electric bisemimodule results from off-
diagonal interactions between the time (resp. space) components of the right semiparticle and the

space (resp. time) components of the associated left semiparticle.

The diagonal, magnetic and electric bisemimodules are defined respectively by the “diagonal”, “mag-
netic” and “electric” tensor products between the right and left semimodules Mg and My, (resp. M Ig and
M7 or Mg and M7 | ...).



If we consider the projection of the right (resp. left) semimodule on the left (resp. right) semimodule,
then the right (resp. left) semimodule becomes the dual semimodule of the left (resp. right) semimodule.

Furthermore, a bijective linear isometric map from the projected right (resp. left) semimodule to the
left (resp. right) semimodule transforms each covariant element into a contravariant element and gives
rise to a left (resp. right) diagonal, magnetic or electric bisemimodule.

Associated with the appropriate internal bilinear form, the left (resp. right) diagonal, magnetic or
electric bisemimodule allows to define a left (resp. right) bilinear internal Hilbert, magnetic or electric

space.

The algebras of operators acting on bilinear Hilbert, magnetic and electric spaces are bialgebras of
bioperators owing to the bilinearity of these spaces. We have thus to consider bialgebras of von Neumann
of bounded bioperators acting on these bilinear spaces. As the representation space of a given algebra is
isomorphic to its enveloping algebra, the extended bilinear Hilbert spaces characterized by a nonorthogonal
Riemanian metric will be taken as natural representation spaces for the bialgebras of bounded operators.

In this context, an (elliptic differential) bioperator ( Tr ® Ty, ) maps the bisemisheaf Mp ® My, on the
GL, (A g x A )-bisemimodule Mg ® M|, into the bisemisheaf Mﬁ ® M‘L’ on the shifted G Ly ((Ar ®
C) x (A ® C))-bisemimodule (Mg ® My) . Mﬁ ® Mg is a perverse bisemisheaf whose sections are
defined over the conjugacy classes y with multipliticies m, of GLyj (AR ® C) x (A ® C)). Now, the
Langlands program, setting up bijections between the algebraic GL, (A g x A p)-bisemimodule (Mg ®
M) and the corresponding analytic global elliptic bisemimodule ((¢r(sg) ® ¢r(sL)) , can be extended,
under the action of a bioperator, into a shifted Langlands program establishing bijections between the
shifted bisemimodule (Mf x M{) and the corresponding analytic shifted global elliptic bisemimodule
(0% (sr)®¢% (s1)) . An eigenbivalue equation directly follows from the shifted global elliptic bisemimodule
such that its eigenbivalues form an embedded sequence in one-to-one correspondence with the embedded
eigenbifunctions of Tr ® T, which form an increasing sequence of truncated global elliptic bisemimodules,
i.e. products, right by left, of truncated Fourier series. In this perspective, a bisemiparticle spatial
wave bifunction will be given by the analytical representation of the GLy(A g x A 1)-bisemimodule and
will consist in an increasing set of products, right by left, of truncated Fourier series whose number of
terms corresponds to the number of considered conjugacy class representatives of GLa(Ar x A ) : so, a
bisemiparticle wave bifunction is described in terms of its spectral representation which corresponds to the
classical assertion saying that the spectral theorem is equivalent to consider that any unitary representation
of a compact Lie group is a direct sum of irreducible representations.

As the consequence of the algebraic spectral representation of a wave bifunction, the group of auto-
morphisms of an analytic von Neumann algebra is isomorphic to the group of “shifted” automorphisms of
Galois which has for consequence that the entire dimensions of the von Neumann algebras are in fact the
integers labelling the classes of degrees of Galois extensions.

It is then proved that the discrete spectrum of a bioperator is obtained by means of an isomorphism
from the bialgebra of von Neumann on an extended bilinear Hilbert space to the corresponding bialgebra

of von Neumann on a bilinear diagonal Hilbert space.

The bilinear structure of this quantum theory involves that:

1) the traditional calculus with the amplitudes of probability of quantum field theories is replaced by
a calculus with intensities of probability;

2) the rotation of the sections of the semisheaves of a right (resp. left) semiparticle with respect to



the sections of the semisheaves of its associated left (resp. right) semiparticle allows to define the
internal angular momentum of the right (resp. left) semiparticle from which it results that a right

and a left semiparticles rotate in opposite senses and have only two possible spin states.

To each 1D- and 3D-“ ST 7, “ MG ” and “ M ” semisheaf corresponds a phase space which has the
structure of a F-Steenrod bundle whose basis is given by the considered semisheaf.
The bisections of the bisemisheaves are tensor products of differentiable functions for which wave

equations are studied: they are degenerated second order elliptic differential bilinear equations.

The right (resp. left) wave function, solution of a wave equation, is proved to have a spectral decom-
position in terms of eigenfunctions having an algebraic representation as mentioned above. The statistical
interpretation of the wave function is the same as in quantum theories. This allows to reconcile the Bohr

and Einstein points of view about quantum theories.

Every elementary bisemiparticle has a “mass” central algebraic structure composed of pairs of right
and left one-dimensional sections (which are in fact one-dimensional waves or open strings) behaving like
(damped) harmonic oscillators. Thus, a “field” (in the physical sense, but having an algebraic structure)
can be associated to the mass structure of each elementary bisemiparticle. And, as each one-dimensional

subsection is an open string, this algebraic quantum model has also a “string” aspect.

The mass equation for a bisection “ u 7 of the bisemielectron is especially considered: it is the equation
of a damped harmonic oscillator whose general solution consists in the superposition of two damped waves
in phase opposition with frequencies given by E, = %u#s and whose general motion corresponds to a
damped sinusoidal motion whose dephasage is proportional to the linear momentum of the considered left
(resp. right) section of the left (resp. right) semielectron.

It is proved that the energy of a section s, at p, = p+ it quanta can be given in function of the energy
Eﬁ of a quantum on this section following E,, = HpE;IL . And, the energy Eﬁ of a quantum M;{ € 5, can
be calculated from the analytic development of the corresponding nontrivial zero of the Riemann Zeta
function ((s) .

The internal machinery of a bisemiparticle allows to justify the absorption and the emission of right and
left quanta. In fact, each spatial one-dimensional bisection of the “ ST 7, “ MG ” and “ M ” bisemisheaf
behaves globally like two adjacent gyroscopes having opposite torques which allows to understand that
diagonal biquanta are emitted under the action of a diagonal centrifugal biforce represented mathemati-
cally by a diagonal smooth biendomorphism corresponding to an inverse deformation and that magnetic
biquanta are emitted under the action of a Coriolis biforce represented mathematically by a magnetic
smooth biendomorphism.

The emission and reabsorption of left and right magnetic quanta by left and right semisheaves having
different magnitudes of rotational velocities generate by reaction a global movement of translation of the

bisemiparticle.

The structure of bisemiparticles is given by bisemisheaves so that an action-reaction process is generated
by the interactions between the right semisheaves of the right semiparticle and the left semisheaves of the
left semiparticle. Generalizing this concept to a set of bisemiparticles, it can be easily demonstrated that

the interactions between a set of bisemiparticles result from the interactions between the right and left



semisheaves belonging to different bisemiparticles, leading to a set of mixed action-reaction processes of
bilinear nature associated to interferences. This allows to get rid of the inextricable problems of Physics
originated from linearity as A. Einstein outlined in [Ein5]: “Linear laws have solutions which satisfy the
superposition principle but they do not describe the interactions between elementary particles”.

The general mathematical frame allowing to describe the interactions between a set of N bisemiparticles
is the Langlands reducible program as developed in [Pie9]. In this context, the spatial mass structure (i.e.
the “mass” field) of N interacting bisemiparticles is given by the nonorthogonal completely reducible

functional representation space of GLan (A g X A 1) as introduced in chapter 5.

The bilinear interactions generate gravitational, magnetic and electric biquanta giving rise to a gravito-
electro-magnetic field such that the gravitation results from diagonal interactions between bisemiparticles
while the electromagnetism originates from off-diagonal interactions.

It is then proved that:

a) a set of bisemifermions interact by means of a gravito-electro-magnetic field;
b) a set of bisemiphotons interact by means of a gravito-magnetic field;

¢) a set of bisemifermions and of bisemiphotons interact by means of a gravito-electro-magnetic field.

The biwave equation of N interacting bisemiparticles separates automatically into N, biwave equations
of the N, bisections of the N bisemiparticles and into ((N,;)? — N,) biwave equations referring to the
interactions between the right and left sections of these IV bisemiparticles.

In this context, the antisymmetric electromagnetic field tensor is replaced by a gravito-electro-magnetic
tensor whose diagonal components are the components of a gravitational field. This leads to a new

conceptual approach of the electromagnetism and of the quantum gravity.

In this algebraic quantum model, the strong interactions and the cause of the confinement of the
semiquarks result from the new structure proposed for the semibaryons. Indeed, the confinement of the
semiquarks originates from the generation of the three semiquarks from the core time semisheaf of the
semibaryon by a smooth endomorphism F; . The core time structure of a semibaryon is physically justified
by the fact that the quarks contribute only to about 15% of the spin of the nucleon [Ash].

We then have that a right and a left semibaryon of a given bisemibaryon interact by means of:

a) the electric charges and the magnetic moments of the three bisemiquarks;

b) a gravito-electro-magnetic field resulting from the bilinear interactions between the right and the left

semiquarks of different bisemiquarks;

¢) a strong gravitational and electric fields resulting from the bilinear interactions between the central

core structures of the left and right semibaryons and the right and left semiquarks.

The leptonic decay of a bisemibaryon results essentially from the diagonal emission of a bisemilepton
throughout a diagonal biendomorphism. The emitted bisemineutrino allows to take into account the
bilinear interactions between the emitting bisemiquark and the emitted bisemilepton.

The nonleptonic decay of a bisemibaryon consists essentially in the emission of a meson by a bisemiquark

throughout a nonorthogonal biendomorphism.
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Finally, it is shown that the EPR paradox receives a new lighting because the linear frame of quantum

theories is replaced by a bilinear frame so that two elementary bisemiparticles interact through the space

by means of a gravito-magneto-(electric) field and nonlocally through the time by means of a 1D-time

gravitational field.

Let us also make the following last remarks:

1)

This algebraic quantum theory is an algebraic quantum field theory describing the structure of
elementary particles in terms of bisemiparticles from their internal algebraic space-time structures
interpreted as elementary internal vacua whose union corresponds to the essential part of the vacuum
of QFT.

This algebraic quantum theory lies on the Langlands mathematical program and does not proceed
from Lagrangian methods of classical mechanisms as the quantum field theories. This theory is thus
not a priori directed towards the description of the trajectories of particles. However, the study
of the structure of bisemiparticles corresponds to bringing up to light the existence of an internal
dynamics with respect to internal variables of which the most popular are the proper time and the
proper mass. But, this elementary “internal dynamics” also evolves with respect to an external
time variable throughout the equivalent of the Stone theorem and leads to an “external dynamics”

corresponding to the classical or quantum dynamics.

In this AQT, all observables are quantified due to the algebraic nature of the theory: thus, the
internal time, the internal space, the mass, the energy, the linear momentum, the charge, the elec-

tromagnetism and the gravitation are quantified.

The internal structure of a massive bisemiparticle is composed of biwave packets localized into the
1D-time and 3D-spatial orthogonal spaces: the 3D-spatial structure of a bisemiparticle thus has
a wave aspect which becomes evident when it interacts with other bisemiparticles by interference
process. The corpuscular aspect of the 3D-spatial structure of a bisemiparticle can become apparent

when its 3D-spatial biwave packet is flattened into two dimensions as resulting from a collision.

The internal time structures of semiparticles are perhaps not localized in a traditional one-dimensional
time space but in a three-dimensional space. Then, a magnetic moment and/or field related to
3D-time structures ought to be envisaged as resulting from off-diagonal interactions between time

right-semisheaves and time-left semisheaves.

Some of the difficulties of the standard model seem to have been solved in this algebraic quantum
model, as for example the origin of the mass, the nature of the dark matter and energy and the

existence of three families of elementary particles.
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1 Algebraic representation of the fundamental 4D-space-time

structure of semiparticles

1.1 Generation of 1D-semisheaves of rings by Eisenstein cohomology

The aim of this section consists in the generation of two symmetric right and left 1 D-time semisheaves of
rings 0 (—t) and 6} (+t) whose ¢ right and left sections are continuous functions over the completions of
finite Galois extensions of global number field K of characteristic zero. The finite Galois extensions of K
are the splitting field over K of the polynomial ring K[t] in the time indeterminate “ ¢ ”.

The dimension corresponding to the time variable will be called the generative dimension.

Notation : “ R,L” means “ R (respectively L ).

Definition 1.1.1 (Symmetric polynomial ring) The polynomial ring K[t] is assumed to have for el-

ements the polynomials P, (t) and P, (—t) which are such that :

a) All the polynomials P, (t) , 1 < u < ¢, 1 < v < oo, have a same number of positive simple
(real) roots “ N:[L ” and a same number of negative simple (real) roots “ N:[R 7le. Nfp ==
NJL =...= N;L and N1+R =... = NJR =... = N;R with NJL in general not equal to NJR and

+
Nyrp € IN.

b) The polynomials P, (—t) , 1 < pu<g¢q,1<wv < oo, have a number of positive simple (real) roots
N, equal to the number of negative simple (real) roots N, :R of the polynomials P, (t) and vice
versa.

So we have that

1
2. N:[L +N =N+ NJR .

1. N:L:N;RvN-’_R:N;Lav,uvlg,uSQ;

Remark that, when the polynomials P¢ (t) and Pg (—t) of the polynomial ring K[t] have simple
complex roots, K[t] is manifestly a symmetric polynomial ring if all the polynomials P¢ (t) and Pg (—t) ,

1<u<gqg,1<v <o, have a same number of simple complex roots.

Definition 1.1.2 (Symmetric splitting semifield) This polynomial ring K[t] is then composed of a
set of pairs of polynomials {P,, (t), P, (—t)},, . Each set of pairs of polynomials for the index ;1 generates
the symmetric splitting subfield L, which is composed of the set of positive simple roots, noted L:[ , and

of the symmetric set of negative simple roots, noted L, . L, is thus characterized by the properties:
I +
a) L,=L, UL} .
- + _
b) L,NLf=0.
c) To each positive simple root ¢y,4 € LI corresponds the symmetric negative simple root o~ € L, .

Ll‘f and L, are respectively a left and a right algebraic extension semisubfields. They are semisub-

fields because they are commutative division semisubrings. They are “semisubrings” because (L;f, +) and
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(L,,, +) are abelian semisubgroups [H — N lacking for inverses with respect to the addition and endowed

with associative multiplication and distributive laws.

Similarly, each set of pairs of polynomials {P¢ (t), P, (—t)}u,, € K[t] generates a complex symmetric
splitting subfield Lj, composed of the set of complex simple roots, noted ijL , and of the symmetric set of
complex conjugate simple roots, noted Ly, . Lff and Ly~ are also respectively a left and a right algebraic

extension semisubfields.

Definition 1.1.3 (Right and left specializations) We consider the right and left specializations [Weil]
of the right and left semisubrings A,r and A, (included respectively in the semirings Ar and Ay, ) from
the polynomial subring {P,, (¢), P,, (—t)} € K[t] .

The right (resp. left) specialization of A, r (resp. A,z ) is completely determined by p,r (resp. pur )
which is a nonzero prime right (resp. left) specialization ideal of A,r (resp. A,z ), i.e. the set of all

negative (resp. positive) nonunits of A, r (resp. A,z ), such that p,r Npur =0 .

We denote by Byr (resp. B,r ) the integral closure of A,g (resp. A,r) in L, (resp. L} ) (i.e. the
set of elements of L (resp. L} ) which are integral over A,r (vesp. A,z )). Then, the right (resp. left)
semisubring B, g (resp. B,z ) is a finitely generated A, r-right semimodule (resp. A, r-left semimodule)
[Ser3].

Let bur,, C -+ C bur,, (vesp. bur,, C -+ Cbur, ) bea chain of distinct prime right (resp. left)
ideals of B,r (resp. B, ) obtained under the right (resp. left) action of the right (resp. left) Galois
group I'yr = Autg L, (vesp. T'y = Autg Lj ).

If pur = bur,, N Aur (vesp. pur = bur,, N Aur ), 1 <iy <mny , then byp, (resp. byr, ) divides (or
is above) p,r (resp. pur ).

Then, B.r/byur,, (vesp. Bur/bur,, ) is an extension of Ayr/pur (vesp. Aur/pur ) of finite degree,
called the right (resp. left) global residue degree of byr = byur,, (vesp. bur = bur,, ) and noted fy,,
(resp. fi, ).

1.1.4 Inertia subgroups and adele semirings

If the right (resp. left) ideal b, (resp. b,, ) is assumed to be unramified, we have more precisely that:

LK) = fy,,  (esp. [L;" K] = f,, )

HR

where L;(M) (resp. L:f(m) ) is a right (resp. left) unramified algebraic extension.

Let Gal(L, ™ /K) (resp. Gal(L;"" /K) ) denote the Galois subgroup of the unramified right (resp.
left) extension L, ™" (resp. L™ ) of K and let Gal(L,, /K) (resp. Gal(L}}/K) ) be the Galois subgroup
of the corresponding ramified right (resp. left) extension L, (resp. L;’[ ).

If 7, - (resp. I+ ) denotes the global inertia subgroup of Gal(L,, /K) (resp. Gal(L}/K) ), then the

equalities follow:

Gal(L,, /K)/I, = Gal(L,; " /K)
(resp.  Gal(L;/K)/I,+ = Gal(L " /K) ),
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leading to the exact sequences:

1 I Gal(L, /K) —— Gal(L,"/K) —— 1

(resp. 1 Iy Gal(L}/K) —— Gal(L["/K) —— 1).
On the other hand, it was seen in [Pie9] that

(L, K] = fo,, =kp+p' =p+p, 1<p<g<oo,

where k < p — 1 is an integer referring to congruence classes modulo p such that kp 4+ p' =p+ p

(vesp. [LI") K] =fy, =kp+u =p+p).

If the global residue degree fbuR (resp. fbuL ) is an integer and not an integer modulo p , then p = 0 and
Jop = fou, =40 -

If N denotes the order of the global inertia subgroups I, - (resp. I;+ ), 1 < u < ¢ < oo, then the
degrees of the right (resp. left) ramified extensions L, (resp. L} ) are given by integers modulo N :

Nup =L, K] =%+ fo, N=fp, -N=@+upN
(vesp. mny, =[L;:Kl=x+fy, -N=~fy, -N=@+pN)

where * denotes an integer inferior to N .

Let Ly, (resp. L,, ) be the p-th completion corresponding to the right (resp. left) ramified algebraic
extension L (resp. L} ) and associated to the place T, (resp. vy, ).

The completion Ly, (resp. Ly, ), which is a one-dimensional K-semimodule, is assumed to be generated
from an irreducible (central) K-semimodule L (resp. Ly ) of rank (or degree) N such that Lyt >~ pug
(resp. Lyt ~ ppy ).

As a result, Ly, (resp. L,, ) is cut into a set of (p 4 i) equivalent real subcompletions Liﬁ/ (resp.

L . ), 1 < <, of rank N : since the rank of Ly, (resp. L,, ) is also given by:

"N=(p+p N
"N=(p+p N).

Nyup = [Ly, : K]~ fp
(resp. Ny = [Ly, : K] >~ fi

HR

HL

So, the ranks or degrees of the real completions Ly, (resp. L,, ), 1 < u < ¢, are integers of Z /p NZ ,
noted in condensed form ipq .

On the other hand, as a place is an equivalence class of completions, we have to consider at a place
Ty (resp. v, ) a set of real completions { Lz, m,} (resp. {Lv, m,} ), muy € N , equivalent to the basic
completion Ly, (resp. L, ) and having the same rank n,, (resp. n,, ) as Ly, (resp. L,, ); the integer
m) = sup(m,,) is interpreted as the multiplicity of Ly, and L., .

Then, a right (resp. left) “ramified” adele semiring A 1 (resp. A1, ) can be introduced by:

ALF - HLEM H Li,um“
I3 Mp

(vesp. A, =[[Lu, [I Lu,m, )-
1% mpy
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1.1.5 Representations of the algebraic bilinear general semigroup

Let TZ(A 1.) (resp. To(A1,) ) denote the matrix algebra of lower (resp. upper) triangular matrices
of order 2 over the adele semiring A ;_ (resp. A, ). Then, according to [Piel0], an algebraic bilinear

general semigroup over the product of A ;. by A1, can be introduced by:
GLy(A L, xAp,)=T5(AL,) x Ta(AL,)
such that:

1) GL2(A . x A1) has a bilinear Gauss decomposition:
GLy(A Ly x Ap,) = [(D2(A ;) x Da(A L )|[UT2(AL,) x UTy(A L))
where

e Dy(-) is a subgroup of diagonal matrices,

e UTy(+) is a subgroup of unitriangular matrices;

2) GL2(A . x A ) has for modular representation space Repsp(GLa(A . x A 1,)) given by the tensor
product Mg ® M, of a right TZ(A 1_)-semimodule Mg by a left T»(A 1, )-semimodule M, .

Mpg (resp. Mp ) decomposes into T3(Lsg, )-subsemimodules M, ,,, (vesp. T3(Ly,)-subsemimodules
M

Vp,my,

) following;:

q
= @EB T (resp. My = @@Mv“m“ ).
p=1lmy p=lmy
Each T3 (Ls, )-subsemimodule Mz, m, (resp. Tp(Ly, )-subsemimodule M, ,, ) constitutes an equiv-
alent representative of the p-th conjugacy class of T{(A 1) (resp. To(A,) ) with respect to the fixed
global inertia subgroup Ir, and has a rank given by n,, = (p4pu)- N (resp. n,, = (p+p)-N ). So, the
T4(A 1_)-semimodule Mg (resp. T>(A 1, )-semimodule M, ) has a rank:

@m nom
(resp. np = ég} ?g}(p—i-u)-l\f).

On the other hand, the right (resp. left) global inertia subgroup Ir (resp. Ir, ) has a representation
space given by Repsp(TQt(Lgh ) (resp. Repsp (T4 (L 1)) ) where Ly, (vesp. Ly ) is an irreducible completion
of rank N as introduced in section 1.1.4.

1.1.6 Quanta, strings and field are introduced

Consequently, each representative Mz (resp. M,,,, ) of the pu-th conjugacy class of T4(A L)

(resp. To(A 1) ) is cut into (p+ p) equ1vafent conjugacy subclass representatives Mﬁﬁfm# (resp. Mvﬂ,’mu ),
1 </ < p, having a rank equal to N and being in one-to-one correspondence with the (p+ ) equivalent
subcompletions L, + (vesp. L .+ ) of Ly, (vesp. Ly, ).

These conjugacy sqlbclass representatlves M. o (resp M . ) are interpreted as right (resp. left)

time quanta which are thus closed irreducible 1D algebralc sets of degree N .
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Each representative Mg, . =~ (resp. My, ), being a one-dimensional T3(Ly, )-subsemimodule (resp.
T5(Ly, )-subsemimodule), is a string localized in the lower (resp. upper) half space. So, each string M, ,,,
(resp. My, .. ) is composed of (p+p) quanta, where (p+p) is the global residue degree fy, . (resp. fy, )
referring to the dimension of a quantum class representative.

On the other hand, we want to introduce the set of smooth continuous (bi)functions on the representa-
tion space Mr® M, = Repsp(GLa(A . xA 1)) of the algebraic bilinear semigroup GLa(A 1_xA 1 ). Due
to the bilinear Gauss decomposition of GLa(A 1_x A 1), we have to envisage the set of smooth continuous
functions ¢gp (Tgr) » Tgn € To(AL,) , on Mg = Repsp(T4(A 1)) and localized in the lower half space as
well as the corresponding symmetric set of smooth continuous functions ¢, (z4,) , 4, € T2(A1,) , on
My, = Repsp(T2(A 1,)) and localized in the upper half space.

On Mg ® My, , the tensor products ¢g,(z4,) ® ¢G, (x4, ) of smooth continuous functions have to be
considered: the are called bifunctions.

But, as GLa(A 1, x A ) is partitioned into conjugacy classes, we have to take into account the
bifunctions ¢c,, ., #(Tur) ® GG, m, o (Tu,) on the conjugacy class representatives My, ® M,

womy C

The set of smooth continuous bifunctions {¢¢,, .., n(Tur)©dG, .. L (Tp, )}gﬂu on the GLa(A L_xA L )-

bisemimodule My ® My, is a bisemisheaf of rings, noted Cps, ® Cpr, or MR ® ]T/[/L , in such a way that the
set of continuous bifunctions are the (bi)sections of Cpr,, ® Cpry -

Note that Casp, (resp. Car,, ), having as sections the smooth continuous functions (ZSGu,mM,R(xHR) (resp.
GGym, .0 () ), is a semisheaf of rings because it is a sheaf of abelian semigroups Carp(p.,) (resp.
Cop(xy,) ) for every right (resp. left) point z,, (resp. x,, ) of the topological semispace Mp =
Repsp(T4(A 1)) (resp. My, = Repsp(T2(A ,)) ) where Cary(2py,) (resp. CMy(x,, ) has the structure of a
semiring [Serl], [G-D].

Remark that the pair {Casp,Car, } of semisheaves of ring or their product Cpr, ® Cpr, is what the
physicists call a field because each pair {¢,, ., 1 (Tur): #G,.m, . (Tp, )} of smooth continuous symmetric
functions behaves like a harmonic oscillator as it will be seen in the following.

As each representative My, .~ (vesp. M,, . ) of the u-th conjugacy class of T5(A 1) (resp. To(Ar,))
has a rank equal to n,, = (p+ )N (resp. n,, = (p+ p)N ), we will say by abuse of language that the
function ¢, ., »(Tus) (vesp. bc, ., 1 (Tn,) ) on My, .~ (vesp. My, . ) is characterized by a rank n,,
(resp. my, ).

If ¢ . (x ) (resp. @ . (z .. ) ) denotes of the smooth continuous function on the p'-th
G/,L,mp,,R Gug G/,L,mp,,L Gup,

equivalent conjugacy subclass representative M ..  (resp. M . ), then (M . ¢ . (T, )
Vp,my, Vp,my, Vp,my, Gy.,mp',R GHR

(vesp. (M .0 bgur (g ) ) is a closed irreducible one-dimensional subscheme of rank N associated
womp L L

to the right (resp. left) quantum M_,  (resp. M . ) and noted M_,,  (vesp. M . ).
Vp,my, Vp,my, Vp,my, Vy,m

"

1.1.7 Emergent projection and Borel-Serre compactification

1) As the right (resp. left) subsemimodules M3, ,, ~(resp. My, ,, ) are not necessarily closed strings,
the emergent toroidal projective isomorphisms:

Yur : My

Vu,my,

- TﬁR (resp.  Yup 1 Mum, —— TﬁL )
are introduced such that [Pie3]:

a) the geometric points of M@,mu (resp. M, are mapped onto the origin, called the emergence

)
By
point which can be viewed as the point at infinity of the resulting projective variety;
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b) these geometric points are then projected symmetrically from the origin into the affine connected
compact algebraic varieties M%Tu’m# (resp. M;i,m“ ) [C-S] which “are” 1D-(semi)tori T} (resp.

T, ) [B-T] characterized by a radius of ejection r,, , and such that:

° M%L,mu (resp. MUTW”“ ) are localized in the lower (resp. upper) half space with respect to

the time variable “ ¢ 7;

e cach time quantum M_TM, is localized on a closed affine subset of METM , taking into
Kom

Vp,my,

account the v, : M_,,  — M TM, morphism.
Homy

Vp,my,

Remark that it will also be considered in the following that ]T/[/_TM, (resp. M T, ) are

Ky By

isomorphic to 1D-(semi)tori, the distinction between the two cases being in general evident.

the space X = GL2(IR)/GL2(Z) corresponds to the set of lattices of IR . In this perspective, we
have introduced in [Pie9] a lattice bisemispace Xg,,, = GLa(A 1 X ALW)/GLQ(Z;) , where A 1
is a ramified adele semiring over a complex semifield L,, , such that the boundary 0X g, , of the
compactified bisemispace X g, , corresponds to the boundary of the Borel-Serre compactification
[B-S] and is given by:

OX s = GLa(A 11 x A 1) /GL(Z,,)

where A ;r (resp. A pr ) is the right (resp. left) ramified adele semiring with respect to the “toroidal”
completions of the L%u (resp. qu y:Apr =11 L%u Lr
M M T
nw

v *
Homy
my

Let us note that there exits an isomorphism yrxz : Xg,,, —— 0Xgg,, between the compact-
ified lattice bisemispace Xs,, , and its boundary dXg,, , such that a one-to-one correspondence
exists between the complex “bipoints” of X 5, , and the real “bipoints” of 91X g,,,, (a bipoint being
defined as the product of a right point localized in the lower half space by a left point localized in
the upper half space).

The double coset decomposition 95 KD, of the boundary X s, , of the compactified lattice bisemis-

pace corresponds to a Shimura bisemivariety and is given by:

_ =2
aSK}?XL = PQ(ALZ‘I X ALTI) \ GLQ(AL%“ X ALI)/GLQ(Z;%)

where
o Py(A pr ) is the standard parabolic subgroup over the adele subsemiring A = = [] LT TT LE
v v " I3 my, My,
where Lfl denotes the p-th irreducible toroidal central subcompletion of LZH having a
smy

Homy,

rank equal to N .

Py(A L1, % A Lfl) is a bilinear parabolic subgroup and is considered as the smallest normal
ramified bilinear subsemigroup of the bilinear algebraic semigroup GLa(A LT X A L{) . The
bilinear quotient semigroup P (A 2 A LT )/GLa(A pr < A pr) has its (bi)cosets which are in
one-to-one correspondence with the modular conjugacy classes of GLa(A ;7 x A rr) with respect
to fixed bielements which correspond to the product L% X th of irreducuible subcompletions.

e the general bilinear semigroup G'L2(A x x Apr) is a bilinear algebraic semigroup [Chel],

also noted G, , (A rxr) in abbreviated form, to which corresponds the bilinear semigroup of
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modular automorphisms of Gy, , (A rxr) , such that the set of products, right by left, of orbits
of Gy, . (A rx1) coincide with its modular conjugacy (bi)classes.

The fixed bielements of a modular conjugacy class of GLa(A r x A pr) are the elements the
bilinear parabolic subgroup Ps(A LT, X A LT1) , representing the product of global inertia sub-
groups [Pie9] (Ir,, x Ir,,) -

e the modular conjugacy classes of Gy, , (A g X A 1) correspond to the (bi)cosets of G, , (A g X
Ar)/ GLQ(ZZ]) since the subgroup GLg(iiq) constitutes the representation of the (bi)cosets
of the tensor product of Hecke operators as it will be seen in definition 1.1.18: it is also noted
KR | (Ziq) . The bilinear quotient semigroup GL2(A pr XA Lr)/GLa (Ziq) consists in a double
symmetric tower of conjugacy class representatives characterized by increasing ranks, i.e. by

increasing numbers of quanta or strings.

4) The double coset decomposition 8§Kg“ restricted to the lower (resp. upper) half space then

becomes:
08K,y = Po(A pr)\T5(A 1)/ T3(Z p,)
(resp. 9Sk,, = Pa(A 1) \ Ta(A 1)/ To(Zy,) )
It will also be noted:

08K, = Pep(A 1)\ Gip(AR)/Kr(Zyp,)
(resp. 5§KtL =Fh, (ALZI) \ Gy, (AL)/KL(qu) )

1.1.8 Right and left semisheaves of rings

The set of products, right by left, of toroidal projective isomorphisms:

Vur X Vur = M, ® My, . —— M . ® M o = T, ®T) }

Vp,m

transforms the GLa(A 1, x A 1, )-bisemimodule Mp® M, = P B (Mx, ,,, ® My, .. ) into the GLa(A 1z x

Vpymy,
oy
A pr)-bisemimodule M} @ M} = D, D, (MgM ® M;i ).
v M sMp
Each representative MgM (resp. MEM . ) of M} (resp. M} ) is a semitorus localized in the
R ,m

lower (resp. upper) half space. In fact, we shall be essentially interested in right (resp. left) one-
dimensional tori: so, we have to double the representatives MET“ . (resp. MUT“ - ), i.e. to consider
representatives M;%mm“ (resp. MQT%MM ) characterized by double ranks and by double quanta in such a
way that M;%ww (resp. MQC’;WM ) be closed strings [Del=Wit]. But, in the following, we shall maintain
the condensed notation METM - (resp. MUTM - ) for the two cases, the distinction being evident by itself.
On the representation space M% = Repsp(T4(A Lz)) (resp. M = Repsp(T2(A 1)) ) of T3(A Lz) (resp.

To(Apr) ) CGL2(A pr X A pr) , we can consider the set of differentiable smooth functions ¢gr (Zpr)
5 1 5 g .

(resp. ¢gr ~ (wu,) ) on the representatives MgM (resp. M;;Fu ) of M} (resp. M] ):itisa semisheaf
Mg, s ST
of rings noted 0% (resp. 61 ) or M% (vesp. M}).

The differentiable functions ¢gr (Tur) (vesp. ¢gr — (wu,) ) are the sections of the semisheaf of
IR Mg,

rings 0}, (resp. 0} ): they are noted in condensed notation Sup (Tesp. s, ).
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Remark that the following developments will essentially deal with the semisheaf of rings 6}, (resp. 6} )
because they naturally lead to automorphic representations (see sections 1.15 to 1.23) and to Langlands
global correspondences (similar developments can be envisaged on the semisheaves of rings Cpr, (resp.
Car, ) or My and M, (sce section 1.1.6)).

It is then possible to define a graded algebra on the set of right (resp. left) sections s, g 1, of the right
(resp. left) semisheaf of rings 6, ; .

Proposition 1.1.9 Let n,gr 1 be the right (resp. left) rank of the right (resp. left) section s,r 1 and
N(u+1)R,L the Tight (resp. left) rank of the right (resp. left) section s(,11yr, - Then, the inequality
N(u+1)R,L > Mur,L leads to the topological embedding s,r 1 C S(ut1)r, between the u-th and the (p+1)-

th section.

Proof. If the inequality n(,41)r, > nur,r holds, then s, 1)r 1 O sur,z . Indeed, if r(x,41)r,. and
()R, denote respectively the radii of ejection of the points 2, 11)r,L € S(u+1)r,z and TuR L € SuR,L
it is evident that r(z,4+1)r,L > r(zu)R,L - .

Corollary 1.1.10 Let s1r,r C --- C Sqr,r be the increasing filtration of the q sets of sections of the

semisheaf of rings 9%%-,L to which is associated the sequence of ranks

n@}?"L = {an,La s NMuRLy aan,L} .
Then, the right (resp. left) semisheaf of rings 9}%7L is characterized by the global rank given by the set

nell?.L .

We are now concerned with the cohomology of the boundary of the Borel-Serre compactification [B-S],
[Sch2] of semispace d Sk, , : it is the Eisenstein cohomology, as nicely developed by G. Harder [Harl], J.
Schwermer [Sch1] and others, which becomes the so-called right (resp. left) Eisenstein cohomology when
it leads to the generation of a right (resp. left) semisheaf of rings 6% ; on the Gy, , (A g,r)-semimodule.

Definition 1.1.11 (Nilpotent fibration on the right (resp. left) Shimura semivariety) If we take
into account:

e the Gauss decomposition of the bilinear algebraic semigroup

GtRxL(AR X AL) = GLQ(AR X AL) = TQIS(AR) X TQ(AL)
= [D2(A R) x UTy (A R)|[D2(A L) x UT2(A )],

as developed in 1.1.5. where Ag = A r and Ap =Apr;

e the Levi decomposition of the right (resp. left) parabolic subgroup

PtR(ALgl) = P2(AL;) = D2(AL;) : UT%(AL%FI)
(resp. PtL (A LTl) = PQ(A LTI) = DQ(A LTl) . UTQt(A LTI) )
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e and the similar decomposition of

Kp(Zy,) =T3(Zy,) = Da(Zy,) - UTS(Zy,)
(vesp. Kp(Zp,) =To(Zp,) = Da(Zy,) - UT(Zy,) ),

—

introduced in 1.1.7.,

into product of unitriangular matrices of nilpotent subsemigroups by diagonal matrices of centralizers
Z(-) , noted here M (-) to respect the notations of [Schl] and [Har2], we are led to define, following G.

Harder and J. Schwermer, the fibration:
05k, = Pa(h 1)\ Ti(A r) [ TH(Z,,)
s S, = M(A )\ M(A ) /KN (T,,)

KZ\/IR
EDQ(ALT \D2 /D2 Pq

(resp.  OSk,, = Pa(Apr )\ To(A /T2 pa)
s S, = M(A )\ M(AL) [K}(Z,,)
= Dy(A 1)\ Da(A /D2 pe)
having as right (resp. left) fiber, the right (resp. left) nilpotent fiber
N(A5,)\ N(Ar) [ K = UT§(A 1)\ UT(A r) [UTS(Z,,)

(vesp.  N(A )\ N(A1)/ K} = UTo(A 1) \UTa(A 1) [UTS(Z,,) ).

Proposition 1.1.12 The right (resp. left) Eisenstein cohomology associated with the generation of a right

resp. left) semisheaf of rings 0% ; decomposes into:
14 95 UR.L 74

HI*%.,L(a gKtR,Lae}%,L)
= H*(PtR.,L(ALf)\GtRL(ARL)/KRL( D 0k1)
. oMn, .
= @ H (SKELL,R@RYL)’H (uRaLvoR,L))

§R,LEEKR [,

where Sk = M(A pr )\ M(ArL)/Kp 3" (Zy,) -

KMR,L

Proof. Theright (resp. left) Eisenstein cohomology H, 1 (0 SKinps 0%.1.) decomposes into the direct sum
of right (resp. left) cohomology classes referring to right (resp. left) cosets &r, of (Gir.(Ar,L)/Kr.L)
such that the right (resp. left) coefficient system be given by the right (resp. left) semisimple Lie algebra
cohomology Hj, 1 (iR, 1, 6}%, ) which is a right (resp. left) semimodule for the right (resp. left) algebraic
semigroup Mp (AR 1) .

If upy, , is the right (resp. left) unipotent algebraic semigroup, then g = Lie (up, ) is its right
(resp. left) nilpotent Lie algebra.

Note that this decomposition of the right (resp. left) Eisenstein cohomology is an adaptation of the
developments of G. Harder [Har2]. .
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Definition 1.1.13 (Algebraic Hecke characters) If ',z ; denotes the right (resp. left) Galois sub-
group Gal(L} /K) , let

ML =AMRL S AR Ly AqRLIT, 5 LT, — LT

be given by
X(Tr,r) = Hom(Tr,r xx Ly, Gm) = Sy X(TapL) -
DurpilT, —LT,

where G,,, = GL .

Then, the set Ag.r, = {MR,L, - s AuRr,L," - , Agr,L} IS the sequential set of weights in X(H}%)L) referring
to the ¢ basic right (resp. left) sections of the right (resp. left) semisheaf of rings 9}%7 I -

Let wrr = {wir,L, - ,wqr,} be the set of ¢ right (resp. left) actions of the Weyl groups on Ag 1, €
X(6h,)

Remark that wp 1 is a set of Weyl subgroups because this set acts on the set of right (resp. left)
characters A\ R, 1,

Consequently, the maximal convex right (resp. left) subsets of X (9}%7 ;) will be in negative (resp.
positive) Weyl chambers.

Let finally ¢r 1 = wr,L - Ar.1 be the set of right (resp. left) algebraic Hecke characters [Clo] on 6% ; .

Proposition 1.1.14 Let Bir (A Rr,) be the right (resp. left) Borel subgroup of upper (resp. lower)
triangular matrices of the right (resp. left) algebraic semigroup Gir,r.(A r,1.) . Then, the right (resp. left)

Fisenstein cohomology H*(0 gKtR L 9};@) decomposes into one-dimensional eigenspaces:
rel 1
H}, (9 Skey,+ Oht)

7o (G A * [~
= @ @ In dﬂ-g BﬁiEAﬁi; Hp (SMR’LvH (uBtR,L79}%,L)(wR>L')\RyL))

WR,L $R,L

Mgr,L — Mr, L
where S = lim SKMRL .
KRL

Proof. Indeed, the cohomology H*(ﬁBtR,L,H}iL) is a right (resp. left) semimodule for the set of tori
le%,L = {TllR,La T vTﬁR,Lv e aquR,L} .

In this context, Kostant’s theorem says that the cohomology decomposes into one-dimensional eigenspaces
under T}%_’ ., - Theright (resp. left) Eisenstein cohomology then decomposes into one-dimensional eigenspaces
with respect to wg, ; and the type of algebraic Hecke characters ¢r,; according to the considered induced

representation my of the Borel right (resp. left) stratum of Br (A g 1) = PirL - "

In correlation with Kostant’s theorem, it appears necessary to develop a bit further the problem of the
representation of Eisenstein cohomology into irreducible one-dimensional components. Taking into account
that FEisenstein series are eigenfunctions of Hecke operators and that the decomposition of Eisenstein
cohomology into irreducible submodules characterized by some weights needs a cuspical automorphic
representation of the algebraic semigroups Gy, , (A r,z) , we have to envisage the action of the Hecke
operators in the space of cusp forms.

Note that cusp forms are directly related to the branes of “string physicists”.
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Definition 1.1.15 (Algebra of cusp forms) Let H denote the Poincare upper half plane in C . As-
sume that fr, is a normalized eigenform, holomorphic in H and defined in {Im(zy) > 0} with respect to

z1, € C of g, = €*™* . The normalized eigenform f, , expanded in formal power series fr, = > an, q7 ,

n
are cusp forms of the space Sp(IN) and are eigenvectors of the Hecke operators Ty, , for £4 N | and Uy, ,
for £ | N where N is a positive integer. Then, Fourier coefficients of f1, and eigenvalues of the Hecke
operator coincide: a1 = 1 and a,, = ¢(n, f1.) so that the ¢(n, fi) generate the ring of integers 7, of the

number field Lt over Q . The space Sp(IN) can then be considered as a 6r-algebra over 6, .

As we are concerned with the endomorphisms of the algebra of cusp forms S, (N) , it is the bialgebra
S¢ = Sp(N) ®¢ Sr(N) which must be considered in the developments such that tensor products of Hecke
operators acting on tensor products of cusp forms defined respectively in the upper and in the lower half
plane will be envisaged. The coalgebra Sg(IN) of cusp forms is defined in the Poincare lower half plane H*

and has for elements the eigenforms fr = Y an,q% with ¢t = e 7>™"2% where 2z is the complex conjugate

of zy, . These eigenforms fr are eigenfunctions of Hecke operators Ty, , for £ N and Uy, for ¢ | N .

Definition 1.1.16 (Global elliptic A g ;-semimodule) In order to get an automorphic irreducible
representation of the algebra of cusp forms, we shall consider that the one-dimensional semisheaf of
rings 9}%7 ;, define a global elliptic semimodule whose space is included in the space of cusp forms. Let
sr.L = (0, 1,) denote the set of sections of 6, ; . For each section s,,, , € sr L , let End(Gs, ,) be the
Frobenius endomorphism of the group G, , of the elements s, , and let ¢*? — ¢*®*#) € Endg (G, ,)
be the corresponding Frobenius substitution with ¢=®P+#) = ex2milptmz 5 c R

A global elliptic right (resp. left) sg r-semimodule ¢g, 1 (sg 1) in the sense of Drinfeld [Drin] is a ring
homomorphism [And]: ¢r 1 : sg,r, — End(Gs, ) given by ¢r r(sr,.L) = . 2. ¢(Sqn.)um, e P /Q g 1

By
. 1 1 .
where ) runs over the sections T},  of 0 ; having ranks n, and where 3 runs over the number of
1% my

ideals of the decomposition group D, introduced in section 1.1.8 and corresponding to the multiplicity
m® of the p-th section.

Lemma 1.1.17 The space Sr,.(¢r.1.) of global elliptic s 1-semimodules ¢r 1,(sr,1) is included into the
space Sr,L(N) of cusp forms fr 1 : Srr(¢r L) — SrL(N) such that fr1 ~ ¢r 1(SR,L) -

Definition 1.1.18 (The decomposition group) The ring of endomorphisms acting on the global el-
liptic sg, r-semimodules included into weight two cusp forms is generated over qu by the Hecke operators
Typ, for N { gy and Uy, , for N | gn [M-W], [Lan3]. The coset representatives of U,, can be chosen
to be upper triangular and given by integral matrices ((1) Zx ) while the coset representatives of Uqg are

lower triangular and are given by matrices (b}v q?v) . For general n = a-d , we would have respec-

tively the integral matrices (8 Zg) and (‘gg d?\r) of determinant n - N = ad- N = ay - dy such that

gy =*xmodN ~q-N and by = *xmod N .
=¢- N (case gy =0mod N )

But, as noticed in definition 1.1.15, we have to consider tensor products of Hecke operators. So, taking

into account that the group of matrices u(b) = (§ %) and u(b)* = (1 9) generate F, [Lan3], the following
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coset, representatives

. 1 by 1 0 1 0
KR (Z,,) =

0 1 by 1 0 g%
will be adopted for U,, ® U,, where gz = (é ;}%) is the split Cartan subgroup matrix and where
Dq%vbe = (é b{V) (b}v (1)) is the element of the decomposition group associated to g, - Indeed, the

semisimplicial form Dz ; —is unimodular.
NON

Proposition 1.1.19 The eigenvalues A1 (g3, b%) of kB 1.( ZZ ) of Uy ® Uy, are such that:

1) Xy (g%, b3%) being equivalent to A\_(q3;,b% ) is an algebraic Hecke character noted ¢r 1 in definition
1.1.15.

2) they are the coefficients of the elliptic sp, 1 -semimodule ¢r.1.(Sr,L) : ¢(Sqn.)ab = A (a3, b%) -

3) they allow to define the radius of the torus T} by

4dR,L

(qNabN) (/\Jr(qubN) A*(q%\hb?\/))/2

Proof. The eigenvalues of kR I Z; ) are

(1+0% +ad) £[(1+b% +d3)% — 4}]:

and verify
trace(kaL(Zi ) =1+b% +dx,
det(kll't?xL( )) At (g bR) - A= gk bY) -

Assume that there exists a global elliptic A gy, -(bi)semimodule

Or(sr) ®@p dr(sr) = X d(sr)upq P @p > (sr)upd® ™
sy, M1y
where ¢Pt# = 2™tz included into a diagonal tensor product of weight two cusp forms fr ®p fr ,
then the coefficients ¢(sg,1) s are given by ¢(sg,)ue = At (p3,b%) according to definition 1.1.16.
Notice that a diagonal tensor product, written ®p , is a tensor product whose only diagonal terms
with respect to a basis {€,,m, ® €, m,} are different from zero.
Let ir ®p iz be the (bi)isomorphism:

ir®pir: ¢r(SrR) ®p ¢r(sy) — aR(SR) ®p or(sL)

where

Or(sr) @p dr(s1) = 3 S r(pd, b3)a @™ @p 3 3 r(ud, b3 )a?
n

my womy,

which maps the eigenvalues Ay (1%, b%) to

(MvaN) (/\-i-(MvaN) /\—(/ﬁ\hb?\/))/2
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Then, (ER(SR) ®bD (EL(SL) decomposes into a sum of tensor products of irreducible (semi)tori T;},bR,L
localized respectively in the upper and in the lower half space, corresponding between themselves by pairs
of same ranks n,, and same values of by and such that each pair of (semi)tori be characterized by a radius
(%, b%) and a center at the origin. Notice that the radius r(u3,b%) is the radius of ejection 7(z, , )
considered in proposition 1.1.9. The isomorphism ig r, translates the centers of the tori from cent(u%;, b%)
= (trace(Frob u%))/2 to the origin. The result is that the eigenvalues A\; (u%,b%) and A_(u%,b%) are

equivalent. .

Remarks 1.1.20 1) A cuspidal automorphic representation of Eisenstein series has thus been given in
terms of global elliptic sg, -semimodules as developed in proposition 1.1.19: this constitutes a first step
in the direction of Weil’s conjectures suggesting a deep connection between the arithmetic of algebraic

varieties defined over finite fields and the topology of algebraic varieties defined over C .

2) It has thus been proved from the developments of 1.1.15 to 1.1.19 that the analytic representation of the
right (resp. left) Eisenstein cohomology H *(agKtR,L , 9}%) ;) is given by a global elliptic sg,-semimodule
noted ELLIPg 1,(1, u,m,) where “ 17 refers to the dimension: this constitutes a central challenge in the
Langlands program as developed in [Piel]. The bilinear version of the Langlands program is only really
relevant and will be introduced in 1.1.23.

Proposition 1.1.21 Each left (resp. right) ezponential U,, = e*™ P+ (resp. Uy = e~ 2miP+0)2 ) of the
(,my)-term — B(sr)pe®™ PHIT  (resp. d(sr)upe 7Ptz ) of ELLIP.(1,u,m,) (resp.
ELLIPR(1, p,m,) ) constitutes a unitary irreducible representation v, — U,, (resp. T, — Uy, ) as-
sociated to the left (resp. right) place v,, (resp. v, ) of the algebraic extension semifield Lt (resp. L™ )
with respect to the coset representative kng(qu) of the tensor product T, ®T,, of Hecke operators.

So, each left (resp. right) (1, m,)-term of ELLIP (1, pn,m,) (resp. ELLIPg(1,p,my,) ) forms an
irreducible representation of Lt (resp. L~ ) inflated from the corresponding unitary irreducible rep-
resentation Uy, (resp. Us, ) by a value r(u3,b%) which is the radius of the considered (semi)torus
Ty, =r(ux, by) - 2T (e, Ty, = r(pk, b%) - e 2milptme ),

As the coset representatives k:}gX L(ﬁpq) =02 - D#?V by Of tensor products of Hecke operators have a

real meaning, we are constrained to work in the context of an Eisenstein (bi)cohomology as follows:

Proposition 1.1.22 Let the product of the semigroups Kr(Zp,) x K1(Zy,) be given by K}ng(Zq) .
Then, the Eisenstein bicohomology H;X(D)L((aER X (D) 0SL)) ko (7 ),9}% ®(py 01,) decomposes under
RxL\%pq

the decomposition group Du?v,bzv into products of pairs of one-dimensional eigenspaces:
Y < 1 1
Hiv 1,1 (0SR % (0) 05L) p | 2 )00 ©(0) O1)

~ PP Ind

By,

(Grx(pyr(ArRX()AL))

Mpx L ~
2 H S > H*(u
(KIQXL(Ziq)) RX(D)L( ) ( Kng

(Zq), 9}% ®(D) 9%))

where the sums @ @ run over the cosets of Gip(AR) X(py Gy (A L)/Kng(z;q) having multiplicities
Homy

m = sup(m,,) .
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Proof. This proposition reduced to the right or left case is clearly equivalent to proposition 1.1.14.

The coefficient system given by the semisimple Lie algebra (bi)- cohomology H* (i p Z ),9}3 ® (D)
RXL Pq

61 ) decomposes into sum of products of pairs of one-dimensional sections (T;Lba X Tliva) of 0, ®(D) o1

characterized by the (bi)weights Ay (u3;,b%) X A— (13, b%) - ]

1.1.23 Langlands bilinear global program

According to the developments from 1.1.15 to 1.1.20, the GL2(A pr x A pr)-bisemimodule ME® MF
has an analytic development given by the global elliptic sg ® p sz,-bisemimodule ¢r(sr) @p ¢r,(s1,) which
is a product, right by left, of truncated Fourier series.

As the GLy(A . x A 1, )-bisemimodule M ® M, constitutes an irreducible representation Irr%,) (Wab x
W) of the bilinear global Weil group Wi? x Wb [Pie9] and as the global elliptic bisemimodule ¢r(sr)®p
or(sr) , also noted ELLIPg(L, -, ) ® ELLIP.(1,-,-) , constitutes an irreducible cuspidal representation
Irr ELLIP(GL2(A px X A pr)) of GLa(A L, X A,) , we have on the Shimura bisemivariety 6§Kg“ , the

Langlands irreducible global correspondence, i.e. the bijection:
Irely) (Wit x W) — DLrELLIP(GLa(A px x A 1))

according to [Pie9].
Let us recall that if we fix:

=

Gal(L*/K) = (Gal L /K) ,

m

Gal(L™/K) = @ P(Gal L; /K) ,

=

the right (resp. left) global Weil group ngl (resp. ngi ) is the Galois subgroup of Gal(L~/K) (resp.
Gal(L*/K) ) of the extensions L, (resp. L} ) characterized by degrees:

Nup =L, : K]=0modN = (p+p) N,
(resp. ny, =[L} :K]=0modN = (p+u) N ).

Definition 1.1.24 The notion of quantum on the time semisheaf of rings 9}%@(0 can be introduced
as follows: let s1,, C - C sq, be the set of sections of 0 ; (t) and ny < --- < ny, < --- < ny be the
corresponding set of ranks. According to the preceding developments, it corresponds to the section s, ,
a set of equivalent sections {s, 1, ., ,Subr . } Telative to the decomposition group D2 ;, where all the
Su,br., have the same rank n,, .

A section s, 3, , has a rank n,,, = (p+ p) - N , following 1.1.6, where N is the order of the
inertia subgroup Ir, (resp. Ir,, ) having as representation space the TQt(Lgt )-subsemimodule MEIM
(resp. Tg(Lvi )-subsemimodule MUIM ) which was interpreted in 1.1.6 as a right (resp. left) quantum.

Thus, the section s,4, , is composed of (p + ) right (resp. left) time quanta, noted ]T/[/i(t)R_,L , or

e t t . . .

Mj‘ifmu = An Repsp(TQ( )(Lfﬁfmu)) where An Repsp(TQ( )(Lfﬁfmu)) , denoting the analytic representation

space of the algebraic subgroup TQ(t) (LTM, ) over the irreducible subcompletion LTH, , is a “class of
Vyp,my, Vp,my,

germ” of continuous (differentiable) function over a big point centered on TQ(t)(LTH,

Vp,my,
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Notice that the writing “ s, , ”

will mean, in the following developments, either a basic section s, ,
alone, i.e. for a value of b = 0 , or a subset of equivalent sections {S#IR,L g ’S‘ubR,L} corresponding to
all the ideals of the decomposition group D, , the distinction between the two cases being in general

evident.

1.2 Generation of 4D-semisheaves of rings by Eisenstein homology and (v;—..0
E) morphism

Definitions 1.2.1 (1. Galois antiautomorphism) From the right (resp. left) Galois automorphic
group I'yp . = Autk L] , it is possible to define a Galois antiautomorphic group Dipr = Autg L}
acting transitively on the left on the set of right (resp. left) prime ideals b, g, of the right (resp. left)

specialization semiring By, g 1, . We thus have a descending chain of right (resp. left) specialization ideals:

bpppry, D Db p<n,

#(nupr)R,L ?

where (n, — p,) is a decreasing rank.

(2. Reduced algebraic semigroups) From the right (resp. left) boundary of the compactified semispace

0 Sk, n.o (see definition 1.1.7), it is possible to introduce the reduced compactified semispace:

0 Sk;y, = Plri \GinL/Kiny

tR,L
where

a) Gy g,z 1s a reduced algebraic semigroup, i.e. an algebraic semigroup submitted to Galois antiauto-

morphisms, and having the following decomposition:
Gy (A7) =Ta(AL) = Da(A7) x UTy (A])

where

T

Vv, my

e A7 is a reduced adele semiring given by A7 = Ajr =[[LL [[L , v < u, and coming

my

from A f = HLfM 11 Lfmm“ (see 1.1.4 and 1.1.10);
1% mpy

° UT{l(AE) is the inverse of UT5(A 1) .
b) P/x 1, is a reduced parabolic semisubgroup;

¢) Kig p is a reduced arithmetic semisubgroup of G}p . .

Proposition 1.2.2 The right (resp. left) Eisenstein homology, defined from the action of a right (resp.
left) Galois antiautomorphic group, is associated to the generation of a right (resp. left) reduced semisheaf

of rings HE{L and decomposes into [Pie3]:
H, (8§K1’},L ) 9}%1[‘)

= H*(P:R,L \ GIR,L(A E,L)/KE,L(qu)vo}k{l,L)
M, ~ % *
= D H*(SKfMLR,L(gR’L)aH*(“R,LveRl,L)) .

EE e
éR,L K§



26

Proof. This proposition is the homological version of proposition 1.1.12. .

Definition 1.2.3 (Reduced algebraic Hecke characters) If A% ; denotes a reduced adele semiring,
let

n = (o N Vb,

be a sequence of decreasing weights.
Then, A; ;= {XNpgr, s Arr Mg} is the sequential set of decreasing weights in X (67 1)
referring to the ¢ set of right (resp. left) sections of the right (resp. left) reduced semisheaf of rings 9}17 I -
Let wy ; ={ - ,wjg . -} be the set of right (resp. left) inverse actions of the Weyl groups on A% .
Then, ¢% | = wk 1 - AR ;, will denote the set of right (resp. left) reduced algebraic Hecke characters on
63t

Definitions 1.2.4 (1. Every smooth endomorphism) E[G g, 1] of the algebraic semigroup G.r, . ,
representing the Galois subgroup I'yr, = Auty Li , can decompose into the direct sum of the two

nonconnected algebraic semigroups [Pie3]:

a) t/lle/ reduced algebraic semigroup GZ R, » Submitted to the Galois antiautomorphic subgroup L
AutKL:f ;
b) the complementary algebraic semigroup Gi Rr.L » Submitted to the complementary Galois automorphic

subgroup F£R7L = Aut(I? L, such that G£R7L be a semisubgroup of G,r 1, -

‘We then have
* I
Gur,e =G ©G R -

Recall that the semisubgroup K, r,;, C Gyr,r can be defined following [Harl]:
K,uR,L = SO(ma L;I;$) ' ZgR,L(L;I;$) :

The nonconnectivity of G and GLR) ;, is a necessary condition to avoid triviality if the groups
SO(m, LF)* e K g 1 and SO(m, LI e KiR,L had the same Witt index and the same order “ m 7.

(2. The complementary Galois automorphic group) I‘fl RL = Aut% L;F can be defined by its tran-

sitive right action on the set of prime ideals bi g,z of the complementary specialization semiring B{L R.L

leading to an ascending chain of complementary specialization ideals bﬁl e C 0 C bﬁpﬁ g,z Such that the

maximal rank pi be equal to the integer n, when the decreasing rank is (n, — p,) (see definition 1.2.1).

(3. Complementary Eisenstein cohomology) From the compactified complementary semispace

SKIIM , we define its boundary by
9 FKI{M = PII%,L \ G%,L/KII%,L .
The right (resp. left) complementary Eisenstein cohomology can then be introduced:

H}*(BgKé,L,Q}RYL) = H}‘(Pt%,L \ Gz{R,L(A %,L)/K{%,L(qu)u H}R,L) :

1

It is associated to the generation of a right (resp. left) complementary semisheaf of rings ;.
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Definition 1.2.5 Let v;—,, be the emergent morphism, introduced in [Pie3] and mapping the com-

plementary semisheaf of rings 6} (t) from the complementary semispace & ?KII% , (t) into its orthogonal

=L
complementary semispace 0 S KL, (r) where r = {x,y, z} is the triple of spatial variables:

Yir s 9 Spg () = 9Ty (1),

O, () = 07, ().

Proposition 1.2.6 Let HE{L(t) be the reduced semisheaf of rings generated under the smooth endomor-
phism E by the right (resp. left) Fisenstein homology. Then, the morphism (Yyi—, o E) transforms the
semisheaf of rings H}Q_L(t) nto:

FYtHrOE: 8§KR,L(t) - 8§K§,L(t)®8§;{%L(T)’

Opt)  —  Opo (@6}, (1),

such that each section s | @ s1,, , € 05 (t) ® H?R’L(T) be T () r,L @ T}“ (r)r,L » called a right (resp.
left) elementon of space-time and noted T, (t,7)r,1 , where T;'(t)r,1 is a set of 1D-tori and TllM ("r.L

is also a set of 1D-tori.

Proof.

a) The complementary semisheaf of rings 67, | (r) is three-dimensional because the groups SO(2p, LT¥) €
K%, and SO(2p + 1, LTF) ¢ K]I%)LL must have the same Witt index p = 1 in order that the endo-

morphism E be smooth [Pie3] but their order “m ”

and m/ = 3 for Kfj [Bum)].

may be different: consequently, m =2 for Kj, |

b) The fact that the section sy, , is a set of 1D-tori results from:
e the morphism ~;_,,. o F where y;_,, corresponds to the projective map :
GLy(ApxAp) —— PGLy(ApxAL)—GLs(ArxAp)
as developed by S. Gelbart [Gel2];

e the decomposition (or degeneration) of the representation space Repsp(GL3(A g X A r)) into

one-dimensional components. .

3
IR, L

under the (v;—, o E)-morphism from the 1D-section Tj(t) composed in fact of a set of m, equivalent

Definition 1.2.7 (The quantum of space) Assume that the section T}H (r)r, € 67 (r), generated

sections {Tj_’b} under the decomposition group D, ; , is partitioned into m, corresponding 1D-fibers,

having each one a rank p, = (p+p)- N . Then, each 1D equivalent section T}M (r)r,r has p, = (p+p)
,’VTLM

spatial quanta, noted M ;{ (r)r, , which are functions on subsemimodules of rank N . And the section

Tllu (1 = {Tflul R 7T}WW} counts m,,(p + p) space quanta.

Corollary 1.2.8 There exists an inverse morphism (v,—: o E') transforming gradually and sequentially
the 3D-complementary semisheaf of rings 63 (r) into the 1D-semisheaf of rings 9}%,L(t) .
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Proof. Let n and (n — p) be the set of ¢ graded ranks referring to the g sections respectively of 6% ; (t)
and 07 (t) according to corollary 1.1.10.
(Note that the proof is valid for the right and left cases but the indices R, L will be dropped for facility).
Then the morphism (v,—t o E’) is such that

a) B 03(r), — 033(r)p—p @ 9§(1)(r)pz where 9§(1)(r)pz is the complementary semisheaf of 033(r),_
obtained under the smooth endomorphism E’ .

b) Y : 9:;’(1)(7"),)/ — 60'(t),, where v,_; maps 9:]”(1)(r)p/ , ideal by ideal, into its 1D-time orthogonal

complementary space giving rise to 6(t), .

¢) (r—to E'): 9*1(t)n—p ® 6‘? (t)P - 9*1(t)nf(pfp’) + 6‘?3(76)(;)7;)’) .
If p' = p, then under (y,—¢ o E') , 603(r), has been totally transformed into 6 (¢), . ]

Definition 1.2.9 (Algebraic Hecke parameters) Let gbjf_(n_p)R . bet the set of algebraic Hecke char-
acters referring to the generation of the reduced semisheaf of rings 9}% 1, (t) by Eisenstein homology and

let ¢r.p, , bet the set of algebraic Hecke characters referring to the generation of the complementary

3
Ir,L

We then have the following equality between these two sets of algebraic Hecke characters:

semisheaf of rings 67 (r) by Eisenstein cohomology.

¢r§(n—P)R,L = CtHT(p)R,L : ¢T;PR,L

where ¢, (p)r,. = {c1(p1)r,L, - ,¢q(Pg)r,L} IS a set of parameters referring to the ¢ sections of the
3 J
Ir,L p”.
¢t—r(p)Rr,L can be considered as an algebraic measure giving the ratio of the generation of the comple-

3
IR, L

Consequently, ¢;—.(p) is the most closed to the unity when (n —p) =p .

113

semisheaf of rings 67 (r) and depending on the set of sequential ranks

mentary semisheaf of rings 67 (r) with respect to the reduced semisheaf of rings 9}‘%17 (@) .

Proposition 1.2.10 Each right and left 4D-elementon of space-time (Ty:'(t)r L @ T}“ ("rL) €
0F L (t) @63, (r) , 1 < pu < q, is composed of elementary subtori 7,”'(t,r)r,. , characterized by a

rank 2N, which are sums of a time and of a space quantum.

Proof. (The indices R, L will be dropped in this proof). Let (n, — p,) be the rank of the section T (t)
and let p, be the rank of the section T}“ (r) , taking into account that the complementary section T}“ (r)
is generated from T, (¢) by the morphism (y;—, o E) .

Considering the algebraic generation of Tﬁ(t) under the action of the Galois automorphic group I, =
Autg L, and envisaging the (y:—, o E) morphism, we then have that the elementary time prime ideal
7:1(t) € T;y'(t) has a rank N and the elementary space prime ideal 7}(r) € T}“ (r) is characterized by a
rank N . "

Corollary 1.2.11 Consider the morphism:
Yeer o E: Ty Ht, )R — Ty (r)RL » Vi, 1<upu<gq,

such that the reduced section T;l(t)RyL of the semisheaf of rings GE{L(t) be completely transformed into
the complementary space section T, (r)r,1, . Then, every elementary subtorus 7)(r)r € T)(r)r,1 is also
characterized by a rank N .
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Proof. This is obvious by taking into account the proposition 1.2.10. n

1.2.12 Space-time structure of semiparticles

1) The mathematical and physical reasons given in the introduction and in the following developments
lead us to admit that elementary particles must be composed of two symmetric objects, called a right and
a left semiparticle. The basic “algebraic” space-time structure of a right and a left semiparticle (or, more
exactly, of a right and a left semilepton, or semiquark, as it will be developed in section 4) will be assumed
to be respectively a right and a left sequential semisheaf of rings (6%, (t) © 67, , (r)) of which 67 (r) can
be regarded as the algebraic representation of a space physical wave packet. ’ ,

The right and left 1D-semisheaves or rings 6% (¢) and 3! (¢) must be viewed as the basic time structure
of the right and left semiparticles while the right and left 3D-semisheaves of rings 67_(r) and 67 (r) must

be regarded as the basic space structure of the respective semiparticles.

2) Indeed, the fact of endowing elementary (semi)particles with an internal space-time structure from
which the “mass” shell could be generated results from an attempt of the author [Piel] to bridge the gap
between general relativity and quantum field theory. The problem is that general relativity is a “classical”
theory describing the mutual interaction between the geometry of space-time and the matter without
explaining how matter could be generated. Now, quantum field theory asserts precisely that matter must
be created from the vacuum to which the cosmological constant of the general relativity equations could
correspond if it was associated to it an expanding space-time which could then constitute the fundamental
structure of the vacuum of QFT. On the basis of these considerations, I have developed, in an unpublished
preprint [Piel], equations in differential geometry rather close by the equations of general relativity but
referring to the quantum structure of bisemiparticles such that their most internal structures, which are
space-time structures, be the fundamental structures of their own vacua from which their matter shells
could be generated due to the fluctuations of these internal vacua. So, the vacuum of QFT becomes peopled
to massless (bisemi)particles being potentially able to generate their mass shells due to the fluctuations of

these (bisemi)particle internal vacua.

3) To the internal “space” structure of an elementary semiparticle then corresponds its linear momentum
p on its “mass” shell; and, to the internal “time” structure of a semiparticle would corresponds its rest
mass mg . The fact of considering the internal time of a semiparticle as corresponding to a topological
structure can be justified by the annihilation of a pair of leptons into (pair(s)) of photons and by 2) of
1.2.10.

4) The internal space structure of a semiparticle is thus given by the semisheaf of rings 67 (r) on a T3(A 1)

(resp. T3(A gr)-semimodule M éT) (resp. M }(%T) ) restricted to the upper (resp. lower) half space. Indeed,

3
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by the global elliptic semimodule ELLIPR 1.(1,q,b) which corresponds to an eigenfunction of the spectral

following the Langlands program briefly developed in 1.1.22, 6% (r) has an analytic representation given

representation of an operator Tx, 1, (see chapter 3) on the space structure. On the other hand, each term

A(Sup.L )H,bei%i(p*‘“)m € ELLIPR (1, ¢, b) will be interpreted as the “space” structure of a semiphoton at
(p + p) quanta, giving then a (semi)photonic spatial structure to the semiparticle.

5) If we consider the space structure of a right (resp. left) semiparticle as given by the three-dimensional

3

7., (r) , then this semiparticle will be interpreted as having a wave (packet) aspect.

semisheaf of rings 6



30

But, we have seen in proposition 1.2.6 that we can consider the projective map: Pg, ., : T3(A r) — T2(A R)
(resp. T3(A 1) — T2(A L) ) to which corresponds the projective map: Py, , : 03 (r) — 67 (r) mapping
the three-dimensional semisheaf of rings 67 (r) into its two-dimensional analogue 67  (r) , giving then

to the space structure of a right (resp. left) semiparticle a “particle” aspect.

We can then formulate the first axiom referring to the generation of the “wave” space-time structure

of elementary right and left semiparticles.

Axiom I 1.2.13 The basic space-time structure of elementary right and left semiparticles is of algebraic

nature.

Proof. Indeed, the space-time structure of elementary right and left semiparticles is assumed to be given

3

7. . (7)) whose g sets of sections

by 4D-space-time right and left sequential semisheaves of rings (0%, (t) &0
are “ 4D ”-elementons Tﬁ_l(t,r) R, generated from 1D-symmetric splitting semifield(s) by Eisenstein

cohomology and homology and by the morphism (y;—, o E) . .

1.3 Algebraic representation of bisemiparticles by bilinear Hilbert schemes

Definition 1.3.1 (Tensor product of semisheaves of rings) The right and left semisheaves of rings
(03 (1) @ 9§’R,L(T‘)) are defined respectively on a Gg(A g)-right semimodule, noted M57 , and on a
G (A r)-left semimodule, noted M7T . The Gr(A g)-right semimodule M3T and the G, (A 1)-left semi-
module M LST represent the basic internal space-time structures of the right and left semiparticles (es-
sentially leptons) which act conjointly in order to form a bisemiparticle localized inside a 4D-openball
centered on the emergence point. As the Gg (A gr,)-right (resp. left) semimodule M ETL is also a unitary
right (resp. left) A g r-semimodule, it is an A g r-right (resp. left) semialgebra M gTL . By construction,
Mng is the opposite semialgebra of MLST . So, the tensor product Mng QA pxA L MLST will be the envelop-
ing semialgebra of M7 and will be assumed to constitute the space-time structure of a bisemiparticle.
(MET ® M7T) will be written for (M7 ®a nxa, MPT) .

The space-time structure of a bisemiparticle will thus be given by the tensor product (M ET QM ET)
of MgT and M7T such that the right semimodule M57 be flat on the left semimodule M77 | i.e. that for
every left semimodule M 'ST and for every injective homomorphism v : M,LST —- M LST , the homomorphism
Lysr®v: MET @ MST — MST @ MET is injective [Boul].

If the right and left semisheaves of rings M 27 and M 2T are defined respectively on the right and left
semispaces M3~ and M7T | we then get a right and a left ringed semispace (M7, ]T/[/IgT) and (M?7T, MLST) .

Similarly, we can define the tensor product between the right and left ringed semispaces:
@ {(MET MRT), (MET, MET)} — (MET x MET, MET @ ME")

where M ET QM ET represents the space-time structure of a bisemiparticle.

As M IgT and M LST are semisimple, then (M gT QM LST) is also semisimple according to C. Chevalley
[Che2] and J.P. Serre [Ser5], [Ser6].

The tensor product (Mg @ M7T) |, called a bisemimodule, is characterized by a 10-dimensional
noneuclidean geometry, reflecting its degree of compactness and of instability. Consequently, a blowing-up

morphism will be considered in the following proposition.
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Proposition 1.3.2 There exists a blowing-up isomorphism
SL : MgT ® MIS:T - (MgT ®D MET) D (Mg ®magn Mf) D (Mg_(T) Relec MI(/S)_T)

transforming the bisemimodule (MET ® MLST) of dimension 10 (lepton case) into a set of disconnected

bisemimodules which are:

a) the diagonal bisemimodule (MET ®p MLST) of dimension 4 characterized by a diagonal orthogonal
4D-basis {e® ® fo}3_o , ¥V e* € M2T and fo, € MPT ;

b) the magnetic bisemimodule (M5 ®magn M) characterized by a 3D-nonorthogonal basis (e“®@f5)2 151

where MI%L =03 .(r);

c) the electric bisemimodule (Mfg Retec ML) or (ME ®eiee M7 characterized respectively by a 3D-
nonorthogonal basis (e* @ fo)3—, or (€° ® fo)3—, where M}, = 07 1 (t) .

Proof. The blowing-up isomorphism can be understood algebraically by considering that right and left
quanta are taken away respectively from the right and left semimodules M IgT and M ET by the smooth
endomorphism E | recalled [Pie3] in definition 1.2.4, in such a way that the complete bisemimodule
(MET @ M?T) be transformed into the diagonal bisemimodule (M3T @p MPT) . Consequently, the
disconnected right and left quanta will generate two off-diagonal bisemimodules having a magnetic and
an electrical metric to keep a trace of the off-diagonal metric of (M7 ® M27T) (see also 4.3.4 and 4.3.5).
The magnetic metric is given by g§ = (e®, f3)2.3-, and the electric metric is given by g§ = (e, fo)3—;

or g0 = (€%, fa)3_, where (-, ) is a scalar product. .

Definition 1.3.3 (Diagonal tensor product) Let the right ringed semispace (MlgT, MgT) of the right
semiparticle define locally the affine right semischeme S’}%T and the left ringed semispace (M77T, M 2T of
the left semiparticle define locally the affine left semischeme S77 [Hart].

Let (S37 ®@p S7T) be the diagonal tensor product between the right and left semischemes S37 and
S fT characterized by a diagonal metric.

Consider the projective morphisms py, and pg :

pr : SplepSiT— SI%{P)/L )
pr : SRT@p ST = Silpyr

such that:

a) the right semischeme S’}%T be projected under p; on the left semischeme SfT giving rise to the

bisemischeme S }S%{P) /L

b) the left semischeme S77 be projected under pr on the right semischeme S3 giving rise to the

bisemischeme S E(TP) /R

Proposition 1.3.4 The diagonal tensor product SE{P)/L of the right and left semischemes S}%T and ST
such that S2T is projected on S7T is a covariant functor of S7T representable by the bilinear Hilbert
scheme HileIg(TP)/SfT where SIS%(TP) is dual of ST .
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Proof. Let SIS%(TP) be a projective scheme on ST [G-R1].

Let ¢ be the category of locally noetherian S77 preschemes. If TPT € obj(c) , consider STET =
S}girp) @p T2T and let F(TPT) be the set of closed subpreschemes of Stsr which are flat on TPT it is a
covariant functor of TP representable by the Hilbert scheme Hilb ST, /95T [Grol], [Gro2], [Got].

There is bilinearity on Hilbslg’(FP) /85T with linearity on the left semischeme SET and antilinearity on
the right semischeme S }%(TP) if we take into account that the associated right and left ringed semispaces
(MET, MET) and (MET, MET) are defined respectively on the lower half space MgT and on the upper
half space M77T .

The projective right semischeme S }%(TP) is flat on S77 . Furthermore, the right semischeme SIS%(TP) is
dual of the left semischeme S77 . .

Corollary 1.3.5 The Hilbert scheme Hﬂbs}é;’(TP)/SgT is endowed with a diagonal metric g of type (1,1)
[Pied].

Proof. Indeed, the components g& = (e®, fo) of the metric tensor at each point of Hilbsg(Tp)/SfT are

external scalar products with respect to the basis vectors {(e*)*}3_, € Sl%{P) and {fa}3_, € 577 . ]

Proposition 1.3.6 If we consider a bijective linear isometric map Bp : SIS%(TP) — SET mapping each

covariant element of S}%{P) into the corresponding contravariant element of S;T , then the Hilbert scheme

Hilbslg(TP)/SfT is transformed into the internal Hilbert scheme Hilbsz/SiT characterized by a diagonal
R

metric goo of type (0,2) .

Proof. Indeed, under the By map, the covariant basis vectors {(e®)*}2_, are transformed into the
contravariant basis vectors {(e,)*}2_, and the components g of the metric tensor then become internal
scalar products goo = (€qa, fa) - .

Corollary 1.3.7 The diagonal bisemischeme SE%FP)/R s a covariant functor of S;%T representable by the
bilinear Hilbert scheme Hﬂbsf’(Tp)/SgT endowed with a metric g& of type (1,1) .

Corollary 1.3.8 By the bijective linear isometric map Br : S’fgfp) — S;%T , the Hilbert scheme Hﬂbsg(TP)/ng

is transformed into the internal Hilbert scheme HﬂbSIS?T/SIS?T characterized by a metric g** of type (2,0) .
LK

The presentation of bilinear Hilbert schemes leads us to formulate the

Axiom II 1.3.9 Nature is composed of bisemiparticles whose fundamental diagonal space-time structure

is given locally by bilinear diagonal Hilbert schemes. This axiom is a multiplicative aziom [Atid].
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Proof. Due to the fact that the right semischeme S37 of the right semiparticle is topologically very
close to the left semischeme S77 of the left semiparticle such that these two semischemes S5’ and ST
be localized in the same openball centered on the emergence point, only the left semischeme of the left
semiparticle will be commonly observable in the frame of bilinear Hilbert schemes with the right semischeme
of the right semiparticle generally unobservable because it is projected on the left semischeme of the left

semiparticle: this corresponds to the existence of the bilinear Hilbert scheme Hilb S§T, /5T - .

Remark 1.3.10 (Twin bisemiparticles) But, there also exists a bilinear Hilbert scheme Hilbszp)/Sgr ,
as introduced in corollary 1.3.8, and resulting from the projective morphism pr (given in definition 1.3.3)
which maps the left semischeme ST on the right semischeme S37 .

Thus, next to the common world in which we live and described by the bilinear Hilbert scheme Hilb S§T, /95T
at the level of bisemiparticles, there is also the possibility of the existence of a twin world described by

the bilinear Hilbert scheme Hilb ST, /SST at the level of “twin bisemiparticles”.

1.4 Fundamental algebraic space-time structure of semileptons, semibaryons
and semiphotons

In sections 1 and 2, the basic algebraic space-time structure of the right and left semiparticles was assumed

3
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to be given by right and left semisheaves of rings (9}‘%17 L&) @63 (r)) generated by Eisenstein cohomology
and by the (v;—, o E) morphism. However, as it was noticed in 1.2.12, this basic space-time structure
corresponds essentially to the algebraic space-time structure of the semilepton of the first family, i.e. the

semielectron.

It will be seen in the first part of this section how the algebraic time structure of the semiquarks can

be generated from the central algebraic time structure of a semibaryon.

Definition 1.4.1 (Smooth endomorphism E;) 1. Instead of considering as in definitions 1.2.4 a
smooth endomorphism E[G g ]| of the algebraic semigroup G, g, decomposing it into the direct sum
of two nonconnected algebraic semigroups, we can envisage the following smooth endomorphism [Pie3]:
EGurL) = G?a)uR,L &) G{C)MR’L of the algebraic semigroup G g, decomposing it into the two connected
and G(IC)MR . where G|

R,L (ur.L
to a Galois antiautomorphic subgroup, and where G(Ic)w , is the complementary algebraic semigroup

algebraic semigroups GE‘C)M is the reduced algebraic semigroup, submitted
resulting from a Galois automorphic subgroup.

The smooth endomorphism E; is such that the subgroups SO(ml,LleF) € Kipp C G?C)MRL and
SO(mg,LZ:F) € KiR_’L C G(IC)MR , must have the same rank but different orders, i.e. that m; = 2¢ and

mo = 2t 4+ 1, t being an odd integer taking the value ¢ = 1 here.

2. Let 9}%) .(t) be the semisheaf of rings generated by Eisenstein cohomology on the boundary of the
Borel-Serre compactification 0 ?KtR,L = Pirr \Girr/Kir1 -
Then, the smooth endomorphism E; applied to the semisheaf 9}%7 1.(t) gives the following decomposition:

Et[o}%,L(t)] = GE{L@) D Q?R,L (t1,t2,t3)

where 9§R,L(t1’t2’t3) is a 3D-complementary semisheaf of rings connected to the reduced semisheaf of

rings 073 1 (1) .
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Lemma 1.4.2 The 3D-complementary semisheaf of rings 9% L (t1,t2,t3) can only be expressed as the

direct sum of 3 connected 1D-time semisheaves of rings

9§)R1L(t17t27t3) = H}R,L (tl) EB H}R,L(tQ) @ H}RYL(t?’) :

Proof. Indeed, according to definition 1.4.1, the complementary semisheaf of rings
03, , (t1,t2,13) generated from 03 (t) by the smooth endomorphism E; must be three dimensional. But,

considering that:
a) 07 (t1,ta,t3) is defined on a 1D semispace & Sk, . (1) ,

b) H%M(tl,tg,tg) is localized in the orthogonal complement space of the 3D-space [Sco] on which

semisheaves 9§’R . (ri) are defined and generated by the -, .., morphisms,

the semisheaf 9% , (t1,t,t3) can only be composed of three orthogonal 1D-semisheaves of rings 6} s (i)

1 <4 < 3 (see also [Pie9], section 4.1).

Consequently, 0} s (t;) is a 1.D-time semisheaf whose sections are given by 1D-tori T;} R, 1 (t) . u

Proposition 1.4.3 The algebraic time structure of a semibaryon is given by
ORL(t) = 071, (tc) EB 01, (t)

where 0 | () is its core time structure and where 0 (;) is the time structure of a semiquark.

Proof. The semisheaf or rings HBar( ) results directly from definition 1.4.1 and lemma 1.4.2 such that
the reduced semisheaf or rings 0% !, (tc) is connected to the complementary semisheaves 6} Ins (t;) .

The interpretation of 91}3%% (t) as the time structure of a semibaryon is justified by the “bag” model of
the baryons [C-J-J-T-W] and the confinement of the three quarks [Bjol, [C-R]. .

Proposition 1.4.4 The algebraic space-time structure of a semibaryon is generated from 9B‘”( ) by Y, —rs
morphisms following:
Yeior; © Bi  OR°L(8) — ORL(¢,7)
where Hg?i(t,r) is given by
3
ORL(t.7) = 07 1 (te) @ O L (ti74) -

=1

Proof.

a) The morphism (y;—, o E) does not apply on 9*1 1(te) because it is a reduced semisheaf of rings

resulting from the smooth endomorphism E; on which @ o1 In1 (ti)g, are connected.
1=

b) The space structure of the three semiquarks is generated by considering the (v;, ., 0 E;) morphisms
on H}R,L (ti)qz' :

’YtiﬂTiOEize}R,L(ti)i_’GIRL(l) @QIRL(TZ')% V’L,lS’LSg -
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Definition 1.4.5 (Constant of the strong interaction) Let np denote the set of ¢g ranks of the gp
sections of O ; (t.) and let (np — pp) be the set of gp decreasing ranks of 03/ (t.) .

Then, ¢IC;(n37pB)R,L

reduced semisheaf or rings 9}‘%17 1.(tc) by Eisenstein homology and ¢y, ¢, 1.]: PBr L will be the set of algebraic

will be the set of algebraic Hecke characters related to the generation of the

Hecke characters related to the generation of the complementary semisheaf or rings 9% (1, t2,t3) =

é 01 ., (ti)q; by Eisenstein cohomology.
= As introduced in definition 1.2.9, there is the following equality between these two sets of algebraic
Heche characters:
¢IC?("7’B_PB)R,L = G(pB)tcﬂ[tl7t21t3]¢[t11t27t3];pBR,L
where
G(pB)t—(tr tarts] = {G1(pBy), -+, GulpBL)s -+ Gap (pB,)}
is the set of ¢p parameters measuring the generation of the complementary semisheaf 9§’IR,L (t1,t2,t3) from

O (te) -

aB

Proposition 1.4.6 The parameter (G(pB)t.—[t, ts.ts]) = > Gulpp,) must correspond to the strong con-
p=1

stant of the strong interaction.

Proof. Indeed, G(pB)¢t,—[t,,t5,t,) Measures the generation of the time structure of the three semiquarks
03, , (t1,t2,13) from the core time structure 3/ (t.) of the envisaged semibaryon.
If (ng — pp) — 0, then ¢} -~ — 0 and we have asymptotic freedom [G-W], [Pol], [Wein1],

3
corresponding to the fact that the semiquarks become free since € G}R , (t;) are no more connected to
i=1

GE%L(tC) — 0 : this is reflected by (G(pB)t,—[t1,ta,t5]) — O -
On the other hand, if @i, 1, 4505, , IS small, then (G(PB)t.—[t, ta,t5) Will take high values. .

Definition 1.4.7 (Algebraic Hecke characters) Consider the morphism
(e—r 0 B) 1 O 1 (t) — O () © 07, (1)

transforming sequentially and gradually the 1D-time semisheaf of rings 9}%, () into the 3D-spatial sem-
isheaf of rings 67,  (r) . Let (n — p)r,. be the set of ranks of the semisheaf 07/ (t) and ¢;; the

Ir,L
corresponding set of algebraic Hecke characters.

n—p)R,L

Similarly, let pg 1 be the set of ranks of the semisheaf 93)’1 1(r) and ¢, , the corresponding set of
algebraic Hecke characters.
If (n—p)r,L — 0, then we have that

Yemr 0 B 10k 1 (t) = 07, , (r)p

which means that the semisheaf 9}%7 . (t) has been nearly transformed into the 3D-spatial semisheaf
6‘?1? P (T)p .

Let (ZSZ(W—P)R,L
characters. Then,

= Ct—r(P)bripr., be the equality between the corresponding sets of algebraic Hecke

C;ir(p) = {Cfl(pl)a T 70;1(p#)7 T ch_l(Pq)}
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is the set of ¢ inverse parameters measuring the generation of the semisheaf 9?}’%7 . (r)p from the semisheaf
O L(t) -

Proposition 1.4.8 If (n — p)r,. — 0, then

1. the average parameter (¢, (p))max = (Z c;l(pu)> /q is proportional to the velocity of the light
p=1

c

3

7., (r)p resulting from the morphism:

2. the semisheaf of rings 0
(Yt—r © E)max 9}%,L(t) = 9§R,L(T)P

gives the structure of a set of right (resp. left) semiphotons.

Proof. If (n — p)r.r — 0, the 1D-time structure 6% ; (t) has been nearly completely transformed into

3

3 (r)p ; consequently, (¢;},(p))max , giving a measure of the ratio of the

the 3D-spatial structure 6
spatial structure with respect to the time structure, must be proportional to the velocity of the light:
indeed, as the proper time of the semiphotons tends to zero, their space(-time) structure is crudely given
by 93 (T)p . ]

IR, L

Definition 1.4.9 (A right (resp. left) semiphoton) Considering that a photon with momentum k
corresponds to a plane wave and that to each normal mode k is associated (p + p)r quanta, we shall
assume that the internal (vacuum) space structure of a right(resp. left) semiphoton with momentum
7 = h k will be described by a spatial section Th 1 (rk) (which is a 1D-real torus according to definition
1.2.7) having (p + 1) quanta of momenta kr and composed of (p+ u) - N prime ideals corresponding to
(p + p) - N Galois automorphisms.

Then, k = (p+ u)ET and p= hgr k = (p+ w)hsr k. , where the equivalent of the Planck constant hgr

corresponds to the integer N in the internal (vacuum) space time unit system (see proposition 2.2.13).

Definition 1.4.10 The (vacuum) space-time structure of elementary right and left semiparticles is

assumed to be given at the fundamental level by:
1. the number of sections of the space-time semisheaf of rings representing their structure;

2. the set of ranks of these sections and especially the set of parameters ¢;—.,(p)r, (see definition 1.2.9)
measuring the generation of the complementary space semisheaf of rings O?R . (r) with respect to the
reduced time semisheaf of rings %"/ (t) .

More precisely, the fundamental algebraic structure of:
a) semileptons will be characterized by:

1. go sections with g, € INT ( £ for leptons);
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2. a set of g, ranks ny referring to these sections in such a way that the set of ranks (n;, — py)
refers to the reduced 1D-time semisheaf of rings 9}% ()¢ and pg refers to the complementary

3D semisheaf of rings 63 (r); . Then, the set of parameters

Ctor(PORL = Pritny—piyne | Priloo)nr

gives a measure of the generation of 63, ()¢ with respect to 83 (t) -

b) semibaryons will be characterized by:

1. qp sections;
2. a set of gg ranks np ;

3. a set of ¢p parameters G(pB)tCH[tl,tg,tg] , as introduced in definition 1.4.5 and measuring the
generation of the three complementary 1D-time semisheaves of rings 6} 1, (ti) g, from the reduced
LD-time semisheaf of rings 67 ; (t.) of the baryonic core.

Parallely, we have a set of g ranks (ng—pp) referring to 9}“%17 1.(tc) and a set of ¢g complementary

3
ranks pp referring to @ 0} (), -
i=1

Ir,L
k2

4. three sets of gp, parameters c;—r(pg,) , 1 <@ < 3, referring to the generation of the 3D-spatial

semisheaves of rings of the three semiquarks 63 (ri)q, from 6} (t:)q, -

Proposition 1.4.11 The sets of parameters c,—,(pe¢) of semileptons and c,—(pg,) of the semiquarks are

obstruction parameters with respect to the stability of these semiparticles.

Proof. Indeed, these sets of parameters fix the space structures of these semiparticles with respect
to their time structures according to definition 1.4.10, preventing their annihilation, i.e. the complete
transformation of their time semisheaves of rings in their complementary 3D-space semisheaves of rings

by the morphisms (y;—, o F) . .

Lemma 1.4.12 The number of geometric points of all right (resp. left) time quanta Mi(t)R_,L of rank N

is equal.

Proof. The sections of the 1D-time semisheaves of rings 9}%7 1.(t) are generated by Eisenstein cohomology
from symmetric splitting semifields having the same number of simple roots according to definitions 1.1.2
and 1.1.4. Consequently, all the sections s,r 1 € H}Q_L(t) , generated from the specialization ideals p,r,1.
(see definition 1.1.3), are composed of functions on right (resp. left) time quanta having the same number

of geometric points [L-NJ. .

This is true for semileptons. But, if we take into account the following proposition, it is also verified
for semibaryons whose time structure originates from symmetric splitting subsemifields L;F whose number
is greater than for semileptons because the baryon masses are bigger than the lepton masses in a given

family of elementary particles.
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Proposition 1.4.13 The right (resp. left) time quantum of a semiquark is a right (resp. left) time

quantum of the baryonic core time quantum.

Proof. Indeed, the smooth endomorphism E} , transforming the baryonic core 1 D-time semisheaf of rings

0k 1(tc) into the three complementary 1D-time semisheaves of rings H}R,L(ti)qi of the three semiquarks,

acts on 9}%) 1(tc) prime ideal by prime ideal through the action of the Galois antiautomorphic group.
Consequently, the number of geometric points of a time quantum of the baryonic core is equal to the

number of the geometric points of a time complementary quantum of a semiquark. "

Proposition 1.4.14 The number of geometric points of all right (resp. left) space quanta M;{(T)R,L 1

equal.

Proof. As by lemma 1.4.12; the number of geometric points of all time quanta Mi (t)r,1 is equal and
as the space quanta are generated from the corresponding time quanta by the morphism (v, o E) , we

reach the thesis. "

Proposition 1.4.15 The number of geometric points of a space quantum of a semiquark is equal to the

number of geometric points of a time quantum.

Proof. By lemma 1.4.12 and proposition 1.4.13, we know that the number of geometric points of a time
quantum of the baryonic core is equal to the number of the geometric points of a time quantum of a
semiquark. Considering on the one hand the three (v, ., o E;) morphisms responsible for the generation
of the space structure G?R,L (ri)q, of the three semiquarks according to proposition 1.4.4 and on the other
hand the (y;—, o F) morphism responsible for the generation of the space semisheaf of rings 9?1“ (r)e of

a semilepton, for example, we get the thesis since all time quanta have the same number of geometric

points. "

1.4.16 The quantification rules of the space-time structure of semiparticles can then be envisaged

by considering that:

a) the time structure 6% ; (t)¢, of a semilepton ¢; can lose time quanta by the action of the smooth

endomorphism E according to definition 1.2.4:

E:0p (e, — 07, (D k@ M (t)r.1

where M, I(t) g,z are disconnected time quanta (functions) of rank N .

These free right (resp. left) time quanta (functions) can then join the right (resp. left) time semisheaf

of rings 9}%7 1.(t)e, of another semilepton, labeled ¢ , and increase its time structure.

b) similarly, space quanta M, L(r) g, can be disconnected from the space structure 0% 1,()e, of a semilep-
ton ¢1 by:

E: ei,L(T)fl - H?z’L (T)fl k@l Mlg(r)Rlz
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and increase the space structure 6% ; (1), of another semilepton (5 .

c¢) the time semisheaves of rings 9}1 . (ti)g » 1 <i <3, of the three semiquarks ¢; of a semibaryon By

can lose time quanta M ,ﬁ (t;)r,z by means of the smooth endomorphisms

Ei: 0k p(ti)g, — 07}, (ti)g, kEB M (ti)r.1 -

i=1

These time quanta (functions) can then increase the time semisheaves of rings of the three semiquarks

of a semibaryon Bj .

Similar conclusions are reached with space quanta.

Let us note that quantification rules with right or left quanta are not exact since only bisemiparticles
have a real existence. Consequently, only quantification rules with biquanta can be considered as developed

in chapter 3, section 3.

It was demonstrated in [Piell] that the quantification rule consisting in adding time or space quanta to a
semisheaf of rings corresponds to a deformation of a modular Galois representation while the quantification
rule referring to the removal of quanta from a semisheaf or rings corresponds to an inverse deformation of
projective type associated to an endomorphism.

More concretely, let s, , denote a section of a semisheaf of rings having a rank n, = (p +p) - N .

Then, a deformation of s, , corresponds to an equivalence class of lift:

[ptul—lp+utv] |
DR,L . Sur,L Sputvr, L

sending s, , to a section s,4,,, having a rank n,y, = (p+ p+v) - N and composed of (p + p + v)

ptutv]

quanta. The deformation D%_Jz” 1= is associated to the exact sequence:

Tl
1 ? MMR,L —— Sptvpp — Spugp — 1

. . I
whose kernel is a quantum (function) M, .

On the other hand, a section sy, , can be submitted to the inverse deformation

[ptutv]—[pt+ul |
DR,L . Sut+vr, . — Sur,L

which is a modular projective mapping sending a section s,,4,, , of rank n,4, = (p+p+v) - N to a
section s, , of rank n, = (p + p) - N corresponding to an endomorphism of s,,;,, , removing v quanta
which become “free”.

2 Deformations of the fundamental algebraic structure of semi-
particles
2.1 Versal deformation and spreading-out
isomorphism

External perturbations can generate singularities on the sections of the semisheaves of rings 911{5 (t,r) .
This problem is analyzed in this section by considering the versal deformation of a semisheaf of germs of

differentiable functions 0% ; (sr,r.) of dimension m having isolated singularities.
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The related question consisting in the algebraic extension of the quotient algebra of the versal defor-
mation is principally considered: it is essentially the inverse problem of the versal deformation of a sheaf
of germs of differentiable functions. This problem has some analogy with the resolution [Hir], [Thoma],

[Tei] of the singularities of an algebraic variety since it “reduces” the versal deformation.

Under some external perturbation, singularities [Thol], [Lev]| are assumed to be generated on the

sections s, g, € 0% ; . We then consider:

Definitions 2.1.1 (1. The division theorem) This theorem will be recalled for germs of differentiable
functions s, 1 having an isolated singularity of corank 1 . Remark that nonisolated singularities were
investigated by Siersma [Sie] and Pellikaan [Pel] who consider as starting point of their developments the
group of all local isomorphisms leaving the singular locus invariant.

Let (z1, -+ ,Tm—n, w1, - ,wy,) denote the coordinates in (LT)™ .

A germ sug, 1 (wr L) € 0% [ (sr,1) has a singularity of corank 1 (then, n = 1) and order p in wg,, if
sur,L(0,wr 1) = whp e, (wr,r) where e, (wr,r) is a differentiable unit, i.e. verifying e,(0) #0 .

Let 0 1 [wr,r] be the algebra of polynomials in wg,, with coefficients 7, (z)r,1 being subfunctions of
9%21 defined on a domain Dg  C Bpr where Bp r is a lower (resp. upper) half open ball of radius b
around 0 € L™~ 1 .

Ifsur,z € HﬁL(SRL) has order p in wg, 1, , then, there exist a differentiable function g, r 1 € G"RT)L(qR,L)
and a polynomial

T .
VR = _eriu(ZU)R,LwLR,L € 0% L[wr,1]

1=

with degree r < p such that
f,uR,L = SuR,L " QuR,L T R;LR,L

is the versal unfolding of s,g ; and corresponds to the Malgrange division theorem for the right and
left cases. The Malgrange division theorem [Mal] is the differentiable version of the Weierstrass division
theorem [G-R2], [G-K] valid for germs of analytic functions [Mathl].
(2. The preparation theorem) Let

p—1 )
Wur,r, = W+ 3 bip(¥)R LW L
=0

be the Weierstrass polynomial verifying b1,(0) = -+ = b,_1),(0) = 0 . If s,r 1 € 0F ;(sr,r) has finite
order p in wg,r, , then there exists a uniquely determined Weierstrass polynomial wyr 1 € 0% r[wr,1] and
aunit eyr 1, € 0% 1 (e) such that s,p 1 = wur,L - eu(wr,L) -

If sur,L € 0% p[wr L] , then ey 1 € OF r[wr, 1] and we get the preparation theorem

fur,L = SuRr,L - Qur,L + RuR,L
where g,r 1 € 0 1 (q) and
T .
Rurr =) ain(x)r,Lwyp 1, € OF 1w, L]
=1

with a;,(x)r,1 € 9%21 (a;) and r < p .
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Definitions 2.1.2 (1. Versal deformation) Let 9%21 (a;) be the semisheaf of differentiable functions
aip(z)rL C surL(z,w) , © = (21, ,Tm-n) , and O ; (w’) be the i-th generator semisheaf of mono-
mial functions w!, ;. Then, Og r(sr,L) = {0k L(wWk L), s Ok p(Wh ) -0k L(wWk )} is the right
(resp. left) family of semisheaves of the right (resp. left) base sg j of the versal deformation of the sem-
isheaf 0 ; (sgr,.) . Indeed, the versal deformation of the semisheaf 0% ; (sr,r.) , whose sections are the

differentiable functions s, g,z , is given by the product [Traul], [Trau2]:

Or,.(fr,) = 0% 1(sr,L) X 0% 1(SR,L)
where 6‘%7L(SR7L) is the base semisheaf such that 0g 1 (fr 1) is sgr,-flat.

Recall succinctly that a deformation [I11] is called versal if each deformation of O 1,(sg, 1) is isomorphic
to another deformation of 0 1 (sg,) induced by some transformation of the base semisheaf O 1.(sgr,1.)
[Pala).

(2. Quotient algebra) The quotient algebra Og r[Ryy ] of the versal deformation of the semisheaf

0% 1. (sr,z) is a finitely generated vector space of dimension  whose elements are the polynomials R, g 1 =

T .
> aiu(I)R,LU’LR,L .
i=1

Definition 2.1.3 (Specialization semirings) Let p(a;,)r, be the specialization prime ideal of the
subsemiring A, , referring to the generation of the function a;,(z)r,r . Then, p(a;)r,r will denote the
set of specialization prime ideals {p(aiy)r,}—; of the semiring A, , referring to the generation of the
semisheaf 9%21 (a;) .

Similarly, let p(wL r,r) be the specialization prime ideal of the subsemiring Awﬁ o referring to the
generation of the i-th base function of the polynomial R,z . Then, p(w')g, will denote the set of
specialization prime ideals {p(wL R, L)}Zzl of the semiring Aw% » referring to the generation of the i-th

generator semisheaf 0%, | (wh 1) .

According to section 1.1.3, let (a;)r 1 be the set of specialization ideals of the specialization semiring
By, .., dividing the set of specialization ideals p(a;) g, . Similarly, let (w®) g,z be the set of specialization
ideals of the specialization semiring Bw% . dividing the set of specialization ideals p(w®)p,f, -

Then, Bg,, , is the integral closure of A,,, , and 9’;{21 (a;) is a semisheaf on the free A, ,-semimodule

Aigp °
Similarly, 6, ; (w") is a semisheaf on the Ay -semimodule B,;

Lemma 2.1.4 The semisheaves 9%21 (a;) , 1 <i<r, and O ;(w') are characterized by the same set of

ranks.
Proof.
1) Let Myi, | = {n%’ e My ,nwé} be the set of ranks corresponding to the set of subsemimodules
By, = {Bui, - Byi} and let na,p . = {na;i; s Nay 5 Ny, } be the set of ranks of the set

of subsemimodules By, , = {Ba;;, s Ba;, } -
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Each section s,r, € 0% (sr,r) , 1 < p < ¢, having a singularity of order p is (p + 1) determined
[Math2], [Tou]. Consequently, there exist (r — 1) embedded and sequential subspaces of the quotient
algebra 0g 1,[R,] of the versal deformation g (fr.) = 9"RT,L(SR,L) X GQ)L(SR)L) of the semisheaf
0% 1 (sr,) : this also reflects the finite determinacy [Pie5] of the quotient algebra O 1[R.] -

Considering that the quotient algebra develops according to:
T .
Or[Ru] = 2 057 (@) x O (W),
i=1

each semisheaf direct product 9%21 (a;) x 0 1 (w') must be finitely generated.

2) the section a;,(z)r,r C sur,r(z,w) being a subfunction of s, g r(x,w) must be characterized by a
rank
naiu = (h’# ’ N)mil

where:

e the integer h, is a global residue degree verifying h,, < p with p being the global residue degree
of the p-th conjugacy class of T,,(A 1, ) or of T}, (A 1) on which s,g, (2, w) is defined.
Note that the rank ng, of this u-th conjugacy class is ns, = (- N)™ [Pie9].

e N is the rank of a real irreducible completion.

3) As 0% 1 (sr.L) is projected onto the semisheaf 07" (a;) in such a way that the semisheaf 0%, ; (wf ),
1 <i<r, be flat onto 9;;1 (a;) , the monomial function U’LRL € 0k (wk 1) , which is a normal

crossings divisor, must have a rank n,,: proportional or equal to the rank n,,, of a;,(z)r,z -
"

If m —1 <2, then we have that:

° nwﬁ:(h#JV)pwherepzm—l;

[ ] nwﬁ Z naw . ]

Definition 2.1.5 (Singular ideal) The function wL RrL € 9}%) . (w') can have an isolated singular point
in the specialization ideal ﬁj?“fﬁ . Then, Aﬁfwi = 5;‘;7% — ﬁ(jq);w; will be called a singular ideal. The
. ’ H
rank of wy,p , Will be called the total rank, noted nfj , and will be equal to ng = (nw@ -H)+1= N,
y m I

where the second term in the sum refers to the singular “rank” of the singular ideal Aﬁf_wi .
W

Lemma 2.1.6 Let 9}%,L(w§%,L> be the i-th base semisheaf of the versal deformation of 0% 1 (sgr,L) -

Let f** be the mazimal value of its global residue degree counting the irreducible subschemes of rank

N .
Then, the following smooth endomorphism
1 ' 1 ‘ 1 ‘
Ew}?,L[oR,L(wg%,L)f{““] = GE,L(w%,L)fﬁi D 91R,L(w3%,L)f{i ;
with fTIZ = fi" — [ € N, can be introduced on the semisheaf 9}%,L(wiR,L)f;"a" in such a way that it

; ; 1 (i 1 i
decomposes into two non connected complementary semisheaves GR,L(wR,L)ﬁi and HIR,L(wRL)fﬂ» .
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Proof.

1) Referring to the rank n,; = (h, - N)? of the monomial function wj,p ; € 0p ;(wh 1) as given in

lemma 2.1.4, we see that its unramified rank or global residue degree is given by:
fwa = (h#)p = nwﬁ/Np .

The integer fw,i is the number of irreducible completions of rank N on which wLR) 5, is defined.
So, fia* will be in the same manner the number of irreducible completions of rank N on which
Ok 1 (wh 1) is defined:
[ = @ D (hum, )" -
oy
2) The semisheaf 03 ; (w} ;)5 is a reduced semisheaf generated from 0}, | (wk ;) fmex under the action
of the Galois antiautomorphic group according to the endomorphism Ew}é B in such a way that:

° 9}% L(wi& L) fr is characterized by decreasing global residue degrees f7 ;

. H}R’L (w}% ) L is characterized by increasing global residue f; verifying f** = f* + ff . =

Proposition 2.1.7 FEvery base semisheaf 9}%7L(w§%1L) of the versal deformation of the semisheaf@ﬁL(sR)L)
can generate under the smooth endomorphism EwiR : the elements of the category c(ﬁiﬂ ) of the (f; — 1)
B R,L

pairs of semisheaves of rings:

0(9111;;'“) = {07 L (W 1) g1 ® 07, , (Wi L)1),
e 7(9;%1,L(wiR,L)f:i D H}R,L(wiR,L)f{i)a

7(6‘?%1,L(w§%,L)1 D H}R,L(WE,L)f:“"‘—l)} , 1< f*i <

whose objects are two nonconnected semisheaves characterized by complementary global residue degrees

verifying: f"% = fr + TI .

Proof. This is a generalization of lemma 2.1.6 where (f™** — 1) smooth endomorphisms E,:  are

considered. "

Corollary 2.1.8 Let f denote the global residue degree set of the i-th reduced semisheaf of rings HE{L(wi)

and let fTII denote the global residue degree set of the i-th complementary semisheaf of rings G}R L(wi) .

Then, the smooth endomorphism Ew;-? . applied on the semisheaf of rings 9}%)L(wi) 18 maximal when

*
=0

Proof. Indeed, if f} =0, then f] = ™  which means that the reduced semisheaf of rings 9}‘%17 7 (w?)

has been completely transformed into the complementary semisheaf of rings G}R:L (w?) . n
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Proposition 2.1.9 Let Or (fr,1) = 0% 1(sr,1) X 0% 1(Sr,L) be the versal deformation of the semisheaf

07 1 (sr.1) having Or [[Ry] = > 057 (a;) x 0% ;. (w') as quotient algebra.
: =R, :

Then, there exists a family of isomorphisms TL( Mg TT‘R,L) given by:
Wa(f7y, oo B oo B, ) 10 L(sre) X O 1(sr.) = OR p(sr.L) X OR,1(sr.L)
U {(H}R,L(wl))f.,{ T 7(9}R’L(w1))f7{ )T 7(9}R,L(wr))f,,{ }7 1§Z§r7
1R, L iR,L "R,L

where:

a) (H}R . (wi))ff is the i-th complementary semisheaf having global residue degree set fTI_R ; generated
2, T'LR,L . ‘R,
by the smooth endomorphism Ew}é . from the semisheaf (6‘}%7L(w1))fi having global residue degree set

fi .

b) 0% 1(srr) X 0 1 (sr,L) = (0% (sr.L) X 0% 1(5R,L))—
(O @) gz, oo O (@))gr e (O], (7))} 1<i<r

TTR,L

Proof.

1) This proposition is a generalization of proposition 2.1.7 in such a way that the smooth endomorphism
E,; , generating (f{"** — 1) pairs of semisheaves of the category c(0.; ), is extended to all the
B R,L

base semisheaves 6}, ; (w% ;) , 1 <i <1, of the versal deformation.

R,L’ 7 Tig L’ 7ITrR L

2) The family of endomorphisms 7, (fy -, f} -+, f¥ ) is such that:

. fTIIR ; irreducible subschemes of rank NV are disconnected from the base semisheaf 9}%) I (w}% L) fmex

on 0%/ (sr.L) ;

. ffiR’L irreducible subschemes of rank N are disconnected from the base semisheaf 9}%_’ I (w}% L) fmex

on 07 1(sr.1) ;

e andsoon, 1 <i<r.

3) The set of complementary residue degrees ( rIlR PR rIiR PR rIrR L) varies in such a way that:
I : I
1§ ’I"lR’LS {ndxu"'ulg TR’LSf;nax
implying for each set ( TIlR,L’ - TITR,L) a family of isomorphisms ﬂ-s(f:lR,L R :TR,L) .

4) 0% 1 (sr.r) is the residue base semisheaf resulting from the disconnection of the set {6} (wl)fll
, 3 Fipr

: ’H}Q,L(wr)fl } . =

"TR,L

)

Corollary 2.1.10 The family of isomorphisms

IO (L e, ) 08 L(sre) X 0% L(sr.L) = 0% L(sr1) % 0 1 (5R.L)
1 1 1 T 1 s
U A @)y, o O ) gr e s O (0 ))g,

is maximal in the i-th semisheaf (G}iL(wi) if :iR L= 0.
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Proof. If f:iR L= 0, the i-th semisheaf 9}%) ;. (w") has been completely transformed into its complemen-

tary disconnected semisheaf 07 (w’) . Indeed, we have that: TIIR L= frexif S, =0 .

Corollary 2.1.11 The family of isomorphisms 115 is mazimal if:

Hrsnax : 7IQL,L(SR,L) X HE,L(SR,L)) - HE,L(SRJ/) U {(H}R,Lwl)f{nax7 T 7(9}R,L(wr))f;nax} !

Proof. Indeed, ffiR L= frex if ;:_R L= 0, V. In this case, all the semisheaves 9}%7L(wi) ,1<i<r,
of the quotient algebr’a have been disconnected from Or..(fr,) . Consequently, Or 1.(fr.L) = 0% 1 (sm,L) %
0.1 (sr,) reduces to the semisheaf 0% ; (sr L) - .

Definition 2.1.12 (Category of vertical tangent vector bundles) Let

TVw :{Tlev"' 7TVwia"' 7TVw7,}

denote the family of tangent vector bundles obtained by considering the projection of all complementary
semisheaves (07,  (w')) s ,Vi,1<4i<r,in the vertical tangent spaces Ty, characterized by the
f TiR,L i
normal vector fields w; .
Let 7y, be the proper projective map of the tangent vector bundle Ty, :

Mo T O 0))gr = (B, (@),

so that 1v,, = {v,, }i=; -

To the category c(f7, , (w')) will then correspond the category ¢(Tv,, (67, ,(w")) of sections of tangent

Ir,L
vector bundles.

Proposition 2.1.13 The extension of the quotient algebra of the versal deformation of the semisheaf
HﬁL(SRL) having an isolated singularity of order p in each section s,r 1 s realized by the spreading-out
isomorphism SOT = (1y,, oIl;) .

Proof. Let I, be the kernel of the normal vector bundle Ty, .
Then, the exact sequence

. TVay, i
O i I’ww - TVwi (H}R,L(wz))fl - (H}R,L(w ))fI - 0

TiR,L "iR,L

represents an extension of the complementary semisheaf (07 (w®));r by the kernel I, . .

R,L Tig L

Proposition 2.1.14 The spreading-out isomorphism SOT is locally stable if the complementary sem-
isheaves Ty, (0}, , (w'))s1 ,Vi,1<i<r, generated by SOT from O (fr.L) , are locally free
- "iR,L

semisheaves.
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Proof. If Ty, (07, ,(w'));z  has a singular ideal in the sense of definition 2.1.5, then it is not stable,
’ TiR,L

taking into account that a semisheaf is locally stable if it is locally free. n

Proposition 2.1.15 The mazimal number of complementary semisheaves Ty, (H}R . (wi))fl gen-
g TiR,L

erated by the spreading-out isomorphism SOT is equal to the codimension of the versal deformatioﬁ of the

semisheaf OF 1 (sr.L) -

Remark 2.1.16 Let us recall that all the singularities of generic wave fronts in spaces of dimension < 7
are locally diffeomorphic to the A,_; and D,_; singularities [Arnl], [Arn2] whose simple genotypes in
R™ — IR have the normal forms [Mill]:

Ap—l . :I:p + Q )
Dpy 2Py +yP 4+ Q)

where @ and @’ are nondegenerated quadratic forms respectively of (m — 1) and (m — 2) variables.
As we are concerned in this work essentially with spaces of dimension 3, the only singularities to be
considered are the corank one (i.e. with n =1 ) singularities A,_; and the corank two (i.e. with n =2)

singularities Dp_1 .

Definitions 2.1.17 (Corank 2 singularities) 1. The Malgrange preparation theorem can be general-
ized to germs of differentiable functions s,r 1 € 0% 1 (sr 1) having an isolated singularity of corank 2.
Indeed, if a germ s, g 1 has singularities of corank 2 and order p in the two indeterminates wy and ws ,
then:

a) sur,(0,wi,ws) = Pup r(wi,ws) - eur (w1, we) where e,r (w1, ws) is a differentiable unit and

P, g, (w1, ws) is a Weierstrass polynomial of degree p .

b) the quotient algebra of the Malgrange preparation theorem is a finitely generated tensoriel space of

type (0,2) and dimension r < p .

2. The spreading-out isomorphism SOT can clearly be applied to the versal deformation of a semisheaf
of germs of differentiable functions having singularities of corank 2 because the proposition 2.1.10 can be

generalized to this case.

Definition 2.1.18 (Gluing-up of complementary semisheaves) The category of complementary sem-
isheaf direct products {Tv,, (67

IR,L(wi))}zzl does not necessarily cover in a compact way the semisheaf

0% 1(sr,L) X 0 .(sr,1) generated from the semisheaf 07 ; (sgr,1) by versal deformation and spreading-out

isomorphism SOT . However, we can define a gluing-up of semisheaves Ty, (67, , (w'));r  which are
> iR,L

above the semisheaf 07  (sr,) X 0 (SR,L) -

As the sections of the semisheaves Ty, (0]  (w')ss are constituted of normal crossings divisors
i \VIg, i L

having a rank Myt = (hy-N)P ,withp>m—1, according to lemma 2.1.4, we can say that the dimension

of these semisheaves is approximatively equal to m .
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In this perspective, let us denote the i-th and the j-th complementary semisheaves by (67 (D(w;))r, L
and by (07" (D(w;))r,r defined respectively on the domains D(w;) and D(w;) . Consider then the gluing-up
of these two complementary semisheaves in the following manner:

For each pair (i, j) , let IT;; be an isomorphism from 67" (D(w;) N D(w;))r,1 to 07" (D(w;) N D(w;))R,L -
Then, there exists a semisheaf 6™ (D(w;—;))r,r defined on the connected domain D(w;—;) = D(w;) U
D(wj)) and an isomorphism n; from 6™ (D(w;))gr,r to 07" (D(w;))r,r such that IL;; = n; o nj*l in each
point of (D(w;) N D(w;)) ,Vi,1 <4 <r: thisis an adapted version of a proposition of J.P. Serre [Serl].

So, 0™(D(w;—;))r,r is the semisheaf corresponding to the gluing-up of the semisheaves 67 (D(w;))r, 1
and 07" (D(w;))r,1 - It is then possible to envisage the gluing-up of some complementary semisheaves or of

the complete category of these complementary semisheaves covering then by patches [Tho2] the semisheaf

0% 1(sr,L) X 0 1(SR,L) -

Definition 2.1.19 (Sequence of spreading-out isomorphisms) Let G?OT(I)R , denote the family of
complementary semisheaves {0;"(D(w;))r,L}i— , p <7, covering 0% | (sr,) X 0 1 (sr,) some of which

can be glued together. H?OT(D is thus generated by the spreading-out isomorphism SOT(1) .

R,L . .
According to definition 2.1.5, the germs w/,p ; € 0% 1 (w') C 67*(D(w;))R, can be characterized by
isolated degenerated singular points.

Consequently, a versal deformation of H?OT( can be envisaged followed by a spreading-out isomor-

Dr,L
phism SOT(2) . The resulting family of complementary semisheaves will then be noted H?OT(Q)R L
If we abbreviate 0% ; (sr,.) X 0 1(sr,z) by Or,L(s,5)r,1 , we have the exact sequence:
m Vd(1)
0r(s)rL — OrL(s51)RL

s0T(1
—(’) (eR,L(SaSI)R,L)/UH?OT(DR,L

Va2
cy (Or,.(s,s1)r,.) UOrL(SsOT(1),52)R.L

SOT(2) m
— " (Or.(s,51)R,L) UORrL(ssor), 52)r,L) U002, ,
where

a) Vd(1) and Vd(2) denote the two successive versal deformations;

b) the versal deformation Vd(2) of the semisheaf g7y, , gives the semisheaf
Or,L(5sor(1), $2) R, in such a way that the dimension of its quotient algebra g verifies ¢ < r where

r is the dimension of the quotient algebra of Vd(1) .

Proposition 2.1.20 A sequence of mazimum two successive spreading-out isomorphisms can be envisaged

from a given semisheaf of germs of differentiable functions HﬁL(s)RL where m < 3 .

Proof. Asm <3, the corank “ ck ” of the degenerated singularities on 0% 1 (s)r,1 is ck < 2 according

“

to the remarks 2.1.16 and the codimension “ cd ” of the versal deformation of 0% ;(s)r,r is cd <3 . Con-
sequently, the possible degenerated singularities on the family of complementary semisheaves H?OT(l)R L
obtained from 0% ; (s)r,z by the (SOT'(1) o Vd(1)) morphism, have a codimension c¢d <2 . Thus, one and

only one supplementary (SOT'(2) o Vd(2)) morphism can be envisaged from the semisheaf 6 .

Dr,r °
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2.2 The three embedded structures of semiparticles

The aim of this section is to prove that the algebraic structure of semiparticles is composed of three
embedded semisheaves of rings whose most internal is the space-time semisheaf of rings studied in chapter
1.

If singularities are generated on this space-time semisheaf of rings, then a sequence of maximum two
successive spreading-out isomorphisms consecutive to versal deformations can be considered leading to the
generation of two embedded semisheaves of rings covering the fundamental space-time semisheaf of rings.

The developments will be made for semileptons because they are easier to handle but they are also

valid for semibaryons.

Definition 2.2.1 (Extension of the quotient algebra) Consider the 4D-space-time semisheaf of rings
(9}}17 (t)® 03 Tn. L(r r))sT , noted ¢ ST ” for space-time, whose ¢ sections are differential functions isomorphic
to

(T Ore ®T;, (NrL), 1<p<gqg.

Assume that under some external perturbations:

a) all the sections s%'(t)r,z, € 07'(t) are endowed with the same isolated singularities of corank 1 and

codimension r < 3.

b) or/and that all the complementary 3D-sections sy, (7)r,1 € 91R . (r) have the same isolated singu-
larities of corank ck < 2 and codimension r < 3 .

According to proposition 2.1.9, the versal deformation of the ¢ sections s7!(t)g,. € 0% 1 (t) defines the

quotient algebra
”

Or,L[Rw] = Z:IQOR,L(%) x 9}%,L(wi)
where 6% ; (a;) is a constant semisheaf and where 6%, | (w*) is the i-th generator semisheaf of the versal
unfolding, when the versal deformation of the semlsheaf of rings 91R , (r) having singularities of corank 1

gives rise to the quotient algebra
9RL[ w] = Z 9 ( i) X 9}%,L(wi) -

But, if the singularities are of corank 2 on 6% Th. , (1), the quotient algebra of the versal deformation will be

H}Q,L[Rwhwz] - Zl 6‘R L(Cl) 6‘R L(w117w2]) .
%,J

Then, the extension of the quotient algebra of the versal deformation realized by the spreading-out iso-

morphism generates:

a) for the semisheaf of rings 63, (t)s7 the category ¢(Tw, (0% 1 (w"))) of sections of vertical tangent
bundles.

b) for the semisheaf of rings 67, (r)sr having singularities of corank 1 the category ¢(Tw, (0% 1, (w"))))
of sections of vertical tangent bundles and for the semisheaf of rings O?R _ (r)sT having singularities

of corank 2 the category ¢(T,, (6%, 1 (w1s,ws;))) of sections of vertical tangent bundles.
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Definition 2.2.2 (Covering the spreading-out isomorphism) Let
{01(D(w;))r,r Y-, (vesp. {03(D(w;))r.1}_, ) denote a family, i.e. with p < r, of the category c(Ty, (- - -))
(resp. ¢(Ty,(--+)) of vertical tangent bundle sections which are complementary semisheaves.

Assume that 9}%7 1 (tres)sT (resp. 9}0’?: 1.(rres)sT ), being the residue semisheaf after the versal deformation
and the spreading-out isomorphism SOT(1) o Vd(1) (resp. SOT(1") o Vd(1’) ) (see definition 2.1.19) of
0% 1 (t)sT (vesp. 9:])’1;&(7“)5']‘ ), is partially covered [Ful] by the semisheaf 6, ; (t)ac (resp. 9%L(T)MG )
denoting one family {0} (D(w;))r.1}_, (vesp. {63(D(w;))r,},_, ) or several families

HOH(D(wi))rLYi—ys - {OL(D(wk))r,L} i1 }

(resp.  {{07(D(wi))r.L}=y: - AOD(we)) R} o1} )
where p and s are inferior or equal to the respective dimensions of the versal deformations.
The covering by several families of semisheaves must be considered because every section szl tr.L €
0% 1 (t)sT (resp. S/I“ (rrL € 6‘?;’L(T)ST ) can have several isolated degenerated singularities. If there
is a covering by one or several families of semisheaves, some of these semisheaves can be glued together

according to definition 2.1.18.

Definition 2.2.3 (Embedded semisheaves of rings) Let 0p  (t)ma (resp. 9%7L(T)MG ) be the sem-
isheaf covering partially 9}%7 1 (tres)sT (resp. 9%) 1 (rres)sT ) where “ MG 7 is the abbreviated form for
“middle ground”. According to proposition 2.1.20, if the codimension of the degenerated singularities
on the semisheaves 07 (t)sr (resp. 9}”;{1L(r) sT ) is superior or equal to 3 , a versal deformation and a
spreading-out isomorphism (SOT'(2)0V'd(2)) (resp. (SOT(2')oVd(2')) ) can be envisaged from 0, 1 (t)mc
(resp. 9%)L(T)MG ) leading to a semisheaf O, ; (t)as (resp. H%L(T)M ) covering partially the residue sem-
isheaf H}Q)L(tTes)MG (resp. H%L(TTGS)MG ), where “ M ” is the abbreviated form for “mass”.

If the semisheaves HgyL(tres)MG and 9}%7L(t)M (resp. 9%7L(TTGS)MG and 9%L(T)M ) are generated by
versal deformation and spreading-out isomorphism, then the corresponding complementary semisheaves
07, . (v and 67 (r)m (resp. 0};,L(t) v and 0};,L(t) M ) can be generated respectively from
Ok 1 (tres) v and O 1 (t)ar (resp. H%L(TTGS)MG and H%L(T)M ) by a (y+—, © F) morphism (resp. a
(vr—t o E') morphism according to proposition 1.2.6 and corollary 1.2.8.

The sequence of the two successive versal deformations and spreading-out isomorphisms from the 1D-
semisheaf of rings 0, ; (t)s7 are summarized in the two following diagrams A) and B):

A)

SOT(1)ovd(1) SOT(2)oVd(

2
Ok.1(t)sT Ok 1(tres)sT Ubg 1 (t)mc ) Ok.1(tres)sT UOR 1 (tres) v U bR (H)m

[ 77T 0E [ V1S oE Vel oF

9§R,L (T)ST 9§R,L (rres)ST ) H?R,L (T)MG 9§R,L (Tres)ST ) H?R,L (rres)MG U 9§R,L (T)M
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B)
H}Q)L(t)ST H}R L (tres)ST U H}R’L (t)MG H}R L (tres)ST U H}R’L (tres)MG U H}R’L (t)M
[ Vil oB ] VLG oB! w VoL, o
’ SOT(1")oVd(1") o / SOT(2 /) Vd(2') o / /
03, (Nsr = 0% [ (rres) s U0 (M) mc - 0% 1. (Tres)sT U 0% 1 (rres)ma U 0% 1 (r)um

leading to the two sets of three embedded semisheaves of rings for the diagram A):
HE,L(tTGS)ST c HE,L(tTGS)MG - HE,L(t)M
H?R’L(Tres)ST C 0§R,L(TTGS)MG C 9§R,L(T)M

in the sense that there is a topological embedding for all their g sections, 1 < u <gq, i.e

SMR,L(tres)ST - SuR,L(tres)MG - SuR,L(t)M
S,uR,L(Tres)ST C S;LR,L(Tres)MG C S,uR,L(T)M

where SuR,L(tres)ST S 9}%711(@0@5)57‘ and so on.

With respect to the diagram B), we have the corresponding embedding of semisheaves of rings:
9}1; L(ti"es)ST C 91R L(tres)MG C 91R L(t)M

9%7L(Tres)ST - 9%7L(TTGS)MG - 93Rl7L(T)M

Proposition 2.2.4 The semisheaves of rings HIRL(TT&S)ST U GIRL( r\ma , generated by the morphism

MG o EoSOT(1)oVd(1)) from 9R7L( )sT , may be isomorphic to the semisheaves of rings H%L(rms)gT U
HR_’L( e 5 generated by the morphism (SOT(1) o Vd(1') o 2T o E') from 0% () st if and only if:

a) singularities of corank 1 and of the same codimension are at the origin of the versal deformations

Vd(1) and Vd(1') ;

b) the singularities on the semisheaves G}Q)L(tres)ST U O}Q?L(t)MG are conserved under the morphism
’7t~>r © E

Proof. By hypothesis, only singularities of corank 1 and of the same codimension are taken into account
in the versal deformations Vd(1) and Vd(1’) : this is justified physically by the fact that the same kind of
perturbation must be envisaged on the semisheaf 6% ; (t)s7 for the versal deformation Vd(1) and on the
complementary semisheaf 6% Tn.. () s for the versal deformation Vd(1') .

The quotient algebra of the versal deformation Vd(1) is

Or,L[Rw] = ge%ﬂai) x O 1 (w')
while it is
0% 1[Ruw) = 29 (b)) x O 1 (w')

for the versal deformation Vd(1’) according to definition 2.2.1.
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Now, under the hypothesis of the proposition, the generator semisheaves 9}%7 o (w") in Og 1[R,] and
in 9%7 1[Rw] are composed of time quanta, i.e. time prime ideals of rank N . These time quanta are
composed of the same number of geometric points as the time quanta of the semisheaf 9}%) 1. (t)sT because
the semisheaves 9}%) . (w') and 9}%) 1 (t)sr are supposed to be generated by Eisenstein cohomology from
1D-time symmetric splitting semifields (see definition 1.1.2).

Considering that the semisheaf 6% (b)) € 0% [[Ry] is a stratum semisheaf of H%,Q,L(T)ST , we can
admit that we reach the thesis since the v;_, morphism is a morphism essentially based on the inverse
Kronecker’s specialization [Lan1] such that a ring of irreducible polynomials in n variables can be extended
to a ring of irreducible polynomials in m variables, where n < m .

Or, more directly, we have seen that the 3D semisheaves of rings 9% (Tres)sT and 9% 1 (Tres) M de-
generate into 1D-semisheaves of rings according to proposition 1.2.6. n

3

7w, (T)ar may be isomorphic to the sem-

Corollary 2.2.5 The semisheaves of rings 9% L (Tres) G U 0
isheaves of rings 9%7L(TTES)MG U 9%7L(T’)M if and only if

a) singularities of corank 1 and of the same codimension are at the origin of the versal deformations

Vd(2) and Vd(2') ;

b) the singularities on the semisheaves 9}%7L(tres)MG U HE,L(t)M are conserved under the mosphism
M
Vi, o E .

Proposition 2.2.6  Let M}I%_’L(t)s;r € 9}3,L(tres)ST , M{%_’L(t)MG € 9}%7L(tTes)MG and M{%_’L(t)M €
HE)L(t)M be the time quanta on which the corresponding semisheaves of rings ST , MG and M are

defined. Then, these time quanta have the same number of geometric points.

Proof. A time quantum is a time submodule having a rank N . As the MG-time semisheaf 6%, | (t)mc
is generated from the ST-1D-time semisheaf 6}, ; (t)s7 by the (SOT(1) o Vid(1)) morphism, it results that
the MG-time quanta M, 1 (t)aq are submodules of the category ¢(Tuuw, (0%, (ai) x 0 1 (w')) according
to definition 2.2.1.

Now, as the semisheaf 9}%) 1 (w") is generated on and from irreducible completions Lvi , l.e. quanta ac-
cording to section 1.1.4, we have that MII%)L(t)ST has the same number of geometric points as M§7L(t)MG .

Similarly, we can prove that M {3_’ .. (t)mc has the same number of geometric points as M {3_’ . m

Corollary 2.2.7 If M}, [ (r)sT € 0% 1(r)sT , ME 1 (r)ma € 0% (1) ma and M, 1 (r)ar € 0% 1 (r)ar are

space quanta, then they have the same number of geometric points.

Proof. As the space quanta are generated from the time quanta by the ;. o E' morphism and as the

time quanta have the same number of geometric points, we have the thesis. .

Proposition 2.2.8 The semisheaves of rings HE)L(tTeS)MG and 9}%7L(t)M as well as the semisheaves of
rings 03R7L(TTBS)MG and Q%yL(T’)M are not necessarily compact and Zariski dense in such a way that their

sections are open strings.
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Proof. Indeed, by construction (see definition 2.2.2), these semisheaves 0, 1 (fres) g and 6, 1 (t)ar (idem
for 9}0’%) 1 (tres) M and 93)’%) 1 (t)ar ) cover partially by patches the semisheaf 9}%) 1 (tres)sT -
As the sections of 9}%7L(tres)]\4g and of HE)L(t)M (resp. of 9;’%)L(rres)MG and 9}0’%,L(7°)M ) are one-
dimensional and cover partially the sections of 9}%) 1 (tres)sT (TESD. 9}0’%) 1 (tres)sT ), they are open strings.
More precisely, as the coefficients a;, () of the quotient algebra of the versal deformation of germs
included into half open balls B

whose radii increase in function of the global residue degrees of the sections s,,, , the numbers of

Sup.(wr,r) are (germs of) functions defined on domains D

MR, L HKR,L

quanta M{%_’L(t)MG and MII%)L(t)M , covering the sections s,, , (t)s7 of the semisheaf 9}37L(tres)ST , in-
crease according to the global residue degrees fyo, of s, (t)s7 . Thus, if nyry,,6(8u) = fune and
MM () e (Sput1) = fut1)me denote the numbers of quanta, i.e. the corresponding global residue degrees,
respectively of the p-th and (u + 1)-th sections of the semisheaf 9}%) 1. (tres) M@ covering the corresponding
sections of the semisheaf 9}3,L(fres)ST s then nagr ey 6 (Su) < Mgty e (Spr1) -

And, npgr(4)p (8) = Nart(4) a6 (Su) 5 e that the number of quanta npyr (), (s,) of the u-th section
of Of 1 (tres)mc is approximately equal to the number of quanta npr)., (s.) of the p-th section of

Ok.1(tres)sT - .

Proposition 2.2.9 Every semisheaf of rings 9}%7L(tT65)5T , 9}%7L(tTes)MG , H}Q_L(t)M , H%L(TTGS)ST ,
H%yL(rms)M@ or G%L(T)M which is locally free corresponds to a Stein space.

Proof. A sheaf of rings fp , defined on a closed subset P of a topological space X , is locally free if it
has no degenerated singularity. Consequently, it cannot be submitted to a versal deformation and must
satisfy the condition H?(P,0p) =0,V ¢ > 1, [G-R3]. If this is the case, the sheaf of rings p corresponds

to a Stein space and is locally free. .

Definition 2.2.10 (Semialgebras on A g ;-semimodules) Let 9}{5(@ r) = 0k 1 (t) © 6% 1 (r) denote
the direct sum of the 1D- and 3D-semisheaves of rings. As Hgfg(t,r)ST , H}QTL‘O’(t,T)MG and 9}{5 (t,r)m

are semisheaves on semimodules over A g 1, , they are semialgebras [F-D].

This leads us to the following proposition:

Proposition 2.2.11 The semialgebras 05 1 (t,7)st , 05 1 (t,7)me and 0 7 (t,7) 0 are commutative while

the semialgebras

9}{2(@ r)sT © 9}{2(@ T)MG
9}{5(@ r)sT @ 9}{5’@, r)ma @ 9}{5’(& DI
and 9}{5’(15, r)ma @ 911{5(157 )Y
extended from 9}{3 (t,r)sr by versal deformation(s) and spreading-out isomorphism(s) are noncommuta-

tive.

Proof. 1. The semialgebra 9}{5’ (t,r)sr is commutative by construction (see chapter 1) since 9}%) () st
is generated by right (resp. left) Eisenstein cohomology from the 1D-symmetric splitting semifields Li .
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The semialgebra 6% | (r)sr is also commutative since it is generated by the (7, o E) morphism from
0% 1(t)sT according to proposition 1.2.6.
In fact, the semialgebras 0} ' (t,7)st , 05 ;(t,7)mc and 0 7 (t,r)m are commutative because it is

possible for each one of these to define a unique centralizator.

2. A semialgebra extended by versal deformation and spreading-out isomorphism, for example 911?:5 (t,r)sT®
9}{5’ (t,7)mc , is noncommutative because it is impossible to define for it a unique centralizator. Indeed,
the generator semisheaves Op 1,(w?) of the versal unfolding leading to the generation of the 1D-extended
semisheaf 0}, ; (t) o originate from the specialization prime ideals p(wz r.) (see definition 2.1.3) while
the 1D-semisheaf 0 ; (t)sr originates from specialization prime ideals p,r 1 (see definition 1.1.3). As

these specialization ideals p(wL R, 1) and p, g 1. are not equal, we reach the thesis. "

Definition 2.2.12 The emission quantification of the space-time, middle ground and mass structures
of semiparticles can be envisaged by considering that these three embedded structures are constituted by
the three embedded time semisheaves of rings HE)L(tTes)STUH}%_’L (tres) MG Uﬁ}%_’L (t)ar , noted in abbreviated
form 9%%-,L (t)sT—mc—n , and by the three embedded space semisheaves 9?%.,L (P sT—MG—M = 9}0’%)L(Tres)5TU
0,1 (Tres) i U 0% (1) -

Taking into account that the middle ground and mass semisheaves of rings are above the space-time
semisheaves of rings, the middle ground and mass quanta will be above the space-time quanta. Conse-
quently, a smooth endomorphism Esr_arg—n , acting simultaneously on the three embedded semisheaves
ST , MG and M , can be defined by:

m
Esr_ymca-m: e}gyL(t)STfMGfM — 9?11%1L(t)ST7MG7M ) M;fR L (t)sr—mc-m
k=1 :

where M/

in (B)sT-MG-M = JT/[/,gR L (t)sT U M,ﬁR (O)me UM (t)y are three “disconnected” functions

on time quanta from 6% ; (t)sT—ame—ar so that ]T/[/éRYL (t)mc is above M,{RYL (t)sT and ]T/[/éRYL (t)ar is above
M, (v -

This smooth endomorphism Egsr_pra—a then represents a three stratum time quantification of emis-
sion of semiparticles.

Similarly, a three stratum space quantification of emission would be introduced by applying a smooth
endomorphism Fsr_ag—a on H%L(T)ST_MG_M disconnecting space quanta M}I{L(T)ST—MG—M from

this space semisheaf.

Proposition 2.2.13 1. The standard quanta of quantum field theory are the spatial left quanta Mi(r)M €

2. The Planck constant h corresponds to the value of the integer N in the mass unit system, where N

refers to the order of the global inertia subgroup.

Proof. The quanta of quantum theories are the spatial left quanta M{(r)ss because only the mass struc-
ture of elementary particles is presently observable and corresponds to the left semisheaf of rings 6% (r) s

of left semiparticles. However, right (resp. left) quanta are in fact spatial quanta M ,gR . (r)sr—mG—M €

0% 1 (r)sT—ma—m -
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On the other hand, according to axiom II 1.3.9, a “real” spatial quantum of an algebraic quantum
theory must be a biquantum given by the product of a right and a left spatial quantum: MZ(r) s va,m X

M{(r)sT.mG.L -

2) The Planck constant, introduced by Planck in Physics to take into account the discontinued behavior
of matter, must then correspond to the value of the integer IV in the system of units of the algebraic mass
semisheaf of rings. .

Definition 2.2.14 (Vertical tangent semibundles) The 1D-time semisheaves of rings 6% ; (tres)ma
and 0% ; (t)a as well as the 3D-space semisheaves of rings 6% ; (7res) e and 6% 1 (1) , generated from
the semisheaf 9}%7 (t)sT by versal deformations, spreading-out isomorphisms and (y;— o /) morphisms
according to definition 2.2.3, are total spaces respectively of the 1D-middle ground (resp. mass) vertical
tangent bundle

1 1

TG, O (tres)vi6: Ok 1 (tres) Fr 7031 )
1 1
(vesp. Thp), (O (s, O ()5, 70) )

and of the 3D-middle ground (resp. mass) vertical tangent bundle

; 3
T]ﬁ/I)GR,L (9?}%7L(Tres)MG, 9%,L(TT65)E40, T‘(/N)fc)

3 3
(vesp.  Thp) (0% £ (r)ar, 0% L (V) 705)) ).
where
a) 0k 1 (tres) i (resp. 0% 1 (rres)iyq ) is the basis of the vertical tangent bundle as resulting globally
from the isomorphism IT; (see proposition 2.1.10).
b) 9}%7L(tTes)MG (resp. H%L(TTGS)MG ) is the total space of the vertical tangent bundle
1 1
Tjgz[)GR,L (9}%,L (tres)MGs 6‘}%,L (treS)ﬁlcv T\(/N)fc )

3 3
(resp' T]&)GR,L (0%,[/ (TTES)MG7 9%,1/ (Tres)ﬁcv T‘(/};G) )

obtained by considering the projection of the complementary semisheaf direct products (i.e. 9}%7 I (tTes)ﬁG

(resp. H%L(mes)ﬁg ) in the vertical tangent space, according to definition 2.1.13.

c) T‘(/BG (resp. 7"(/2(;) is the projective map.

Definition 2.2.15 The generators of the 1D- and 3D-translation groups of the vertical tangent semi-

bundles TJS)GR L TIS)GR L TJSI)? , and TE’; , are respectively given by the following elliptic differential
operators:
: = =ih —
MOR,L;MG thya oty

. hvye 0 . hug O . hug 0O
PR,L;MG = T _7:|:7’ _7:l:l a_ )
Ct—r;MG Oz Ct—r;MG 39 Ct—r;MG 0z
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. 0
moRr,L;M = Eihy T
0

- (3 - (3
) )
Ct—r;M Oz Ct—sr;M 8y Ct—r;M 0z

h 0 h 0 h 0
DRL;M = {ﬂ:i M i +i—M } ,
where nps¢ and hys are constants corresponding to the integer N in the “ MG ” and “ M 7 unit systems.
har is the Planck constant h : it recalls that the total spaces 0% ; (t)ar and 6% ; (r) respectively of the
vertical tangent semibundles TJS; .

The constant ¢’ .\, = (c; 2, (p)) refers to an average value of the quotient between algebraic Hecke

and Tﬁ}l , are quantified since they are composed of mass quanta.

characters according to propositions 1.4.8 and 1.4.11 and gives a measure of the transformation of the
semisheaf 0% | (r)a from the semisheaf O ; (£)as - c{ir;M ~ ¢~ where c is the light velocity.

An equivalent interpretation can be given to the constants hiy;e and c;ir‘ MG -

Definition 2.2.16 The elliptic differential operators mog,;, and pg ; can be directional gradients, Lie
derivatives or covariant derivatives [B-GJ, [Kob]. The covariant derivative Ay; = of a semisheaf, for example
9‘;’%) .(r)ar , along a vector field Vi is such that this semisheaf if parallely transported along a family of
geodesics orthogonal to it with tangent vectors Vs [Dell], [H-E].

2.3 Phase spaces associated to the vibrations of the three embedded struc-
tures and the vacuum of Quantum Field Theory

Proposition 2.3.1 To each 1D- and 3D-space-time ( ST ), middle ground ( MG ) and mass ( M )
semisheaf of rings corresponds a phase space which is homeomorphic to IR* x IR* or IR® x IR® and which

has the structure of a F-Steenrod bundle whose basis is given by the considered semisheaf of rings.

Proof. Let, for example, 9‘;’%) .(r)ar be the 3D-space-mass semisheaf of rings. Then, its associated F-
Steenrod bundle is given by (6% ; (r,p)r, H%L(T)M,prg\?) where 6% | (r,p)us is the total space and whose
topological group is GL(3, R) . 6% 1 (r,p)s = 0% 1 (r)ar X 0% 1 (p)ar where the fiber 6% | (p)ar has a F-
structure where F' = IR® . This IR>-structure is given by a set of homeomorphisms R* — 9?}’%7 .(P)m so

that each homeomorphism sends the action of the group G = GL(3, R) from F = IR® to 0% 1L (P)n - ]

Definition 2.3.2 ( F-equivalent fibers of a F-Steenrod bundle) Two fibers 9?%,L(p)}\4 and
9%7 ;. (p)3; will be said to be F-equivalent if they are homotopic, i.e. if there exists a continuous map-
ping from the one to the other.

Proposition 2.3.3 To each 1D- or 3D- “ST 7, “MG 7 or “ M ” F-Steenrod bundle corresponds a set

of F-equivalent sections above a given basis related to a given frequency of vibration of this basis.

Proof. At a given basis of a F-Steenrod bundle corresponds a set of F-equivalent fibers according to
the definition 2.3.2 and thus a set of F-equivalent sections.
Each set of F-equivalent sections of a F-Steenrod bundle is then interpreted as corresponding to all

the possible vibrations of the basis at a given frequency. "
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Proposition 2.3.4 The frequencies of vibration of the 1D and 3D space-time ( ST ), middle ground
( MG ) and mass ( M ) semisheaves of rings are quantified.

Proof. The semisheaves of rings “ ST 7, “ MG ” and “ M 7 are assumed to be defined on quanta,
i.e. submodules of rank N . Thus, the semisheaves of rings 9}3,L(f)ST,MG,M and 9%7L(T)ST7Mg)M are
quantified. As they are the basis of F-Steenrod bundles and as a given frequency is associated to each
basis of an F-Steenrod bundle according to the preceding proposition, we reach the thesis. "

Definition 2.3.5 The mass frequency of an elementary semiparticle is an average measure of the
vibration of all the points of the semisheaf of rings 9}0’%) (") . From the preceding developments, it
becomes clear that there exists a correspondence between the ranks of sections (i.e. classes of degrees of
Galois extensions) and the integer numbers of the quantum mechanics referring to vibrations. Indeed,

these integer numbers n,, refer to the numbers of quanta of p-th substates of a (semi)particle.

Proposition 2.3.6 The [semiJwave-[semifparticle duality of quantum theory results from the quantifica-
tion of the vibration frequency(ies) of the ( ST , MG and) M [semi/sheaf(ves) of rings.

Proof. Indeed, this duality is essentially traduced by the relations E = hv , p = hk between the
dynamical variables related to the mass structure of the semiparticles and the frequencies of the associated

semiwaves [Mes], [deBro]. .

Remark 2.3.7 The vacuum in this algebraic quantum model is not external to elementary semiparticles

but is composed of their 4D-“ ST 7 and “ MG 7 semisheaves of rings which presently are unobservable

and whose spatial extension is of the order of the Planck length ~ 10733 cm. The mass of a semiparticle is

given by the 4D-“ M ” semisheaf of rings 911{5(15, v = 0g, 1 (t)ar UO% 1 (r)a which is generated from the

corresponding 4D-“ MG ” semisheaf of rings 9}{5’(% T)MG = 9};“ (t)ma U9%7L (r)ma by versal deformation

Vd(2) or Vd(2') , spreading-out isomorphism SOT(2) or SOT(2") and YM,, o E or 4, o E/ morphism.
Consequently, the composition of morphisms:

M o EoSOT(2)oVd(2): 9}{5(1%, r\vMG — 9}{5’(@65, Tres)MG U H}Qfg(t, VM

corresponds to the creation operator of Quantum Field Theory.

Proposition 2.3.8 The 4D-“ M 7 semisheaf of rings of a semiparticle is observable while the 4D-“ ST 7
and “ MG 7 semisheaves of rings are unobservable because the vibration frequencies of the “ M 7 semisheaf

is inferior to the vibration frequencies of the “ ST 7 and “ MG 7 semisheaves.

Proof. The “ M ” semisheaf of rings, being generated by versal deformation and spreading-out isomor-
phism from the “ MG ” semisheaf of rings, is characterized by a set of ranks ng,, inferior or equal to
the set of ranks ng,,. of the “ MG ” semisheaf of rings since the codimension of the singularities on the
“ MG 7 semisheaf of rings is inferior to the codimension of the singularities on the “ ST ” semisheaf of

rings.
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According to proposition 2.3.4, the vibration frequency of the “ M ” semisheaf of rings must thus be

«

inferior to the vibration frequency of the “ MG ” semisheaf of rings since:

e the frequency vibrations of the “ MG 7 and “ M ” semisheaves are quantified;

e the sections of the “ M ” semisheaf are open strings covering partially from outside the open strings
of the “ MG ” semisheaf. .

Remark 2.3.9 (Dark energy) If the semiparticles are composed of the 4D-“ ST ” semisheaves of rings
9}{5’ (tres, Tres)sT or of the 4D-“ ST ” and “ MG ” semisheaves of rings 9}{5’ (tress Tres)ST UO}{g(t, MG
noted 9}{5 (t,r)sr—mc , they are massless and unobservable and could contribute to the dark energy of

the Universe.

2.4 The electric charge and the existence of three families of semiparticles

Let 9}{3 (t,7)sT—mc—m denote the three embedded 4 D-semishaves of rings.
Consider that an external perturbation generates on each section of the semisheaves of rings
9}{5’ (tress Tres)ST 9}{5’ (tres; Tres)Ma and 9}{5’ (t,r)n an isolated degenerated singularity of corank 1.

Then, it will be seen that singularities of codimension 1 on 9}%) 1. (&)sT—mG—m may be interpreted as
being at the origin of the time structure of the electric charge and that singularities of codimension 2 and
3 on 9?}’%7L(T)ST,MG,M or on 9}%7L(t)5T,MG,M are at the origin of the generation of the second and of
the third family of elementary semiparticles.

Note that the time structure of the electrical charge is supposed to be generated by versal deformation
and spreading-out isomorphism because it must have a permanent structure on the contrary of the magnetic
moment of a semiparticle which is generated only on the basis of the smooth endomorphism “ E 7 as it
will be seen in the following.

Definition 2.4.1 (The time structure of the electric charge) Let HE)L(t)ST,MG,M = HE)L(tTes)ST
U 9}1L(tres)M@ U 9}%7L(t)M denote the 1D-time “ ST 7, “ MG ” and “ M ” semisheaves of rings of a
semilepton or of a semiquark. Consider that each section of these semisheaves is endowed with an isolated
degenerated singularity of codimension one due to an external perturbation.

Then, the versal deformation and spreading-out isomorphism, applied to 9}%) () sT—mG—m gives:

SOT(e) o Vd(e) : Ok 1 (t)sT—nic—nr — Ok.p(bres)sT—nrc—nr U Ok (051 rrc—nt

where 9}%7 L(t)f.;e%_ Mmc_p is interpreted as the time structure of the electric charge of a semilepton or of
a semiquark; its 3D-spatial structure is given by a 3D-semisheaf of rings 9%7 R(r)ff%f ma—py composed of
3D-left (resp. right) quanta generated by the smooth endomorphism Esr_pg—n (see definition 2.2.12)
acting simultaneously on the 3D-semisheaves of rings 9%7 r(T)sT—ma—nr of its associated semiparticle.

If 9}%7 L(t)f;%7 Mc— v represents the time structure of the electric charge of a semiquark, then the ranks
of the “ ST 7, “ MG ” and “ M ” semisheaves HEVL(t)(;:)F_MG_M are equal to % or 2 [L-P-F] of the ranks of

the corresponding 1D-electric semisheaves of a semilepton because the electric charge must be conserved.

Proposition 2.4.2 Only three families of elementary semiparticles can exist in the above-mentioned math-

ematical frame.
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Proof. Let 6% 1 ()57 _rra_ns = 0% 1 (rres)st U 6% 1 (rres)ric U 6% 1 (r)ar be the three embedded 3D-
semisheaves of rings “ ST 7, “ MG ” and “ M 7 of a semilepton or of a semiquark of the first family A ,
i.e. a semielectron or a semiquark “up”.

Under some strong external perturbation, each section of the 3D-semisheaves or rings “ ST 7, “ MG ”
and “ M 7 is assumed to have one or a set of degenerated singularities of corank 1 and of the same
codimension c¢d = 2 .

Then, the versal deformation and the spreading-out isomorphism of the three embedded semisheaves
of rings of a semiparticle of the first family “ A 7, 93}’%7 L(t,r)(éfj)_ MGy generate the three embedded
semisheaves of rings of a semiparticle of the second family “ B ” according to:

A A B
SOT(A)oVd(A): 6‘%,L(T)E‘§T)—MG—M - 93R,L(7°res)(s:r)—MG—M U 9?1’%,L(7°)(S:F)—MG—M

where 9}0’%,L(7ares)(sAT)fMG7M U H%L (T)A(S'B;’)fMGfM represents the three embedded structures of this semipar-

ticle < B 7.

But, if the singularities on the sections of 931’%7 L(r)(s’i})_ ma—p are of corank 1 and codimension 3, then
the three embedded semisheaves of rings of a semiparticle of the third family “ C' ” can be generated by
versal deformation and spreading-out isomorphism from the remaining degenerated singularities of corank

1 and codimension 1 on the sections of 9?%,L(7°)(S]§F)—MG—M . We then have:

B B c
SOT(B) o Vd(B) : 9?%,L(T‘)(ST)7MG7M - ei,L(TTGS)(ST)fMGfM U 9?%,L(T)~(‘5T)7MG7M

where 93}’%7L(rms)(s‘;)7MG7M U 9?]’%)L(rms)(f;)7MG7M u 93}%,L(T)A(S/'C;27MG7M represents the three embedded

spatial structures of a semiparticle of the third family C' .
Finally, the corresponding 1 D-time semisheaves of rings are obtained from the 3 D-semisheaves of rings
by the morphisms (v, o E) (see definition 2.2.3). .

Remark 2.4.3 As the three embedded semisheaves of rings of semiparticles of the second and of the third
family are supercompact by construction, they are highly distorted. Consequently, the three embedded

structures of semiparticles of these families B and C are highly unstable which explains their rapid decays.

Proposition 2.4.4 The heavy semiquark of a given family can be obtained from the lighter semiquark of
the same family by versal deformation and spreading-out isomorphism of the singularities of corank 1 and

codimension 1 on the sections of the three embedded semisheaves of rings of this lighter semiquark.

Proof. Let 9%7 I (r)(SLTll ma—n e the three embedded 3 D-spatial semisheaves of rings of a light semiquark

of a given family “ A7, “ B ” or “ C 7. Assume that the sections of 931,%,L(T)(SL7“i)—MG—M are endowed
with singularities of corank 1 and codimension 1 under some external perturbation. Then, under versal

deformation and spreading-out isomorphism, 9?]’%) L(r)(SLTll ma—n is transformed according to:

) . Li Li He
SOT(Li) o Vd(Li) : 9?%,L(T)(ST)7MG7M - Q%L(TTBS)(ST)fMGfM U 0?%,L(T)~(‘5T7)MG7M

where 93}’%7L(rres)gLTi)_MG_M U 9%)L(T)E£F€_)MG_M represents the three embedded 3D-semisheaves of rings

of the heavier semiquark. The corresponding 1D-semisheaves of rings are obtained by the (v, o E)

morphism. .
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Remark 2.4.5 As the middle ground ( MG ) and mass ( M ) structures of semiparticles are generated
from the space-time ( ST ) structure by versal deformation and spreading-out isomorphism, we shall not
consider that the creation of these “ MG ” and “ M ” structures correspond to an axiom which, otherwise,

would have been an homotopy axiom according to M. Atiyah [Ati3].

3 Bialgebras of von Neumann, probability calculus and quantifi-

cation rules

The main purpose of this chapter is to introduce the bialgebras of von Neumann and to restore in this
manner the classical probability calculus in quantum theories dealing thus with the sixth problem of
Hilbert which consists in the ontological meaning of the theory of probabilities.

In this context, the spectral representation of a (bi)operator is explicitly given as:
e corresponding to the representation of the general bilinear semigroup GLgyy)(Ar x Ar) in the

Gr(A r) x GL(A 1) bisemimodule (Mg ® My) where Mg j, is 3(n)-dimensional;

e resulting from the representation of the Lie algebra gly(,) (A r X A 1) of the general bilinear semigroup
G Loy (A R x AL) in the shifted Gr(A r) x GL(A r)-bisemimodule (M$ ® M) which is a perverse
bisemisheaf.

As our objective is the study of the space-time structure of elementary particles which become bisemi-
particles in this mathematical frame and as a massive bisemiparticle is composed of a left and a right
semiparticle whose structure is given by the three embedded structures “ ST 7, “ MG ” and “ M 7, we

shall have to consider a bialgebra of von Neumann on each of these three structures.

3.1 Hilbert, magnetic and electric bilinear spaces

We thus begin this section by introducing the structure of a massive bisemiparticle and the space on which
it is defined.

Definition 3.1.1 (Structure of a massive right and left semiparticle) The three embedded 4D-
structures of a right and a left semiparticle, i.e. essentially of a semilepton or of a semiquark, is given
respectively by the three embedded right 4D-semisheaves of rings

9}%_3 (t, T)ST—MG—M = 6‘}%_3(15, T)ST @] 9}%_3(15, T)MG @] 9}%_3 (t, T)M
and by the three embedded left 4D-semisheaves of rings
9}/73 (t, T)ST—MG—M = 6%73(15, T)ST @] 9}/73(15, T)MG @] 9}/73 (t, T)M

as developed in chapter 2, section 2.
As O P (t,r)sT N0 1 (tr e =0, 0 1 (6,r)s N0 1 (tr)a = 0 and 0 (8, 7)va N0 L (G ) =0,
we shall envisage the direct sum of the three embedded semisheaves “ ST 7, “ MG ” and “ M ”:

ORr,L: H}QTS(th)STfMGfM — 9}{5’(@ r)sT ® 9}{3(@ r)mc B 9}{5’(@ )M

noted O ' (t,r)sTomcan -
9}{3 (t,r)sTemcem is then defined on 3 embedded topological spaces of dimension 4.
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Definition 3.1.2 (Structure of a massive bisemiparticle) Massive elementary stable objects of
Nature are in fact biobjects, i.e. bisemiparticles according to axiom II 1.3.9. Their space-time structure is
crudely given by the tensor product between the three embedded right and left 4D-semisheaves of rings:

05 2(t, 1) sremcam ® 01 (t,7)sTemcam

which allows to generate interactions between the right and left structures, i.e. between the right and left
“ST 7, “MG?” and “ M 7 semisheaves of rings.

Consider the condensed notation 6%, g, for 05 2(t,7)sT -

This tensor product then develops according to:

0% °(t,r)sTamcon ® 0) °(t,r)sTemcom = 931%;ST@MG®M ® 94L;ST@MG®M
= (%%;ST D 9;1%;MG D 931%;M) ® (6‘%;ST D 94L;MG D 94L;M)
= (%%;ST ® 94L;ST) D (%%;MG ® 9%;MG) @ (931%;M ® 9%;M)
®(9§%;ST ® 9%;MG) D (‘%;MG ® 9%;ST) D (ejl%;ST ® 94L;M)
@(931%;1\4 ® 94L;ST) D (9;1?,;MG ® 9%;1\4) D (9;1%;1\/1 ® 9%;1\40)
where the three first tensor products refer to the “ ST 7, “ MG ” and “ M ” structures of the considered

bisemiparticle while the six other tensor products refer to the interactions between the right and left
“ST”, “MG?” and “ M 7 structures.

Definition 3.1.3 (Duality of semisheaves) Let Mp and Mj, denote a right semisheaf O%.s7 » Hé;MG
or 0. and a left semisheaf 94L;ST , 94L;MG or 94L;M -
Their tensor product is given by the bisemimodule (Mg ® M},) which decomposes under the blowing-up

isomorphism S, (see proposition 1.3.2) into the direct sum of
a) the diagonal bisemisheaf (1\7 R ®p M, L),
b) the magnetic bisemisheaf (Mﬁ ®magn MLS) ,
c) the electric bisemisheaf (Mgf(s) Relec MLS%T)) ,
where M f;_’ 1, is a 3D-spatial subsemisheaf and where M}g 5, is a 1D-time subsemisheaf.
For the facility of notations, (Mﬁ ®magn MLS) will be written (MR Rm ML) and
(Mg_(s) Relec ]T/[/LS_(T)) will be written (]T/[/R Qe ML) .
If we consider the projective linear map:

PL - MR ®D7m,e ML - MR(P)/D,m,eL

of the right semisheaf M, r onto the left semisheaf M, 1 with respect to the diagonal, magnetic or electric
metric, then Mp(py is the dual semisheaf of M, and is called a coleft semisheaf whose elements are coleft
differential functions.

But, if we take into account the projective linear map
PR MR ®pm.e ML — Mppy/p .0 .R

projecting the left semisheaf M, 1, onto the right semisheaf M, R , then M, r(p) is the dual semisheaf of M R

and will be called a coright semisheaf whose elements are coright functions.
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Remarks 3.1.4 1. The “ ST 7, “ MG ” or “ M ” diagonal (bi)structure of a bisemiparticle is thus given
by the diagonal bisemisheaf M R(P)/pL (resp M L(P)/pR ) constituted by the diagonal tensor product
between the left (resp. right) semisheaf My, (resp Mp ) of the left (resp. right) semiparticle and the
projected right (resp. left) semisheaf M, R(P) (resp M r(p) ) of the projected right (resp. left) semiparticle.

The projected right (resp. left) semisheaf M R(P) (resp. M L(p) ) is thus called a coleft (resp. coright)
semisheaf and the projected right (resp. left) semiparticle is then called a coleft (resp. coright) semiparticle.

2. The following developments about bilinear Hilbert spaces concern the bisemisheaves (1\7 R® M L) as
well as the Grxr(A g X A p)-bisemimodules (Mp ® Mp) on which they are defined.

Definition 3.1.5 (Algebraic external Hilbert, magnetic and electric bilinear spaces) 1. By
the projective linear map py (resp. pgr ), the diagonal bisemisheaf (M rR®p M L) is transformed into
MR(p)/DL (resp. ML(p)/DR ). If we endow MR(p)/DL (resp. ML(p)/DR ) with an external scalar product
characterized by an euclidian metric 65 of type (1,1) , 0 < o, 3 < 3, then we get a left (vesp. right)
external bilinear Hilbert space noted H¢ (resp. H% ) [Pied], which is of algebraic nature.

2. Similarly, the projective linear map py, (resp. pr ) transforms the magnetic bisemisheaf (1\7 R ®Qm M, L)
into a left (resp. right) external bilinear magnetic bisemisheaf M R(P)/mI (r€SD. M L(P)/mrR ) Which
becomes a left (resp. right) external bilinear magnetic space, noted V;"* (resp. V5" ), if it is endowed
with an external magnetic product (¢g(py, ¢r)m (resp. (¢r(p), Pr)m ) defined from (MR( P) Xm ML) to C
(resp. from (ML(p) Xm MR) to C ) and characterized by a noneuclidian magnetic metric g5, Va#p3,
1<a,8<3,of type (1,1) .

3. The electric bisemisheaf (M R ®e M L) is transformed by the projective linear map py, (resp. pr ) into
the left (resp. right) external bilinear electric bisemisheaf M, R(P)/.L (resp. M, L(P)/.r ) Which becomes
a left (resp. right) external bilinear electric space, noted V™ (resp. Vg ), if it is endowed with an
external electric product (¢r(p), ¢r)e (resp. (dr(p), Pr)e ) defined from (MR(p) Xe JT/[/L) to C (resp. from
(]T/[/L(p) Xe MR) to C ) and characterized by a noneuclidian electric metric g§ of type (1,1) with a =0
and 1< fg<3orwithl<a<3and 3=0.

Proposition 3.1.6 The left and right external bilinear Hilbert spaces H} and H%, are characterized by
bilinear orthogonal 4D-basis while the left and right external bilinear electric and magnetic spaces are

characterized by 3D-basis.

Proof. 1. The bilinear Hilbert spaces H{ and H% are characterized by 4D-orthogonal bilinear basis
since they result from the diagonal bisemisheaf (Mr ®p ML) .

2. The electric basis is three-dimensional and not six-dimensional because the set of electric basis bivectors
{e® ® f5}h_, are orthogonal to the electric basis bivectors {e” @ fo}}_, ; indeed, we have that ((¢%)* @

f,(€7)* @ fo)) = 0 implying ((e°)*, fo)((e”)*, fs) = 0 since ((e°)*, fo) = ((”)*, fs)) =0, with1 < B <3,

by hypothesis on the electric metric.

3. Similar conclusions are obtained for the external bilinear magnetic spaces V;"* and V5" . .
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Definition 3.1.7 (Algebraic internal Hilbert, magnetic and electric bilinear spaces) Let By, :
Mpgpy — M, (resp. Br: Mppy — Mg ) be the bijective linear isometric map from Mgpy (vesp. My p) )
to My, (resp. Mg ) mapping each covariant element of Mp(p) (resp. My py ) into a contravariant element
of My, , noted My, (resp. of Mg , noted Mg, ) as introduced in proposition 1.3.6.

Then, By, (resp. Br ) transforms:

1. the left (resp. right) external bilinear Hilbert space H¢ (resp. H% ) into the left (resp. right) internal
bilinear Hilbert space H, (resp. H, ) in such a way that:

a) the bielements of H (resp. H, ) are bivectors, i.e. two confounded vectors;

b) each external scalar product of H¢ (resp. H% ) is transformed into an internal scalar product
defined from My, xXp My, (resp. Mg, xp Mg ) to C .

2. the left (resp. right) external bilinear magnetic space V;'* (resp. V5" ) into the left (resp. right)
internal bilinear magnetic space V., (resp. V,,., ) in such a way that the external magnetic product
of V™ (resp. Vj"* ) be transformed into an internal magnetic product defined from M7, , X,,, My,
(resp. MRr, Xm Mg ) to C . This internal magnetic space V,!., (resp. V., ) is characterized by a
noneuclidian metric gog of type (0,2) ,Va#5,1<a,5<3.

3. the left (resp. right) external bilinear electric space V™ (resp. V7* ) into the left (resp. right) internal
bilinear electric space V.f, (resp. V., ) such that the external electric product of Vi (resp. V5 )
be transformed into an internal electric product defined from My, x. My (resp. Mg, x. Mg ) to
C .

Definitions 3.1.8 (1. Algebraic extended external bilinear Hilbert spaces H} and Hf, ) Let
Mp and My, denote respectively the 4D-right semisheaf and the 4 D-left semisheaf. Then, we consider on

the noneuclidian bisemisheaf M, R® M, 1 the projective linear map:

pL:MR@ML_’MR(P)/CL (“c”: for complete)
or pgR: MR 0 ML — ML(P)/CR

of the right (resp. left) semisheaf Mg (resp. My, ) on the left (resp. right) semisheaf My, (resp. Mg ).
If we endow the bisemisheaf M R(P)/cL (resp. M L(P)/.r ) With a complete external bilinear form defined
from MR(p) x M, (resp. ML(p) X MR ) to C , we get a left (resp. right) extended external bilinear Hilbert

space H} (resp. Hf ) characterized by a nonorthogonal basis.

(2. Algebraic extended internal bilinear Hilbert spaces H and H, ) The left (resp. right)
extended external bilinear Hilbert space Hf (resp. Hf ) is transformed into the left (resp. right) extended
internal bilinear Hilbert space H} (resp. H; ) by means of a bijective bilinear isometric map By, (resp.
r ) from MR(p) (resp. ML([_)) ) to My, (resp. Mg ).
The complete external bilinear form of H{ (resp. H§ ) is then transformed into a complete internal
bilinear form of H; (resp. H, ).

Definition 3.1.9 (Analytic Hilbert, magnetic and electric bilinear spaces) Let Xh 1 be the

analytic semivariety associated to the semispace 9.5 Kr.p and let M &,z be an analytic semisheaf on Xj | .
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From the complete, diagonal, magnetic or electric tensor product between the right and left semisheaves
M 2 and Ms i , we can construct by apphcatlon of the composmon of maps B, opy, (resp. Bropgr ) on the
bisemisheaves MR ® ML , MR ®D ML , MR ®m ML or MR ®e ML an analytic left (resp. right) internal
bilinear extended Hilbert space H," (resp. H, ):

(M, M}y —— MpedM; 2224 Mp @ MjC Hf

Brovs Wy il C Hy

an analytic left (resp. right) internal bilinear (diagonal) Hilbert space H; (resp. H,, ):
(Mg, M;}) ——— MpepM; 2224 Mp ®pM;CHf
Bropn My, ®p M, C Hy,

an analytic left (resp. right) internal bilinear magnetic space V;{‘h (resp. V., )

(Mp, M5y ——— M@, My 2P My @, MjCV),
BRropr M}S%L Om, MIS% C Vnt;h

an analytic left (resp. right) internal bilinear electric space th (resp. V_,, ):
(M3 M) ——— MpecMp = Mp o.M C V),

Bropr M}S%L Re M}S% C Ve,_h
All these internal bilinear spaces are endowed with the corresponding internal bilinear forms in complete
analogy with which was developed in definition 3.1.7.

Definition 3.1.10 (Diagonal, complete, magnetic and electric products of right and left Eisen-
stein cohomologies)  In chapter 1, section 1, right and left Eisenstein cohomologies i}, ; (0 gKR,L , MR7L)
defined on the right and left semispaces 0 ?KR, . and associated to the generation of the right and left
semisheaves M, R, were studied.

This allows to generate a diagonal, complete, magnetic or electric bisemisheaf
MR ®(D),m,e ML on d Sk, x (D),m,e 0 Sk, by the diagonal, complete, magnetic or electric product of right
and left Eisenstein cohomology groups:

HEX(D)YWL : Hj(08kp, MR) X(Dy,m,e H1(0 Sk, , ML)
- H}%X(D),m,eL(a §KR ><(D)Jn,e 0 gKL 5 MR ®(D),m,e ML) .

Proposition 3.1.11 The bilinear Eisenstein cohomology
H‘I*%X(D),m,cL (a gKR X (D),m.e 8 gKL ? MR ®(D)7m)€ ML)

associated to the coefficient system MR ®(D),m,e ML decomposes into sum of products of one-dimensional
etgenspaces according to:
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H‘I*%X(D),m,cL (a gKR X(D))mve a gKL7MR ®(D)7m)€ ML)

RX(py,m,e L (A RXAL)

— OO,

—2
pwomy 1y RX(D)’m’eL( pq)
M ~ — —
X HII%ZQI(ZD),W&L(S RX(D)’m’CLleble (ugo 7M}1%e (1, mu) @(D),m,e M (1, mu)))

RX(D),m,el

where the sum over 1, , 1 < { <n , refers to the decomposition of the n'® -dimensional bisemisheaf MR ®
My, into products of 1-dimensional subsemisheaves M};f ® Mie on the representation of GLa,(ARr x A L)
[Pie9].

Proof. This immediately results from proposition 1.1.22 and from the reducible Langlands program

developed in [Pie9] in such a way that

Rep(GLQnZQI+...+2@+...+2n (AR X AL)) = éEjl Rep GLQZ (AR X AL) . [ ]

Definition 3.1.12 (The analytic de Rham cohomology) As in the algebraic case, the analytic co-
homology H*(X L Mp, 1) can be computed through the analytic de Rham complex.
We can also define a diagonal, complete, magnetic or electric product of right and left analytic coho-

mology groups:
HQX(D)WL L H*(X§, My) X (pym,e H* (X5, M3)
- H]*%X(D),m,EL(X}S? X (D),m.e X1s ME ®(D),m.e M])

with coefficients in the respective product M £ D(D)m.e M. i of the analytic semisheaves M 2 and M i

Proposition 3.1.13 There is an isomorphism:

U85 (X ) -
H 0 Sy )= H K

H}*%X(D)YmYeL(X]S% x(D),m,e Xz) M]S% ®(D),m,e Mi)
- I{‘;%X(D),m,cl/(a gKR X(D))mve 8 §KL7MR ®(D)7m)€ ML)

between products of Fisenstein cohomologies and analytic de Rham cohomologies.

Proof. According to Grothendick [Gro3], there is an isomorphism between the de Rham cohomologies

of *-smooth differential forms with respect to 0 ?KR,L and X7 ¢

H (0

9 Skp

)~ HY (%, )
leading to the following isomorphism
H* (a gKR,L ) MR,L) ~ H" (Xf%,Lv MIS%,L)

and thus to the thesis. "



65

3.2 Bialgebras of Von Neumann

Definition 3.2.1 (Diagonal, complete, magnetic and electric products of operators) 1. Let
(MLR ®(D),me ML) (resp. (MRL ®(D),me MR) ) be the algebraic diagonal, complete, magnetic or electric
bisemisheaf respectively of the left (resp. right) algebraic internal diagonal Hilbert, extended Hilbert,
magnetic or electric bilinear space HE, HFf Vi or Vi .

Similarly, let (MER ®(D),m,eML) (resp. (MRL ®(Dy,m eMR) be the corresponding analytic bisemisheaves
of the analytic bilinear spaces H,jf , H ,f , an;h or V;ih .

2. Consider the diagonal, complete, magnetic or electric tensor product between a right and a left elliptic
(linear differential) operator Dr and Dy, acting respectively on a right and a left algebraic or analytic
semisheaf M£2 or M}(;) and Més) or M}(;L) of H,j;a , H,fa ,VE or V

m;h,a

(DR, DLHM) . M} — (DR ®pyme Dr)(M) ®<D>,m,eﬂ7£5’>
(DR, DLH{ME) M}y — (DR ®yme Dr)(My) @pyme My)) .

The index [Ati3] of a diagonal, complete, magnetic or electric product of a right and a left elliptic operators
is given by:
YrxL(DR ®(D),m,e Dr) = Yr(DR) X vL(DL)

taking into account that v (Drg,1) is the index of a right (resp. left) operator.
Furthermore, we have that:

YR,L(DR ®(D),m,e PD1) = dimKer(Dr ®(py,m,e Dr) — dimcoKer(Dr ®(p),m,e DL) -

3. If the complete, diagonal, magnetic or electric tensor product between a right and a left operator is
bounded and has a finite-dimensional kernel and cokernel, then it is a complete, diagonal, magnetic or

electric Fredholm bioperator, noted (Tr, ®(p)m,e TF,) -

4. Let Eg (M (S) 1) denote the algebra of right (resp. left) bounded operators Tr ;, acting respectively on
the right or 1eft sennsheaf M 1(%) or M és) .

Then, the algebra of right (resp. left) self-adjoint bounded operators Tg 1, acting on Hi no H jfh , ana 1
or V o, Will be noted E (Hih) , Eg_’L(Hih) , Eg_’L(Vi ) or EgyL(Vi

m;a,h e;a,h

) while the bialgebra of diago-
nal, complete magnetic or electric tensor product of a right and a left bounded operators (Tr ®(py,m,e TL.)

acting on the corresponding bilinear spaces will be noted ERXDL(Hih) =LBop Ef(Hih) , ngL(H:h) ,

EngL(Vn:f;a,h) or KIB%XCL(Vveia h) .

Lemma 3.2.2 The bialgebra EEXDL(H?;) s abelian.

Proof. Considering that H; is characterized by a diagonal metric, the bialgebra £ Rxp L(Hf) must then

be abelian. "

Definitions 3.2.3 (1. Self-adjointness) Consider that the right and left bounded operators Tg and 71,
are self-adjoint, i.e. that we have Ty = Tz =T .
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A left and a right involutions are then defined by:

iL : TLHTEETR,
iR : TR_)T]TQETL

The physical interpretation of the self-adjointness consists in the fact that the action of the self-adjoint
operator Tr on the co-left semisheaf M, Lr is equal to its antiunitary involutary action on the left semisheaf
My, .

The mathematical origin of the self-adjointness results from the fact that the centralizer of the co-left

semimodule M, is Zo(L™) while the centralizer of the left semimodule My, is Zo(L™1) according to [Pied].

(2. Complete, diagonal, magnetic or electric norm topologies) The complete, diagonal, magnetic
or electric norm topology on (Tr ®(py,m,e Tr.) will be given by:

(TrRY LR, TLYL) (D) m,e
(Q/JLRu "/JL)(D),m,e

where (-, -)( D),m,e 18 respectively a complete, diagonal, magnetic or electric internal bilinear form as intro-

VQ/JLREMLR,VwLEML

HTR ®(D),m,e TLH = sup

duced in definition 3.1.7 and characterized by a complete, diagonal, magnetic or electric metric.

(3.) A weight on the algebra L3 | (H,}) is given by the positive bilinear form (Tryr,,¥1) or (YL, Trer)
which is a map from £]€,L(MLR x Mp,) into C for every section ¢r,,, € MLR and Y, € ML .

Similarly, a weight on the bialgebra (LB@LP)(H,}) is given by the positive bilinear form (Trtz,,, Tr91)
which is a map from (LF(ML,) ® LF(Mg)) into C for all Tr,, € LE |, .

Proposition 3.2.4 The extended bilinear Hilbert spaces Hfh are the natural representation spaces for the

algebras and the bialgebras of bounded operators.

Proof. The representation of a group G in a linear Hilbert space h is an application such that to each
element g of G corresponds a linear operator T'(g) . In the finite-dimensional case, T'(g) is defined by a
matrix of M, (K) .

On the other hand, the enveloping algebra M€ of the semimodule M 1({ )L is given by

M(es) = MI(%S) QapxaL M£S)

where M 1(%5) (resp. M és) ) must be considered as the opposite algebra of M és) (resp. M }(;) ).

If M }(;)L is a projective right (resp. left) semimodule of dimension n , then M }(;)L ~ A's ;, and we have:

ME, = Enda uxa, (M) = Endy un, (Ar x AL)") = My(Ag x Ap)

where M, (A g x A 1) is the ring of matrices of order n over Ap x A, .

The homomorphism Ejpe : M éS)L — M, (A g,1) is the n-dimensional representation of M }(;)L .

As the extended bilinear Hilbert space H;'fh is composed of a bisemisheaf defined on a bisemimodule

(M @)y or (M](;f) ® M](;f)) which is an enveloping algebra isomorphic to M, (A g x A ) ,we have that

R L

H;'fh is the natural representation space for the algebras and the bialgebras of bounded operators acting

on the above defined semisheaves or bisemisheaves. "
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Definition 3.2.5 (Algebras and bialgebras of von Neumann on extended bilinear Hilbert
spaces) 1) A right (resp. left) algebra of von Neumann M’ L(H;th) in the representation alge-
braic or analytic extended bilinear Hilbert space H :h is an involutive subalgebra of E R.L (Ha., ,) having a

closed norm topology.

2) A bialgebra of von Neumann M%Z L(H;fh) in the representation space H:h is an involutive subalgebra
of ngL(Hf_h) having a closed norm topology.

3) A bialgebra of von Neumann MRXDL(H n) s M%’ZmL(Vi

m;a,h

a,h
) or MRX L(Vi

w.an) 18 an involutive sub-

algebra of respectively ﬁRXDL(Ha)h) , LRXmL(VWjL:;a,h) or ngﬁL(Ve o) having a closed norm topology.

Proposition 3.2.6 Between the algebraic and analytic von Neumann algebras and bialgebras, we have

the following isomorphisms:

Mg MY ho(Ha) — M L (Hy)

Mg MY, RxL(Hi)_’MRxL(H}:Lt)u
iM%XDL “Mbs L Foopr (Ha) = M, L (M)
iM‘z’axmL—M%XmL : B L(V a) = MRxmL(tih) )

iM‘}axeL M. Rx. L(Vi ) — MRX L(Veih) .

Proof. This results immediately from the isomorphisms between the Eisenstein and the analytic de

Rham cohomologies according to proposition 3.1.13. .

Definitions 3.2.7 (Shifted actions of (bi)operators on the functional representations of (bi)linear
semigroups) 1) Let Tr 1 € M}}%_’L(Hhi) be a right (resp. left) bounded linear operator of the algebra
of von Neumann M}}%_’ o (H hi) . It can be assumed that this operator Tr 1, is a differential operator of the

form Tr, = > > ¢, U™ where U is the unitary translation operator. This operator is supposed to be a
n T

regular representation of the discrete compact triangular semigroup T}, (C) (resp. T,,,(C) ) in the extended
bilinear Hilbert space H, hi such that T, (C) (resp. T,,(C) ) acts on the right (resp. left) n-dimensional
semisheaf MI(;)L of Hhi withm <n .

Similarly, let (Tr ® Tr) be the tensor product of a right and a left bounded linear operators acting on
the bisemisheaf of the extended bilinear Hilbert space H ,f . So, (Tr ® T1,) belongs to the bialgebra of von
Neumann M %, , (H hi) . This bioperator (Tr ® T7,) is supposed to be the regular representation of the
product GL,,(C x C) =T%,(C) x T;,(C) of the compact semigroups 7, (C) and T,,,(C) .

2) More concretely, a differential bioperator (Tr ® T1) , being the regular representation of GL,,(C x C)
in a bisemisheaf MR ® ]T/[/L on a GL,(A g x A 1)-bisemimodule Mp ® My, , has a representation in the
bilinear Lie algebra gf,,(C x C) of the bilinear Lie semlgroup GL,,(C x C) . Then, the action of the
differential bioperator (T'r ® T1,) on the bisemisheaf M, R® M, 1, is equivalent to:

a) consider a shift in (m xm)-dimensions of the bisemisheaf Mp®DM], constituting a functional represen-
tation of the bilinear Lie semigroup GL, (A g x A 1) leading to the homomorphism of the functional
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representation of the bilinear semigroup:

TrTL : MR@)ﬁL ZFRep(GLn(AR x Ar))
_ Ml%n[m] & Mgn[m] = FRep(GLn[m]((AR RC)x (AL®C)))

where FRep(G Ly, (AR ® C) x (A ® C)) denotes the functional representation of the bilinear
semigroup GL, (A g x A 1) shifted in (m x m) dimensions.

b) map Mp® M, in the bisemisheaf M}%n[m] ®M‘£n[m] shifted in (m xm) dimensions such that Mﬁn[m] ®
]T/[/‘L’n[m] be a perverse bisemisheaf, i.e. an object of the derived category D(MR ® M, C) [Piel2].
JT/[/]%n ® ]T/[/‘L’n will be written in condensed form ]T/[/I% ® M‘L’ .

[m] [m]

3) Similarly, we have on the bilinear subsemigroup K&, L;R(Ziq) the following shifted action resulting
from the action of the differential bioperator:

_9 —9 _
Tr® Ty : KI[?,)XL;n(Z = Du(Z ) X [UT(Z pg) X UTn(Z pg)]

pq)
=2
- K]?XL;n[m] (qu ®C 2)

—9 — —
= Dy (Z pg @ (CQ) X [UTfl[m]qu ®C) x UTpm)(Zpg @ C )]
where

—2 —2
° Dn[m] (qu ® (C) e Dn(qu) X Dn[m] ((Cz)

such that D,y (C?) is the subgroup of diagonal matrices of order n shifted in m dimensions, i.e.

whose elements d,[,(C %) are

The m shifts of d,,[,(C 2) are the squares of the infinitesimal generators of the Lie algebra of the
diagonal subgroup D,,(C) of order m .

o UTym)(Zpg @ C) =UTH(Zpg) X Ul (C)

such that the shifts in m dimensions of UT},[,,)(C) correspond to the generators of the nilpotent Lie
algebra.

4) Under the action of (T ® T1,) , the functional representation of the bilinear parabolic subgroup
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P, (A LT, % A Lle) is shifted in (m x m) dimensions according to:

TrTY : FRep(Pn(A Lr X ALT1 )) = FRep(Dn(A L, < ALTl) X [UTZ(A Lfl) X UTn(A L7, )])
—— FRep(Pym)((Apz, ®C) x (Apr, ® C)))

where:
Dn[m] (A Lf1 X (C) = Dn(A L;) X Dn[m] ((C) .

3.2.8 Shifted Shimura bisemivariety

Under the action of the differential bioperator (Tr ® T1,) , the functional representation of the Shimura
bisemivariety 8§Kg“ given by the bisemisheaf Mp@ M, = FRep(agKng ) =FRep(Pn(A gz XA pr )\

GL,(A g X AL)/K}ngm(Z;q)) is shifted in (m x m) dimensions according to:

Tr Ty, : MR & ]T/[/L = FRep(@?Kng) —_— M}% ® M‘Ll = FRep(@?Kngl )

[m]

where the shifted Shimura bisemivariety 8§Kg Lonim] is given by:
X L;

nm

agKD

RX L;n[m]

= Pupm)(A pz, @ C) x (A gz, @ C))\

—2
GLo(Ar®C)x (AL ® C))/Kngm[m](qu ®C?2).

Proposition 3.2.9 The semimodules My, , , M{ , and M} have a basis of dimension i =1 corre-

sponding to the upper degree of the Galois extensions.

Proof. Under the automorphisms og 1, of the algebraic semigroup T (A g) (resp. T, (A L) ), the semi-
module My, , decomposes into:
¢
MLR,L = @ MLR,L (UR,L)
oRr,L=1

where the number ¢ of automorphisms is the degree of the Galois extension.

Now, under the cross action of Tﬁ[m] (Ar®C) (resp. Typp(Ar ® C) ), the semimodule M7
decomposes into:

R,L

Mi,, = @ M, (orL)

OR,L
where the number of cross automorphisms is also ¢ , corresponding to the same upper degree of Galois
extension as for the semimodule My, , .
So, the semimodules My, , , and M7, have a basis with the same dimension 7 =1 .
Referring to the isomorphism between the Eisenstein cohomology and the analytic de Rham cohomol-
ogy, it appears that the semisheaf MIS/R,L must have a basis {QE,L(S)}?E:l with the same dimension i = ¢

as the algebraic basis {e%_’L(a)}ﬁ:l of the semisheaf M‘L’R L .
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3.2.10 Shift of the Eisenstein bicohomology

Let (Tr ® T1) be the tensor product of bounded differential operators of the von Neumann bialgebra
M % (HE) . Tts shifted action on the bilinear Eisenstein cohomology will be:

Tr@Tr: Hpyep(@Skp , Mr®Mp) —— Hpy(0Skp o Mg ® M)
such that Hj,, (-, -) decomposes into the double sum €D €p , associated to the places p with multiplicities
m,, of the semifield LT (or LL ), according to: n

Hpy p(0Skp,,  Mp® Mf)

RXL;[n[m

_ EB@I dGLn[m 1(A R®C)x (A L®C)) H* (SM(AR®(C)><M(AL®(C) H*(uKD ,M}%@)Mg))
©®om

R><L n| 7n](ZPQ®C2) Lin[m]

where

SM(A RC)XM(A LRC)

= Doy (A 1, ©C) X (A 1, @ C))\ Dypry (A C) X (A1, @ C)) / Dyjoy (Z 7, © C?)

following the notations of definition 1.1.11.

The coefficient system given by the Lie algebra cohomology H* (i p Mﬁ ® M‘f) decomposes

R><L [m

according to the cosets of GLn[m]((A R®C)x (AL®C))/KR, ;. n[m] (Z pq ® (C %) generating the set of
subrepresentatives {M“ i ® M L on GLy(AR@C)x (AL ®C)) .

Vp,my I p= 1

Note that it was proved in [Piel2] that the shlfted bilinear Eisenstein cohomology H},. ; (0S kb

RxL;[n[m]’

Mg rOM L) is isomorphic to the adjoint functional representation Ad FRep(GL, (A r X A 1)) which corre-
sponds to FRep(G Ly (AR ® C) x (A ®C)) where FRep(-) denotes the functional representation of
the considered bilinear semigroup.

Proposition 3.2.11 Applying the Kostant’s theorem, we can decompose the bilinear Eisenstein cohomol-

ogy HRxL((?SKg tiinpm]? MI%@M‘L’) into sums of products of pairs of one-dimensional eigenspaces following:
* Q Ara Ara
HRXL(@S KRy Lifnim)’ My @ M)
—PPPn df(L (m) (A R®C)X (A L®C))
womy 1, RXL;n[m]
Le,le @M (A R®C)XM (A L&C Ao v T
x HREXIL;(S (hreC e )7H1[ 1l(uK1€><Lm[m]7MR1E (/’L7mﬂ) ®ML1£ (N”mﬂ))) .
Then, the decomposition of the Lie algebra cohomology Hl’f’l’f(ﬂKg ot ],M;IZ (n,my) ® lee (1, mp))

into sums of products of pairs of one-dimensional eigenspaces involves a decomposition of the bilinear
Hilbert space H,f into a tower of embedded bilinear Hilbert subspaces H,jf{u}? decomposing into pairs of

one-dimensional subspaces.

Proof. 1. The decomposition of the shifted bilinear Eisenstein cohomology into sums of products of

pairs of one-dimensional eigenspaces results from proposition 3.1.11.
2. The embedded representation subspaces H, ;t{u} of H ;t ~ M r(P)/.L forms a Jordan-Hoélder serie for

the homomorphism

HHfgl : HRxL(uKD ,MEIZ ®lee) _— gg(Hi)

RX Lin[m] a
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of the Lie algebra Hj, ; (-,-) into the Lie algebra g¢(HF) of the automorphisms of H isomorphic to H;F .
We thus have a sequence of embedded bilinear Hilbert subspaces: Hi {1} C --- € Hf {u} C --- € Hi {q}
where

i} = @ 1)

with H," () the extended bilinear Hilbert subspace constituted by the v-th subbisemisheaf M. I (I/)®M 7 (v)
corresponding to the v-th biplace of LT x LT . .

Remarks 3.2.12 In order to include the above-mentioned cases in a uniform presentation, we shall admit
until the end of Section 3.2 that the integer “ i ” refers to:

a) a Galois extension degree related to the dimension of the basis of the semimodule M7 | ;

or b) a class of degrees of Galois extensions which corresponds to the global class residue degree f,,, (see

1.1.4) labelling the i-th coset of GLym(ArR®C) x (AL ®C))/KE, ;. (] (Ziq ®C?) (in this case,
T=p).

Definition 3.2.13 (Random bioperators on analytic bilinear Hilbert spaces) Let Tp ® Tr, be
the tensor product of a right and a left bounded linear operators being the regular representation of
GLn(C x C) in (Mg ® M) .

GLy,(C x C) has for bilinear semigroup of inner automorphisms [Kac] Int I'% x Int ' (see definition
3.2.7) and has the inner conjugacy biclasses noted gIh% X gz if the fixed bielement is of dimension 1 with
respect to the basis of (]T/E% ® M‘f) in the case a) of 3.2.12.

GLy,(C x C) has T% x T'" for bilinear semigroup of modular automorphisms and has the modular
conjugacy biclasses v x v if the fixed bielement, which is a normal bilinear subsemigroup, is of dimension
N? with respect to the (algebraic) basis of (Mg ® M) in the case b) of 3.2.12.

The right (resp. left) bounded linear operator T, L(l"’}%) ;) is a random operator if it decomposes
into a set of right (resp. left) bounded linear operators {Tr (g% (i)} , V g (i) € Int(T'% ) or
{Tro(v ()} ¥ Ao () €T, .

So, the tensor product (Tr(I'%) ® Tr(T'%)) of a right and a left bounded linear operators is a random
bioperator if it decomposes into a tensor product of a set of right and left bounded linear operators:

Tr(Tk) @ To(T}) = {Tr(g%(0) © Trgr ()} -1
(resp.  Tr(PR) ® TL(T}) = {Tr(vh(D)) @ TLOLEN} sy ), t2>q.

Let
gk o {i} = @lg%,L(j) . 1<i<t
-
(resp.  vh {i} = EBl ghov), 1<v<q),

denote the sum of inner (resp. modular) conjugacy classes of I‘}}%_’ 7, - This leads to define a sum of inner
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(resp. modular) random operators by:

TR, (gl 1 {i}) = ejélTﬁL(gﬁ,L<j>>

(resp. TRLOR2{i}) = @ TRL(95..)):
such that
. h(in
TR (g% {i}) € M (HF {i})

(resp. TR, (vh {i}) e MRV (HF(i})),

where MZ(?)(H,T{Z}) (resp. My (mOd) (H;7{i}) ) is an inner (resp. modular) von Neumann subalgebra
referring to the i-th sum of inner (resp. modular) random operators.

So, a tower of inner (resp. modular) von Neumann subalgebras can be intoduced by:

My (7 {1}) € - CM (T {i}) © - © M7 (T {8))

h(mod mod) . mod)
(resp. MV (HF{1}) € - cMUETeV (HF () © - € MGV (H {a}) ),
such that:

M7 (i) = @ MU (7 (7))

(resp. M7V (HF{i}) = @M“m"d)(fm ) )

Proposition 3.2.14 Let TR,L(Q?@L(U) and TR,L(Q%[,U’))} be two right or left inner random operators
such that t <r .

Then, the random bioperator Tr(gh(r))@T1 (g% (1))} is an extension of the random bioperator Tr(gk(t))®
Tr(g%(t)) corresponding to a Galois extension of degree (r —t) .

Let TRﬁL(”y%)L(q)) and TR,L(7§7L(5)) bet two right or left modular random operators such that ¢ < s .

Then, the random bioperator Tr(v%(s))@TL(vE(s)) is an extension of the random bioperator Tr(vk(q))®
Tr(v#(q)) corresponding to a Galois extension of class of degree (s — q) .

Proof. Indeed, g ; (i) (vesp. v} (i) ) is a inner (resp. modular) conjugacy class of the discrete semi-
group Tr(,f)((C) whose representation semispace M} ; has a basis of dimension ¢ whose entire number ¢

(resp. q ) corresponds to a Galois extension of degree t or a class of Galois extension degrees q . "

Proposition 3.2.15 Let MRxL(Hf) be the von Neumann bialgebra of bounded self-adjoint bioperators
on the analytic extended bilinear Hilbert space H;F .

Let I\/JIRxL(HjE {i}) be the von Neumann bialgebra of random bioperators on the analytic extended bi-
linear subspace HE{i} and let M. (HE{i}) be the corresponding von Neumann bialgebra on the analytic
internal bilinear subspace M {i} .
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Then, the discrete (diagonal) spectrum op(Tr @ T1) of a bioperator Tp @ T, € M }}%XL(H;[) is obtained

by the isomorphism:

itye,, O fMing @ M) = (Ma g (R {iDh,
Tr®Tr, — op(Tr®TrL),
where the isomorphisms i?i}RxL and i?i}g“ are defined by
i?i}RxL : M}}%XL(H}:::) - {M%XL(H}?“})}Z )
ity 0 M (Hp{ihh — (Mb (G {i)) -

RXL

Proof. The isomorphism i?i}RxL is an isomorphism transforming the bounded bioperator (Tg(T%) x
T1(T")) into the set of bounded bioperators {Tr(g%{i}) @ Tr(g%{i'})} (resp. {Tr(vR{i}) @ TL(v?{i'})}).

On the other hand, the isomorphism i’{‘i} p is an isomorphism transforming the nonabelian von Neu-
RXL

mann subbialgebras {M %, ; (H;F{i})}; into the abelian or diagonal von Neumann subbialgebras

{M"%.  (HE{i})}: of random bioperators acting on the “diagonal” enveloping algebra (H; {i}) .
{M % L (HE{i})}i is thus the spectral algebra of the bounded bioperator (T @ Tp) - .

Corollary 3.2.16 Let M%XDL(H;:) be the diagonal bialgebra of von Neumann on the analytic extended
bilinear Hilbert space Hhi .
Then, the discrete spectrum op(Tr ®p T1,) of the bioperator Tr ®p Ty, € M%XDL(H}%) is obtained by

the isomorphism:

if[li}gXDL Oif{li}RXDL : M}IL?XDL(H;F) - {M}}%XDL(Hf{i})}i .

Proof. This proposition is a generalization of the preceding one to the von Neumann bialgebra
h +
M RXDL(Hh ) .
The corresponding spectrum is then defined on the von Neumann bialgebra {M ., b L(HiE{i})}; with
a spectrum characterized by a diagonal metric. .

Proposition 3.2.17 There exists a set of spectral bimeasures {ur(2) X ppr (1)} on the spectrum op(TrR®p
Tr) such that every bivector of the space HiF{i} of the von Neumann bialgebra M%XDL(Hf{i}) be an
eigenbivector of the bioperator (Tr X p Tr) where i is a degree of Galois extension or a class of degrees of

Galois extensions.

Proof. The existence of spectral bimeasures {ugr(é) xp (i)} on the spectrum op(Tr @p Tr) is a

consequence of the isomorphisms i?} D o i?»} introduced in proposition 3.2.15. "
YRxpL "SRXpL

Results concerning the von Neumann (bi)algebras 3.2.18 1) If the integer “ i ” refers to a

class of Galois extension degrees related to a coset of G' Ly, (A r®C ) x (A L®C ))/Kgxbn[m] (Z;@(C %),

then the algebra of von Neumann M %, ; (Hif) decomposes into M %, (h) = M b L (HE{i})

3
The spectrum op(Tr ® T1) is degenerated if there is an action of the decomposition group in the sense
of section 3.2.10.



74

2) If the integer “ ¢ ” refers to a class of Galois extension degrees related to one-dimensional cosets of
GLuym)(AR®C) x (AL ® (C))/K}ngm[m] (Ziq ® C?) , then the algebra of von Neumann M %, , (H;F)
decomposes into a direct sum of factors such that the set of integers {1,---,i,---,¢} are the entire
dimensions of a von Neumann (bi)algebra of type I, . The multiplicity of the spectrum of (Tr ® T},)
results from the action of the decomposition group as introduced in proposition 3.2.11.

3) The spectrum of the operator Tg @ Ty, € M %, ; (HiF) is obtained through the isomorphism:
i?i}ng °© if[li}RxL : M]II%XL(H;F) - {M}JI%XL(H%{Z})}Z
such that we have the embedding of the 7 {i} :
Hi {1} € - c M {i} © - c M {a}
and the development of the i-th eigenbifunction vz, (i) ®p ¢, (i) € H; {i} following:

V(1) @p Yr(i) =323 Cindrp(i) ®p ¢i, ¢r(7)

7 My
where

o ¥1,(1)®@p vr(1) = ¢, (1) @p ¢r(1) is the first eigenfunction in H;F{1} ;
e 1. (i) ®p () is (isomorphic to) a n-dimensional truncated global elliptic bisemimodule;

o ¢1,(1) ®p &1 (i) is a section of MER ®p Mi € H;' (see section 3.1.9).

Indeed, the bioperator (Tr®T},) maps the bisemisheaf (MR(X)ML) over the GL, (A r®A )-bisemimodule
(Mpr ® Mp) into the perverse bisemisheaf (Mz% ® M‘Ll) over the shifted GLy[,)(ArR®C) x (AL @ C))-
bisemimodule (Mg x Mj) decomposed into sums over the conjugacy classes ¢ with multiplicities m;
according to section 3.2.7. Now, the Langlands program [Pie9], [Piel2], succinctly introduced in 1.1.23,

sets up bijections between:
e (Mr ® My) and the n-dimensional global elliptic bisemimodule ¢r(sg) ®p ¢r(sr) (see proposition
1.1.19);

e (Mf, ® Mj) and the n-dimensional shifted global elliptic bisemimodule ¢%(sr) ®p ¢¢ (sL) -

This leads to the following proposition:

Proposition 3.2.19 Let ¢r(sg) ®p ¢r(sr) be a n-dimensional global elliptic bisemimodule constituting
an analytic representation of the GLy, (A g X A )-bisemimodule Mp ® My, .

Let ¢%(sr) ®p ¢ (sr) denote the corresponding n-dimensional shifted global elliptic bisemimodule
constituting the analytic representation of the perverse bisemimodule Mg @ M7 .

Then, the action of the bioperator (Tr ® Tr) is such that:

(Tr®TL): ¢r(srR) ®p ¢r(s1) ——— OR(srR) @D 7 (sL) -

The shifted global elliptic bisemimodule $%(sr) @p ¢} (s1) gives rise to the eigenbivalue equation:

dr(sr) ®@p ¢7(s1) = Ar(n,i) - AL(n,7)(¢r(sR) @D S1(51))
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rewritten following:

(Tr ®p Tr)(¢r(sR) @D ¢L(5L)) = AR(N, 1) - AL(n,9)(dR(SR) ®D ¢L(SL))

where the right (resp. left) eigenvalue Ag,1(n,i) was interpreted in [Piel2] as a set of shifts in m dimen-

sions of Hecke characters, i.e. infinitesimal generators of the considered Lie algebra.

Proof. As the bialgebra of von Neumann M ry, (H ,jf) can be considered as a solvable bialgebra, i.e.

implying a sequence of embedded subalgebras:
M gxr(Hy {1}) C -+ C M pxr(Hy {i}) C -+ C M pxr(Hy {a})
the set of eigenvalues of (Tr ® T1,) forms an embedded sequence:
Ar(n,1) - Ap(n,1) C -+ C Ag(n,i) - Ap(n,i) C -+ C Ar(n,q) - Ar(n, q)
in one-to-one correspondence with the set of embedded eigenbifunctions:

V(1) @p Yr(1) C - Cohry(i) ®p Yr(i) C - CYra(q) @p Yrlq) ,

where 1, . (q) ®p ¥1(q) is isomorphic to a n-dimensional truncated global elliptic bisemimodule given by

q L . q L. .
or(sR) @p ¢r(sL) = Y. O(sR)im, e T PTIZ@n S G(sp)im, €TPTIZ 2 € R ]

i,m;=1 i,m;=1

Proposition 3.2.20 Let M%X(D)L(Hf) be the complete (resp. diagonal) von Neumann bialgebra of
bounded self-adjoint bioperators on the algebraic extended bilinear Hilbert space HE .

Let M %, (HE{i}) and M %, 1 (HE{i}) be the complete and diagonal subbialgebras of von Neumann
on the closed algebraic internal bilinear subspaces HX{o} . Then, the discrete spectrum of the bioperator
Tr®p) TL € M%X(D)L(Hg:) is obtained through the isomorphism(s):

i{yn oy, ¢ M (H) — Mg (Ha{ihhi,

RXL

Borp OBt ¢ Mbspn(HE) = (M, (D)

Proof. This proposition is the algebraic correspondent of proposition 3.2.15 and corollary 3.2.16 and
results from the isomorphisms between analytic and algebraic von Neumann bialgebras as developed in

proposition 3.2.6. .

3.3 Quantification rules, probability calculus, spin, PCT map and relativity
invariants
As the entire dimensions of the von Neumann bialgebras can correspond to classes of degrees of Galois

extensions, biquanta M,ﬁR ®D,m,e MéL ,i.e. 1D-irreducible closed subschemes of rank N? , can be emitted

from (or absorbed by) the algebraic bisemisheaf (H}QTSBT, MG, DDymie Hifng MG.M)
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Definition 3.3.1 (“ ST ”, “ MG ” and “ M ” bistructures) Referring to the structure of a massive
bisemiparticle as described in definitions 3.1.2 and 3.1.3, we recall that:
Each ST, MG and M structure (0%, 57 ®07.57) » (Ok.01¢ @07 01¢) and (0., @071 .5,) of a bisemiparticle

decomposes under the blowing-up isomorphism into:
a) a diagonal bisemisheaf (0%.57 rr.ar @0 1,57 010.01)

b) a magnetic bisemisheaf (6%.57 rrq.ar @m 02,57 001

c¢) an electric bisemisheaf (9};;1}) Me i e 9%__5(;) MG.M) 1

where ST , MG , M means “ ST 7, “ MG ” or “ M ”.

Proposition 3.3.2 The quantification rules of emission of biquanta on the ST & MG & M bistructure of
a bisemiparticle are obtained by considering the diagonal, magnetic or electric products of the right and
left smooth endomorphisms (Erstremcem XpmE Er.sremcem) applied on (H}QTST@MG@M ®D,m,e

eiT;T@MGGBM) until the fundamental rank sets nOD,m,e;ST,MG,M are reached.

Proof. This proposition is an adaptation of the emission quantification rules introduced in 1.4.16 and
in definition 2.2.12 to the “ ST & MG & M ” bistructure of a bisemiparticle. We then have

Er.stomceMm XDm.e PL.stemconm :

9173 ® 9173
R:STOMGOM CDme VL. STEMGHM

*1—(3) *1—(3) sl ol
- (HR;STGBMG@M ®D)mve HL;STGBMG@M)?(MkR;ST@MG@ju ®D;m7e MkL;STEB]WGGBM)

where (MéRlsT@Z\/IG@M ®D,m,e MéL:STGBMG{BZ\/I) are 1D-time or 1D-space diagonal, magnetic or electric bi-
quanta on the three bistructures ST & MG & M . .

Remarks 3.3.3 1. The standard quantification rules of quantum (field) theory would be obtained by

considering the smooth endomorphism
3 3 ol
Erm - 9L;M - 92;1\/[ @MkL;M
k=1
applied on the mass (¢ M 7) left-3D-semisheaf of rings 9%; M-

2. The quantum theories work essentially with analytic functions. Due to the hypothesis considered in this
work, namely that the quantum nature is algebraic, algebraic (semi-) sheaves of rings have been essentially

taken into account.

According to the preceding section, algebraic semisheaves of rings were considered as isomorphic to
analytic semisheaves: this is among others a consequence of the (iso)morphism of J.P. Serre [Ser7]. Thus,
if we want to reach the mathematical objects of quantum theories, we have to consider bijections between

algebraic semisheaves of rings and analytic global elliptic semimodules following the Langlands program.
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Definition 3.3.4 (Bispectrum of Fredholm diagonal bioperators) Let (Tg ®p 1) be a diagonal
Fredholm bioperator acting from H,J;M to H,J;M .

Let {¢1 .y ®pVL() b=t » ¢ < 00, be the set of eigenbivectors of (Tr®pTr) and let {Ag) X Ap) ey =
{A2}9_, be the corresponding set of eigenbivalues occurring with probability measures {Py, = pu R(i) XD
/LL(i)} .

Now, the probability measure Py, can be written in Dirac terminology [Dir4] following:

Pri = (Wrp (@) | U)W [ 9r(i))

where (- | -) is an internal scalar product between a bra eigenvector (¢r (i) | and the total left wave
function.
As we are working in the frame of an orthogonal geometry with a diagonal metric, abbreviated by

«

xp ", the eigenbivectors are orthogonal between themselves [Pie4].

Proposition 3.3.5 The semisheaf My, (resp. Mg ) on the Gp(A )-left semimodule My (resp. the
GRr(A r)-right semimodule My, ) constitutes an algebraic representation of a left (resp. right) wave
function which is a ket (resp. bra) vector in the terminology of Dirac. The wave function has then an
algebraic structural interpretation in terms of algebraic eigenvectors and a statistical interpretation as

given classically in the quantum theories.

Proof. In the terminology introduced in definition 3.1.3, a ket vector is a left vector and a bra vector
is a coleft vector. The bisemisheaf M, Lr ®D M, 1 “at the mass level” has an automorphic irreducible
representation in terms of global elliptic bisemimodule as developed in 1.1.14 to 1.1.20 and in 3.2.10 to
3.2.20.

Let {¢r, (i) ® (i) }; be the set of eigenbivectors of an operator Tr ® T7, as defined in results 3.2.18
and in definition 3.3.4. Then, the semisheaf My (resp. M, Ln ) has for spectral representation the left
(resp. right) wave function | ¥) (resp. (¥ | ) developed following;:

| W) =2 di | pr(i))  (vesp. (¥ |= 3 di (¥, (i) |)
if we refer to definition 3.3.4 where d; (resp. df ) is given by

di = (Yo (1) | ¥)  (vesp. di = (¥ |¢r(i)) ). .

Remark 3.3.6 Referring to proposition 3.3.5, we notice that the coefficients d; and d; are probability
measures. We shall then see that the traditional calculus of probability amplitudes of quantum theories
[B-vonN] is replaced in this context by the probability calculus with intensities.

Proposition 3.3.7 The traditional calculus with the amplitudes of probability [Feyl], [Dir5] of quantum
(field) theory is replaced by a calculus with intensities of probability in the context of this algebraic quantum
theory.
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Proof. If we realize on a bisystem, an elementary bisemiparticle for example, an observation “ A 7,
corresponding to the Fredholm bioperator Tr ®p T defined from H,J; u to H,J; u » we shall obtain the
eigenbivalue A2 (or more exactly —i—\/)TE since the associated coleft particle is unobservable) with probability
Py, = (Wr,(a) | ©)(¥ | ¢ (a)) . An observation “ B ” on the same bisystem will give the eigenbivalue A}
with probability Px, = (¢, (b) [ Y)(¥ | ¢ (b)) .

Thus, P)\b -P)\a = P)\b.)\a = <1/}LR(b) | \I/><\If | 1/)L(b)><1/)LR(CL) | \I/><\If | 1/)L(a)> will correspond to the
probability of two successive measurements “ A ” and “ B ” on a bisystem.

This differs from the ordinary calculus with amplitudes of probability [Feyl1] ¢¥x,.x, = (¥ () | ¥)( |
¥ (a)) of quantum theory dealing with elementary particles and not with elementary bisemiparticles as
considered here.

As we have Py,., = djf\b, A, Ua,n, » We see that the classical probability calculus with intensities is

restored in quantum theory if bisystems throughout bisemiparticles are taken into account. "

Definition 3.3.8 The PCT map of quantum field theory ([B-D], [Lid], [Wigl], [W-W-W]) transforms
the fields of particles into the fields of antiparticles and vice-versa. Its equivalent in this AQT model is

the following set of maps:

a) Bropr: My — Mg, .
transforming the left semisheaf M}, of the left semiparticle into the (involuted) coright-semisheaf
MRL) ;

b) p;toBt: MLR — Mg,
transforming the coleft semisheaf My, of the right semiparticle into the (involuted) right semisheaf
Mp, .

The maps pgr 1 and B, are described in definitions 3.1.5 and 3.1.7.

Then, the left bisemisheaf M Lr @D M 1, of a left bisemiparticle, associated to the left internal bilinear
Hilbert space H} , is transformed into the right bisemisheaf Mgp, ®p Mg of a right bisemiparticle,

associated to the right internal bilinear Hilbert space H_ , according to:
(py' o BL")®p (Bropr): My, ®p M, — Mg, ®p Mg .

(p'oBY) ®p (Br o pr) is thus a parity time bimap whose physical meamng is given in 1.3.10.

My, R ®D M, is the “physical field” of the left (bisemi)particle and M, R, @D M, R is the “ physical field”
of the right (bisemi)particle according to section 1.1.6.

If the bisemiparticle is electrically charged, a supplementary set of maps (pzl o Bgl) ®m,.e (Br o PR)
must be applied on the magnetic and electric bisemisheaves reversing then the electric charge and the
magnetic moment; this will thus correspond to a charge conjugation.

Note that the intrinsic parity-time of a 4D-semisheaf corresponds to its orientation: this results from

its generation by Eisenstein cohomology from the symmetric splitting semifield LT (see definition 1.1.2).

Definitions 3.3.9 (1. Right and left 4D-elliptic operators) As the cohomology H*(T') of an arith-

metic subgroup I' may be identified with the cohomology of I'-invariant smooth differential forms of de
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Rham [Borl], [Gro3], we shall assume that the 4D- differential operator

Tr.L.sT,MG,M

hstvma M . hst.me,Mm

h
= {:l:ihST)MgﬁM dtg, £i Y iiigT’Mc’M dz}

) 3

Ct—r;ST,MG,M Ct—r;ST,MG,M Ct—r;ST,MG,M

can apply on the 4D-semisheaf of rings H}Qfg(t, r)ST » 9}{3 (t,r)mc or 9}{5’ (t,r)ar

where

a) the “+ 7 or “ — ” sign is a convention depending on the sense of rotation of the considered semisheaf

of rings;

b) c;ir. ST MG M 1S an average parameter equal to the ratio of algebraic Hecke characters (see definition
1.4.10).

On the other hand, as the semisheaves of rings 9}{3 (t,")mc and 9}{3 (t,7)p are the basis of the vertical

tangent semibundles Tﬁag)

., and TIE/}:);) according to definition 2.2.14, their projective maps are given by

the elliptic operators:

DTRr 1:mG,M

0 h 0 h 0 h 0
= {iihMg,M MM =g MOM gy MO —}
Oto’  Cimrima,m 0T Ciormam Oy Ciorma,m 0%

where hasq,p corresponds to the order of the global inertia subgroup respectively in the “ MG ” or “ M ”

system of units. In particular, Ay = A, i.e. the Planck’s constant.

(2. Tensor products of right and left elliptic operators) Let, for example, the bioperators (T'r,sT ®
Tr.s1), (DTrmc @ DT me) and (DTgav ® DT ) act respectively on the bisemisheaves (9}{3(@ T)sT®
01> (t,r)sT) , (0 (6 v @ 0 (6, r)ma) and (0 *(t,r)m @ 07 > (6, 7)nr) -

Then, the bioperator (Tr.s7 ® DIrmc © DTrm) @ (Tr.s7 @ DTr.ma @ DT av) will act on the
bisemisheaf:

911%73 (tv T)ST*MG*M & 9}‘73(@ T)ST*MGfM
= (9}{3(@ r)sT ® 911{3(@ r)mc B 9}{3(@ M)
®(0},_3(t; T)ST D 9}/_3(15, T)MG (&) 9}/_3(t, T)M)

representing the complete massive structure of a bisemiparticle.

According to the development of the bisemisheaf (6‘}{3(1%, T)ST—MG—M®
07 2(t,7)s7—mG—n) in direct sums of bisemisheaves as given in definition 3.1.2, the bioperator (Tr,s7 ®
DTr.ymc® DTR;M) & (TL;ST ® DIr.mc® DTL;M) will decompose into:

(Tr,sT ® DTrvc ® DTrm) @ (Tr.sT ® DT.ma @ DTn )
= (Trsr ®Tr.sr)+ (DTr,mc @ DTr.mc) + (DTrMm @ DT )
+(TrysT @ DT mc) + (DTr;me @ Trst) + (Trist © DT 0)
+(DTr,m @ Trist) + (DTRve @ DTpn) + (DT @ DTpima) -
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(Tr,sT @ DT, mc) has for 3D-spatial off-diagonal components
Lp(k)= —i(dmpgwc +driphic) 1<4,7<3,
and (DTr.pmc ® Tr.st) has for 3D-spatial off-diagonal components
Lr(k) = +i(pimadr’ + pjvadr’) |
where

h
a) dr; = ST dx; so that, if 1 =1, x;

Ct—r;ST

N
I
[N}
8
| Il
S

N
I
w
8
S
M1l
N

hMG 0

:
Ct—r;MG axi

b) PimMG = DT(Z')R;MG =+

hye 0
Ct—r;MG ozt

c) p§\4G = DT(i)L;MG -

Definition 3.3.10 (Right and left internal angular momenta) Li.nmcesty(k) is interpreted as
the components of the angular momentum vector L ri:mc(st) of the left middle-ground structure of the
left semiparticle and Lg,pc(s7)(k) is interpreted as the components of the angular momentum vector
L r;ma(sT) of the right middle-ground structure of the right semiparticle. Thus, L R,L;MG(ST) Tepresents
the “angular momentum” of all the sections of the right (resp. left) semisheaf of rings 6% ; (r)ame with
respect to the left (resp. right) semisheaf of rings 63 x(t)st -

Similarly, the 3D-spatial off-diagonal components of (Tr,s7 ® DTr.p) (resp. of (DTrm ® Tr.sT) )
will be Ly arsry(k) (vesp. Lparsty(k) ). Lrnqsry(k) (resp. Lparst)(k) ) are thus the components
of the angular momentum vector L LM (sT) (resp. L r;M(sT) ) interpreted as the angular momentum of
the “mass” structure 67, p(r)as of the left (resp. right) semiparticle with respect to the right (resp. left)
space-time structure % | (r)st of the right (resp. left) semiparticle.

To each right (resp. left) “ ST 7, “ MG ” or “ M ” semisheaf or rings corresponds a right (resp. left)
internal angular momentum vector L Rr:ST,MG,M (resp. L r:sT.mc,m ) which indicates its angular velocity
and its sense of rotation with respect to its associated corresponding left (resp. right) semisheaf of rings.
The right (resp. left) internal momentum vector L R,L;ST,MG,M then corresponds to the spin concept [Pau],
[Dir3] of quantum (field) theory.

Proposition 3.3.11 A right and a left semiparticle rotate in opposite senses and have only two possible

spin states.

Proof. In definitions 3.3.9 and 3.3.10, we have defined the right and the left internal angular momentum
components of the right and the left “ MG ” semisheaf of rings 6% ; (7)ac by

Lr(k) = +i(pimedr’ +pjucdr’)
and by
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Li(k) = —i(driphg + dripic) -
It is then evident that Lr(k) = —L (k) which proves that:
a) a right and a left associated semiparticle have opposite rotation senses;

b) two senses of rotation can only exist for a right and a left semiparticle and also for a bisemiparticle
since only the left semiparticle is observable in a bisemiparticle and thus only its own left internal

angular momentum.

Indeed, it can be remarked that the sign of Lg (k) depends on the sign of dr® , 1 <4 < 3, which is
reflected by the mapping:

s RY — RT(+i),
+drt  ~ dri(£i) .

of the positive (resp. negative) reals in the positive or negative pure imaginary reals.

A left handled rotation corresponds and a right handled rotation corresponds
to the mapping: to the mapping:
¢4 (BT, R™) — (R"(+i), R™(+1)) ¢—: (R",R™) — (R" (=), R™(~1)) -
+iR" —iR~
NoF o~/
R N\ R* R v R
+ilR™ _Z'BJr

3.3.12 Spin-statistics and supersymmetry

According to proposition 3.3.11, each elementary (semi)particle has two senses of rotation: this is the

case for:

e the elementary leptons: e~ , = , 7~ and their neutrinos v.- , v

= 5 Vr—= 3

e the quarks: ut ,d= , s ,ct , b, tT;

e the photons.

So, this algebraic quantum (field) theory, which does not refer to a (non)abelian gauge theory, takes
up the spin concept differently from quantum field theories. However, it seems evident that elementary
(semi)fermions must always obey the Fermi-Dirac statistics while the photons behave in accordance with
the Bose-Einstein statistics since they can increase their quanta number as developed in section 1.4.16.
Consequently, the supersymmetry, whose aim is the transformation of half integer spin particles into

interger spin particles, does not seem essential in the present context and will not be taken into account.
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Remark 3.3.13 (Interpretation of special relativity invariants) Let T .57 M M
be the right or left 4 D-differential operator acting on the “ ST 7, “ MG ” or “ M 7 4D-semisheaf of rings

9}{5 (t,7)sT.mc,m and let
dt2 = (TR;ST,I\IG7M, TL;ST-,IWG,M) = h’2ST.,I\lG,M(dt(2) + C;jr dCC2 + C;jr dy2 I C;jr dz2)

be their internal scalar product which is an additional structure of the corresponding “ ST 7, “ MG ” or
“ M ” internal bilinear Hilbert space H&r ya s -

The corresponding Minkowsky space-time differential form of special relativity [Ein2] is
dt2 =dt? —c 2 da® —c 2 dy? — 2 d2? .

It is an invariant whose meaning in view of the developments of this paper can be interpreted as fol-
lows: if we remember that the Eisenstein cohomology classes are represented by differential forms in
bijection with Eisenstein series, we can deduce from it that every increasing or decreasing of dt? |
i.e. finally of (ngg(t,r)ST)MQM ®p Oifg(t,r)ST,MQM) , happens by external capture or loosing of
biquanta (M}I%(r)snMg,M QD Mi(r)snMg,M) throughout the smooth biendomorphism (Er,st amc,m XD
Er.s7,mc,m) according to proposition 3.3.2: indeed, this corresponds to the increasing or to the decreasing
of ¢=2(da® + dy? + dz?) .
On the other hand, the euclidian invariant

dt* = hr prgoar (dEG + ¢ 2, (da’ + dy? + dz?))

valid for a closed system and essentially envisaged in this work, can be interpreted in function of the
internal HlOI‘phiSHl (('Yt:r o ER;ST,MG,M) XD ("ytzr o EL;ST,MG,ILI)) applied on (9}%_3(15,7”)5]’_’1\/[@7]\4 Xp
Hifg(t, r)sr.mc.m) - Indeed, if di? is invariant, then time biquanta can be transformed into 3D-spatial

biquanta and vice-versa.

4 Second order differential bilinear equations

This chapter is devoted to the study of the differential equations relative to the bisemiparticles. It is thus
necessary to classify the bisemiparticles with respect to the presently observed elementary particles and
in function of their general structure as developed in the preceding chapters: this is the object of this first
section. We shall take for reference the traditional statistical classification of fermions and bosons.

4.1 Classification of bisemiparticles

Definition 4.1.1 (Bisemifermions and bisemibosons) Let (9}{3(1%, T)ST—MG—M®

Oi_?’(t, r)sT—mG—n) denote the three embedded structures of a massive bisemiparticle as developed in
definition 3.1.2. According to definition 3.1.1, this bistructure corresponds essentially to a bisemilepton or
to a bisemiquark, i.e. to an elementary massive bisemifermion. In definition 3.1.2, this tensor product has
been decomposed into the direct sum of three tensor products referring to the “ ST 7, “ MG ” and “ M ”
bistructures and of six other tensor products referring to the interactions between the right and the left
“ST 7, “MG?” and “ M 7 structures. Taking into account the general structure of a bisemiparticle as

given above, we can classify the bisemiparticles in the following four categories:
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1) An elementary massive bisemifermion has a bistructure given by (9}{3(@ T)ST—MG-M &
0 *(t,7)s7— G- ) whose each of the nine constitutive tensor products: (0 (¢, 7)s7®0; > (t,7)s7),
o, (0 ()M @073t r)me) , (noted in a general abbreviated form (0 °(t,7) ® 0;73(t, 7)) ),

(see definition 3.1.2) decomposes under the blowing-up isomorphism Sy, into:

a) a diagonal bisemisheaf (6} *(t,r) ®p 0] >(t,r)) giving in the case of (0 *(t,7)st,mc,m @b
07 3(t,r)sT.mc.ar) the diagonal central bistructure of the three embedded bisemisheaves of
rings “ ST 77, [43 MG 7 or [43 M 77;

b) a magnetic bisemisheaf (6%(r)™) ®,, 63(r)(™) which is composed in the case of

(O (r)$ v 01 B 03() 5 arc; ) of monorthogonal ST 7, MG ™ or “ M " magnetic
. ~1(3) A7 L3)
biquanta (MkR;ST,Z\/IG,M Om MkL;ST,MG,M) '

In fact, these magnetic biquanta are generated by the magnetic smooth biendomorphism ac-

cording to proposition 3.3.2:
Er.st.mc.m Xm Er.stven 05 2 (tr)stovmcm @ 05 2 (1) st m
1-(3)* 1—(3)*
— (0g ®) (t,r)sT,ma,m @07 ® (t,r)sT,ma M)

]@1 (MI(?’) O ]T/[/I(3) )

kr;sT,MG,M krLi;sT,mG,m
and constitute the magnetic moment of the considered bisemifermion;
¢) an electric bisemisheaf (9}{(3) (t, (") @, 92_(1)((t),r)(e)) which is composed in the case of
(9}{(3) (t, (r))ge%)MG’M@)e 92_(1)((0, T).(S'ei)’,MG,M) of “ST”, “MG” or “ M ” electric time-space
. ~1(1) ~1(3) . . ~1(3) ~I(1)
biquanta (MkR;ST,MG,M ®e MkL;ST,IMG,M> or space-time biquanta (MkR;ST,MG,M ®e MkL;ST,MG,M)
such that the right (resp. left) time quanta are generated by versal deformation and spreading-

out isomorphism SO(e) o Vd(e) according to definition 2.4.1 while the left (resp. right) space

quanta are generated by smooth endomorphism Ej r.s7t.amc,am - The electric bisemisheaf
(9}{(3) (t, (r))(se:)p_MG_M ®e Hi_(l)((t), T)E;%_MG_M) constitutes the electric charge of the con-

sidered massive bisemifermion.

2) A bisemiphoton has a spatial structure given by the tensor product (Th(rk)sT—mG-—m ®
TE(rk)sT—nmG—n) of a right semiphoton by a left semiphoton which can split under the blowing-up

isomorphism Sy, into:

St (Th(ri)sr—mc—m @ TE(rk)sr—me—m)

— (Th(ri)sr—s16—11 ©p TEr) sT—src—11) @ (T 5w vre—ar ©m TR ST pre—ar)

where (Th(rk)sr—mc—m @p TH(rg)sT—mc—nm) refers to the three embedded diagonal bisections
“ST”,“MG” and “ M ” representing its central space bistructure and where (T} (rk)(sn%l MG— M Om
T} (rk)gn})_MG_M) refers to the three embedded magnetic bisections of rings “ ST 7, “ MG ” and

“ M 7 representing its magnetic structure composed of magnetic space biquanta.
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3) A bisemiboson of magnetic structure is an electrically neutral meson which will be proved in
chapter 5 to be generated by a magnetic biendomorphism from a bisemiquark. In this category,

we may also include the magnetic biquanta whose structure is given by the magnetic bisemisheaf

(9%(7)(3“:7“)—1\40—1\4 Qm ei(r)(sr;)—Am—M) .

4) An electrically charged bisemiboson is an electrically charged meson generated from a bisemi-
quark as it will be seen in chapter 5. In this category, we may also include the electric charge whose
structure is given by the electric bisemisheaf: (9}{(3) (t, (r))(;:)F_MG_M ®e 92_(1)(@), r)(;:)F_MG_M)
where #'~(3) means a 1D-time or 3D-space semisheaf of rings.

Definition 4.1.2 (Annihilation of a semilepton pair) Let (0% (t,r)sT—mc—M®D
_ 1-(3
01>t r)sT—ma-n) @ (oi(r)(snTl)chfM Om ei(T)(Sn%)—MG—M) ®  (0g @, (T))E@e%chfM@e
937(1) t,r (6)7 B be the “ ST & MG & M ”-semisheaves of rings constituting the massive struc-
L ST—-MG—-M
ture of a bisemilepton. Under some external perturbation, a breaking of the diagonal bisemisheaves
(9}{36, T)ST—MG—M @D 9%‘3(15, r)sT—mG—m) can occur such that the right and left semisheaves are no
more localized in some open ball of radius R where R is the radius of the topological domain on which

the constitutive bisemisheaf (83 °(t,7)sr—nmc—m ® 05 > (t,7)sT—mc—nr) is defined.

If the right and left semisheaves 911{3(@ r)sT—MG—nm and Hifg(t, r)sT—MG—Mm are no more localized in
the same open ball, a new electric and magnetic “ ST — MG — M 7 bisemisheaf can be generated. Indeed,
a right and a left electric and magnetic bisemisheaves, corresponding to a positive and a negative electric
charges and magnetic moments, can exist simultaneously because they are no more orthogonal according
to proposition 3.1.6. The result is that a pair of semileptons is generated such that each semilepton is
endowed with an electric charge and a magnetic moment of opposite signs.

But this pair of semileptons can annihilate. Indeed, by electromagnetic attraction, this pair will be
again concentrated in a same open ball which involves that the two electric bisemisheaves, representing
their electric charges, become orthogonal. Consequently, they cannot conserve the same structure as

remarked above: they must then transform themselves into magnetic bisemisheaves as follows:

1—(3 e 3-(1 €
Yt ok: (9R ( )(t, (T))gil)"—MG—M ®e 9[, ( )((t)vr)gj)“—MG—M)

3—(3 m 3-(3 m
— (07 DS sra—ar @m 07 D)) i) -

The resulting magnetic bisemisheaves can be transformed later in diagonal bisemisheaves.

On the other hand, as the time structures of the electric charge are generated by the morphisms
SOT(e) o Vd(e) from the right and the left semisheaves 9}{5’ (t,7)sT— M- of the considered semileptons
according to definition 2.4.1 and as the 1D-time semisheaves of the electric charge must be transformed
into their complementary 3 D-space semisheaves by the fact of the collision, it is reasonable to admit that
the external perturbation provoking a (v;—, o F) morphism on the 1D-time structures of the electric
charge will also provoke a (y;—, o F) morphism on the two semisheaves 9}{5 (t,7)sT—MG—m constituting

the central massive structure of the two semileptons. We then will have:
(Ye—r 0 BrL) : O 1 (t,7)s7-mc—m — 0% 1 (P)sr—ma—m ~ T 1 (rk)sr—ma—m

transforming the central 4D-structures of the pair of semileptons into 3D-structures of semiphoton(s).
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Indeed, we have finally that the pair of semileptons annihilate into a pair of semiphotons according to:

(0% °(t, 1) sT—nG—n1) @ (H}Q(t)gej)“—MG—M e ei(r)(se:)r—MG—M)

0T o ns Om O (S e ar)]

UIOL 2 (1) sr—nrc—ar) @ (05151 vrar—nr ©c OS2 vrc—nr)

SO%() ST v ns Om 0307 v ar)]

— (T}, (r)sT—nc—nr) & O 5 i ar Om O (S s ar)]

UITE (ri) sr—nac—ar) @ (O Sr vra—nr @m 03 ()57 vra—ar)] -

Remark 4.1.3 (Hypothesis concerning the structure of semineutrinos) Consider that a pair of
semileptons, endowed each one with its electric charge and magnetic moment, comes into collision in such a
way that almost all the “mass” quanta of the semisheaves of rings 9}{5 (t,7)sT—mc—nm blow up by an endo-
morphism as described in section 1.2 such that 9}{5’ (t,7)sT— M- be reduced to 9}{5’ (t,7)sT—MG—(M—0) -
Then, the (semi)lepton central structure 9}{5’ (t,7)sT—mc—n has been transformed into a (semi)neutrino

central structure 9}{5’ (t,7)ST—MG—(M—0) -

4.2 Second order elliptic bilinear equations on extended bilinear Hilbert spaces

For the facility of manipulations and notations, the elliptic differential bilinear equations will be considered
for the mass (“ M ”) structure of the lightest massive bisemilepton, i.e. the bisemielectron or classical
electron, considering that the elliptic differential bilinear equations relative to the other bisemiparticles

and to the other structures “ ST ” and “ MG ” are exactly of the same type.

Definition 4.2.1 (Bisections of bisemisheaves) Let (9;;3 (t,7)ar @07 3(¢,7)ar) be the left-bisemisheaf
defined on the left extended internal bilinear Hilbert space H; and representing the mass structure of
a bisemielectron. This left-bisemisheaf then results from the bisemisheaf (0 (t,7)n ® 07 2(t,7)ar) by

application of the composition of maps By, o py according to:
BL opr : (9}%_3(15, T)IL{ ® 9}/_3(15, T)A[) — (9};3 (t, T)IL{ ® 9}/_3(15, T)A[) .

The right (resp. left) semisheaf 9;;3(@7“)]\4 (resp. 6} >(t,r)ar ) is composed of ¢ sections which are
(isomorphic to) differentiable right (resp. left) functions ¢r,, (¢,7) (vesp. ¢r,(t,r) ), 1 < p < g, defined
on a compact domain homeomorphic to a compact domain D+ of (IRT)! x (IRT)3 centered in the upper
half plane with respect to the emergence point.

The right (resp. left) function ¢r,,(t,7) (resp. ¢r,(t,r) ) can be decomposed following:

¢LR}J. (tv T) = ¢LR;L (t) S ¢LR}J. (T)
(resp. ¢r,, (t,7) ¢r, (1) © ¢r,(r))

“

where “ r 7 denotes the triple of spatial variables {z1,z2, 23} .
This is a consequence of the generation of the three-dimensional semisheaf of rings 9%R7 . (r) from the

one-dimensional semisheaf of rings 67 ; (t) according to Section 1.2.
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The left bisemisheaf (92;3(15,1") M ® 07 3(t,7)ar) is composed of algebraic bifunctions isomorphic to
(L, (t,7) ® ¢, (t, 7)) defined on the left extended internal bilinear Hilbert space H,' .

These bifunctions are defined on a curved space-time domain homeomorphic to a domain D+ X D+
of (RT)* x (R")* ~ (IR")' into IR .

Definition 4.2.2 (4D-elliptic differential operator) As we are dealing with the vertical tangent semi-
bundles T}, |
to be considered is the following;:

and TJS’; , according to definition 2.2.15, the elliptic differential right (resp. left) operator

Mg,z = {mon o.ar>PR.L;M}

whose explicit development is given by:

, i

Mg = {iifiM K

har i . hm 0
at07 Ct—r;M axl, .

Ct—r; M a:I:3

But we must take into account the spin of the bisemielectron, i.e. the rotation of the sections of 9;;3 (t,m)m
and 0 2(t,7)ar (see definition 3.3.11). This can be achieved by considering that the elliptic differential
operators moy, ; ., and pr, ;s are respectively 1D- and 3 D-directional gradients so,, , Vo, , and §R_,L€R_’L
where sq,, , and 5g 1 are 1D- and 3D-unit vectors referring to the spin with direction cosines {sq , } and
{SlR,L »S2R, 1> S3R,L} :

Indeed, the spin cannot be introduced judiciously by 7 or ¢ matrices because bisemifermions are
characterized by complete bilinear forms of H .

The 4D-elliptic self-adjoint differential mass operator will thus be written as follows:

+3 —S1

3] h 0 h 0 h 3]
Mg = +ilisg — 24l L4l
L { v Oty ¢ = Ox1' ¢ = Oxy’ }

where h and c are abbreviated notations respectively for Ay and ci—r;pr -

Definition 4.2.3 (Second order differential bilinear equation) The differential mass bioperator will
be (M g, ® M 1,,) acting on the differentiable bifunction (¢r,, (t,7) ® ¢r,.(t,r)) such that the pu-th mass
second order elliptic differential bilinear equation to be considered is:

(M2 = E2)(¢rp, - br) =0

if we take into account the self-adjointness of the right (resp. left) elliptic operator M g, (resp. M, ).
This differential bilinear equation can be explicitly written according to:

3. i 92(PLg, () bLu(r) 3000 9PLr, () 04L.(r)
1=

ij=1

N Z: A0 0915, (1) 2010(0) | 400 9*(9rp, (1) 0ru(®)

ox; ot?
2
- EH(QSLRM (t,?‘) : ¢Lu(t7r)) =0
where
ij R 00 2.0.0 0i h20i
Jo_ i - _ - _ .
A# =- 2 5,57, 5 A# = —h"s;s, , A# = p SuSp
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It is a second order elliptic differential bilinear equation which is degenerated because the bilinear form

(PRUPLR, (T),PLu®L, (7)) is degenerated.
PRu,L, stands for the 3D-linear momentum operator given by

h 0 . h 0 . h 8}

PRu,Lp = § —% =81y 57— 1 —Sou 75—, 1 =83, 75—
o ¢t oxy’ ¢ P 9y’ ¢t Oxs

(for the literature on the second order elliptic differential linear equation, see [K-N1], [K-N2], [G-I-L]).

Proposition 4.2.4 A right and a left isomorphisms transform the second order degenerated elliptic dif-

ferential bilinear equation:

3 i 82(¢L (r)-dru(r) 3 ; L. () o ;
O A e 4 N AN e Sl
3,j=1 i=1

3 .0 T 82 .
+ _;A?j ¢L£t( ). bru 4 400 w

— B2(brn, (t7) - dru(t,r) = 0

into the canonical second order elliptic-parabolic differential bilinear equation:

(D, (2)  dru(2) | 103 OPLa,(t)  Ogru(z
L Ly I Aﬁg L . L#()

A33

H 072 ot 0z
w03 001, (2)  0or,(t) 00 O (PLp, (t) - dLu(1))
A03 Ry . M AOO Ru 1

AT ot ot
- Eﬁ((bLRM (tv Z) : ¢Lu(t7 Z)) =0
where 2 12 12

Aig = 0—2(S?+S§+Sg) = — 7Si y Aﬁg = ?S# .

Proof. The canonical form of the second order degenerated elliptic differential bilinear equation is ob-

tained for a fixed “ 7 throughout the following change of variables [K-S-GJ:

3 .
a) & = »_ x; B}, such that

i=1
l 3 i j Tt
é.ké.f = Zlﬁi.fzilf]ﬁi = ﬁLZE.I ﬂR 5
©,J=

with 8 € SO(3) , x a 3D-vector, 2! its transposed and such that Bz;x; be transformed into

Bklgkgl y where

BY=| 111 and B =pB.BYg};
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9 9 9¢ 2 d k ij 0* .
b) oz, = k; I 6—1’“ = kzz:l 78 Vi such that A M be transformed into
= 0 9]
AR —— . — where
0 0¢
AR = 'Zl afA”ozg =ar AaTR ,
ij=
_ 3
A% = 3 AVigk
i=1
The transformed equation then becomes:
3 2 3
qke 97 (¢rg(p)-0L(p)) T0k 96 (t)  9dL(p)
k%lA algk 08, + kzz:lA 611? E}

3 _ 5 ) ; |
+ kz:l AkO qbg%k(p) . &ﬁa;t(t) + AOQ w

_E2(¢LR(tap>'¢L(t7p)) =0

where p = {&1,&,8&3} stands for the triple of &-spatial variables. The canonical second order elliptic
parabolic differential bilinear equation reduces if we remark that:

1) B¥ = pBBY ﬁ}; = FE corresponds to a left and a right unitary transformations, such that the
eigenvalue diagonal matrix A has for unique eigenvalue e = /3 (this point was outlined to me by G.
Raseev). Consequently, ¢r.,(p) - ér(p) becomes ¢r,,(&3) - L (&3) rewritten (z) = ¢, (2) - dr(z) if
zZ = 53 .

2) A = af, AaTR = D also corresponds to a left and a right unitary transformations such that D is

the diagonal matrix whose unique eigenvalue different from zero is:

_ _ R (.2 2 2y _ 2 B
a=— Z(s1+s3+53) =575 ]

Notice that the differential bilinear equation over the set of four variables {t,z1, z2, 23} reduces to a
canonical differential bilinear equation over the set of two variables {t, z} . Indeed, the three-dimensional
spatial section ¢r, (r) (resp. ¢r,(r) ) degenerates into the one-dimensional function ¢r,(z) (resp.
¢r(2) ) justifying the decomposition of the shifted Eisenstein bicohomology into pairs of one-dimensional

eigenspaces following proposition 3.2.11.

Definition 4.2.5 (Differential bilinear equation of the bisemielectron)
In a first step, we shall suppose that the time variable is constant. Consequently, the canonical sec-
ond order elliptic-parabolic differential bilinear equation, relative to a “mass” irreducible section of the

bisemielectron, will become [Pie2]:

— 21 —mpS

c? 022 c

This equation is 1-dimensional, and is thus defined on the left internal bilinear Hilbert space H,T .
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Proposition 4.2.6 The 1D-mass equation for one irreducible bisection of the bisemielectron

h? 0? h 0

is the equation of a damped harmonic oscillator whose general solution consists in the superposition of two

damped waves in phase opposition with frequencies given by
h

E=+ -vS
c

and whose general motion corresponds to a damped sinusoidal motion whose dephasage is proportional to
the linear momentum Py, , of the considered section of the right or left semielectron.
The energy E of a section ¢, (r) at (p+ p) quanta is equal to (p + p)-times the quantum energy Eﬁ

which can be found from the corresponding nontrivial zero of the Riemann zeta function.

Proof. This equation was already worked out elsewhere in [Pie2]. However, we shall briefly give the

following elements of the proof:

1) Rewrite the 1D-mass biwave equation of the bisemielectron in the form:

d*y dyp
kY Sk 2 =
d22+ dz+w¢ 0
where
. C o1 2 ¢ —2/ 2 2
k:2zﬁS mo , w:ﬁS (E* —mg) .

This equation is the one of a damped harmonic oscillator. The nature of the solution depends on
the characteristic roots [Stru]:

1/2
If w? > ( %)2 , ie. if E2 > 0, then w; = {wQ — ( %)2] has to be considered such that A =
— Etiw .
Using
2 ? —2/ 12 2
w* = ES’ (E* —mg) ,
we find that w; = %S’flE or that F = %VS if wg =27v .

We then recover the famous relation of the Broglie except for the spin factor S . Note that this
formula concerns the total energy “ E 7 of a section of a left or right semielectron which can then
be interpreted as follows:

If this section is the p-th section s, , having u, = p + p quanta (see definition 1.2.17), then the
energy I, of this section will be E,, = upEﬁ where E{L is the energy of one quantum in s, , . Now,
Eﬁ = hv;, where h is the Planck constant associated with the degree of Galois extension N and
where v, is assumed to be the frequency of a prime ideal corresponding to one Galois automorphism.

One then has E,, = upEé = pphv,, = hv, where v, = ppv,, is the frequency of p, prime ideals.

Remark that it was proved in [Piel0] that the energy E[L of a quantum M, ;{ in a section s, , can

be obtained from the corresponding nontrivial zero A(4v2,i%, Ef .) of the Riemann zeta function
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¢(s) =>_n~* . Indeed, the trivial zeros of ((s) are the negative integers —2 , —4 , ..., =2v , ...,

—2n such that the even integer p, = 2v be the global class residue degree of the section s,, , (see
1.1.4). Now, the nontrivial zeros can be obtained from the corresponding trivial ones by the action

of the Lie algebra of the decomposition group, whose coset representative is:
Dyy2 2 = ;

such that the eigenvalues of:

1 i) (1 o\|[EL. o\ [42% 0O
D4U2,i2 &2 Qg2 =

be the nontrivial zeros:

1+iy/1602 EL, -1 4
)\i(4l/2,i2,EiV2) = =-=* i’Yup )

2 2

where 7, = (16v2(E4,)% —1)7 /2 with E! , = (E,)? .
We thus have that:

1
A+(4V257;27E4{u2) ' )\*(4V25i27E4{u2) = 4V2(E2Iu)2 = Z +7121P

leading to:

1

1 1
2VE§V = /LPE2IU = (Z + Vﬁp) =7 for "Yﬁp > Z :

So, ppEl | which is the energy of the u-th section s, or of a photon at p, quanta, is approximatively

equal to the imaginary part -, of the nontrivial zero Ay (4v°ni%, E ) .

The solution of the 1D-mass biwave equation of the bisemielectron is:
P(z) = % exp (—i %Silmoz)
mo  Cg-1 ) (_@) (_~E—1 )}
[(14— E)exp(th Ez)+ (1 T ) &P th Ez
where

e the Cauchy initial conditions are at z =0, ¢¥ =19 and 7= =0;

e exp (—i %Silmoz) is a damping factor depending on the rest mass my .
The solution (z) is thus the sum of two damped waves in phase opposition: the positive frequency
wave refers to the left semielectron and the negative frequency wave refers to the right semielectron.
This solution #(z) can be written in the following form:

2
my

b(z) = "o (1 - _) €xp (—i %Sflmoz) sin ( %SflEz + tan™? i)

E? imo
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which corresponds to a damped sinusoidal motion of period

2rhStl

T:
ck

and dephasage

E
A=tan! — ~tan"!p.
1M
The mass structure of a one-dimensional bisection of the bisemielectron behaves thus globally like
a damped harmonic oscillator having a dephasage A proportional to the linear momentum § of the

u-th section of the right or left semielectron. .

Proposition 4.2.7 The total energy “ Ecr,, ” of a right (resp. left) semielectron is given by

q
EER,L = Z Z EﬂymueR,L
p=lmy
where K, m,.n, , noted E above, is the energy of a one-dimensional irreducible subsection of the p-th

section. The total linear momentum per.1, s similarly given by

q
PeR,L = Z Zp,u-,mucR,L .

p=1my

Definition 4.2.8 (Generic biconnexion) By a generic connexion of a fiber bundle Ty, , , we mean
a distribution which admits in each point P of the total space of the fibration of T, , an horizontal

direction tangent to this total space, and which is transversal to the fiber in P .

)

We shall consider a generic connexion associated to the mass vertical tangent semibundle Tzﬁ/} and

-3
R;L

generated by the 4D-multiplicative operator:

1 h 1 h 1 h 1
OA(t,")pL = {—i—hZe — 4+ —Ze —,+ —Ze —,+ —Ze —}
to c T c T2 c 3

corresponding to the action of a strong external (super) heavy nuclear system of charge Ze .
If the time variable is supposed to be constant, the mass bioperator of the bisemielectron (M g, M 1 )¢ ,
endowed with the generic biconnexion (0A(r)g, 0A(r)L)c , will be:

Mg+ 0AR,M 1 + 0AL)c

h
{mo,—i 51— 4 —Ze —,—i—sy — +
C X X

where (-, )¢ is a complete bilinear form of the left extended internal bilinear Hilbert space H ,J{ .
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Corollary 4.2.9 The mass equation of the bisemielectron endowed with the “strong” biconnexion
(0AR,0AL)c is a second order degenerated elliptic differential bi(linear) equation whose canonical form

has a set of particular solutions obtained with the condition

1
mé — 2—n(mg—E2):O, ne v,

or E = /2™ — 1mgy which allows to find the energy levels of the right or left semielectron in the strongly
perturbated confining phase.

Proof. The treatment of the mass equation of the bisemielectron endowed with the biconnexion
(0AR,0AL)c was developed in [Pie2].

Let us note that the first calculated energy levels of the (semi)electron given by the formula
EeR,L =V 2m —1 Mo.g, L

corresponds quite well to the observed values. .

Definition 4.2.10 (Sr-isomorphism) Instead of considering that the bisemielectron mass structure is
defined on the left extended internal Hilbert space H; as done since definition 4.2.1, we could consider

that it is described by the sum of the three bisemisheaves, according to definition 4.1.1:
(637t @0 07 () © (03 @m 01005 ) @ (03 @t ()57 @ 62 (0,157

obtained by application of the Sp-isomorphism on the complete tensor product 9}{3(1%, )M & 9{3(1%, )M

between the right semielectron semisheaf 6} *(t,7)as and the left semielectron semisheaf 8 (t,7) s

According to definitions 3.1.5 and 3.1.7, this sum of three bisemisheaves can be transformed by means

of the By, o p;, map into:
(61,36 7) 0 @0 0176, r)ar) @ (07,005 @ 03 (057 ) @ (07, (1, 0)7 @ 07 V(0.7

such that (9%; t,m)ar @p O 2 (t, 1) ar ) be defined on the left internal bilinear Hilbert space
HE (H%R(r) @, 03 (1) m)) on the left internal bilinear magnetic space V!, and (6‘1 ® (t, (7‘))5\?@)
9?{(1)(( t), )(e)) on the left internal bilinear electric space V.1, .

Definition 4.2.11 (Bilinear diagonal, magnetic and electric wave equations)

We shall then obtain a set of three second order elliptic differential bilinear equations:

a) a central mass biwave equation:

;)A“ ) _ g2 y(t,r) =0
where
y hZ ..
o A= —gigt 1<i<3; A% =_p2s%";
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o Y(t,r) = ¢r,(t,r) ®p or(t,r) € 9%;3(t, ra ®@p 032 (t,7)ar is a diagonal bisection such that
¥(t,r) be defined on a compact euclidian domain of IR* of the left internal Hilbert space H; )

This equation corresponds to the Klein-Gordon equation except that the metric §! is euclidian and

not pseudo-euclidian or of Minkowsky type.
b) a bilinear magnetic mass biwave equation:

3 g ) (m) ) (m) m m
S Al mgii) .6¢L8(13 — w(dp, (1) - pp (1) ™)) =0

i,j=1
iF#G,1>]

where

e ¢r(r)™) (resp. ¢r,(r)™ ) refers to a left (resp. right) magnetic section of 6% (r)(Mm) (resp. of
03 ()57 )

| hZ .
o AV =— s’ it
C

e i refers to the magnetic moment of the bisemielectron.

c¢) a bilinear electric mass biwave equation:

3 . ) (e)
Z A0 8¢Lg( ) aeL ) 6(¢LR(T)(6) '¢L(t)(e)) -0

: T ; ot
=1
where

° ¢L(t)(e) (resp. ¢LR(T)(6) ) refers to a left (resp. right) electric time (resp. space) section of
9%@)55} (resp. of 9%(?‘)%? );

e ¢ corresponds to the electric charge of the bisemielectron.

Proposition 4.2.12 If the elliptic differential mass biwave equation of the bisemielectron as given in
definition 4.2.3 splits into the set of three elliptic differential equations:

a) a central mass biwave equation;
b) a bilinear magnetic mass biwave equation;
¢) a bilinear electric mass biwave equation,

the genmeral bilinear solution of the elliptic differential mass biwave equation is given by the sum of the

solutions of the three split elliptic differential equations, i.e. by:

GLa(t,7) - dL(t,r) =Vt ) + dr, ()™ - G ()™ + ¢, (1) - gr(t)©

where
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o Y(t,r) is defined on the left internal bilinear Hilbert space H,T ;
o $r.(r)™ - p(r)™ is defined on the left internal bilinear magnetic space V,;r;a ;

o 1, (1) () is defined on the left internal bilinear electric space 75

Outline of the proof : The fact that the general bilinear solution of the elliptic differential mass biwave

equation of the bisemielectron (see definition 4.2.3)
(M? = E*)pp,(t,7) - ¢r(t,r) =0

can be developed as the sum of the solutions of the three split bilinear elliptic differential equations results

from the Sp-isomorphism according to definition 4.1.1. u

Definition 4.2.13 (Bisemiphoton wave equation) As the bisemiphoton mass structure is given on
the left extended internal bilinear Hilbert space H; by a bisection isomorphic to T} (r)a @ T} (r)a
according to definition 4.1.1, the elliptic differential mass biwave equation of the mass structure of a
bisemiphoton at (p + p) biquanta Mi(T‘)R ® Mi(r)L will be:

3 ii 02 (dLp(r)or(r
SO Al 07 (9L (r)-¢L(r)) _Eﬁ(gbLR(T)'(bL(T)) =0

i,j:l 611 61]'
where
o Grp(r)-on(r) =T}, ,(r)ar x T ,(r)ar

2
o AW =_ h—sisj
c? ’
so that s’ is the i-th component of a 3D unit vector of polarization of the semiphoton referring to the two

possible different rotations of its sections.

This equation is a second order differential elliptic-parabolic bilinear equation which is degenerated.

Definition 4.2.14 (Canonical wave equation of the bisemiphoton) A right and a left unitary in-
ner automorphisms transform the degenerated second order differential elliptic bilinear equation of the

bisemiphoton into the 1D-canonical second order elliptic differential equation:

B 82 r(2)" z
a9 Pl L) gy, () 6u(2)) = 0
where 2 §
2 \P1 T 925 27 e

This is the equation of an harmonic oscillator:

Y (2)
022

+wip(z) =0

where 9
= ST and 0(:) = 6ra(s) 6u(e).
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The general solution of the harmonic oscillator equation of the bisemiphoton consists in the superpo-

sition of two waves in phase opposition having frequencies given by

Wy = %S 71Eﬂ
leading to the well-known relation of Einstein:
h
E# = EV'U'S 5

excepting the factor S, where v, is the frequency of p, prime ideals as introduced in proposition 4.2.6.

This general solution v(z) is explicitly given by:

P(z) = crexp (z %S’_lEuz) + coexp (—i %S‘lEuz)

= Asin ( %SflE#z + 5) = Asin(w,z + 0)

corresponding to a sinusoidal motion.

Definition 4.2.15 The solution t(z) is a linear combination of two one-dimensional waves corresponding
to the one-dimensional irreducible components of the bisemiphoton. The coefficients ¢; and ¢y allow to

C

define the radii of the tori exp (:I:z' ﬁsflEuz) according to proposition 1.1.18.
Assume that ¢(z) has p, = (p + p) biquanta. Then, the limit condition gives in z = ¢ = radius:

P(z) ~ Asin(w,z) =0

whose solution can be obtained only if wya = pm , ie. if w, = £& .

Definition 4.2.16 (Kinetic energy of a bisemilepton) Consider now the central mass diagonal bi-
operator (M 1., M) = M2D of the central mass biwave equation of a bisemilepton defined on the internal
Hilbert space H; (see definition 4.2.11). It is:

3
M?% =mg+ > p?
=1

if we do not take the spin vector into account.

The norm of the central mass Mp of a bisemilepton is then:
, R 1/2
IM o] = |12 = mg (1+ S ) o
my =1

if w < mg . We thus have that:
2 9 o
E? =m+ > p? ~mi + 2mow + w?
i=1

which implies that:
1 3
S— PP

w =
2mo {21

This term is the kinetic energy of the semilepton and corresponds to the harmiltonian of the Schrodinger

equation in a zero potential.
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The following proposition results from this.

Proposition 4.2.17 The kinetic energy of a right or left semilepton is equal to the normed (by the factor

ﬁ ) inner product between the linear momenta of the right and left semileptons.

Proof. Indeed, the inner product (pr,pr) between the linear momenta of the right and left semileptons
3
is Y p? . Thus, this inner product (pg,pr) normed by the factor ﬁ corresponds to the kinetic energy
i=1

of a semilepton w = 2—71“)(1)R7PL) : -

Definition 4.2.18 (The concept of field in algebraic quantum theory) The nature of the field in
quantum field theory proceeds from the treatment of the harmonic oscillator in classical mechanisms. It is
considered that an infinite number of harmonic oscillators brings us to a field theory with the field at each
point of space considered as independent generalized coordinate and that the field quantization results
from the quantization of an infinite assemblage of harmonic oscillators [B-D].

In this model of algebraic quantum theory, each pair of right and left one-dimensional sections, isomor-
phic to one-dimensional tori, can be considered as a (damped) harmonic oscillator according to propositions
4.2.6, 4.2.12 and 4.2.14. Let us recall that each elementary bisemiparticle (bisemifermion or bisemiboson)
has a central (i.e. diagonal) “mass” spatial structure composed of pairs of right and left one-dimensional
sections (which are in fact one-dimensional waves or strings) of the mass bisemisheaf (03 (r);®p03 (7)ar) ,
the electric charge and the magnetic moment being also composed of pairs of one-dimensional sections
characterized by an electric and a magnetic metric as developed in proposition 3.1.6.

Thus, every elementary bisemiparticle has a central “mass” spatial structure given by a corresponding
field 03 () ®p 607 (r)m behaving like a sum of independent harmonic oscillators if we refer for example
to the definition of the wave (bi)function of an elementary particle having a spectral decomposition of
algebraic type as introduced in proposition 3.3.5. By this way, we recover the classical concept of field of
the quantum theories [Wein2].

However, let us note that the electron field is given in quantum field theory by
P(z) = 3 up(@)e " ay
k

where {u,(Z)e~™*'} is a set of orthonormal plane-wave solutions of Dirac equation and where the ay, are
annihilation operators. The annihilation and creation operators were defined in this algebraic quantum
model as morphisms of type v, 0 FoSOT(2)oV d(2) (see remark 2.3.7) generating the “mass” semisheaves
of rings from the vacuum composed of the internal semisheaves of rings “ ST ” and “ MG ”.

In quantum field theory, one is dealing with a system of an infinite number of degrees of freedom,
leading to a nonseparable Hilbert space [Wighl]. This refers to the old problem of quantum mechanics
consisting in the difference between its discontinued space “ Z 7 ( = 1,2,--- ) of discrete values of the
index p and its configuration space “ €2 ” which is continued with k£ dimensions where k is the number of
degrees of freedom of the system [V.Neul].

If we consider the algebraic spectral decomposition of the wave bifunction in terms of pairs of one-
dimensional sections which correspond to the degrees of freedom of the envisaged system, it appears that

the spaces “ Z 7 and “ Q) 7 are in one-to-one correspondence since:
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e the global class residue degree f, of an irreducible one-dimensional section at p, quanta is a degree

of freedom of the system;

e the index p of the configuration space “ €2 7 is the integer p labelling the p-th eigenbifunction
V(1) @r(p) € M%. ; (H {u}) (see 3.2.18 and 3.2.19).

This brings a new light on the Hilbert spaces of infinite dimensions of quantum field theory since the

spectral decomposition of a wave (bi)function can have an infinite dimension.

Definition 4.2.19 (Invariance of elements of bisemimodules) We shall now envisage the invari-
ance of the space-time structure of bisemifermions and more particularly of bisemileptons. Referring
to definition 4.1.1, the space-time left bisemisheaf of a bisemilepton defined on the left extended internal
bilinear Hilbert space H splits under the Sz isomorphism into the set of the three disconnected left
bisemisheaves:

1) the 4D-space-time diagonal left bisemisheaf 9%;3(@ 7)®@p 07 3(t,r) whose elements are the diagonal
bielements ¢, ®p ¢r, € HI characterized by a 4D(-euclidian) metric of type 6% ,0 < a <3.

These bielements are invariant under a (bi)representation of SO(4, R) x SO(4, R) .

Note that SO(n, IR) is the orthogonal unimodular group of order n acting linearly on a left or right

n-dimensional semimodule.

2) the 3D-space magnetic left bisemisheaf H%R(r)(m) ®@m 03 (r)™) whose bielements are characterized
by a 3D metric of type gog , 1 <a,B8<3,a>F,a#.

The magnetic bielements are then invariant under a representation of SL(3, R) x SL(3, IR) where
SL(3, IR) is the unimodular special linear group of order 3 .

The group of left or right magnetic invariance is SL(3, IR) because, if g,, € SL(3,IR) , then the

magnetic invariance condition is (92)r(gm)r = hm where

010 0 0 1
hm=10 0 1 or hm=1|1 0 0
10 0 010

has determinant equal to one.

3) the 3D-space-time electric left bisemisheaf
1—(3 e 1)-3 e
O (1 (1) @ 017 72((1), 1)

whose bielements are characterized by a 3D metric of type goo O goo , 1 < a < 3.

The electric bielements are then invariant under a representation of SL(1, IR) x SL(3, IR) correspond-
ing to a 1 D-right (resp. 3D-left) translation on the right (resp. left) semisheaf and to a 3D-left (resp.
1D-right) translation on the left (resp. right) semisheaf.



98

Note that the space-structure of a bisemiphoton defined on H is given by the complete bisection
T}, (r) ® T} (r) which splits under the Sz-isomorphism into the sum of the two disconnected bisections:

1) the 3D-space diagonal bisection T} (r) ®p T} (r) whose diagonal bielements are invariant under a
representation of SO(3, R) x SO(3, R) ;

2) the 3D-space magnetic bisection TLlR(r)(m) ®m T}(r)™ whose bielements are invariant under a
representation of SL(3, R) x SL(3, R) .

Proposition 4.2.20 The 4D (resp. 3D ) diagonal bielements of a 4D (resp. 3D ) diagonal left bisem-
isheaf defined on a bilinear internal Hilbert space H} are invariant under a right and a left action of
SO(4,R) x SO(4,R) (resp. of SO(3,R) x SO(3,IR) ) which correspond to a right and a left inner
automorphism.

The 3D magnetic bielements of a 3D magnetic bisemisheaf are invariant under a right and a left action
of SL(3,R) x SL(3, R) .

The 3D electric bielements of a 3D electric bisemisheaf are invariant under a right (resp. left) and a
left (resp. right) action of SL(1,IR) x SL(3,IR) (resp. of SL(3,R) x SL(1,R) ).

4.3 The bidynamics of bisemiparticles

Definition 4.3.1 (Bidynamics and bisemiflow) Let 0} ®(t,7) ® p .. 0, >(t,7) be the diagonal, mag-
netic or electric tensor product between the right semisheaf 9}{3(1%, r) , referring to a right semiparticle,
and the left semisheaf 0 (¢, ) , referring to a left semiparticle.

The dynamics of this bisemisheaf is a bidynamics corresponding to right and left diffeomorphisms at
the one parameter time “ ¢ ” applied respectively to the envisaged right and left semisheaves. We are then

led to define a local bisemisheaf as follows:

Let T'(0g () and T(6% 1 (r)) be the right or left 1D and 3D sections of 6% ; (t) and 6% ; (r) above
respectively 1D-time and 3 D-space domains.

By a local bisemiflow for a densely defined self-adjoint bioperator, for example,

oo b 9 b 9N f A0 o9
PrR®DPL = - 1 o7y’ s C 3 Ors D - 1 oz’ s - 3 Ors

acting on I'(0%(r)) @ p T'(03(r)) , we mean a bijective bilinear map:

F(pr)—t ®p F(pr)+ : T(0%(r)) ©p L(02(r)) — T(0%(r)) ©@p L(02(r))
such that

F(PR)—(t:4t2) @D F(PL) 4 (81 4+12) = F(PR) =t - F(PR)—t: @D F(PL)+t, - F(pL)++
be a geodesic bisemiflow corresponding to a “time” translation on the right and the left 1D-sections of
6% (r) and 6% (r) [Lan2], [Smal].
A bivector field with domain of I'(6%(r)) ®p T'(6% (r)) is a bimap:
pr @D pr : T(O%(r) ©p D63 (r) — T(T5) (03%(r)) @ T(TLY (63 (1))

into the diagonal tangent bibundles (TI(%S) ®p Tf’)) .

We can thus generalize the Stone theorem [C-M] in the case of a local bisemiflow.
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Proposition 4.3.2 The local bisemiflow F(OR)—t®p.m.e F'(OL)++¢ for a self-adjoint bioperator OR®p m.e
Oy, is given by the right and left actions Ur(—t) @ p.m,e UL(+t) of the continuous one-parameter unitary
Lie group such that:

UR(—t) RD,m,e UL(+t) — ¢ 1Or ®D,m,e etitor for te Rt .

Proof. This proposition generalizes the Stone theorem in the case of a bisemiflow. Remark that Op is
a right operator semibounded from above and Oy, is a left operator semibounded from below.
The bigenerator Or @p,m, O, of the local bisemiflow F(Or)—_t ® p.m,e F(Or)++ is given by:
d

OR ®D,m,e O = —F(ORr)—¢ ®D,m,e

d
L
dt —o 7 (O) 1

d t=0

We then have for the bisemimodule Og(—t) ®p m,e Or(+t) :

Or(—t) @D m.e Or(+t) = F(ORr)—10r(0) @p.m,e F(OL)+:01(0) .

Remarks 4.3.3 Evolution of bisemiparticles and the classical symplectic structure

1) This bidynamics is a bidiffeomorphism with respect to the time variable describing the (bi)evolution
of bisemiparticles from an initial event localized at the time 7" = 0 . This initial event may be the
big-bang of physics.

Consequently, the bisemiflow should take into account this delayed (bi)evolution by a parameter (or
a constant following the traditional terminology) depending on time, called B(=%t) and related likely
to the Hubble constant H(=+t) , such that:

U(—t) ®p,m,e U(+t) = e BENOR g e FHBHNOL

2) This bidynamics must be envisaged simultaneously on the three embedded structures “space-time”,

“middle-ground” and “mass” of the bisemiparticles giving their irreversible evolution in time.

It can happen that, under some external perturbation during a small interval of time dt , there are
fixed points on the bisemiparticle structures “ ST , “ MG ” or “ M 7 with respect to the bidif-
feomorphism at the one parameter time group. These fixed points then correspond to degenerated
singularities of genotype attractors, problem which was developed elsewhere [Pie8].

3) It is natural to regard the complex Hilbert space as the analog of the cotangent bundle in a classical
system [Sim]. Endowed with a symplectic form which is the imaginary part of the inner product, we
get a symplectic structure [God], [Sha], [Lich], from which the classical (and quantum) Lagrangian

and hamiltonian dynamics proceed.

Let us note that the (bi)dynamics, developed in this paper, does not result from a Lagrangian or an

hamiltonian method which presents the following difficulties:

7

a) The Lagrangian action is not well understood in mathematics [C-M] likely because the “ ¢

7

and “ p 7 variables are inextricably mixed [Tho3]. This could be explained by the fact that
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classical and quantum theories “work” on a single structure or level while, in the present AQT ,

three embedded structures have been taken into account leading to a noncommutative algebra
[Gui], [Conl].

b) The automorphisms of the symplectic structure generate a space of infinite dimension [Kib]

while the automorphisms of the euclidian structure leads to a space of finite dimension.

¢) The second order elliptic linear Laplace equation %27;‘ + Au = 0 leads to no really decent Banach
space on which this equation generates a flow and an energy of definite sign [C-M], which is not

the case here.

4) Tt is commonly admitted that the classical mechanics is the limit case of the quantum mechanics
providing that the Planck constant satisfies A — 0 . Now, quantum theories deal with the discontin-
ued behavior of the matter while the classical theories are only concerned with continuous objects.
As the discontinued behavior of matter is described here algebraically, it becomes evident that the
structure of the quantum theories must be described by coherent algebraic sheaves of rings while the
structure of classical theories could refer to coherent analytic sheaves, i.e. ring of (germs of) holo-
morphic functions. It then results that the isomorphism from quantum theories to classical theories
given by the condition i — 0 corresponds likely to the isomorphism of J.P. Serre between coherent
algebraic sheaves and coherent analytic sheaves [Ser7].

Indeed, according to definition 1.1.24, a quantum M, I{R , is a continuous subfunction of the algebraic
semisheaf of rings 9}%)L over a big point centered on MiR , - So, when i — 0, the “big point” on
. . I . 7. . Y
which is centered M, . and to which the Zariski topology corresponds tends to an “ordinary point
associated with the ordinary finer topology. Consequently, the algebraic semisheaf of rings 9}%7 L is

transformed into an analytic sheaf.

Definition 4.3.4 (Physical internal machinery of a bisemiparticle) The internal machinery of a
bisemiparticle allows to justify the absorption and the emission of right and left quanta from the space-
time, middle-ground or mass bisemisheaves of rings, noted in abbreviated form 9}{3 ® 9%‘3 . According to
definition 2.2.12, the emission of right or left quanta occurs by means of the smooth endomorphism Er p, .

The considered bisemiparticle will be a bisemilepton for simplicity and the following developments will
be envisaged for the spatial bistructure 6% ® 6% .

It was proved in proposition 3.3.11 that the right and left semiparticles rotate in opposite senses. This
means that each spatial bisection of the “ ST , “ MG ” or “ M ” bisemisheaf of rings 6% @p 63 , and
thus that the “ ST, “ MG ” or “ M ” spatial bistructure, behaves globally like two adjacent gyroscopes
having opposite torques 7r and 77, so that the right and left torques are defined at the points Pg ;, € 9%7 I

by Tr,L = L 77— where Lp 1, is the right (resp. left) angular momentum.

Now, it is well-known that the centripetal force

2
P __ mwj

PR,L

r

acting on a point, having a linear momentum

pr,r = (MV)r 1 = (Mwr)R,L ,
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can decompose into the sum of the three forces [F-L-S]:

2 2
mu muy,
Fopp =— d = — — 2muprw — mw?r
N T T

where

a) the velocity v of the rotating point Pg 1, is the sum of the rotational velocity vps and of an additional
angular velocity wr :

Vy = Up +Wr

b) r is the distance from the point Pg 1 to the emergence point of the bisemiparticle;

2
c) Fp = — @ is the “diagonal” centripetal force which is in fact independent of the rotation.
Fy = —2mupw is the Coriolis force responsible for the torque 7 = ‘% = Fj; X r in action in the
gyroscope.
Fr = —mw?r is the centripetal force acting on points Pg 1, even still in 6% ; .

Proposition 4.3.5 1) The space of diagonal biquanta M{% ®p Mi are generated from the bisemisheaf
2
muvy
r )

9% QD 9% under the action of the diagonal centripetal biforce Fp, ®p Fp, , where Fp = —
responsible for the smooth biendomorphism Er ®p Ef, acting on 0% @p 03 .

2) The magnetic space biquanta M{% Om Mi are generated from the bisemisheaf 6% ®p 03 under the
action of the Coriolis biforce Fyr, @ Fi, , where Fpy = —2mupw , responsible for the smooth

biendomorphism Er @, Er acting on 9?]’% XD 9% .

3) The emission (and the subsequent reabsorption) of left and right magnetic quanta by the left and right
semisheaves 03 and 0% of a left and right semiparticles having different magnitudes of rotational
velocities results from the differences between right and left torques and generates by reaction a global

movement of translation of the bisemiparticle.

Proof.

1) The emission of diagonal biquanta M. {% ®p M T must result from the diagonal centripetal force
Fp, ®p Fp, . Indeed, a diagonal centripetal force Fp must provoke Galois antiautomorphisms on

an algebraic semigroup leading to the smooth endomorphism Eg f, .

2) Knowing that the Coriolis force is a force acting sidewise, it seems natural to attribute to this force
the cause of the emission of magnetic quanta. Indeed, magnetic quanta would be emitted in order to
balance any variation of the rotational kinetic energy between a left and a right semisheaves because
the work done against the centrifugal force ought to agree with the difference in rotational energy.
If it was not the case, the centrifugal force would not be equilibrated and would run out.

e
2me

Note also in this context that the magnetic moment of the electron is equal to u = - £ and is

thus proportional to its angular momentum ¢ .
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3) Consider that a left and a right 3D-space semisheaves do not have the same magnitude of rotational
velocity. Then we can assign to every point Pg € 6% a torque 7 whose length and direction are

different from those of a torque 77, corresponding to a point P, € 6% .

We thus have a resulting torque 7 = 7 — 7, at the “bipoint” Pr x Pp, . It is reasonable to admit

that the action of the resulting torque 67 will be at the origin of a smooth endomorphism Eg f, .

As a consequence, a left or a right magnetic quantum will be emitted which will provoke by reaction

a movement of translation of the bisemiparticle.

Thus, the Coriolis force which is in fact apparent becomes here effective by the emission of magnetic
quanta. The magnetic quanta, emitted towards the emergence point of the bisemiparticle, are
reabsorbed later on. Thus, a process of emission-reabsorption of magnetic left and right quanta

generates a global movement of translation of the bisemiparticle. "

Remarks 4.3.6 1) It is likely that the centripetal force F, = —mw?r is responsible for the emission

of 3D-space electric quanta.

2) The assertions of proposition 4.3.5 are valid for bisemiphotons, which explains why a set of bisemipho-

tons generates a magnetic field.

5 The gravito-electro-magnetic interactions between bisemipar-

ticles

It was seen in chapters 3 and 4 that the structure of bisemiparticles is given by bisemisheaves so that an
action-reaction process is generated in a bisemiparticle by the interactions between the right-semisheaves
of the right semiparticle and the left-semisheaves of the left semiparticle.

Generalizing this concept to a set of bisemiparticles, one easily demonstrates that the interactions
between a set of bisemiparticles result from the interactions between the right and the left semisheaves
belonging to different bisemiparticles leading to a set of mixed action-reaction processes of bilinear nature.

Mathematically, if we have a set of N (distinguishable) bisemiparticles, their 3D spatial structure is
given by the completely reducible representation Rep(GLan (A g X A 1)) of the bilinear general semigroup
GLon(A g x Ap) . Indeed, given a partition 2N = 27 + 25 + -+ 4+ 2y of 2N , the tensor product
Rep(GL2, (ArxApL))®---®@Rep(GLay (A g x A 1)) has an irreducible quotient given by the formal sum

Rep(GLan=2, 4 t2;t2y (AR X A L))
= Rep(GLgl (AR X AL)) H---
B Rep(GLz,(Ar x Ar)) 8- B Rep(GL2y (AR X AL)), 1<i<N,

which constitutes a completely reducible orthogonal representation of GLay (A g X A L) .

The nonorthogonal completely reducible representation of GLa, (A g x A1) is reached if we add to
Rep(GLan=2, 442, +2y (A g X A 1)) the direct sum of off-diagonal irreducible bilinear representations
Rep(Ti_R (ARr) x Ty, (Ap)) for all pairs of semiparticle indices, i # j .

These mathematical considerations allow to develop Langlands global bilinear correspondences for
reducible representations of GL(2N) [Pie9] and to introduce the general mathematical frame of the inter-

actions between bisemiparticles as studied in section 5.1.
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5.1 Interactions between bisemiparticles

Definition 5.1.1 (Interacting bisemiparticles) Let (g, ® 01,) be a bisemisheaf
“ST7”, “MG” or “ M 7 of a bisemiparticle “ ¢ 7. The total right (resp. left) semisheaf O, (resp.
Oy ) of a set of N right (resp. left) semiparticles on GLan (A r) (resp. GLan(A 1) ) is the union of the

disconnected right (resp. left) semisheaves:

GR,LN = 6‘R,L1 U"'UHR,Li U"'UHRJ/N

N
given by the direct sum [Art] of all right (resp. left) semisheaves Op 1, = @ 0r., if and only if O 1, N
i=1
6‘]{)[/1,Jrl = @ .
Then, the bisemisheaf (Or, ® O, ) of a set of N interacting bisemiparticles on GLan (A g X A ) will

be:
N N N
Ory ®OLy = (@ 0Ri> ® @ 0Lj = @ (GR«L ® oLj)
i=1 =1

i,j=1

which can be decomposed following:

Ory ®OLy = @ (0r, ®0L,)

i=1 i,

N N
=
i#]

(eRi ® eLy‘)

1
where

N
a) the direct sum @ (g, ® 0r,) refers to the total bisemisheaf of N-noninteracting (i.e. free) bisemi-
i=1
particles verifying the condition of nonconnectivity between the bisemisheaves “ ¢ 7 and “ j

(Or, ®601,)N (93j ® 9Lj) =0.

”.

N
b) the “mixed” direct sum € (g, ® 0r,) refers to the bilinear interactions between the right sem-
i,5=1
isheaves 0, of the IV right semiparticles and the left semisheaves 0, of the NV left semiparticles.
The bisemisheaf of a “mixed” direct sum is thus an interference bisemisheaf between the N inter-

acting bisemiparticles.

Definition 5.1.2 (Interaction bisemisheaves of interacting bisemileptons) The (i — j)-th in-
teraction bisemisheaf (0r, ® 0r;) of the “mixed” direct sum of the total bisemisheaf (Or, ® O, ) of a
set of IV interacting bisemileptons represents the interactions between the right semisheaf g, of the i-th
bisemilepton and the left semisheaf 7, of the j-th bisemilepton and can be developed following:

Or, ® 01, =05 °(ti,r:) @ 0p °(t;. 1)
(O, (o) © 03, (15,15)
DO, (ri) ™) @ 03, (1) ™) DO, (15, (7)) @ 0172 ((85),75)
if we take into account the Sy, isomorphism (see definition 4.1.1).
Note that

1) 9}%:3(%, r;) ®p 92]_,3(13», r;) is a “mixed” diagonal 4D-space-time bisemisheaf composed of:
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a) “mixed” orthogonal space biquanta M (ri) ®p M ,(r;) generated by a spatial smooth bien-
domorphism Er ®p Fy, (see proposition 4.3.5);
b) “mixed” time biquanta My (t;) ® M ij (t;) generated by a time smooth biendomorphism Er ®
Er .

2) 03 (r D ®,, 03 (’I“J)(m) is a “mixed” 3D magnetic bisemisheaf composed of “mixed” magnetic
biquanta MRi (Ti)(m) ®m Mij (r;)™) of a magnetic field

gL (3

3) O, (i

( £, () ®c M

) ® 9(1) 2((t;),7;)(© is a “mixed” electric bisemisheaf composed of electric biquanta
( )(8)) or (MI (r:)© @ MI Lt () of an electric field

((7;77 and “j

Remark that all these “mixed” biquanta of interaction are localized between the bisemileptons labelled

Definition 5.1.3 (Interaction bisemisheaves of interacting bisemiphotons) Similarly, the (i—j)-
th interaction bisection (Tr, ® T1,) of the “mixed” direct sum of the total bisemisheaf (Tg,, ® Tr,,) of a
set of M interacting bisemiphotons is given by

Tr, @ Tr, = Tg,(r:i) @ T} (1))

where

(Th, (ri) ©p Tf, (1) @ (Th, (r:) ™ @m TL (r;)™)
) Tx (ri) ®p T} (r;) is a “mixed” diagonal space bisection composed of “mixed” orthogonal space
biquanta M{% (r;) ®p Mi (rj)
2) Tk (r)™ @, T} ()™ is a “mixed” magnetic bisection composed of magnetic biquanta of the
magnetic field of the interacting bisemiphotons

Definition 5.1.4 (Bisemileptons interacting with bisemiphotons) The total bisemisheaf O, ,,®
given by

O, of aset of N interacting bisemileptons interacting with a set of M interacting bisemiphotons is

N M N M
GRN M ®®LN—IM = (@ HR'L @ TRk) ® @ eLj @ TLh
i=1 k=1 j=1

N M N M
= (E_Bl 9}%:3(%“)&91 Ty, (W) 0% <€Pl 92?@%@)}?3 Tih(f“j)>
N
= &

M

(052t r) @61 t5,m)) D (Th, () @ T3, (rn)
,j=1 k,h=1

NMo N,M

D (Or () @ Tp, (m) D

(7h, () @017 (t5m))
k,j=1

)
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where

N
a) the direct sum €D refers to the total bisemisheaf of N interacting bisemileptons;
i,j=1

M
b) @ refers to the total bisemisheaf of M interacting bisemiphotons;
k,h=1

¢) the mixed direct sum NQ§4 refers to the bilinear interactions between the right semisheaves 9}%:3 (tiyrsi)
of the N right Semile;‘?o:ris and the left semisheaves Tgh (ry) of the M left semiphotons.
The (¢ — h)-th interaction bisemisheaf of this direct sum Néd decomposes under the S-isomorphism
into the bisemisheaves: o

St : 6‘}%:3(%, Ti) ® Tllzh (Th)
—  (0%,(r)) @p T, (rn)) @ (0%, (1) ™) @ TE, (rn) ™) @ (0F, (t:) ) @ T}, (rn)'?)
where

1. 9% (r;) ®p TLlh’ (rp) is a mixed diagonal space bisemisheaf composed of mixed orthogonal space

7

biquanta M{% (r) ®p Mih (r) ;
9. 9?1’% (Ti)(m) Rm TLlh (rh)(m) is a mixed 3D magnetic bisemisheaf generating a magnetic field;

3. 0k () ®c T} (ra)® is a mixed 3D electric bisemisheaf generating an electric field.

d) the mixed sum Aé}N refers to the bilinear interactions between the right sections T}%k (rg) of the M
k,j=1
right semiphotong and the left semisheaves 953(@, r;) of the N left semileptons.
The (k — j)-th interaction bisemimodule of this direct sum Aé}N can be handled under the Sp-
isomophism similarly as in ¢). o

Lemma 5.1.5 Let 6% (r;) ®p 9%], (rj) be the mized 3D diagonal space bisemisheaf of interaction between

the 3D space right semisheaf 9%1, (r;) of a right semiparticle (semifermion or semiphoton) and the 3D space
left semisheaf 9%]_ (rj) of a left semiparticle (semifermion or semiphoton).
Then, the mized orthogonal space biquanta:

Mp, (ri) ®p M{ (rj) € 0%, (ri) ®p 03 (1))

7

are gravitational biquanta of the gravitational field between the i-th right semiparticle and the j-th left
semiparticle.
Respectively, the mized 1D time biquanta M}, (t;) ® Mij (t;) will be assumed to generate a scalar

gravitational field between the i-th right semifermion and the j-th left semifermion.



106

Proof. The gravitational biquanta M k(i) ®p M ij (rj) are elements of the gravitational field because

L : (3) (3) :
they belong to the bisections of the tangent bibundles Ty sTvmc.m ©D TLJ_; sT.MG M Whose inverse pro-
jective bimaps (pr, ®p pr,) are the 3D diagonal momentum bioperators (see definition 4.2.2).

Now, these bioperators (pr, ®p pr,) can be considered as operators of “mixed” acceleration if the
tangent bibundles Tg’?) TG

(see definition 3.1.7).

Knowing that the intensity of the gravitational field is proportional to an acceleration, we have the

®D Tg’) st.mc. v are defined on the internal bilinear Hilbert spaces HT

thesis. .

We are thus led to the following proposition:

Proposition 5.1.6 A set of bisemileptons interact by means of a gravito-electro- magnetic field.
A set of bisemiphotons interact by means of a gravito-magnetic field.

A set of bisemileptons and of bisemiphotons interact by means of a gravito-electro-magnetic field.

Proof. This proposition results from the definitions 5.1.2 and 5.1.4 and from the lemma 5.1.5. However,
let us remak that:

a) the mixed diagonal interactions generate the gravitational field while the mixed off-diagonal inter-

actions generate the electro-magnetic field.

b) if we work in the context of a bilinear quantum theory, then the bisemiphotons interact between
themselves while in the standard linear quantum theory, the interactions are generated by gauge
theories (see for example [A-L], [Langal) as in the U(1) abelian gauge theory, excluding any interac-

tion between photons. .

Proposition 5.1.7 Let us adopt the convention that the structure of a negative electric charge is given
by an electric bisemisheaf of type 0% (1)) @, 63 (r)(®) and that the structure of a positive electric charge is
characterized by an electric bisemisheaf of type 0% (1)) @, 0} (t)() .

Then, we have that:

a) a set of N electric charges of the same sign of N interacting bisemifermions interact by means of an
electric field;

b) a set of N electric charges of opposite sign of N interacting bisemifermions interact by means of a

magnetic field and by means of a time scalar gravitational field;

¢) a set of N magnetic moments of N interacting bisemifermions interact by means of a magnetic field.

Proof.

a) Let Op, ) ®, 03, (r)(©) and 9}% ) @, 63 NG )(©) be two bisemisheaves characterizing two electric

'77

charges of the same sign (here negative) of two interacting bisemifermions labelled “ and “
These two negative electric bisemisheaves interact between themselves by means of the two interac—

tion bisemisheaves: 6} (t)(©) ®. 6% () () and 6} L (1) (@) @, 63 (r)(© according to definition 5.1.1.
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Clearly, these two interaction bisemisheaves are of electric nature composed of electric biquanta which
are elements of an electric field. As these two interaction bisemisheaves are of the same nature, they

will be of repulsive nature.

b) The two electric bisemisheaves 0 ) ®, 03, (1)) and 9‘;’%], (1)) @, 9%)_ (t)(¢) characterizing two

W 7

electric charges of opposite sign of two interacting bisemifermions “ ¢ ” and “ j ” interact by means

of the two interaction bisemisheaves:

1. 6% (1)) @, 6% (1)) which is a 3D space bisemisheaf, i.e. a magnetic field; we thus have the
J i
identity:
O, (1)) @c 07, () = 0% ()™ @ 67, (r)™)
so that the magnetic bisemisheaf H%j (r) ™ @, 03, (r)(™) is composed of magnetic biquanta of
a magnetic field;
2. 0, ) ®, 0, (t)(¢) which is a mixed time bisemisheaf composed of scalar gravitational time

biquanta that are of attractive nature.

c¢) From the definitions 1.1.5 and 5.1.2, it appears that a set of N magnetic moments of N interacting

bisemifermions interact by means of a magnetic field. u

Definition 5.1.8 (Internal bilinear mixed Hilbert space) According to definition 5.1.1, the total

bisemisheaf (Or, ® O, ) of a set of N interacting bisemifermions or bisemiphotons is given by:

N N
@RN®@LN = @(TRz ®TLi) @ (TRi®TL1‘>'
i=1 ig=1
i#j

Let pr, be a projective linear map, mapping the right semisheaf O, onto the left semisheaf O, and
let By, be a bijective linear isometric map from the projected right semisheaf © g (py to O so that the

bisemisheaf O, ® O, be transformed as follows [Pied]:

(Bropr) :Opy ®0L, — @LRN ®0Or,

leading to
N N
OLp, ®OLy = DTy, ®TL,) D (TrLs, @TL,) -
=1 ij=1

i
Then, the diagonal bisections {TL, ®p T}, and {TL, ®p Tr,} ;= , obtained under the Sp-
isomorphism, are defined respectively on the internal bilinear left Hilbert space H;" and on the internal

bilinear mixed left Hilbert space H@j) .

Definition 5.1.9 (What differentiate bisemifermions from bisemiphotons) The bisemisheaves
{0y, ®0r .}, of the bisemifermions differ from the corresponding bisections of the bisemiphotons by the
existence of the electric bisemisheaves at the origin of the electric charges of the bisemifermions. Similarly,
the bisemifermion interaction bisemisheaves {61, ® 01, }le ;= differ from the corresponding bisemiphoton
interaction bisections by the existence of electric bisemishg;]ves at the origin of an electric field.

This way of handling interactions between bisemiparticles differs from the standard description, in
linear quantum theory, of a set of N fermions given by an antisymmetric Fock space over the Hilbert space
while a set of N photons is described by a symmetric Fock space over the Hilbert space [Foc], [VN-Mu].
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Let us be more explicit by working out the standard Hilbert space at two particles and the present
bilinear Hilbert space at two bisemiparticles. For the purpose of simplicity, we shall exclude the magnetic
and electric bisemisheaves of the bisemifermions and the magnetic bisemisheaves of the bisemiphotons.
We then have:

Proposition 5.1.10 (Bilinear Hilbert space) The standard Hilbert space at two particles is given by
Ho = H1 ® Ho while the internal bilinear left Hilbert space at two bisemiparticles is:

Hy =My © M) ® [H_p) &M qlin -

Ho is thus a Hilbert space at two free particles while H;L leads naturally to a bilinear Hilbert space at two
interacting bisemiparticles.

Proof. The structure of the Hilbert space Hi at two bisemiparticles results directly from definitions
5.1.1 and 5.1.8.

Let us point out the difference between Hy and H; by developing the additional structures of these
two Hilbert spaces.

a) If {fy}2L, and {f5}52, are the orthonormal basis of H; and H> , then a vector ¢ of Hy = H; ® Ho

~
will write: oy
p= > C'vé(f'v ® fs)
v,0=1

and the scalar product (¢, ¢) defined on Hy x Hy will be given by [R-S]:

(0,0) = (O cys(fy ® fo) 2o cun(fu® f))
= 2Ty (fy, fu) - (fs: fo) 5
b) on the other hand, a bivector ¢, ®p L, of

H;r ~0r,, ®p 0L, = (9LR(1) S3) 9LR(2)) ®p (Ora) ® Or(2))

(see definition 5.1.1) will write:

¢LR2 @D "/JLz = (¢LR(1) D ¢LR(2)) ®p (Q/JL(l) & Q/JL(Q))

= (gzaw @Z%(fﬁ)*) ®p (; by(ey) @%c(s(ﬁs))

B

if {(e™)*}oL, and {(fﬁ)*}gil are orthonormal basis respectively of the right semimodules 0., ,, and
0L py While {e,}71, and {fs}52, are orthonormal basis respectively of the left semimodules 6, 1)
and 9L(2) .

Then, the internal scalar product on 6,, @p 01, will be given by:

(PLry VL) = EBabv(eaae'y)+6265606(fﬁ7f5)
a=y =

+ 3 bacs(e®, f5) + X Taby(fae4)

a=0) B=~
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Remark that
Lp, ®D YL, = (PLpu, @D VL)) © (PLrwn, @D VL(2))
D(PLru) @D VL2) © (PLrny @D VL))

where (¢LR(1) ®D "/JL(Z)) € Hafz) and (¢LR(2) ®p wL(l)) € HZszl) :

[HE’LQ) @ Hafl)]int is the direct sum of the interaction bilinear Hilbert spaces between the two
bisemiparticles (1) and (2) .

Then we have that

1. if [HE’E_Q) @ H&_l)]im = 0, the two bisemiparticles do not interact;
2. If [HZLPQ) @ Héfl)]int # 0, the two bisemiparticles interact by means of a gravitational field
(see lemma 5.1.5) generated by:

e gravitational biquanta from the 3D mixed bilinear Hilbert spaces
[HE2S) & Hipm D)) C Hiig) @ Hiz_yy i
e time mixed biquanta of a scalar gravitational field from 1D mixed bilinear Hilbert spaces

[HE™S) @ HE™S)) C HjH) ® H(Efl) . .

Definition 5.1.11 (Wave equations of interacting bisemiparticles) We shall now introduce the
“wave” equation of N interacting bisemiparticles.

Referring to definition 5.1.1, the total bisemisheaf (O, ®O71,, ) of a set of N interacting bisemiparticles
is given by:

N
Ory ®OLy = D (Or, ®01;) .
i,j=1

According to definition 3.1.8, this bisemisheaf (Og, ® ©p, ) will generate the extended internal bilinear
Hilbert space Hy; if we apply to it the (By o pr) map transforming it into the bisemisheaf OLp, ®OLy -

If we take into account the section 2 of chapter 4 where the “mass” second order elliptic differen-
tial bilinear equation was introduced, we can state that the “mass” biwave equation of N interacting

bisemiparticles can be developed following;:

2

e [(M Rip ® MLju) - (ERW ® ELju)][(bLRiu (tv T‘) ® ¢Lju (t,T)] =0

<l

where

a) Mg,, (resp. Mz, ) is the mass differential right (resp. left) operator, given explicitly in definition
4.2.2, acting on the y-th right (resp. v-th left) section ¢r,, (t,r) (resp. ér,, (t,r) ) of the right
(vesp. left) semisheaf 0, (resp. 61, ) defined on the bilinear Hilbert space Hy ;

b) (ER,, ® EL,,) is the corresponding eigenbivalue.
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We then have the following proposition:

Proposition 5.1.12 The biwave equation of N interacting bisemiparticles separates automatically into
N, biwave equations of the N, bisections of N bisemiparticles and into ((Ng)* — Ny) biwave equations

referring to the interactions between the right and left sections of these N bisemiparticles.

Proof. The mass biwave equation of N interacting bisemiparticles on the extended internal bilinear
Hilbert space H]T, :

2::1 [(M RW(ZSLR (tv ’I“) ® MLju¢Lju (t,?‘)) - (ERW ® ELju)(¢LRw (t,?‘) ® ¢Lju (tv T'))] =0

decomposes into:

Z[(M Rip d)LRW (tv T) M Liud)Lm (tv T)) - (ERW ® ELiu)((bLRm (tv T) ® ¢Lm (tv T))]

i

+ ) Z [(M Rm(bLRw (tv ’I“) ® MLju (bLju (tv ’I“)) - (ERW ® ELju)(¢LRw (tv T) ® (bLju (tv ’I“))] =0
it

where
a) > refers to the sum of N, biwave equations relative to the Ny bisections of the N free bisemiparticles;
i
b) > refers to the sum of [(N,)? — (N,)] biwave equations relative to the interactions between the

1,5, 4,V
right and left sections of the N bisemiparticles. .

Definition 5.1.13 (Biwave equation between two different sections) The biwave equation rela-
tive to a bisection of a free bisemiparticle was already handled in section 2 of chapter 4. We shall now
develop the biwave equation between two different right and left sections, i.e. when p # v : this corre-

sponds to a term b) of the proof of proposition 5.1.12:

[(M RWQSLRW ® MLju¢Lju) - (ERW ® ELju)((bLRiu ® ¢Lju)] =0.

Proceeding as in definition 4.2.3, this biwave equation becomes:

3 0*(dLp, , rin)oLy, (riv) 3 L i) 0gL (4)
p%l Aﬁ% amwp sz,/q Z A Bzwp ’ 515]',,
(tip) 8¢L . (r50) 00 2? (¢LR1’ (tiﬂ)d)Ljy(th))
Z A Btw Biqu A 5&“ atj,,
—[(Er.,. - BL,, ) (OLr,, (tiw:Tin) - OL,, (Ejv,m50))] = 0
where
h? 00 2 .0 0
pg _ _ " p g - _
AW— = shost AW— b= s, sy,

Tip = {Tipy s Tipa s Tipig } -
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It is a second order degenerated elliptic differential bilinear equation which can be solved by separation
of variables. This equation allows to find the interaction energy, which is of gravitational, electric or

magnetic nature according to proposition 5.1.6.

Remarks 5.1.14 1) In [Piel], Green’s propagators for bisemiparticles, i.e. Green’s bipropagators,

were evaluated which allowed to develop the S-matrix for bisemiparticles.

It was then demonstrated that the traditional Feynman graphs [B-D], like the electron self-mass and
the vacuum polarisation, “open” and split giving rise to new Feynman “bigraphs” in the context of
bisemiparticles: the result is that the Feynman graphs, which are divergent in the context of quantum
field theory [Schwe], are transformed into corresponding bisemiparticle bigraphs which were proved

not, to be more divergent.

2) This way of handling the interactions between N bisemiparticles, and more particularly between
N bisemielectrons, clears up the problem of the electronic correlation between N electrons (see for

example [Low]).

5.2 The gravito-electro-magnetism

Instead of considering the interactions between a set of IV well defined and localized bisemiparticles as
done until now, it is possible to envisage the interaction of a given bisemiparticle with an external field

representing the global influence of the set of (N — 1) remaining bisemiparticles.

Definition 5.2.1 (The tensor of the gravito-bifield) This external field will be given by the generic
biconnexion (Ag(t,r) ® Ar(t,r)) such that Ag 1(¢,7) be a right (resp. left) connexion, i.e. a right (resp.
left) distribution at the considered point Pg 1 (¢,r) (see definition 4.2.8).

AR-,L(tvr) = {A%,La %,L’A?%,La %,L}
is a four-vectorial distribution whose components A% ; , m = x,y, z , are given for example by [B-DJ:

AR (t,r) :/d3kR,LAR,L(Ea g)eiigrf(kR,L,/\)

where e(kg,1,A) is the polarization unit vector depending on the integer A = 1,2 referring to the two
transverse polarization modes of the semiphotons.

The mass bisemisheaf of a bisemiparticle in an external field on the left extended internal bilinear
Hilbert space H will then be written:

[(Mpg+eAgr(t,r) @ M +eAr(t,r)](0r, ®0L)

[ kM

where “ e ” is the classical charge parameter modulating the connexion Ag r(¢,7) in order to have an
interaction between two proportional charges throughout an infinitesimal right or left connexion.

The mass bioperator (M rp ® M) of a bisemiparticle endowed with the infinitesimal biconnexion
(eAgr(t,7) @ eAL(t,r)) , noted (Ag ® Ar) , will develop according to:

Mpr+Ag) @M+ AL) = Mr@ML)+ (AR ® AL)+ (Mr® AL) + (AR @M L))
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where (M r ® Ar) + (Ar ® M 1)) represents the interaction bioperator between the mass bioperator of
a bisemiparticle and the infinitesimal biconnexion giving the global influence of an external bifield. This
interaction bioperator is the sum of two tensors of the same type and will be noted M A,,,,, .

The interaction tensor M A,,,,, is a tensor whose components are:

with M, = {m07px7pyapz} and A, = {AtaszAyaAz} .
This interaction tensor Ml A,,, , called the gravito-electro-magnetic tensor or GEM tensor, can be

explicitly written as follows:

Gy FE; E; E7

x Yy z

Ef G, B B}

x

MAmn:
Ef Bf G, B;

Yy z

Ef B; Bf G,

z Yy x

where
a) E* = {EF, Eyi, EF} is a 3D-positively (resp. negatively) charged electric field vector;
n+ + + +q - el . . .
b) B* ={B;, B, , B} is a 3D-positive (resp. negative) magnetic field vector;

c) G={G:,Gy,G.} is a 3D gravitational field diagonal tensor and G; is a scalar gravitational field.

Proposition 5.2.2 The interaction tensor M A,,,, is transformed into the antisymmetric tensor Fy., of
electromagnetism if Ml A, s submitted to the bijective antisymmetric map C : M A,y — Fiup transform-
ing the right components of A,, into their corresponding left components and the left components of M,
into their corresponding right components, which corresponds to a map transforming a symplectic metric

into an orthogonal metric.

Proof.

a) The off-diagonal left electric components of the interaction tensor M A,,,, are:

h
EfEEL.:mOAi—I—Atpiz—HﬁgAi—At-i— ﬁ,, 1=x,Y,2 .
’ ! ot c 01

The “ C' 7 map defined as
moA; + Aipi — moAi + piAs

transforms Eyp,, into —FE; :
CZE;EELi—?—Ei

L (9A; 04,
‘Ei—“(at ‘W)

where

in the ¢ = A = 1 systems of units.
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It then appears that {—E;}i=s ,,. are the components similar at a sign of the 3D negatively charged
left electric field vector:

, N A
—E=+4+VA +—
+VA + ot
of classical electromagnetism.
Similarly,
h
‘ ' ¢ 0i ot

can be transformed by the “ C'” map into:

C:Ef =FEg, — +E;

(04, 04
Ei—“(ﬁ‘ 6t>'

where

Clearly, {+FE;}i=z,y,. are very closed at a sign to the components of the 3D positively charged right

electric field vector
Fo_va -4
Y

of electromagnetism.

In a similar way, the off-diagonal left magnetic components of the GEM interaction tensor M A,,,,

are:
_ . h 0 . h 0 o
B, =B, =piAj + Aip; ~ +i Y Aj—i - A; 8_3 , i g ke {r,y, 2}
The “ C'” map transforms B, = By, into
0A; 04;
B, — . Jj )
" H( 9i 9y )

in the ¢ = A = 1 system of units.

{=Bk}k=z,y,» are the components of the 3D left negative magnetic field vector —B=-VxAof

electromagnetism.

Similarly,
. h 0 . h 9]

The “ C'” map transforms B;" = Bpg, into

. (0A; 0A4A;
+B = +1 ( 3j 5 )

where { By }k=z,y,» are the components of the 3D right positive magnetic field vector +B=VxA.

Finally, the diagonal components G; = mgA; + Aymg and G; = p;A; + A;p; , i = x,y,z , of the
interaction tensor M A,,,, are the components respectively of a scalar gravitational field Gy and of
a 3D gravitational field diagonal tensor G because G; and G are “mixed” 1D and 3D diagonal
bioperators acting respectively on “mixed” 1D and 3D space orthogonal bisemisheaves which are

gravitational bisemisheaves according to lemma 5.1.5.
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The “ C'” map transforms G; = mgA; + Aymg and G; = p; A; + A;p; respectively into

o (0A, 04,
G, =+ <W‘W)

and into

Gt (0A OAN
e e T e )

S0, if the right components of A,, anticommute with the left components of M ,,, , then

G =G =0.
~E o~y

K3
This explains why the gravitational field is so hardly observable and why it does not appear in the
tensor F,,, of electromagnetism as we should expect it.

Summarizing, we have:
C: MA,.. — Fun

where
G. E, E; E;
E;[ G, B B;
MAmn =
E; Bf G, By
Ej B; B;r G,
and ) }
0 -k, —-E, -—E,
+FE, 0 -B, +B,
an -
+E, +B, 0 —B;
+E, —-B, +B; 0

Proposition 5.2.3 The “GEM” gravito-electro-magnetic tensor M A, is reduced to the “GM” gravito-
magnetic tensor MA’;J- , 6, = x,Yy,2 , in the case of bisemiphotons, i.e. when a bisemiphoton interacts

with an external field.

Proof. According to proposition 5.1.6, bisemiphotons interact by means of a gravito-magnetic field.
Consequently, the tensor M A,,,,, reduces to the tensor
G. B, Bf
po_ _
MA;; =| BY G, B

B Bf G,

Yy x
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which is transformed into the tensor

under the action of the “ C'” map. .

Remark 5.2.4 The bisemifermions interact by means of gravitational, electric and magnetic biquanta
which could be interpreted as virtual photons [Fey2], [Fey3] like in quantum electrodynamics.

Indeed, the external field is given by the generic biconnexion Ar(t,r) ® Ar(t,r) which could be inter-
preted as a “bi”semiphoton gauge field as in quantum electrodynamics.

Thus, the existence of a local bilinear gauge transformation on a physical field is equivalent to consider
a deformation of this field following 1.4.16 and [Piell].

Proposition 5.2.5 The condition 4D-nul divergence: 0"M A, =0 , i.e.
1®6)(Mr® AL)+ (AR ®@M )] =0,

applied to the GEM tensor M A, leads to a set of formal differential equations:

- o 0G,y
V-E = 22
ot '’
L - dE
VxB = V-G+ — -
x T

analog to the second set of Mazwell equations: 0" Fy,y = 4114, , or

—

B = P,

<

=,

L - d
VxB = j+

t )

Qu

where jm = {p, jo, Jy, J= 1 -

Proof. As Apg is a right (resp. left) connexion in contrast with the vector potential A,,(r,t) =

{¢, Ay, Ay, A, } of electro-magnetism given classically by [F-L-S]:

p(2,t —T12/c)
1,¢ ——= = d
¢( ) ) / 4H60T12 V2,
> 7(2,t— T12/c)
A(l,t) = — = d
( ’ ) / 41_[80027‘12 U2

i.e. defined respectively from the charge density p(2,---) and from the current density j(2,---) , the

. dG,
1D-divergence <

and the 3D-“divergence”

0G, 0G, 0G.

V-G Ox + dy + 0z
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of the gravitational field G,, appears formally in the set of equations:

[ oG,
.E = =
v ot '’
VxB - v.g+E.

dt

The conditions of 4D-nul divergence "M A,,,, = 0 of the tensor M A,,,, leads to the conditions
(0r,AL) = (6L,M ) =0, where dr, is a 4D-left divergence and (-, ) is a scalar product. Now, (6, Ar) =0
corresponds to the radiation gauge or to the Lorentz condition [B-D] of electromagnetism while (67, M ) =
0 is a condition of conservation of the left mass of the reference left semiparticle or is a condition of
nonaccelerated (i.e. uniform) motion.

This set of differential equations gives the possibility of generating a 1D and a 3D gravitational field
respectively from an electric field and from an electromagnetic field.

The transformation

- o 0G
V.E =22t
ot
is realized through a (y,—: o F) morphism applied to V-E. .

Definition 5.2.6 (4D-external current) If the tensor M A,,,, is no more conserved, i.e. if (dz, Ar) #0
and if (0r,, Mr) # 0, then we have:

(1®0)[(Mr® AL) + (A @M 1) = Jr

or

"M A, = I,

where J,, = {J;, Jy, Jy, J.} is a 4D-external perturbating right current.
This condition 0"M A,,,,, = J,,, leads to the set of differential equations:

- o 0Gy
Ji+V-E = W’
J19xB - v.q.2F

ot
with J = {J,, J,, J.} .

Definition 5.2.7 (3D external current) The condition of 3D nul divergence:
j P o_ co
V]MAij_O’ L) =%,Y,%,
applied to the GM tensor M Afj of bisemiphotons leads to the set of differential equations:
VxB=V-G

which gives the possibility of generating a gravitational field G from a magnetic field B.
If the tensor MA% is no more conserved, i.e. if (Vy,Ar) # 0 and if (Vp,pr) # 0 where V, is a 3D
divergence, then we have:
VIM AL = JP

2
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where J? = {J, JP,JP} is a 3D external right current.

The condition V/M A}, = J! leads to the set of differential equations

=

P+VxB=VG.

Remark 5.2.8 It is commonly assumed that light waves are electromagnetic waves. However, considering
the preceding developments, it appears that isolated light waves, i.e. bisemiphotons, generate only a
magnetic field. It is only when light waves interact with bisemifermions that an electromagnetic field of
interaction is produced according to proposition 5.1.6.

On the other hand, bisemiphotons could not have a proper mass (i.e. components depending on their
proper time) strictly equal to zero following proposition 1.4.8, because, otherwise, the velocity of light
would be infinite. But, the proper mass of the bisemiphotons is too tiny to generate an internal electric
field.

Proposition 5.2.9 The gravitational field is of attractive nature while the electromagnetic field is of

repulsive and/or of attractive nature.

Proof. This results from the fact that the gravitational field consists of diagonal biquanta while the
electromagnetic field is composed of pairs of off-diagonal magnetic and electric biquanta, generating a
positive or a negative field following the sense of rotation of the sections of the magnetic and electric

bisemisheaves of the corresponding magnetic and electric fields. n

Remark 5.2.10 (The gravitational field and the theory of general relativity) Let wus finally

make two remarks concerning the gravitational field.

1) In this algebraic quantum model (AQT), the gravitation results directly from the diagonal inter-
actions between bisemiparticles. The question is now to find some connexion between the way by
which gravitation has been introduced in AQT and the way by which it was described by A. Einstein
in general relativity [Ein3], [Ein4].

The solution is not immediate. Indeed, it appears that there are two fundamental tools in general

relativity:

a) the metric tensor g,, , interpreted as a gravitational potential leads to a description of grav-
itation in terms of curvature of space-time throughout the Ricci tensor R,, without really

attending to the cause of gravitation;

b) the equation of Poisson: A¢ = 4Ilkp having been used as a guiding principle for deriving the

equations of general relativity:

1
R#y - 5 g#yR = —KZT#U .

Now it appears that the concept of interaction between (bi)objects at the basis of the generation of
the gravitational field could be related to the basic metric tensor g,,, . On the other hand, Poisson’s
equation, describing the “dynamics” of the production of the density of matter p from the gravita-

tional field, likely refers in AQT to the transformation of 3D graviphotons into 3D bisemiphotons.
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2) It was demonstrated that every massive elementary left or right semiparticle is constituted by three

embedded semisheaves of rings:
0y it r)sT C Oyt m)ma COp At r)m

such that the middle-ground and mass semisheaves of rings be generated from the space-time sem-
isheaf of rings. This idea was initially developed in order to get a bridge between quantum field
theory and general relativity. Let us recall the pioneer work of L. Parker [Par] in this field. Indeed,
Sakharov [Sak] suggested that gravitation could be some quantized phenomenon due to the vacuum

energy. The aim pursued in [Piel] was then to consider that:

a) the two internal structures of an elementary semiparticle, i.e. the space-time and middle-ground
structures, could correspond to its unobservable vacuum from which the mass structure could be
generated. The middle-ground structure was then interpreted as being of gravitational nature,

which was promptly realized to be incorrect.

b) the equations of general relativity can be lightly modified [Piel] by relating nicely the Ricci
tensor to the matter stress tensor in order to take into account the creation of matter from

gravitational energy.

5.3 The strong interactions

Definition 5.3.1 (The space-time structure of a semibaryon) The strong interactions are widely
believed to be generated by a nonabelian SU(3) gauge theory of colored quarks and gluons which are
permanently confined in color singlet hadronic bound states: this is quantum chromodynamics [M-P].

This theory is principally justified by the beautiful discovery that nonabelian gauge theories are asymp-
totically free [G-W], [Pol], [Weinl], but unfortunately, quantum chromodynamics does not give a simple
qualitative and dynamical understanding of confinement [C-J-J-T-W].

Now, in this algebraic quantum model, the strong interactions and the nature of the confinement of
the semiquarks result directly from the space-time structure of the semibaryons.

Indeed, it was proved in proposition 1.4.3 that the algebraic time structure of a semibaryon is given
by:

3
ORL(t) = 0% 1 (t) b 0.0, (1)

where 9}}1 1(tc) is the core time structure of the semibaryon and where 0} (t;) is the time structure of a

semiquark.

The algebraic space-time structure of a semibaryon is generated from the semisheaf of rings 9%2 (t) by

Vi, —r; © E; morphisms:
3
Ve, —r; © By 9%%@) — Hg?i(t,r) = GE{L(tc) EBl 9}%131_ (ti, i)
1=

according to proposition 1.4.4.
As in QCD (i.e. quantum chromodynamics), the color is related to a quark state [Kok]| and corresponds

“wo N

to one of the indices “ ¢ ” of the semiquark semimodule 9}{5’1, (tiyri) , 1<1<3.
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We would thus have the equivalences: i=1 ~ red color,

i=2 ~ blue color,

i=3 ~ yellow color.

Recall that the set of parameters
G(PB)t—(tr taits) = {G1(pB1),  GulpB,)s -+ GqlpB,)}
noted in abbreviated form G(pp) and defined by (see definition 1.4.5):
Brtnp—pp)nr = OBty tata]l " Plta o talipny,

where

a) ong (nB—p5)a.L is the set of algebraic Hecke characters related to the generation of the reduced

semisheaf %'/ (t.) by Eisenstein homology,

b) Pty tatslip P the set of algebraic Hecke characters related to the generation of the complementary

semisheaf
H?R,L(t]"’tz’ts) ®91RL( )

leads to the definition of the strong constant of the strong interaction:

<G(pB)tc—>[t1,tg,t3 > (Z G (PB ))

noted G(p) .
Now, we can state the proposition:

Proposition 5.3.2 1) The confinement of the 3 semiquarks originates naturally from the generation of
the 3 semiquarks from the core time semisheaf of rings of the semibaryon by the smooth endomorphism

£y .

2) The asymptotic freedom of the 3 semiquarks could result from a complete transformation of the core
time semisheaf of rings of the semibaryon GE{L(tc) into the complementary time semisheaves of rings
of the 8 semiquarks under the conditions that:

a) O0F L (te) ~0 ;
b) G(pB)te—tr taits] =0 5

¢) (ng—pB)rR, — 0.
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Outline of proof: Asymptotic freedom, which is a consequence of Bjorken scaling [Bjo] at high mo-
mentum transfer [D-D-T], occurs if the semiquarks are free, i.e. if 0 (t.) ~ 0 .
This is realized when the rank set pp, , of the complementary semisheaf of rings of the 3 semiquarks
9?1“ (t1,t2,13) is equal to the rank set of the core time semisheaf of rings 9}%)L(tc) e if (np—pB)rr — 0.
And, from the definition of the set of parameters G(pB )¢, —[t, t.,t,] » it appears that asymptotic freedom

is reached when G(pB )¢, [t ,t5,65] = 0 - .

Definition 5.3.3 (Mass-operator of a semibaryon) Referring to the space-time structure of a
semibaryon as given in definition 5.3.1, it is immediate that the elliptic self-adjoint differential operator

corresponding to the mass operator of a right (resp. left) semibaryon is

. 0 0 h 0 h 0
MBa = ihso ——, {£ih B _— 4 — B4 — i
R,L {:FZ S0 atcov{ ? G(p)SO atov ? CRG(p)Sx (%c’ y &1 CRG(p)SZ 62’}7
0 h 0
] B _— DR ] —_— B —_—
{£ihG(p)sy Bly’ , i CBG(p)sZ 5.
0 h 0
) Y —_— DY ) —_— Y —_—
{ith(p)SO 8t0 ’ ) +i cy G(p)sz 82}}

where
a) the indices R, B,Y refer to the colors;
b) {sf},—..,.» are the components of a 3D unit vector referring to the spin of the red semiquark;
¢) G(p) is the strong constant defined in definition 5.3.1;

d) cgr,B,y is the abbreviated notation for the parameter ¢;.,(pg 5, )R, referring to the generation
of the 3D spatial semisheaf of rings of the semiquark R , B or Y from its corresponding 1D time

semisheaf of rings.

Definition 5.3.4 (The space-time structure of a bisemibaryon) According to the axiom II 1.3.9
and definition 3.1.2, we have to consider bisemibaryons whose “ ST 7, “ MG ” or “ M ” structure is given
by the bisemisheaves

9%‘"(& r)sT.MGM @ 9%“ (t,r)sT,mc,m characterized by the tensor products between the right semisheaf
Hgar(t, r)sT.ma.Mm > referring to a right semibaryon, and a left semisheaf H%ar(t, r)sT.ma,m referring to a

left semibaryon. On the “mass” structure, we will have:
O (t )0 @ 02 (t,1)u
= (07 (tc) ® (0 °(tr,7r) ® 0 °(t,7B) ® O °(ty,ry))

Q05 (te) ® (07 *(tr,rr) ® 01 *(tz,rB) ® 0 >(ty,rv))) .
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Under the Sp-isomorphism, this baryonic bisemisheaf splits into the following set of bisemisheaves:

O () @02 () — (0 () @ OF (t))

w

3
_ 1(9}53(%72‘) ® 0, % (ti,ri)) D (O, (ti, ) @ 07 °(t5,75))
iy

P

(03 (00) © 613 (81, 72)) (6 (b1, 1) © 631 (2.)

=1 i=1

where

a)

b)

the bisemisheaf (0% (t.) ® 05! (t.)) refers to the core central time structure of the bisemibaryon;

the bisemisheaf (9}53(%, i) ® 9;3(%, r;)) refers to the 10D-space-time structure of the bisemiquark

Woaom

i” (i = red, blue, yellow).

This bisemisheaf (9}%?3(1%1-, ri) @ Hijg(ti, r;)) splits under the Sp-isomorphism into the direct sum of

the three bisemisheaves:

e the 4D-diagonal space-time bisemisheaf (9}%:3(1%1-, i) ®p Hijg(ti, i)
e the 3D magnetic bisemisheaf 6%, (ri)™ @, 63 (r;)™) | and

i

o the 3D electric bisemisheaf 0} (£;)(¢) ®. 63 (r;)© or 6%, (r;)(©) ®. 0} (t;) .

Remark that the 4D-space-time diagonal bisemisheaf 9}%:3(@-, ;) ®p 9;3(151-, r;) of the i-th bisemi-
quark is at the origin of “biquanta” M} (r;) ®p M} (r;) which are generated from the 3D space
orthogonal bisemisheaf 9%1, (r;) ®p 9%1_ (r;) by a smooth biendomorphism Er ®p Ef, .

The electric bisemisheaf of a bisemiquark is at the origin of the electric charge of this bisemiquark
whose absolute value is |%‘ e or |%‘ e . Indeed, following that the electric biquanta of the electric
bisemisheaf of a bisemiquark are invariant under an electric subgroup of SL(1, R) x SL(3, R) (or of
SL(3,R) x SL(1,R) ) (see definition 4.2.19) at one or two bigenerators, the eigenbivalues (in “ e ”

units) of the electric charge of a bisemiquark will be ‘%‘ or ’%‘ .

3

the “mixed” direct sum € (9}%:3(151-, ri) ® Hijg(tj,rj)) refers to the bilinear interactions between

i,j=1

i
the right semisheaves 9}%:3(151-, r;) of the right semiquarks and the left semisheaves Hijg(tj, r;) of the
left semiquarks.
The (i — j)-th interaction bisemisheaf (9}%:3(151-, ri) ® Hijg(tj, r;)) between the i-th right semiquark
and the j-th left semiquark splits into

1. a mixed diagonal 4D- space-time bisemisheaf:
(OR,° (tiyrs) @p 072 (t5,75))

composed of mixed 1D time biquanta and mixed 3D orthogonal space biquanta which are
biquanta of the gravitational field between the i-th and the j-th bisemiquark,
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2. a mixed 3D magnetic bisemisheaf
(O, (i)™ @m 0, (rj)™)

composed of magnetic biquanta of the magnetic field between the i-th and the j-th bisemiquark,

3. a mixed 3D electric bisemisheaf
Ok, (t:) ) @ 67 (r))9) or (6%, (r)) @, 07 (;)))

composed of electric biquanta of the electric field between the i-th and the j-th bisemiquark.
3
d) the mixed direct sum of the bisemisheaves @ (0% (t.) ® 9;3(151-, r;)) and
i=1
3
éh (9}%:3 (ti,ri) ® 03 (t.)) refer respectively to the bilinear interactions between the right central time
i=1
semisheaf of rings 03 (t.) of the right semibaryon and the left semisheaves 9;3(1%1-, r;) of the left
semiquarks and to the bilinear interactions between the right semisheaves 9}%:3(1%1-, r;) of the right

semiquarks and the left central time semisheaf of rings 63! (¢.) of the left semibaryon.

The i-th interaction bisemisheaf (63 (t.) ® 9%?3(1%1-, ;) splits into:

1. a mixed 1D time bisemisheaf (07 (t.) ® 0} (t;)) referring to the interaction between the right
central time semisheaf of rings of the right semibaryon and the i-th left time semisheaf of rings
of the i-th left semiquark.

This bisemisheaf is composed of mixed 1D time biquanta M R(te) ® M. 1, (t;) which are of grav-
itational nature according to lemma 5.1.5.

2. amixed 3D electric bisemisheaf (6% (t.)(® @07 (r;)(®)) composed of electric biquanta (M{% (t.)(©
®e M, i (r3)(©)) which must be of “strong” nature and responsible for a “strong” force between
the central core right semisheaf of the right semibaryon and the 3D space semisheaf of the i-th
left semiquark.

These strong electric biquanta (MII% (te)® @e Mil (r:)(®)) are likely rather massive.
To each of the three electric strong bisemisheaves (6% (t.)(©) @ 03, (r:)(®) , we can associate
a “blue”, “yellow” or “red” color in the sense that the localization of such a bisemisheaf on a

bisemiquark gives to it the corresponding color.
We have a similar splitting of the i-th interaction bisemisheaf (9}%:3(%, ) @ 051 (L))

We are thus led to the following proposition:

Proposition 5.3.5 A right and a left semibaryon of a given bisemibaryon interact by means of:
1) the electric charges and the magnetic moments of the 8 bisemiquarks;

2) a gravito-electro-magnetic field resulting from the bilinear interactions between the right and the left

semiquarks of different bisemiquarks;

3) a strong gravitational and electric field resulting from the bilinear interactions between the central

core structures of the left and right semibaryons and the right and left semiquarks.
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Proof. The assertions of this proposition result from the developments of definition 5.3.4m

Corollary 5.3.6 In the lightest, stable (nonradioactive) nuclei, the number of protons is equal to the
number of neutrons in such a way that the strong positive electric field of the up bisemiquarks equilibrates
the strong negative electric field of the down bisemiquarks. As a result, the strong force between up and

down bisemiquarks is attractive.

Proof. According to proposition 3.1.6, the electric basis must be three-dimensional. Consequently,
for a given bisemiquark, the electric strong field must refer to the strong electric negative bisemisheaf
(03 (te)® ®c 63 (r;)(®)) or to the strong electric positive bisemisheaf (63, (r;)(©) ®. 07! (t.)) -

As the quark composition of the proton is w,u, d and u, d, d for the neutron, we see that the mixed 3D
strong electric positive bisemisheaves (6% (r:)(®) @ 05 (t.)) of the right up semiquarks will compensate
the mixed 3D strong electric negative bisemisheaves (8% (t.)() @, 03, (r:)(®)) of the left down semiquarks:

in other terms, the strong electric field between up and down bisemiquarks will be of attractive nature. =

Proposition 5.3.7 A set of bisemibaryons interact by means of:

1) a gravito-electro-magnetic field resulting from the bilinear interactions between the right and the left

semiquarks belonging to different bisemibaryons;

2) a strong gravitational and electric field resulting from the bilinear interactions between the central

core structures of the semibaryons and the semiquarks belonging to different bisemibaryons.

Proof. According to definition 5.1.1, the general bisemisheaf of a set of N interacting bisemibaryons is

given by:
N N
@Bar @Bar _ @(eg?r ® GE?r) @ (eBar GE;H) .
=1 i, 1

The (i — j)-th interaction bisemisheaf (63> ® 9%?“) decomposes under the Sy -isomorphism into:

eBar ® eBar N (9 ( CZ) ® 9 ( ))

éé ( -a( ias Tia) ®9 (JB?TJB)) é (9*1( ) ®91 (]OHTJQ))

[ 1 a=1

D (052 (tiar 7ia) © 03 (1))

a=1
where
3
a) the mixed direct sum & (9}5@3 (tias Tia) ® 9;;33 (tjg, 7)) refers to the bilinear interactions between

a,B=1
the right semisheaves 9}5@3 (tias Tio) Of the right semiquarks and the left semisheaves 9;5’(%, i)

of the left semiquarks.

According to proposition 5.3.5, the (ia — j3)-th interaction bisemisheaf generates a gravito-electro-

magnetic field.
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b) the mixed direct sum @ (0% (t Cl)®91 3( jas Tja)) refers to the bilinear interactions between the cen-

tral core right semlsheaf 9*1 (te;) of the i-th right semibaryon and the left semisheaves 6‘ ( jor Tia))
of the left semiquarks of the j-th left semibaryon.

According to proposition 5.3.5, this (i—ja)-th interaction bisemisheaf generates a strong gravitational

and electric field. "

Remark 5.3.8 The classical charge parameter “ e ” is the coupling constant modulating the connexion
Ap (t,r) tied up with a right (resp. left) semilepton as envisaged in definition 5.2.1. It would then
be natural to choose the parameter £G(p) [Piel] as the coupling constant modulating the connexion

Agp () tied up with a right (resp. left) semiquark.

qR,L

5.4 The decays of bisemiparticles

Definition 5.4.1 (Main decays of bisemiparticles) In definition 2.4.2, it was demonstrated that the
second and the third families of elementary right and left semiparticles are generated from the first (resp.
the second) family by a SO(-) o Vd(-) morphism where:

a) Vd(-) denotes the versal deformation;

b) SO(-) is the spreading-out isomorphism.

As the second and the third families of elementary bisemiparticles are unstable, they decay into lighter
bisemiparticles, i.e. finally into bisemiparticles of the first family.

The decays of bisemibaryons are of two types:

1) leptonic decays which are of general form:
A—-B+/{+1
where

a) A and B are bisemibaryons so that the bisemibaryon A has a bisemiquark composition of higher
mass than that of the bisemibaryon B ;

b) ¢ is a bisemilepton and v is a bisemineutrino;

2) nonleptonic decays which are of general form:
A — B+ mes

where

a) the bisemibaryon A has a bisemiquark composition of higher mass than that of the bisemibaryon
B ;
b) mes denotes a meson having a bisemiquark composition grgy, such that the right semiquark gr

has generally a different flavor from the left semiquark ¢y, .
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The decay of bisemileptons are of general type:
by = Uy +1vp +7

where the bisemilepton £, is of higher family than the bisemilepton ¢, and where v, and 7 are bisemineu-
trinos.

Proposition 5.4.2 The leptonic decay A — B + £ + v1 of a bisemibaryon A results from the “diagonal”
emission of a bisemilepton “ £ 7 by a bisemiquark q; of A throughout the biendomorphism (Er ®p Ep)
applied to the 10D-space-time bisemisheaf (9}%?3(1%1-,7“1») ® Hijg(ti,ri)) of the bisemiquark q; .

As a consequence, the bisemiquark g; is transformed into a bisemiquark g, of lighter mass and a bisem-
ineutrino v1 s emitted to take into account the bilinear interaction between the bisemiquark ¢, and the
bisemilepton { .

Summarizing, we have:

4G —q+Ll+v, €A, ¢ €EB.

Proof. Let (9}%:3(&,73) ® Hijg(ti,ri)) be the ST , MG or M bisemisheaf of the i-th bisemiquark g;
belonging to the bisemibaryon A . This bisemiquark ¢; is supposed to be of the family B or C (see
definition 2.4.2).

Let then (Fr®p EL) be the diagonal smooth biendomorphism applied to this bisemisheaf (911?:3(@-, 7)) ®
Hijg(ti,ri)) :

Er®p Ep : 0 (ti,r) @ 072 (ti,74)
= (O, (b i) @ 07 (b, mir) + (05, (6,7) @ 01 7%(1, 7))
(0 (i, ri) @077 (8,7) + (0, (t,7) @ 0P (tir, 7ir)
so that

a) (0 (ti,rir) @05 *(ty, 7)) is the bisemisheaf of the i-th bisemiquark having decreased to a lighter
family;

b) (9}%:3(15, r® 9%?3(15, 7)) is the bisemisheaf of the generated bisemilepton ¢ such that the left and right
semisheaves 9}%;3“ (t,7)p, of the bisemilepton ¢ have ranks p, equal to the difference between the
ranks n; and (n — p); , of the semisheaves 9}{% (tiy7i)n, and 6}%;3:141'/ (tir, 74 ) (n—p), Of the left and
right semiquarks qg, r, and qr,1,, -

We thus have that:
pe=mni—(n—p)i;

c¢) the leptonic bisemisheaf (9}%;3 (t, r)®9£;3 (t,r)) is disconnected from the #’-th bisemiquark bisemisheaf
Ok, (i) ® 07 (Lo 100)) 5

d) the sum of the two bisemisheaves (85 *(ty, i) ® 9;3(15, r)) and
(9}%3(&7“) ® 07 3(ty, i) is the interaction bisemisheaf between the bisemilepton ¢ and the gen-
erated bisemiquark ¢;; and is allowed to generate a new bisemifermion, under the circumstances a

bisemineutrino vy . "
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Proposition 5.4.3 The nonleptonic decay A — B + mes of a bisemibaryon A results from the “off-
diagonal” emission of a meson “mes 7 by a bisemiquark q; of A throughout the nonorthogonal biendo-
morphism (ErQmeEL) (i-e. a magnetic or electric biendomorphism) applied to the space-time bisemisheaf
(9}%:3(1%1-, ri) ® 9;3(%, r;)) of the bisemiquark g; .

As a consequence, the bisemiquark q; is transformed into a bisemiquark q; of a lighter mass.

Proof. Let (9}%:3(@-, i) ® 9;3(151-,13-)) be the ST , MG or M bisemisheaf of the i-th bisemiquark ¢; of
the bisemibaryon A .

Let (Er ®m EL) be the “magnetic” smooth biendomorphism applied to the 3D space bisemisheaf
0% (ri) @p 03 (i) C 9}53(1%1-, i) ® 9;3(%, r;) so that the 3D space magnetic biquanta are emitted, i.e. are
disconnected from 6% (r;) ®p 67 (i) .

The set of emitted magnetic biquanta then generate the magnetic bisemisheaf (H%mes Om H%me ) which

s

can get a “mass” throughout the bimorphism (y,—; 0 E)g Qm (vr—t © E)r, . We then have that

(FYT"t o E)R ®m (’Y’rﬂt ° E)L : (Q%mes ®m 0%77165) - (9}%;13&5 ®nonorth 0}/;1365)

where the nonorthogonal bisemisheaf (9}%;363 @nonorth 9%;?; ) corresponds to the generated meson from the

s

i-th bisemiquark ¢; . This bisemisheaf (9}%;36 ®nonorth 9%;?;) is characterized by a metric g, so that

gag =0 fa=4,
s #0 Ha#p.

Similarly, we can envisage an “electric” smooth biendomorphism (Er ®. Fr,) applied to the bisemisheaf
(9}%:3(@-, i) ® 9;3(@-, r;)) of the bisemiquark g; so that electric biquanta are emitted, i.e. are disconnected
from (9}53(@-, ;) ® Qijg(ti,ﬁ)) .

The set of emitted electric biquanta then generate the electric bisemisheaf (0, ~ ®. 63 ) which can
get a mass throughout the bimorphism (v:—, 0 E)g ®. (77—t © E)r . We then have that:

(Vtor 0 E)R Qe (Yot 0 E) L - (9}%@5 Re H%MCS) — (9}3;3;5 @nonorth 9i73 ).

mes

Thus, in the case of a “magnetic” or an “electric’ smooth biendomorphism, a massive meson
(9}%;3;5 ®nonorth 9;25) can be generated from the bisemiquark 7 .
If this massive meson develops a morphism (SO o Vd) on its time structure, it will be endowed with an

4

electric charge (see definition 2.4.1). The consequence of the generation of the meson “ mes” 7 from the
bisemiquark ¢; of “ A ” is the transformation of this bisemiquark into a bisemiquark ¢;; of different flavor

and with a mass lighter than this of the bisemiquark g; . .

Proposition 5.4.4 The space-time structure of a meson is given by the nonorthogonal space-time bisem-

isheaf ST — MG — M : (9}%;?;5 ®nonorth oi;is)ST*MG*M characterized by a nonorthogonal metric gog # 0

ifa#p3 .

Proposition 5.4.5 The decay £, — lp + vy + T of a bisemilepton £, results from the diagonal emission
of a bisemineutrino vy throughout the biendomorphism (Er ®p EL) applied to the space-time bisemisheaf
(6‘}%;3(1%, ) ® 9;3(1%, r)) of the bisemilepton £, .
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As a consequence, the bisemilepton £, is transformed into a bisemilepton £y, of lighter family than £,
and a bisemineutrino v of different helicity from vy is emitted to take into account the bilinear interaction

between the bisemilepton £, and the bisemineutrino vy .

Proof. Let (011?;3(15, ) ® Gizg(t, r)) be the ST , MG or M bisemisheaf of the bisemilepton ¢, . Let then
(Er ®p Er) be the diagonal smooth biendomorphism applied to this bisemisheaf:

(Er@p Ev) : 05, (t,r) ® 07, °(t,7)
- (%;f(t, ) ® Hi;f’ (t,7)) + (O, (t,r) @ 01 °(t,7))

HO8,(t.r) @ 01, (8,1) + (0%, (t.r) © 01, (1.7)
where

a) (9};;3(15, r)® 9%;3(15, r)) refers to the bisemisheaf of the bisemilepton ¢}, resulting from the decay of
b b
the bisemilepton £, ;

b) (05 *(t,r) ® 07 3(t,r)) is the bisemisheaf of the bisemineutrino v, emitted by the bisemilepton ¢ ;

c) [(911?;3(@ rY@0; 3 (t, )+ (0 2 (t,7) ®9i;3 (t,7))] refers to the interaction between the bisemilepton £
b Yb Vb b

and the bisemineutrino v, and is allowed to generate a new bisemineutrino, under the circumstances

a bisemineutrino 7 of which the left semineutrino 7y, differs by its helicity (which is right) from the

helicity (left) of the left semineutrino v, of the bisemineutrino v, .

Thus, in the terminology, a bisemineutrino 7 whose left semineutrino has right helicity is the “antineu-

trino” of the bisemineutrino v whose left semineutrino has left helicity. n

5.5 The EPR paradox

Let us recall that the famous EPR paradox raises two kinds of questions [E-P-R], [Bel]:
1) Does the wave function describe the objective reality of an elementary particle?
2) How is it possible that two elementary particles, having interacted in the past, can still interfere in
the future, even instantaneously, although the Hilbert space (representing the mathematical frame

of quantum mechanics) only deals with tensor products of one-particle Hilbert spaces, excluding

interactions between elementary particles?

We shall prove in the next proposition that this new algebraic quantum model gives a response to the

EPR paradox and that the two types of questions raised by this paradox are in fact intimely interconnected.

Proposition 5.5.1 1) The wave function of quantum mechanics, defined on the linear Hilbert space
H , is replaced in AQT by a wave “bi”function referring to the state of a bisemiparticle and defined

on a bilinear Hilbert space H* .
2) Two elementary bisemiparticles can interact:

a) through the space by means of a gravito-magneto-(electric) field;
b) through the time by means of a 1D time gravitational field.
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Proof.

1) Point 1) was already developed especially in definition 4.2.1. Thus, the linear wave function of linear
quantum mechanics does not describe the objective reality of an elementary (bisemi)particle. Ounly,
the wave “bi”function referring to a state of a bisemiparticle describes the objective reality of a
bisemiparticle.

2) a) Two bisemiparticles interact in an interval of time dt through the space by means of a gravito-
electro-magnetic field according to proposition 5.1.6. These two bisemiparticles can interact
“nonlocally” through the internal time only by means of a 1D time gravitational field according

to lemma 5.1.5. The internal time can then be considered as an hidden variable.

b) the structure of the bilinear Hilbert space H* at two bisemiparticles having interacted in the
past makes possible their possible interaction in the future at the condition that a gravito-

electro-magnetic field might be generated between these two bisemiparticles. "

It can be concluded that the description of the interferences between two bisemiparticles having inter-

acted in the past is only possible by the consideration of biobjects.
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