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Mass generation of elementary particles and origin
of the fundamental forces in algebraic quantum theory

C. Pierre

Abstract

The main thesis of this paper deals with the interactions of a set of fermions which are

described by:

• one basic type of bilinear interactions;

• two symmetric semiobjects;

• three embedded shells;

• four fundamental (strong) gravito-electro-magnetic forces between left and right semiob-

jects, i.e. semifermions.
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1 Introduction

The physics of the twentieth century was based on two great theories: the quantum field theory

and the general relativity [Ein].

The quantum field theory, in its different versions, describes the quantum fluctuations of

the states of the matter and of its interactions in the frame of special relativity. Its formulation,

derived from classical dynamics and relativistic quantum mechanics [Dir], led us principally up to

the existence of antiparticles, to the creation and annihilation of pairs of particles and of quanta

from a vacuum state and to an infinite number of degrees of freedom.

But the treatment of interacting fields [Dys] by means of particle exchanges is realized perturba-

tively which brought divergences probably symptomatic of a chronic disorder in the small distance

behavior of the theory.

Quantum field theory is the framework [Wil] of the standard model (SM) [Wei] consisting in

a unified description of the strong, weak and electromagnetic forces in the language of quantum

Gauge-field theories [A-J], [A-L], [G-G-S]. Despite remarkable successes, the standard model is

not expected to be valid at distance scales inferior to 10−18 cm. It then appears as an excellent

low energy approximation of a more fundamental theory[Kot], [Smo]. Another kind of difficulty

of the standard model concerns the confinement of the quarks [G-W] in quantum chro-

modynamics (QCD). Indeed, until now, no really quantitative understanding of confinement

has been given in the frame of QCD and, furthermore, this low- Q2 region of QCD, relevant to

the static properties of baryons, is not perturbatively manageable at large coupling [Kok].

On the other hand, the nonlinear equations of general relativity describe the dynamics of

the reciprocical action of the curved space-time on matter in such a way that the geometry of

space-time evolves dynamically with respect to the neighbouring external matter.

But, as it is well known, general relativity (GR) cannot be coupled to quantum field theory

(QFT) in a standard way because these two theories deal with the description of objects at

different length scales.

Only, with superstring theories (ST), physicists have succeeded [Del→Wit] in incorporating

gravity with QFT by introducing massless spin-2 particles in the frame of one-dimensional strings:

by this way, the problem of perturbative nonrenormalizability of GR has been solved. But, the

conceptual principles of string theories [G-S-W] have not yet been clarified and, furthermore,

these theories have no real contact with experiment [Pol], [S-S], [Wit].

Much of what we know about the standard model and superstring theories comes from pertur-

bation theory described by means of Feynman diagrams of which some are divergent. These

divergences appear as a probable consequence of an over-simple space-time geometry [Ati].

So, a more fundamental theory, taking into account the outstanding features of QFT,

SM, GR and ST, should have to give a leading part to the nature of space allowing to
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consider arbitrary small distance scales [Ash]. Now, in these theories (QFT, SM and ST),

directly deduced from classical dynamics dealing with the study of trajectories of material points,

the considered objects (pointlike particles or strings) are quantized by means of commutation or

anticommutation relations when one would expect a pertinent quantization by means

of real quanta of structure. As the space is intrinsically fundamental in physics according

to general relativity and in mathematics by the existence of its most famous subjects [Bou] as

algebraic geometry, number theory and algebraic topology, it would appear reasonable that

a quantum theory in physics be quantized “ab initio” by a quantization of space

whose quanta would have a well defined mathematical structure [Pie4].

This challenge was achieved in the algebraic quantum theory (AQT) which is a quantum

theory devoted to the elementary particle internal structure based on the quantiza-

tion of their internal space(-time) by algebraic quanta being algebraic closed subsets

of degree N . This internal space structure is then discrete and, under some (toroidal) com-

pactification, gives rise to a continue geometry and to analytic functions (or cuspidal forms)

by means of the procedure of the Langlands global program [Pie2], [Car], [Har], [Lan1], [Lan2],

[Gel]. By this way, the algebraic quantum theory, resulting from a unique conceptual framework,

gives rise to physical quantities and structures which are all quantized in the frame of algebraic

geometry and analytic number theory and which refer to the pertinent features of the quantum

field theories, the general relativity, the standard model and the string theories.

More concretely, the algebraic quantum theory proceeds form the unification of quantum

field theory with general relativity as proved in [Pie3] which implies that elementary

particles have to be endowed with an internal structure composed of three embedded

substructures labeled ST, MG and M (for space-time, middle ground and mass) in

such a way that the mass shell structure “ M ” is generated (or created) from two most internal

shell substructures ST and MG constituting the particle internal vacuum. The origin and the

nature of the mass of an elementary particle is then clearly identified mathematically

as resulting from its internal vacuum being of space-time nature.

On the other hand, QFT, implying its fusion with special relativity (SR), leads to the

existence of antiparticles, directly related to the bilinear invariants of SR. This was transposed in

AQT by developing a theory of bilinear structure of elementary particles which are then envisaged

as bisemiparticles: a bisemiparticle is defined by the product of a left semiparticle, localized in

the upper half space, by its symmetric right equivalent localized in the lower half space.

A bisemiparticle is thus a mathematical bisemiobject characterized by a bisemistruc-

ture [Pie6], resulting from the reciprocal action of the left semistructure on the right

semistructure. The bielements of this bisemistructure are either diagonal bielements referring

to the central diagonal bisemistructure of a bisemiparticle or cross bielements responsible for the
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off-diagonal magnetic and electric structures of the bisemiparticle. An elementary fermion

can then be viewed as an elementary bisemifermion described by the product of a

left semifermion by its symmetric right equivalent in such a way that, under some ex-

ternal perturbation, this bisemifermion could be split generating a pair of fermion-antifermion

of which fermion corresponds to the left semifermion and antifermion to the right semifermion.

In a bisemifermion, the right semifermion, corresponding to the antifermion, is pro-

jected onto the associated left semifermion and is hidden by the only observable (left

semi)fermion [Pie1]: these hidden right semifermions could correspond partly to the

dark matter.

In special relativity, time has been linked with space into a four-dimensional space-

time. But, time can be really transformed into space and vice-versa if time has

the same type of topological structure as space at the subplanckian quantum level.

So, a discrete structural quantum time has been envisaged as constituting the time part of the

space-time (ST) internal vacuum of every elementary (bisemi)fermion and the ratio of the space

structure by the time structure, generated from it and localized in an orthogonal space, is given by

the quotient between the two corresponding Hecke parameters [Pie1]. This ratio of space internal

structure by the time internal structure gives the velocity of the shell structure “ ST ” of the

elementary (bisemi)fermion and corresponds to the velocity of light appearing in the equations

of QFT when the time structure tends to zero. This brings a new ontological meaning to

the concept of velocity (of light) at the level of elementary particles.

The central notion of field of QFT is defined mathematically in AQT by means of the global

program of Langlands in the case GL(2) . Indeed, it was proved in [Pie4] that a time (or

space) string field of the internal vacuum of an elementary bisemifermion of the first

family is given by the bisemisheaf (M̃T
STR

⊗(D) M̃STL
) of a IC -valued differentiable bifunctions

(φR(MLvµ,mµ
) ⊗(D) φL(MLvµ,mµ

)) on the set of conjugacy class representatives (MLvµ,mµ
⊗(D)

MLvµ,mµ
) , 1 ≤ µ ≤ q ≤ ∞ , of the bilinear algebraic semigroup GL2(Lv × Lv) over the product

(Lv × Lv) of the sets of completions Lv and Lv [Pie5].

Each differentiable bifunction, i.e. the product of a right function localized in the lower half space

by its symmetric left equivalent localized in the upper half space, of the bisemisheaf (M̃T
STR

⊗(D)

M̃T
STL

) is a bistring, i.e. the product of a right string by a left symmetric string, in such a way

that every right and left string is characterized by a structure at µ quanta.

Thus a bisemisheaf (M̃T
STR

⊗(D) M̃T
STL

) is a time (or space) string field because it is

composed of a tower of increasing bistrings behaving like harmonic oscillators and

characterized by a number of increasing biquanta.

As above mentioned, a quantum is an algebraic closed subset of degree N . If we are

dealing with a quantum localized on the mass shell, then the Planck constant ~ must correspond

to the number N in the mass system of units [Pie1], giving then a mathematical origin to ~ .

An important feature of QFT concerns the creation and annihilation of (bi)quanta on (bi)strings;
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this is realized in AQT respectively by Galois automorphisms [Rib] and antiautomorphisms cor-

responding to quantum deformations and inverse quantum deformations of these bistrings [Pie1].

As a consequence, the considered time (or space) string field is a bosonic string field

which is such that bistrings can be added (i.e. created) or removed (i.e. annihilated) to or

from this field by Galois automorphisms or antiautomorphisms. If this bosonic string field is an

operator valued string field [Pie5], then the spectrum of the considered operator acting

on the bosonic string field is naturally generated by envisaging creation (and/or

annihilation) of bistrings [Pie1].

All that concerns elementary (bisemi)fermions, i.e. the leptons e− , µ− , τ− and their

neutrinos as well as the quarks u+ , d− , s− , c+ , b− and t+ .

The composite (bisemi)fermions are the baryons which are described in the frame of

quantum chromodynamics by hadronic bound states confining three colored quarks. But, the

origin of this confinement still remains mysterious. This problem was reconsidered in

AQT in such a way that the three left (resp. right) semiquarks of a bisemibaryon

originate and are connected to a left (resp. right) (massive) “core” time semifield

of the left (resp. right) semibaryon. The confinement of the (semi)quarks then

arises naturally and the strong interaction depends on the existence of a strong

gravitational and electric field resulting from the bilinear interactions between the

central core structures of the left and right semibaryons and the structures of the

right and left semiquarks. The strong constant is then directly related to the generation of

the three semiquarks from the central core structure of the corresponding semibaryon as it was

proved in [Pie1].

All that leads to the main proposition of this paper:

Proposition:

The bisemifermions (i.e. the elementary (bisemi)fermions and the (bisemi)baryons)

are defined by means of:

• 1 basic type of bilinear interaction;

• 2 symmetric semiobjects (which are semiparticles);

• 3 internal embedded shells: ST, MG and M ;

• 4 fundamental forces at the level of each shell ST , MG and M plus 4 mixed

fundamental forces on products, right by left, of different shells ST × MG ,

ST × M and MG × M ;

in such a way that: the set of the symmetric left and right semifermions, localized respectively in

the upper and lower half spaces and characterized by three embedded substructures ST , MG and
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M , interacts by means of a general type of bilinear interaction which is of gravito-electro-magnetic

(GEM) type.

This basic type of “GEM” bilinear interaction between interacting right and left

semifermions is at the origin of:

a) the gravitational and electromagnetic forces mediated by massless GEM bisemi-

bosons;

b) the strong and weak forces mediated by GEM massive (bisemi)bosons.

In order to prove this proposition, the chapter 2 of this paper will be devoted to the study of the

internal structure of elementary (bisemi)particles leading to a revised classification of these intro

(bisemi)fermions and into (bisemi)bosons obeying respectively the Fermi-Dirac and the Bose-

Einstein statistics. The spin, directly related to the rotation of the internal structure of particles,

then received a new ontological meaning.

In chapter 3, the basic types of gravito-electro-magnetic bilinear interactions leading to the four

fundamental forces of physics as well as to the three new forces between the internal shells of

particles is studied.

Finally, it may be remarked that bringing to light the internal structure of elementary particles

in AQT allows to precise what are really the mass, the electric charge, the spin, the

nature of space-time and the gravitation.
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2 Internal quantum structure of bisemiparticles

In this chapter, the structure of elementary particles, introduced in AQT [Pie1], will be reviewed

and succinctly justified.

2.1 Justifications of an internal bilinear structure for elementary particles

• To take really into account the bilinear invariants of special relativity, particles will be

described as bisemiparticles, i.e. by the (bilinear tensor) product of a left semiparticle,

localized in the upper half space, by its symmetric right equivalent, localized in the lower

half space.

• The unification of quantum field theory with general relativity [Pie3] implies in fact that

every elementary (bisemi)particle be endowed with an internal space-time (bisemi)-

structure constituting its own vacuum from which its mass shell can be gener-

ated [Pie3].

• More concretely, every bisemifermion is then composed of three embedded (bi-

semi)structures ST ⊂ MG ⊂ M which are its internal fields. Each bisemistructure

ST , MG or M splits into a diagonal central bisemistructure and into two off-diagonal

magnetic and electric bisemistructures according to the definition of a bilinear semigroup

[Pie6].

• This is the case for the simple bisemifermions of the first family, i.e. the electron e−

(and its neutrino νe− ) and the quarks u+ and d− , but also for the simple bisemifermions of

the second and third families. The (bisemi)baryons which are composite bisemifermions

are characterized in the frame of AQT by a central core time bisemistructure ST ∪ MG ∪

M to which the (bisemi)quarks are connected as it will be recalled in the following.

• One of the main aims of the algebraic quantum theory consists in quantizing the in-

ternal fields ST , MG and M of bisemiparticles by (bi)quanta of structure

allowing quantum jumps. This implies that this theory must be algebraic or, more exactly,

algebraico-geometric in such a way that the quanta have a special structure given by

algebraic irreducible closed subsets characterized by a Galois extension degree N .

• Each internal physical field ST , MG or M refers to a correspondence of the

Langlands global program since it is a (bisemi)sheaf of differentiable (bi)functions on

a bilinear algebraic semigroup GL2(Lv × Lv) (as mentioned in the introduction) in such

a way that this (bisemi)sheaf constitutes the 2 -dimensional holomorphic (or cuspidal)

representation of the considered Weil (bisemi)group.
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2.2 Quantum structure of internal fields

The internal fields of an elementary particle must:

a) have a primary discrete character in order to be quantized by algebraic quanta of

structure [Pie4];

b) but, also, have a secondary continue character leading to a holomorphic function or a

cuspical form;

c) be graded in function of the number of quanta in order to give rise to quantum jumps;

d) be bilinear as mentioned.

This challenge can only be reached in the context of the Langlands global program by considering

the representations of algebraic bilinear semigroups.

Let then K be a global number field of characteristic 0 and let Fv∪Fv denote the real algebraic

symmetric splitting field [Pie1], [Pie4], over K built from an increasing number of irreducible

closed real algebraic subsets Fv1 ∪ Fv1 where Fv1 refers to a positive symmetric splitting sub-

semifield and Fv1 to its negative symmetric equivalent.

Each irreducible closed real algebraic subset Fv1 or Fv1 is characterized by a Galois extension

degree [Fv1 : K] = [Fv1 : K] = N , N ∈ IN , and is interpreted as a quantum of structure

which can be of time or space type.

Let Fv = {Fv1
, . . . , Fvµ,mµ

, . . . , Fvq,mq
} (resp. Fv = {Fv1

, . . . , Fvµ,mµ
, . . . , Fvq,mq

} ) denote the set

of real algebraic subsets (or symmetric splitting semifields) Fvµ (resp. Fvµ ) characterized by

their Galois extension degrees

[Fvµ : K] ≡ [Fvµ : K] = ∗ + µN , 1 ≤ µ ≤ q ≤ ∞ ,

which are integers modulo N , where ∗ denotes an integer inferior to N .

So, we get a tower

Fv1
⊂ · · · ⊂ Fvµ,mµ

⊂ · · · ⊂ Fvq,mq
(resp. Fv1

⊂ · · · ⊂ Fvµ,mµ
⊂ · · · ⊂ Fvq,mq

)

of classes of real algebraic subsets in such a way that the mµ -th representative of the µ -th

equivalence class has a structure at µ quanta of degree N .

The Weil group is assumed to be the Galois subgroup of the extensions characterized by degrees

d = 0mod N [Pie2].

2.3 Proposition

Let GL2(Fv × Fv) ≡ T t
2(Fv) × T2(Fv) be the algebraic bilinear semigroup of which

representation space Repsp(GL2(Fv × Fv)) is the tensor product MR(Fv) ⊗ ML(Fv) of a right

T t
2(Fv) -semimodule MR(Fv) by the symmetric left T2(Fv) -semimodule ML(Fv) .
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Then, the GL2(Fv × Fv) -bisemimodule MR(Fv) ⊗ ML(Fv) splits into:

MR(Fv) ⊗ ML(Fv) ≃ (MR(Fv) ⊗D ML(Fv)) ⊕ (MR(Fv) ⊗m ML(Fv))

where:

• MR(Fv) ⊗D ML(Fv) is a diagonal tensor product;

• MR(Fv) ⊗m ML(Fv) refers to an off-diagonal tensor product of magnetic type.

Proof. 1) The algebraic bilinear semigroup GL2(Fv × Fv) was introduced in order to reflect

the bilinear character of the matrices. It was shown in [Pie2] that the algebraic bilinear

semigroup GL2(Fv ×Fv) covers its linear equivalent GL2(Fv −Fv) where Fv −Fv means

Fv ∪ Fv .

2) As the product (Fv×Fv) is taken over corresponding pairs {Fvµ,mµ
, Fvµ,mµ

} of right and left

algebraic subsets, RepspGL2(Fv×Fv) decomposes into the set {GL2(Fvµ,mµ
×Fvµ,mµ

)}µ,mµ

of conjugacy class representatives of GL2(Fv × Fv) .

3) As GL2(Fv×Fv) is a bilinear semigroup, its representation space MR(Fv)⊗ML(Fv) , being

a GL2(Fv × Fv) -bisemimodule, splits according to [Pie6]:

MR(Fv) ⊗ ML(Fv) ≃ (MR(Fv) ⊗D ML(Fv)) ⊕ (MR(Fv) ⊗m ML(Fv))

≃ {MFvµ,mµ
⊗D MFvµ,mµ

}µ,mµ ⊕ {MFvµ,mµ
⊗m MFvµ,mµ

}µ,mµ

where MFvµ,mµ
(resp. MFvµ,mµ

) is the (µ,mµ) -th representation subspace of the left (resp.

right) conjugacy class T2(Fvµ,mµ
) (resp. T t

2(Fvµ,mµ
) ) restricted to the upper (resp. lower)

half space [Mum]. �

2.4 Proposition

The splitting of the representation space (MR(Fv)⊗ML(Fv)) of the bilinear algebraic

semigroup GL2(Fv×Fv) into a diagonal and a magnetic representation subspace (MR(Fv)⊗D

ML(Fv)) and (MR(Fv)⊗m ML(Fv)) implies an internal dynamics of (MR(Fv)⊗ML(Fv))

given by a rotation in opposite directions of the left and right representation sub-

spaces MFvµ,mµ
and MFvµ,mµ

.

As a consequence, these representation subspaces are compactified and cuspidal rep-

resentations (as well as holomorphic functions) can be defined on them by means of

Langlands global correspondences [Pie2].
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Proof. 1) The splitting of the representation space of GL2(Fv × Fv) into:

MR(Fv) ⊗ ML(Fv) = (MR(Fv) ⊗D ML(Fv)) + (MR(Fv) ⊗m ML(Fv))

corresponds to an exchange of magnetic biquanta between the right and left conjugacy class

representatives MFvµ,mµ
⊂ MR(Fv) and MFvµ,mµ

⊂ ML(Fv) as it was described in [Pie5]

by means of Feynman diagrams.

Now, this exchange of magnetic biquanta implies an internal dynamics of these left and

right conjugacy class representatives appearing by their rotation in opposite senses in such

a way that different magnitudes of rotational velocities in each pair {MFvµ,mµ
,MFvµ,mµ

}

lead to an exchange of magnetic biquanta in it, as proved in [Pie1].

2) The rotation of the “one-dimensional” conjugacy class representatives MFvµ,mµ
and

MFvµ,mµ
, at the origin of the spin of MR(Fv) and ML(Fv) respectively, leads to a com-

pactification γc
MFvµ,mµ

(resp. γc
MFvµ,mµ

) of them by:

γc
MFvµ,mµ

: MFvµ,mµ
−−−−→ MLvµ,mµ

(resp. γc
MFvµ,mµ

: MFvµ,mµ
−−−−→ MLvµ,mµ

)

as developed in [Pie3].

By this way, the algebraic subsets MFvµ,mµ
(resp. MFvµ,mµ

) are transformed into the

completions MLvµ,mµ
(resp. MLvµ,mµ

) at µ quanta viewed as quantum “big points” and

Repsp(GL2(Fv × Fv)) is transformed into Repsp(GL2(Lv × Lv)) = MR(Lv) ⊗ ML(Lv)) .

3) On each conjugacy class representation subspace MLvµ,mµ
⊂ MLωµ

(resp. MLvµ,mµ
⊂

MLωµ
) included in its complex equivalent MLωµ

(resp. MLωµ
), we can define the function

fvµ(zµ) : MLvµ,mµ
−−−−→ IC (resp. fvµ(z∗µ) : MLvµ,mµ

−−−−→ IC )

in such a way that, on the set of compactified representation subspaces MLvµ,mµ
(resp.

MLvµ,mµ
), the function:

fv(z) = Σ
µ

Σ
mµ

cµ,mµ(z − z0)
µ (resp. fv(z

∗) = Σ
µ

Σ
mµ

c∗µ,mµ
(z∗ − z∗0)

µ ),

defined in a neighbourhood of a point z0 (resp. z∗0 ) of IC , is holomorphic at z0 (resp.

z∗0 ) where z (resp. z∗ ) is a complex function of one real variable [Pie2].

4) Similarly, if the compactification of the conjugacy class representatives MFvµ,mµ
(resp.

MFvµ,mµ
) is a toroidal compactification mapping them into the circles MT

Lvµ,mµ
(resp.

MT
Lvµ,mµ

), then we can define on them the circular functions:
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gµ(e2πiµx) : MT
Lvµ,mµ

−−−−→ IC , x ∈ R ,

(resp. gµ(e−2πiµx) : MT
Lvµ,mµ

−−−−→ IC )

in such a way that their sum generates the (truncated) global elliptic semimodule:

ELLIPL(1, µ,mµ) =
q

Σ
µ=1

Σ
mµ

λ
1

2 (1, µ,mµ) e2πiµx

(resp. ELLIPR(1, µ,mµ) =
q

Σ
µ=1

Σ
mµ

λ
1

2 (1, µ,mµ) e−2πiµx )

where λ(1, µ,mµ) is the eigenvalue of the (µ,mµ) -th coset representative of the product,

right by left, of Hecke operators [Pie2].

5) Finally, it was proved that (ELLIPR(1, µ,mµ) ⊗(D) ELLIPL(1, µ,mµ)) constitutes an ir-

reducible cuspidal representation [Lang] of the bilinear algebraic semigroup GL2(Fv × Fv)

and that GL2(Fv ×Fv) is the representation of the product, right by left, of the considered

global Weil (semi)groups [Pie7].

This leads to the Langlands global correspondence:

Repsp cuspGL2
: GL2(Fv ×Fv) −−−−→ ELLIPR(1, µ,mµ)⊗(D) ELLIPL(1, µ,mµ) . �

2.5 Bisemisheaf of differentiable bifunctions on MLvµ,mµ
⊗ MLvµ,mµ

• The set {φL(MLvµ,mµ
)}µ,mµ (resp. {φR(MLvµ,mµ

)}µ,mµ ) of IC -valued differentiable

functions on the compactified conjugacy class representation subspaces MLvµ,mµ
(resp.

MLvµ,mµ
) constitutes the set Γ(M̃T

STL
) (resp. Γ(M̃T

STR
) ) of sections of the semisheaf of

rings M̃T
STL

(resp. M̃T
STR

).

• The set {φR(MLvµ,mµ
)⊗φL(MLvµ,mµ

)}µ,mµ of differentiable bifunctions over the GL2(Lv×

Lv) -bisemimodule MR(Lv)⊗ML(Lv) , also written (MT
STR

⊗MT
STL

) if it refers to the “time”

bisemisheaf, is the set of bisections of the bisemisheaf of rings (M̃T
STR

⊗ M̃T
STL

) .

2.6 Proposition

The bisemisheaf (M̃T
STR

⊗ M̃T
STL

) of differentiable bifunctions is a physical bosonic

time string field of the internal vacuum of a simple bisemifermion.

This bisemisheaf is characterized by:

a) the number of its bisections which are bistrings;
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b) the number of quanta on each pair of symmetric left or right section (or string).

Proof. 1) The bisemisheaf (M̃T
STR

⊗M̃T
STL

) is a physical string field because each product, right

by left, (φR(MLvµ,mµ
)⊗φL(MLvµ,mµ

)) of corresponding sections, which are one-dimensional,

is a bistring behaving like a harmonic oscillator as proved in [Pie1].

2) Each left or right string of a bistring (φR(MLvµ,mµ
) ⊗ φL(MLvµ,mµ

)) is composed of µ

quanta of structure according to section 2.2.

If the string field (M̃T
STR

⊗ M̃T
STL

) is composed of q bisections or bistrings, 1 ≤ q ≤ ∞ ,

the integer q is interpreted as its number of degrees of freedom or normal modes [Vneu].

3) The string field (M̃T
STR

⊗ M̃T
STL

) is a bosonic field because each bisection φR(MLvµ,mµ
) ⊗

φL(MLvµ,mµ
) is a bisemiboson (i.e. the product of a right semiboson localized in the lower

half space by its symmetric left equivalent localized in the upper half space) embedded in

(M̃T
STR

⊗ M̃T
STL

) .

Indeed, each bisection at µ biquanta, written in condensed form (φµR
⊗φµL

) , is submitted

to quantization rules consisting in [Pie1]:

a) adding ν biquanta to it, which corresponds to the quantum deformation:

D
[µ]→[µ+ν]
R×L : φµR

⊗ φµL −−−−→ φ(µ+ν)R
⊗ φ(µ+ν)L

associated to the exact sequence:

11 −−−−→ M̃ I
R×L −−−−→ φ(µ+ν)R

⊗ φ(µ+ν)L −−−−→ φµR
⊗ φµL −−−−→ 11

of which kernel M̃ I
R×L is a biquantum.

b) or removing ν biquanta from it which corresponds to the inverse quantum deforma-

tion:

D
[µ+ν]→[µ]
R×L : φ(µ+ν)R

⊗ φ(µ+ν)L −−−−→ φµR
⊗ φµL

in such a way that ν biquanta become free.

The quantum deformation D
[µ]→[µ+ν]
R×L results from Galois automorphisms while the in-

verse quantum deformation D
[µ+ν]→[µ]
R×L corresponds to an endomorphism based on Galois

antiautomorphisms [Pie1].

Remark that the quantum deformation D
[µ]→[µ+ν]
R×L of the µ -th bisection (φµR

⊗ φµL
)

of a physical field corresponds to a local bilinear Gauge transformation of (φµR
⊗ φµL

)

[Pie1]. �
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2.7 Corollary

The (time) bosonic string field (M̃T
STR

⊗ M̃T
STL

) has a cuspidal representation given

by:

Rep cuspfMT
STR

⊗fMT
STL

: M̃T
STR

⊗ M̃T
STL

−−−−→ ELLIPR(1, µ,mµ) ⊗(D) ELLIPL(1, µ,mµ)

where ELLIPR(1, µ,mµ)⊗(D) ELLIPL(1, µ,mµ) is the global elliptic bisemimodule introduced in

proposition 2.4.

Proof. This is evident since the bisemisheaf (M̃T
STR

⊗ M̃T
STL

) is a functional representation space

of the bilinear algebraic semigroup GL2(Fv × Fv) according to section 2.5. �

2.8 Operator-valued string field

The operator-valued string field (M̃
Tp

STR
⊗ M̃

Tp

STL
) is obtained from (M̃T

STR
⊗ M̃T

STL
) by

action of the differential bioperator:

TR;ST ⊗ TL;ST : φµR
⊗ φµL −−−−→

(
−i

~ST

ct→r;ST
~s0R

∂

∂t0
φµR

)
⊗

(
i

~ST

ct→r;ST
~s0L

∂

∂t0
φµL

)

on each of its bisections (φµR
⊗ φµL

) ∈ (M̃T
STR

⊗ M̃T
STL

) , 1 ≤ µ ≤ q , where:

• ~ST and ct→r are respectively the Planck constant and the velocity of light at this (space-)

time internal level [Pie1];

• ~s0L

∂

∂t0
φµL

(resp. ~s0R

∂

∂t0
φµR

) denotes the directional derivative of φµL
(resp. φµR

) in

the time variable t0 in the direction ~s0L
(resp. ~s0R

).

So, we have that:

TR;ST ⊗ TL;ST : (M̃T
STR

⊗ M̃T
STL

) −−−−→ (M̃
Tp

STR
⊗ M̃

Tp

STL
) .

2.9 Proposition

The operator-valued string field (M̃
Tp

STR
⊗M̃

Tp

STL
) , total bisemispace of the tangent bibundle

(M̃
Tp

STR
⊗ M̃

Tp

STL
, (TR;ST ⊗ TL;ST)−1, M̃T

STR
⊗ M̃T

STL
) , is at the origin of its spin defined by

the two possible senses of rotation of its bisections.

Proof. • Each left (resp. right) section (which is a closed string) φ
Tp
µL

(resp. φ
Tp
µR

) of M̃
Tp

STL

(resp. M̃
Tp

STR
) has two possible senses of rotation due to the differential operator TL;ST

(resp. TR;ST ) acting on φµL
(resp. φµR

) according to:

φ
Tp
µL

= TL;ST(φµL
) (resp. φ

Tp
µR

= TR;ST(φµR
) ).

12



• Similarly, every bisection (φ
Tp
µR

⊗φ
Tp
µL

) of (M̃
Tp

STR
⊗M̃

Tp

STL
) has two possible senses of rotation

in such a way that every right section has an opposite sense of rotation with respect to its

symmetric left equivalent.

• Each bisection (φ
Tp
µR

⊗ φ
Tp
µL

) behaves dynamically like a harmonic oscillator as proved in

[Pie1] and was interpreted as a bound bisemiphoton at µ biquanta.

• The two different senses of rotation of all the bisections of the time bosonic string field

(M̃
Tp

STR
⊗ M̃

Tp

STL
) must be related to its spin. �

2.10 Corollary

The dynamics of the string field (M̃T
STR

⊗M̃T
STL

) , given by its operator-valued string

field (M̃
Tp

STR
⊗ M̃

Tp

STL
) , reflects its evolving nature.

Proof. The dynamics of the string field (M̃
Tp

STR
⊗ M̃

Tp

STL
) is characterized by:

1) quantization rules consisting in adding or removing a set of biquanta on its bisections

(φ
Tp
µR ⊗ φ

Tp
µL) as developed in proposition 2.6;

2) the rotation (in opposite senses) of its bisections which leads to an exchange of left and

right quanta inside them, which is at the origin of the magnetic subfield associated with this

string field (M̃
Tp

STR
⊗ M̃

Tp

STL
) . Indeed, this string field is defined over the algebraic bilinear

semigroup GL2(Fv × Fv) which allows the following splitting:

(M̃
Tp

STR
⊗ M̃

Tp

STL
)

∼

−−−−→ (M̃
Tp

STR
⊗D M̃

Tp

STL
) ⊕ (M̃

Tp

STR
⊗m M̃

Tp

STL
)

generating the magnetic subfield (M̃
Tp

STR
⊗m M̃

Tp

STL
) as indicated in propositions 2.3 and 2.4

and in [Pie5] on the basis of Green’s propagators in the Feynman’s diagram framework.

The existence of quantization rules (and of a magnetic subfield) is thus at the origin of the

evolution of the (operator-valued) string field (M̃
Tp

STR
⊗ M̃

Tp

STL
) since its structure, given by the

number of its biquanta, changes with respect to the clock time. �

2.11 Endomorphisms on semifields

Two kinds of smooth endomorphisms E and Et can be applied on the left (resp. right) semifield

M̃
Tp

STL
(resp. M̃

Tp

STR
) [Pie1]:

a) The first endomorphism:

EL : M̃
Tp

STL
−−−−→ M̃

Tp(r)
STL

⊕ M̃
Tp(i)
STL

(resp. ER : M̃
Tp

STR
−−−−→ M̃

Tp(r)
STR

⊕ M̃
Tp(i)
STR

)

where:

13



• M̃
Tp(r)
STL

(resp. M̃
Tp(r)
STR

) is the residue time semifield of which algebraic semigroup, on

which it is defined, is submitted to Galois antiautomorphisms;

• M̃
Tp(i)
STL

(resp. M̃
Tp(i)
STR

) is the complementary time semifield of which algebraic semi-

group, on which it is defined, is submitted to Galois automorphisms;

is such that M̃
Tp(r)
STL

(resp. M̃
Tp(r)
STR

) and M̃
Tp(i)
STL

(resp. M̃
Tp(i)
STR

) are assumed to

be not connected.

Then, M̃
Tp(i)
STL

(resp. M̃
Tp(i)
STR

) is mapped through the origin into a three-dimensional com-

plementary space semifield M̃
Sp

STL
(resp. M̃

Sp

STR
) according to:

γt→r : M̃
Tp(i)
STL

−−−−→ M̃
Sp

STL
(resp. γt→r : M̃

Tp(i)
STR

−−−−→ M̃
Sp

STR
).

So, we have that:

γt→r ◦ EL : M̃
Tp

STL
−−−−→ M̃

Tp(r)
STL

⊕ M̃
Sp

STL

(resp. γt→r ◦ ER : M̃
Tp

STR
−−−−→ M̃

Tp(r)
STR

⊕ M̃
Sp

STR
)

in such a way that (M̃
Sp

STR
⊗ M̃

Sp

STL
) is a “space” field of which bielements are rotating

closed bistrings localized in a (bisemi)space orthogonal to the closed bistrings of the time

“residue” field (M̃
Tp(r)
STR

⊗ M̃
Tp(r)
STL

) .

b) The second endomorphism Et decomposes the left (resp. right) semifield M̃
Tp

STL

(resp. M̃
Tp

STR
) into the residue time semifield M̃

Tp(r)
STL

(resp. M̃
Tp(r)
STR

) and into

the complementary time semifield M̃
Tp(i)
STL

(resp. M̃
Tp(i)
STR

) which are assumed

to be connected.

This endomorphism Et was interpreted in [Pie1] as being at the origin of the generation of

the time internal semifields of the (semi)quarks from a “core” time semifield M̃
Tp

STL
(resp.

M̃
Tp

STR
), then rewritten according to M̃

(Bar);T
STL

(resp. M̃
(Bar);T
STR

).

Indeed, Et , composed with a γt→⊕ti morphism sending the complementary time semi-

field into a 3D complementary semispace which is of time type due to its connectedness,

transforms M̃
(Bar);T
STL

(resp. M̃
(Bar);T
STR

) into:

γt→⊕ti ◦ EtL : M̃
(Bar);T
STL

−−−−→ M̃
(Bar);T (r)
STL

3
⊕
i=1

M̃
qi;T
STL

(resp. γt→⊕ti ◦ EtR : M̃
(Bar);T
STR

−−−−→ M̃
(Bar);T (r)
STR

3
⊕
i=1

M̃
qi;T
STR

)

where:

• M̃
(Bar);T (r)
STL

(resp. M̃
(Bar);T (r)
STR

) is the core residue time semifield of a left (resp. right)

semibaryon;
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• M̃
qi;T
STL

(resp. M̃
qi;T
STR

) is the internal time string semifield of a left (resp. right)

semiquark.

The time string semifield of the three left (resp. right) semiquarks are then connected to the

(residue) core time semifield of the considered left (resp. right) semibaryon, which explains

the confinement of these semiquarks into a “bag” leading to an algebraic interpretation of

the constant of the strong interaction (at this space-time level) in terms of algebraic Hecke

characters as developed in [Pie1].

Note that the space semifield M̃
qi;S
STL

(resp. M̃
qi;S
STR

) of the three semiquarks qi , 1 ≤ i ≤ 3 ,

at this internal vacuum level, can be generated from their time string semifields M̃
qi;T
STL

(resp. M̃
qi;T
STR

) by (γtiL→riL
◦ EiL) (resp. (γtiR→riR

◦ EiR) ) morphisms as explained in a)

with EiL (resp. EiR ) a smooth endomorphism of the first kind.

So, the space-time internal vacuum of a left (resp. right) semibaryon can be

developed according to:

M̃
(Bar);T−S
STL

= M̃
(Bar);T
STL

3
⊕
i=1

M̃
qi;T−S
STL

(resp. M̃
(Bar);T−S
STR

= M̃
(Bar);T
STR

3
⊕
i=1

M̃
qi;T−S
STR

).

All that can be summarized in the following proposition.

2.12 Proposition

a) The space internal vacuum string semifield of a simple semifermion, i.e. a

semilepton or a semiquark, is generated from its time string semifield under a

(γt→r ◦ E) morphism where E is a smooth endomorphim of the first kind.

b) The core time internal vacuum string semifield of a composite semifermion, i.e.

a semibaryon, can generate the time string semifields of the three semiquarks

at this ST level under (γt→⊕ti ◦ Et) morphisms, where Et is a smooth endomorphism of

the second kind, the space string semifields of the semiquarks are generated from their time

string semifields by (γti→ri
◦ Ei) morphisms.

But, the generation of the time string semifields of the three semiquarks from a core time

string semifield (of a semibaryon) with respect to the generation of a space string semifield

of a semilepton of the same family is only possible if the number of sections ntbj
of the

core time string semifield of the semibaryon is superior to the number of sections ntℓj
of

the time string semifield of the envisaged semilepton.
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Proof. It is evident that ntbj
≫ ntℓj

, where 1 ≤ j ≤ 3 refers to the three possible families,

since, by construction, the generation of time and space time string semifields of semiquarks

requires much more sections, i.e. quanta, than the generation of the space string semifield of the

semilepton of the same family. �

2.13 Operator valued space-time “space” semifields

• As in proposition 2.9, the operator valued string semifield M̃
Sp

STL
(resp. M̃

Sp

STR
) of a

semilepton is given by the total semispace of the tangent bundle (M̃
Sp

STL
, SL;ST, M̃S

STL
)

(resp. (M̃
Sp

STR
, SR;ST, M̃S

STR
) ) where:

– SL;ST is the differential operator

SL;ST = i
~ST

ct→r;ST

{
sxL

∂

∂x
, syL

∂

∂y
, szL

∂

∂z

}

with ~sL = {sxL
, syL

, szL
} the vector responsible for the spin direction in the above

directional derivative,

and SR;ST is similarly the differential operator

SR;ST = −i
~ST

ct→r;ST

{
sxL

∂

∂x
, syL

∂

∂y
, szL

∂

∂z

}
.

• Referring to [Pie1] and [Pie5], the internal vacuum operator valued string semifields of a

left (resp. right) semybaryon are given by:

M̃
(Bar);Tp−Sp

STL
= M̃

(Bar);Tp

STL

3
⊕
i=1

M̃
qi;Tp−Sp

STL

(resp. M̃
(Bar);Tp−Sp

STR
= M̃

(Bar);Tp

STR

3
⊕
i=1

M̃
qi;Tp−Sp

STR
) .

They are submitted to the action of the differential operator (left case):

TS
(Bar)
STL

:

{
i~ST s0L

∂

∂tc0
,

{
i~ST G−1(ρ) s

(1)
0L

∂

∂t0
, i

~ST

ct→r
G−1(ρ) s(1)

xL

∂

∂x
,

. . . , i
~

ct→r
G−1(ρ) s(1)

zL

∂

∂z

}
,

{
. . .

}
,

{
. . . , i

~

ct→r
G−1(ρ) s(3)

zL

∂

∂z

}}

where:

– i~ST s0L

∂

∂tc0
is the differential operator acting on the core time string semifield

M̃
(Bar);T
STL

of the left semibaryon;

– the three internal parenthesis refer to the differential operators acting on the space-

time string semifields of the three semiquarks at this “ ST ” internal vacuum level;

– G(ρ) is the strong coupling constant defined in the frame of AQT [Pie1].
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2.14 Proposition

The operator valued string fields of the internal vacuum “ ST ” of a simple

bisemifermion, i.e. a bisemilepton (or a bisemiquark), are given by:

(M̃
Tp−Sp

STR
⊗ M̃

Tp−Sp

STL
) =

[
(M̃

Tp

STR
⊗D M̃

Tp

STL
) ⊕ (M̃

Tp

STR
⊗m M̃

Tp

STL
)
]

⊕
[
(M̃

Sp

STR
⊗D M̃

Tp

STL
) ⊕ (M̃

Sp

STR
⊗m M̃

Tp

STL
)
]

⊕
[
(M̃

(Tp)−Sp

STR
⊗e M̃

(Sp)−Tp

STL
)
]

where:

•
[
(M̃

Tp

STR
⊗D M̃

Tp

STL
) ⊕ (M̃

Tp

STR
⊗m M̃

Tp

STL
)
]

is the time string field decomposed into a

diagonal time string subfield and into a possible magnetic time (string) subfield

responsible for the exchange of magnetic quanta inside time bistrings.

Remark that describing the exchange of magnetic quanta as a (magnetic) string field is only

a picture of the reality [F-L-S]. It is explicitly described in [Pie5];

•
[
(M̃

Sp

STR
⊗D M̃

Sp

STL
) ⊕ (M̃

Sp

STR
⊗m M̃

Sp

STL
)
]

is the space string field decomposed simi-

larly into diagonal and magnetic space string subfields;

•
[
(M̃

(Tp)−Sp

STR
⊗e M̃

(Sp)−Tp

STL
)
]

is the electric string field responsible for the electric

charge of the bisemilepton of this ST level by the exchange of electric quanta between the

left semifield of time (resp. space) and the right semifield of space (resp. time).

Proof. The existence of magnetic subfields of time and space type results from the fact that the

time and space string fields (M̃
Tp

STR
⊗ M̃

Tp

STL
) and (M̃

Sp

STR
⊗ M̃

Sp

STL
) are defined on algebraic bilin-

ear semigroups of which representation spaces split into diagonal and magnetic tensor products

according to proposition 2.3. �

2.15 Proposition

The operator valued string fields of the internal vacuum “ ST ” of a composite

bisemifermion, i.e. a bisemibaryon, are given by:

(M̃
(Bar);Tp−Sp

STR
⊗ M̃

(Bar);Tp−Sp

STL
) = (M̃

(Bar);Tp(r)
STR

⊗ M̃
(Bar);Tp(r)
STL

)

3
⊕
i=1

(M̃
qi;Tp−Sp

STR
⊗ M̃

qi;Tp−Sp

STL
)

3
⊕

i=j=1
i6=j

(M̃
qi;Tp−Sp

STR
⊗ M̃

qj ;Tp−Sp

STL
)

3
⊕
i=1

(M̃
(Bar);Tp(r)
STR

⊗ M̃
qi;Tp−Sp

STL
)

3
⊕
i=1

(M̃
qi;Tp−Sp

STR
⊗ M̃

(Bar);Tp(r)
STL

)

where:
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a) (M̃
(Bar);Tp(r)
STR

⊗M̃
(Bar);Tp(r)
STL

) is the core central time string field of the bisemibaryon;

b) (M̃
qi;Tp−Sp

STR
⊗M̃

qi;Tp−Sp

STL
) is the internal vacuum string field of the i -th bisemiquark

decomposing as it was done in proposition 2.14, into diagonal space and time string fields,

into magnetic space and time (string) fields and into an electric (string) field responsible

for an electric charge at this level having an absolute value
∣∣1
3

∣∣ e or
∣∣2
3

∣∣ e ;

c) (M̃
qi;Tp−Sp

STR
⊗ M̃

qj ;Tp−Sp

STL
) are mixed “string” fields of interaction between the i -th

right semiquark and the j -th left semiquark. They decompose similarly into:

• diagonal space and time “string” fields which are gravitational, i.e. they

exchange gravitational quanta as it was seen in [Pie1];

• magnetic space and time fields of interaction;

• an electric “string” field of interaction.

d) (M̃
(Bar);Tp(r)
STR

⊗ M̃
qi;Tp−Sp

STL
) (and, inversely, (M̃

qi;Tp−Sp

STR
⊗ M̃

(Bar);Tp(r)
STL

) ) is the “strong”

mixed (string) field of interaction between the right core central time string semifield

of the right semibaryon and the space-time string semifield of the i -th left semiquark.

It decomposes according to:

(M̃
(Bar);Tp(r)
STR

⊗ M̃
qi;Tp−Sp

STL
) = (M̃

(Bar);Tp(r)
STR

⊗ M̃
qi;Tp

STL
) ⊕ (M̃

(Bar);Tp(r)
STR

⊗e M̃
qi;Sp

STL
)

where (M̃
(Bar);Tp(r)
STR

⊗ M̃
qi;Tp

STL
) and (M̃

(Bar);Tp(r)
STR

⊗e M̃
qi;Sp

STL
) are respectively mixed strong

gravitational and electric (string) fields of interaction.

Proof. These gravitational and electric (string) fields of interaction (M̃
(Bar);Tp(r)
STR

⊗ M̃
qi;Tp

STL
) and

(M̃
(Bar);Tp(r)
STR

⊗e M̃
qi;Sp

STL
) are of strong nature because they contribute to the confinement of the

(bi)semiquarks by their binding to the time core central structure (M̃
(Bar);Tp(r)
STR

⊗ M̃
(Bar);Tp(r)
STL

) of

the bisemibaryon. �

2.16 Proposition

The (string) strong fields of interaction inside a perturbed bisemibaryon can con-

dense into massive mesons.

Proof. • These mixed (string) strong fields at the “ ST ” level are (M̃
(Bar);Tp(r)
STR

⊗ M̃
qi;Tp−Sp

STL
)

and (M̃
qj ;Tp−Sp

STR
⊗ M̃

(Bar);Tp(r)
STL

) referring to proposition 2.15 d).

• Assume that the set of exchange right (resp. left) time strings of (M̃
(Bar);Tp(r)
STR

) (resp.

(M̃
(Bar);Tp(r)
STL

) ), composed of right (resp. left) exchanged quanta, generates their corre-

sponding space strings by (γt→r ◦ ER) (resp. (γt→r ◦ EL) ) morphisms (see section 2.11).
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• So, we get a set of “ β ” exchanged right (resp. “ γ ” exchanged left) space-time strings of

(M̃
(Bar);Tp−Sp

STR
) (resp. (M̃

(Bar);Tp−Sp

STL
) ) joining a corresponding set of “ β ” exchanged left

(resp. “ γ ” exchanged right) space-time strings of M̃
qi;Tp−Sp

STR
(resp. M̃

qj ;Tp−Sp

STL
) leading to

the sum of fields:

(M̃
(Bar);Tp−Sp

STR
{β} ⊗ M̃

qi;Tp−Sp

STL
{β}) ⊕ (M̃

qj ;Tp−Sp

STR
{γ} ⊗ M̃

(Bar);Tp−Sp

STL
{γ}) .

• The condensation, i.e. the compactification of the interaction “string” field (M̃
(Bar);Tp−Sp

STR
{β}

⊗ M̃
qi;Tp−Sp

STL
{β}) (resp. (M̃

qj ;Tp−Sp

STR
{γ} ⊗ M̃

(Bar);Tp−Sp

STL
{γ}) ) decomposing into diagonal,

magnetic and electric string fields, has the structure of a bisemiquark qi (resp. qj ) in such

a way that their direct sum qi ⊕ qj , written in condensed form qj qi , is a meson having

the (bisemi) quark structure qj qi at the “ ST ” level of its internal vacuum structure.

This can occur, for example, after the collision of a “high energy” proton with another

proton or in the decay of a heavy baryon into a lighter one and into a meson (i.e. Λ →

p + π− ). �

2.17 Corollary

The generation of mesons from a perturbed bisemibaryon allows the bisemiquarks to have different

quantum states.

Proof. This is evident by construction according to proposition 2.16, preventing three identical

bisemiquarks from violating the Pauli principle. Indeed, the quark composition ( sss ) of the

baryon Ω− led to the introduction of the color in quantum chromodynamics. �

2.18 Middle ground and mass string fields

According to [Pie1] and [Pie4], the time and space string fields of the internal vacuum structure

“ ST ” of a bisemilepton and of a bisemibaryon are submitted to strong fluctuations generating

on their sections degenerate singularities which are able to produce by versal deformations and

blowups of these two new embedded covering string fields at one sheet over the ST

string fields.

Let (M̃
Tp−Sp

STR
⊗ M̃

Tp−Sp

STL
) denote the operator valued space and time string fields of the internal

vacuum “ ST ” of a bisemilepton.

Then, the middle ground and mass string fields (M̃
Tp−Sp

MGR
⊗ M̃

Tp−Sp

MGL
) and (M̃

Tp−Sp

MR
⊗

M̃
Tp−Sp

ML
) are one-sheet covering string fields above (M̃

Tp−Sp

STR
⊗ M̃

Tp−Sp

STL
) and are em-

bedded according to:

(M̃
Tp−Sp

STR
⊗ M̃

Tp−Sp

STL
) ⊂ (M̃

Tp−Sp

MGR
⊗ M̃

Tp−Sp

MGL
) ⊂ (M̃

Tp−Sp

MR
⊗ M̃

Tp−Sp

ML
) .
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2.19 Proposition

The generation of the mass string field (M̃
Tp−Sp

MR
⊗ M̃

Tp−Sp

ML
) (resp. (M̃

(Bar);Tp−Sp

MR
⊗

M̃
(Bar);Tp−Sp

ML
) ) from the internal vacuum

(M̃
Tp−Sp

STR
⊗ M̃

Tp−Sp

STL
) ⊕ (M̃

Tp−Sp

MGR
⊗ M̃

Tp−Sp

MGL
)

(resp. (M̃
(Bar);Tp−Sp

STR
⊗ M̃

(Bar);Tp−Sp

STL
) ⊕ (M̃

(Bar);Tp−Sp

MGR
⊗ M̃

(Bar);Tp−Sp

MGL
) )

of a bisemilepton (resp. a bisemibaryon) is equivalent to the Higgs mechanism [B-E],

[Hig], responsible for the generation of masses in non-abelian Gauge theories [K-L].

Proof. In fact, the Higgs mechanism corresponds in AQT to the generation of the mass string

field (M̃
Tp

MR
⊗ M̃

Tp

ML
) (resp. (M̃

(Bar);Tp

MR
⊗ M̃

(Bar);Tp−Sp

ML
) ) of “time” type from its corresponding

middle-ground equivalent (M̃
Tp

MGR
⊗M̃

Tp

MGL
) (resp. (M̃

(Bar);Tp

MGR
⊗M̃

(Bar);Tp

MGL
) ) by versal deformation

Vd(2) , and spreading-out isomorphism SOT(2) according to [Pie1]:

SOT(2) ◦ Vd(2) : (M̃
Tp

MGR
⊗ M̃

Tp

MGL
) −−−−→ (M̃

Tp

MR
⊗ M̃

Tp

ML
)

(resp. SOT(2) ◦ Vd(2) : (M̃
(Bar);Tp

MGR
⊗ M̃

(Bar);Tp

MGL
) −−−−→ (M̃

(Bar);Tp

MR
⊗ M̃

(Bar);Tp

ML
) ).

The corresponding mass string field of “space” type is generated from the mass string field of

“time” type by a γM
t→r ◦ E morphism as described in proposition 2.12. �

2.20 Generation of bisemifermions of the 2nd and 3rd families

• It will be seen how elementary bisemifermions of the second and third families can be

generated from elementary bisemifermions of the first family, i.e. e− , u+ and d− .

• Referring to [Pie5], let (AM̃
Tp−Sp

STR−MGR−MR
⊗ AM̃

Tp−Sp

STL−MGL−ML
) denote the internal “ ST ”,

“ MG ” and “ M ” string fields of an elementary bisemifermion “ A ” of the first family.

Under some external strong field, all the bisections of the internal string fields

“ ST ”, “ MG ” and “ M ” of this bisemifermion “ A ” are assumed to be endowed with

singularities of corank 1 and multiplicity < 3 in such a way that the versal

deformation Vd(B) and spreading-out morphisms SOT(B) of these generate

covering string fields “ ST ”, “ MG ” and “ M ” at multiple sheets above the

original string fields of the bisemifermion A according to:

SOT(B) ◦ Vd(B) : (AM̃
Tp−Sp

STR−MGR−MR
⊗ AM̃

Tp−Sp

STL−MGL−ML
)

−−−−→ (AM̃
Tp−Sp

STR−MGR−MR
⊗ AM̃

Tp−Sp

STL−MGL−ML
)

⊕ (A
′

M̃
Tp−Sp

STR−MGR−MR
⊗A′

M̃
Tp−Sp

STL−MGL−ML
)
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in such a way that

(BM̃
Tp−Sp

STR−MGR−MR
⊗ BM̃

Tp−Sp

STL−MGL−ML
)

= (AM̃
Tp−Sp

STR−MGR−MR
⊗ AM̃

Tp−Sp

STL−MGL−ML
)

⊕ (A
′

M̃
Tp−Sp

STR−MGR−MR
⊗ A′

M̃
Tp−Sp

STL−MGL−ML
)

where:

– (BM̃
Tp−Sp

STR−MGR−MR
⊗BM̃

Tp−Sp

STL−MGL−ML
) are the string fields “ ST ”, “ MG ” and “ M ”

of a bisemifermion “ B ” of the second family;

– (A
′

M̃
Tp−Sp

STR−MGR−MR
⊗A′

M̃
Tp−Sp

STL−MGL−ML
) are “ ST ”, “ MG ” and “ M ” covering string

fields at multiple sheets.

• If the external field is still stronger, then the bisections of the string fields “ ST ”, “ MG ” and

“ M ” of a bisemifermion A will be endowed with singularities of corank 1 and multiplicity

3 in such a way that two covering string fields “ ST ”, “ MG ” and “ M ” labelled “ A′ ” and

“ A′′ ”, resulting from versal deformations Vd(C) and spreading-out morphisms SOT(C) ,

are generated above the original string fields of the bisemifermion “ A ” according to:

SOT(C) ◦ Vd(C) : (AM̃
Tp−Sp

STR−MGR−MR
⊗ AM̃

Tp−Sp

STL−MGL−ML
)

−−−−→ (CM̃
Tp−Sp

STR−MGR−MR
⊗ CM̃

Tp−Sp

STL−MGL−ML
)

where

(CM̃
Tp−Sp

STR−MGR−MR
⊗ CM̃

Tp−Sp

STL−MGL−ML
)

= (AM̃
Tp−Sp

STR−MGR−MR
⊗ AM̃

Tp−Sp

STL−MGL−ML
)

⊕ (A
′

M̃
Tp−Sp

STR−MGR−MR
⊗ A′

M̃
Tp−Sp

STL−MGL−ML
)

⊕ (A
′′

M̃
Tp−Sp

STR−MGR−MR
⊗ A′′

M̃
Tp−Sp

STL−MGL−ML
)

are the internal “ ST ”, “ MG ” and “ M ” string fields of a bisemifermion “ C ” of the third

family.
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3 (Strong) GEM bilinear interactions between bisemistructures

of bisemiparticles

3.1 Internal structure and classification of bisemiparticles

The classification of bisemiparticles is based on the two first following lemmas.

3.1.1 Lemma (Bosonic fields)

a) The internal structure of bisemifermions is given by “diagonal” bosonic string

fields (M̃R ⊗(D) M̃L) at the “ ST ”, “ MG ” or “ M ” level. Each “diagonal” bosonic

string field is composed of a family of bound “time” bisemibosons or “space” bisemibosons

(i.e. “bound” (bisemi)photons) fitted in bistrings characterized by an increasing number of

biquanta.

These bisemibosons becoming free (or “unbound”) are then viewed as free energy at the

considered level(s).

b) The other simple bosonic fields are magnetic, electric and gravitational fields

of interaction at the “ ST ”, “ MG ” and “ M ” levels.

c) The composite bosonic fields are massive mesons responsible for the bilinear strong

interaction.

Proof. This lemma results from the developments of chapter 2. Let us only notice that:

• A bisemiphoton at the “ ST ”, “ MG ” or “ M ” level is a “space” bistring of the bosonic

string field (M̃
Sp

R ⊗(D) M̃
Sp

L ) at the condition that this bistring becomes free under some

endomorphisms as developed in [Pie1].

It is then able to play a part in a biconnection.

• A magnetic simple bosonic (string) field results from the exchange of magnetic quanta

between left (resp. right) (space) strings of a left (resp. right) semifield and right (resp.

left) (space) strings of a right (resp. left) semifield, as developed in [Pie5].

A set of bound magnetic biquanta is a magnetic bisemiboson.

• An electric simple bosonic (string) field results from the exchange of electric quanta

between left (resp. right) “time” (resp. “space”) strings of a left (resp. right) “time” (resp.

“space”) semifield and right (resp. left) “space” (resp. “time”) strings of a right (resp. left)

“space” (resp. “time”) semifield.

• A gravitational simple bosonic (string) field results from the “diagonal” exchange

of gravitational quanta between left (resp. right) “space” or “time” strings of a left (resp.
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right) semifield and right (resp. left) “space” or “time” strings of a right (resp. left)

semifield of different semiparticles [Pie1]. �

3.1.2 Lemma (Fermionic fields)

a) The simple bisemifermions, i.e. the (bisemi)leptons (and their associated neutrinos)

and the (bisemi)quarks of the three families, are characterized by an internal electric

fields (at the “ ST ”, “ MG ” and “ M ” levels) originating from internal fields of “time”

type (at these levels).

b) The composite bisemifermions, i.e. the (bisemi)baryons, are characterized by a

core central field of “time” type responsible for interaction massive strong string fields

essentially of electric and gravitational nature.

Sketch of proof. The fermionic character then results directly from the existence of “time” string

fields responsible for the generation of internal electric fields between internal left (resp. right)

semifields of “space” (resp. “time”) type and right (resp. left) semifields of “time” (resp. “space”)

type. These interacting fields then hold confined all the internal “space” and “time” fields of a

bisemifermion. �

3.1.3 Lemma (Quantum statistics)

• The bisemifermions obey the Fermi-Dirac statistics.

• The bisemibosons obey the Bose-Einstein statistics.

Proof. • As the simple bisemifermions are held confined by means of internal electric fields

responsible for their charges, they cannot congregate together at a same quantum state as

it can be the case for simple “diagonal”, gravitational, magnetic and electric bisemibosons

according to lemma 3.1.

• What is true for simple bisemifermions is evident for composite bisemifermions, i.e. bisemi-

baryons. On the other hand, the strong bisemibosons at the basis of the mixed interacting

strong fields generating mesons can congregate together as developed in proposition 2.15

and thus obey the Bose-Einstein statistics. �
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3.1.4 Internal structure of simple massive bisemifermions

The simple massive bisemifermions, i.e. the three leptons e− , µ− , τ− (and their neutri-

nos) and the six quarks u+ , d− , s− , c+ , b− , t+ , are characterized by the bisemistructure

(M̃
Tp−Sp

STR−MGR−MR
⊗ M̃

Tp−Sp

STL−MGL−ML
) which decomposes according to the following string fields:

(M̃
Tp−Sp

STR−MGR−MR
⊗ M̃

Tp−Sp

STL−MGL−ML
)

≡ (M̃
Tp−Sp

STR
⊕ M̃

Tp−Sp

MGR
⊕ M̃

Tp−Sp

MR
) ⊗ (M̃

Tp−Sp

STL
⊕ M̃

Tp−Sp

MGL
⊕ M̃

Tp−Sp

ML
)

= (M̃
Tp−Sp

STR
⊗ M̃

Tp−Sp

STL
) ⊕ (M̃

Tp−Sp

MGR
⊗ M̃

Tp−Sp

MGL
) ⊕ (M̃

Tp−Sp

MR
⊗ M̃

Tp−Sp

ML
)

⊕ (M̃
Tp−Sp

STR
⊗ M̃

Tp−Sp

MGL
) ⊕ (M̃

Tp−Sp

MGR
⊗ M̃

Tp−Sp

STL
)

⊕ (M̃
Tp−Sp

STR
⊗ M̃

Tp−Sp

ML
) ⊕ (M̃

Tp−Sp

STL
⊗ M̃

Tp−Sp

MR
)

⊕ (M̃
Tp−Sp

MGR
⊗ M̃

Tp−Sp

ML
) ⊕ (M̃

Tp−Sp

MR
⊗ M̃

Tp−Sp

MGL
)

in such a way that:

• there is the following embedding

(M̃
Tp−Sp

STR
⊗ M̃

Tp−Sp

STL
) ⊂ (M̃

Tp−Sp

MGR
⊗ M̃

Tp−Sp

MGL
) ⊂ (M̃

Tp−Sp

MR
⊗ M̃

Tp−Sp

ML
)

between the space-time, middle ground and mass string fields, each one decom-

posing into a diagonal, a magnetic and an electric field according to proposition 2.14.

• the six other fields

(M̃
Tp−Sp

STR
⊗ M̃

Tp−Sp

MGL
) . . . (M̃

Tp−Sp

MR
⊗ M̃

Tp−Sp

MGL
)

are interactions fields between different right and left semifields “ ST ”, “ MG ”

and “ M ”.

They decompose into diagonal, magnetic and electric subfields responsible for the interactions

between the three internal embedded shells. In fact, only the magnetic and electric subfields

between different right and left semifields “ ST ”, “ MG ” and “ M ” are relevant since they are

responsible for the exchange of biquanta between two different shells and thus generate forces

between the right and left semishells “ ST ” and“ MG ”, “ ST ” and“ M ” and “ MG ” and“ M ”

as it will be seen in the following.

3.1.5 Internal structure of composite massive bisemifermions

A composite massive bisemifermion, i.e. a baryon, is characterized by the bisemistructure

(M̃
(Bar);Tp−Sp

STR−MGR−MR
⊗ M̃

(Bar);Tp−Sp

STL−MGL−ML
) which decomposes according to the following internal string

fields:
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(M̃
(Bar);Tp−Sp

STR−MGR−MR
⊗ M̃

(Bar);Tp−Sp

STL−MGL−ML
)

= (M̃
(Bar);Tp−Sp

STR
⊕ M̃

(Bar);Tp−Sp

MGR
⊕ M̃

(Bar);Tp−Sp

MR
)

⊗ (M̃
(Bar);Tp−Sp

STL
⊕ M̃

(Bar);Tp−Sp

MGL
⊕ M̃

(Bar);Tp−Sp

ML
)

= (M̃
(Bar);Tp−Sp

STR
⊗ M̃

(Bar);Tp−Sp

STL
) ⊕ (M̃

(Bar);Tp−Sp

MGR
⊗ M̃

(Bar);Tp−Sp

MGL
)

⊕ (M̃
(Bar);Tp−Sp

MR
⊗ M̃

(Bar);Tp−Sp

ML
) ⊕ (M̃

(Bar);Tp−Sp

STR
⊗ M̃

(Bar);Tp−Sp

MGL
)

⊕ (M̃
(Bar);Tp−Sp

MGR
⊗ M̃

(Bar);Tp−Sp

STL
) ⊕ (M̃

(Bar);Tp−Sp

STR
⊗ M̃

(Bar);Tp−Sp

ML
)

⊕ (M̃
(Bar);Tp−Sp

MR
⊗ M̃

(Bar);Tp−Sp

STL
) ⊕ (M̃

(Bar);Tp−Sp

MGR
⊗ M̃

(Bar);Tp−Sp

ML
)

⊕ (M̃
(Bar);Tp−Sp

MR
⊗ M̃

(Bar);Tp−Sp

MGL
)

in such a way that:

• there is still the embedding

(M̃
(Bar);Tp−Sp

STR
⊗ M̃

(Bar);Tp−Sp

STL
)

⊂ (M̃
(Bar);Tp−Sp

MGR
⊗ M̃

(Bar);Tp−Sp

MGL
) ⊂ (M̃

(Bar);Tp−Sp

MR
⊗ M̃

(Bar);Tp−Sp

ML
)

between the “ ST ”, “ MG ” and “ M ” string fields, each one decomposing into:

a) a core central time string field;

b) the diagonal, magnetic and electric string fields of the three bisemiquarks;

c) gravitational, magnetic and electric (string) fields of interaction between

different right and left semiquarks;

d) strong gravitational and electric (string) fields of interaction between the right

(resp. left) core central time string semifield and the left (resp. right) space-time

semifields of the three semiquarks;

as it was developed in proposition 2.15 for the “ ST ” shell.

• The six other “string” fields (M̃
(Bar);Tp−Sp

STR
⊗M̃

(Bar);Tp−Sp

MGL
) . . . (M̃

(Bar);Tp−Sp

MR
⊗M̃

(Bar);Tp−Sp

MGL
)

are interaction (string) fields between different right and left semifields “ ST ”,

“ MG ” and “ M ”. Each one, for example (M̃
(Bar);Tp−Sp

STR
⊗ M̃

(Bar);Tp−Sp

MGL
) , decomposes

into:
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a) an interaction (string field) (M̃
(Bar);Tp

STR
⊗ M̃

(Bar);Tp

MGL
) between the right “ ST ” core

central time string semifield and the left “ MG ” core central time string semifield

given by the exchange of mixed “ ST ”-“ MG ” time quanta;

b) interaction (string) fields (M̃
qi;Tp−Sp

STR
⊗ M̃

qj ;Tp−Sp

MGL
) , i = j and i 6= j , between right

“ ST ” semifields of right semiquarks and left “ MG ” semifields of left semiquarks.

They are:

1) diagonal (case i = j ) or gravitational (case i 6= j ) space and time interaction

(string) fields;

2) magnetic interaction (string) fields;

3) electric interaction (string) fields.

c) – mixed strong gravitational (string) fields of time type (M̃
(Bar);Tp

STR
⊗M̃

qi;Tp

MGL
) between

the right “ ST ” core central time string semifield and the left “ MG ” semifield

of time type of the left semiquarks;

– mixed strong electric (string) fields (M̃
(Bar);Tp

STR
⊗eM̃

qi;Sp

MGL
) between the right “ ST ”

core central time string semifield and the left “ MG ” semifields of space type of

the left semiquarks.

3.1.6 Internal structure of neutrinos

Assume that a simple massive bisemilepton e− , µ− or τ− is submitted to the inverse deforma-

tion morphism:

D
[M ]→[M→0]
R×L : (M̃

Tp−Sp

STR−MGR−MR
⊗ M̃

Tp−Sp

STL−MGL−ML
)

−−−−→ (M̃
Tp−Sp

STR−MGR−(MR→0)
⊗ M̃

Tp−Sp

STL−MGL−(ML→0)
)

where D
[M ]→[M→0]
R×L is the morphism considered in proposition 2.6 responsible for the blow-up

of the mass shell in such a way that almost all the mass biquanta become free. This morphism

D
[M ]→[M→0]
R×L is mathematically a (bi)endomorphism based on Galois (bi)antiautomorphisms. It

transforms the bisemilepton e− , µ− or τ− into its corresponding neutrino νe− , νµ− or ντ− .

This transformation occurs especially in e+ + e− → νe+ + νe− , i.e. when a bisemielectron splits

into a right and a left semielectron in such a way that they are no more localized in a same open

ball. The electric charge of the bisemielectron is then caught by the left or right semielectron, the

other semielectron generating its own electric charge by an exchange of electric biquanta between

right and left shells of time and space type.

In brief, a (bisemi)neutrino has the same internal structure as the corresponding (bisemi)lepton

except that its mass shell tends to zero.
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3.1.7 Possible structure of the dark energy

In this perspective, if the simple and composite bisemifermions are only endowed with

their “ ST ” internal (vacuum) structure as considered in propositions 2.14 and 2.15, they

could correspond to the dark energy since they are unobservable. They constitute then

a huge reservoir of energy since they are all able to generate their mass shells becoming then

observable.

3.2 Bilinear interactions between bisemiparticles

3.2.1 Proposition (Structure fields of J interacting bisemiparticles)

Let (M̃
Tp−Sp

STR−MGR−MR
⊗ M̃

Tp−Sp

STL−MGL−ML
) denote the “ ST ”, “ MG ” and “ M ” bisemistructures

of a massive bisemiparticle (essentially a bisermifermion).

Then, the (operator valued) string fields “ ST ”, “ MG ” and “ M ” of a set of “ J ” interacting

bisemiparticles are given by:

(M̃
Tp−Sp

STR−MGR−MR
(J) ⊗ M̃

Tp−Sp

STL−MGL−ML
(J))

=
J
⊕
i=1

(M̃
Tp−Sp

STR−MGR−MR
(i) ⊗ M̃

Tp−Sp

STL−MGL−ML
(i))

J
⊕

i6=j=1
(M̃

Tp−Sp

STR−MGR−MR
(i) ⊗ M̃

Tp−Sp

STL−MGL−ML
(j))

where:

a) the direct sum
J
⊕

i=1
(�(i) ⊗ �(i)) refers to the sum of the structure fields “ ST ”,

“ MG ” and “ M ” of a set of “J ” noninteracting (i.e. free) bisemiparticles;

b) the mixed sum
J
⊕

i6=j=1
(�(i) ⊗ �(j)) refers to the sum of the bilinear interaction

fields “ ST ”, “ MG ” and “ M ” between right and left semiparticles belonging

to different bisemiparticles.

Proof. 1) The operator valued string fields (M̃
Tp−Sp

STR−MGR−MR
⊗ M̃

Tp−Sp

STL−MGL−ML
) are bisem-

isheaves of differentiable bifunctions on algebraic bilinear semigroups GL2(Fv × Fv) as

developed in propositions 2.3 and 2.6.

Let for instance (M̃
Tp

STR
⊗M̃

Tp

STL
) be the time bisemisheaf of one bisemiparticle at the “ ST ”

level: it will then be rewritten according to FRepsp(GL2(Fv × Fv))
T
ST .

2) On the other hand, the time bisemisheaf at the “ ST ” level of a set of “ J ” interact-

ing bisemiparticles is FRepsp(GL2J (Fv × Fv))
T
ST ; it is according to [Pie2] and [Pie3] the

completely reducible non-orthogonal representation space of (GL2J(Fv×Fv))
T
ST

decomposing into:
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FRepsp(GL2J (Fv × Fv))
T
ST

= FRepsp(GL21
(Fv × Fv))

T
ST× . . . ×FRepsp(GL2i

(Fv × Fv))
T
ST

× . . .×FRepsp(GL2J
(Fv × Fv))

T
ST

=

(
J
⊕
i=1

FRepsp(GL2i
(Fv)

T
ST

)
×

(
J
⊕

j=1
FRepsp(GL2j

(Fv)
T
ST

)

=
J
⊕
i=1

FRepsp(GL2i
(Fv × Fv))

T
ST

J
⊕
i6=j

FRepsp(T t
2i

(Fv) × T2j
(Fv))

T
ST

=
J
⊕
i=1

(M̃
Tp

STR
(i) ⊗ M̃

Tp

STL
(i))

J
⊕
i6=j

(M̃
Tp

STR
(i) ⊗ M̃

Tp

STL
(j))

where × is the cross binary product [Pie6] leading to a splitting of FRepsp(GL2J(Fv ×

Fv))
T
ST into J noninteracting fields FRepsp(GL2i

(Fv × Fv))
T
ST of J bisemiparticles and

into (J2 − J) interacting semifields FRepsp(T t
2i

(Fv) × T2j
(Fv))

T
ST of the right and left

semiparticles belonging to different bisemiparticles.

3) This completely reducible nonorthogonal representation space (M̃
Tp

STR
(J) ⊗ M̃

Tp

STL
(J)) of

GL2J (Fv × Fv))
T
ST decomposing into:

(M̃
Tp

STR
(J) ⊗ M̃

Tp

STL
(J)) =

J
⊕
i=1

(M̃
Tp

STR
(i) ⊗ M̃

Tp

STL
(i))

J
⊕

i6=j=1
(M̃

Tp

STR
(i) ⊗ M̃

Tp

STL
(j))

can be naturally extended to the “ ST ”, “ MG ” and “ M ” fields of J interacting

bisemiparticles leading to the thesis. �

3.2.2 Proposition

The (operator valued) string fields of a set of J interacting bisemiparticles are given

explicitly on the “ ST ”, “ MG ” and “ M ” shells by:

(M̃
Tp−Sp

STR−MGR−MR
(J) ⊗ M̃

Tp−Sp

STL−MGL−ML
(J))

= (M̃
Tp−Sp

STR
(J) ⊕ M̃

Tp−Sp

MGR
(J) ⊕ M̃

Tp−Sp

MR
(J)) ⊗ (M̃

Tp−Sp

STL
(J) ⊕ M̃

Tp−Sp

MGL
(J) ⊕ M̃

Tp−Sp

ML
(J))

28



=

{[
J
⊕
i=1

(M̃
Tp−Sp

STR
(i) ⊗ M̃

Tp−Sp

STL
(i))

J
⊕

i=1
(M̃

Tp−Sp

MGR
(i) ⊗ M̃

Tp−Sp

MGL
(i))

J
⊕

i=1
(M̃

Tp−Sp

MR
(i) ⊗ M̃

Tp−Sp

ML
(i))

]

[
J
⊕
i=1

(M̃
Tp−Sp

STR
(i) ⊗ M̃

Tp−Sp

MGL
(i))

J
⊕

i=1
(M̃

Tp−Sp

MGR
(i) ⊗ M̃

Tp−Sp

STL
(i))

J
⊕
i=1

(M̃
Tp−Sp

STR
(i) ⊗ M̃

Tp−Sp

ML
(i))

J
⊕

i=1
(M̃

Tp−Sp

MR
(i) ⊗ M̃

Tp−Sp

STL
(i))

J
⊕
i=1

(M̃
Tp−Sp

MGR
(i) ⊗ M̃

Tp−Sp

ML
(i))

J
⊕

i=1
(M̃

Tp−Sp

MR
(i) ⊗ M̃

Tp−Sp

MGL
(i))

]}

⊕

{[
J
⊕

i6=j=1
(M̃

Tp−Sp

STR
(i) ⊗ M̃

Tp−Sp

STL
(j))

J
⊕

i6=j=1
(M̃

Tp−Sp

MGR
(i) ⊗ M̃

Tp−Sp

MGL
(j))

J
⊕

i6=j=1
(M̃

Tp−Sp

MR
(i) ⊗ M̃

Tp−Sp

ML
(j))

]

[
J
⊕

i6=j=1
(M̃

Tp−Sp

STR
(i) ⊗ M̃

Tp−Sp

MGL
(j))

J
⊕

i6=j=1
(M̃

Tp−Sp

MGR
(i) ⊗ M̃

Tp−Sp

STL
(j))

J
⊕

i6=j=1
(M̃

Tp−Sp

STR
(i) ⊗ M̃

Tp−Sp

ML
(j))

J
⊕

i6=j=1
(M̃

Tp−Sp

MR
(i) ⊗ M̃

Tp−Sp

STL
(j))

J
⊕

i6=j=1
(M̃

Tp−Sp

MGR
(i) ⊗ M̃

Tp−Sp

ML
(j))

J
⊕

i6=j=1
(M̃

Tp−Sp

MR
(i) ⊗ M̃

Tp−Sp

MGL
(j))

]}

where:

a) the direct sum of fields inside the first parenthesis {�} refers to the internal

structure fields “ ST ”, “ MG ” and “ M ” of the J free bisemiparticles as

well as to the interacting electro-magnetic fields between right and left different

shells of these bisemiparticles;

b) the direction sum of interaction fields inside the second parenthesis {�} refers

to the gravito-electro-magnetic fields of interaction between the right and left semi-

fields belonging to the same and different shells of the right and left semiparticles dealing

with different bisemiparticles.

Proof. It then appears that the bilinear fields of interaction between J interacting (bisemi)-

particles are very complex if the interactions between the three different shells “ ST ”, “ MG ”

and “ M ” are taken into account.

More concretely, it appears that:

a) in the first parenthesis {[�]} , there are six types of diagonal, electro-magnetic fields of
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interaction between the different shells of the right and left semiparticles of the free bisemi-

particles, 1 ≤ i ≤ J .

Let us consider for example, the interacting fields (M̃
Tp−Sp

STR
(i) ⊗ M̃

Tp−Sp

MGL
(i)) between the

right “ ST ” shell of the i -th right semiparticle and the left “ MG ” shell of the symmetric

i -th left semiparticle of the envisaged i -th bisemiparticle.

They decompose standardly according to:

(M̃
Tp−Sp

STR
(i) ⊗ M̃

Tp−Sp

MGL
(i))

= (M̃
Tp−Sp

STR
(i)⊗D M̃

Tp−Sp

STL
(i))⊕ (M̃

Sp

STR
(i)⊗m M̃

Sp

MGL
(i))⊕ (M̃

(Tp)−Sp

STR
(i)⊗e M̃

Tp−(Sp)
MGL

(i)) .

b) in the second parenthesis {�} , there are also six types of gravitational, electro-magnetic

fields of interaction between the shells “ ST ”, “ MG ” and “ M ” of the right and left

semiparticles belonging to different bisemiparticles, 1 ≤ i, j ≤ J , i 6= j .

For instance, the gravito-electro-magnetic fields between the right “ ST ” shell of the i -th

right semiparticle and the left “ M ” shell of the j -th left semiparticle are given by:

(M̃
Tp−Sp

STR
(i) ⊗ M̃

Tp−Sp

ML
(j))

= (M̃
Tp−Sp

STR
(i) ⊗D M̃

Tp−Sp

ML
(j)) ⊕ (M̃

Sp

STR
(i) ⊗m M̃

Sp

ML
(j)) ⊕ (M̃

(Tp)−Sp

STR
(i) ⊗e M̃

Tp−(Sp)
ML

(j))

where (M̃
Tp−Sp

STR
(i)⊗DM̃

Tp−Sp

ML
(J)) decomposes into “time” and “space” gravitational fields.

Notice that the electromagnetic fields of interaction between the shells “ M ” of right and

left bisemiparticles belonging to different bisemiparticles corresponds to the exchange of

virtual photons in QFT. �

3.2.3 Proposition

The (operator valued) string fields of a set of J interacting (bisemi)leptons are

given on the “ ST ”, “ MG ” and “ M ” shells by

a) the internal diagonal and electro-magnetic fields of structure between the three

shells of these bisemileptons;

b) the gravito-electro-magnetic fields of interaction between left and right semilep-

tons belonging to different bisemileptons on the same left and right “ ST ”, “ MG ” and

“ M ” shells;

c) the gravito-electro-magnetic fields of interaction between left and right different

(i.e. mixed) shells of left and right semileptons with the hypothesis that these GEM fields

in c) are less important than the (G)EM fields considered in a) and in b).
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Proof. In fact, the string fields of a set of J interacting bisemileptons are exactly those considered

in proposition 3.2.2.

Taking into account the importance of the (G)EM fields of interaction between the same left

and right shells of left and right semileptons, it is reasonable to admit that the GEM fields

of interaction between different left and right shells of left and right semileptons are relatively

negligible. �

3.2.4 Proposition

The (operator valued) string fields of a set of I interacting (bisemi)baryons are

given on the “ ST ”, “ MG ” and “ M ” shells by:

a) the internal string fields of structure between the three shells of these bisemi-

baryons as developed in section 3.1.5;

b) the interaction gravito-electro-magnetic fields between left and right semibaryons

belonging to different bisemibaryons on the same, and different, left and right “ ST ”,

“ MG ” and “ M ” shells.

They decompose into [Pie5]:

1) strong gravitational fields between the three shells of the core central time struc-

tures belonging to different left and right semibaryons;

2) gravito-electro-magnetic fields between the three shells of left and right semi-

quarks belonging to different semibaryons;

3) strong gravitational and electric fields between the three shells of right (resp.

left) core central time structures and left (resp. right) semiquarks belonging to

different semibaryons.

They are responsible for the generation of mesons, as it was developed in [Pie5].

Sketch of proof. The GEM fields of interaction between nonsymmetric left and right semibaryons

differ from the corresponding GEM fields of interaction between nonsymmetric left and right

semileptons by the existence of strong gravitational fields between the left and right shells of core

central time semistructures (case 1)) and strong gravitational and electric fields (case 3)) at the

origin of mesons.

These strong fields of interaction are due to the existence of core central time structures of

semibaryons.

As in the leptonic case, it is reasonable to admit that the GEM fields of interaction between

different left and right shells of left and right semibaryons are relatively negligible. �
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3.2.5 Proposition

The interaction (string) fields between a set of I bisemibaryons and a set of J

bisemileptons are given on the “ ST ”, “ MG ” and “ M ” shells by:

a) gravitational and electric fields between core time structures of right (resp. left)

semibaryons and space-time structures of left (resp. right) semileptons;

b) gravito-electro-magnetic fields between space-time structures of right (resp.

left) semiquarks and space-time structures of left (resp. right) semileptons.

Proof. The (operator values) string fields of a set of J bisemileptons interacting with a set of I

bisemibaryons are given on the set “ ST⊕MG⊕M ” levels (noted “ ST–MG–M ”) according to

proposition 3.2.1 by:

[
J
⊕
i=1

M̃
Tp−Sp

ST−MG−MR
(ℓi)

I
⊕

k=1
M̃

(Bar);Tp−Sp

ST−MG−MR
(bk)

]
⊗

[
J
⊕

j=1
M̃

Tp−Sp

ST−MG−ML
(ℓj)

I
⊕

ℓ=1
M̃

(Bar);Tp−Sp

ST−MG−ML
(bℓ)

]

=
J
⊕

i,j=1
(M̃

Tp−Sp

ST−MG−MR
(ℓi) ⊗ M̃

Tp−Sp

ST−MG−ML
(ℓj))

I
⊕

k,ℓ=1
(M̃

(Bar);Tp−Sp

ST−MG−MR
(bk) ⊗ M̃

(Bar);Tp−Sp

ST−MG−ML
(bℓ))

J
⊕
i=1

I
⊕

ℓ=1
(M̃

Tp−Sp

ST−MG−MR
(ℓi) ⊗ M̃

(Bar);Tp−Sp

ST−MG−ML
(bℓ))

I
⊕

k=1

J
⊕

j=1
(M̃

(Bar);Tp−Sp

ST−MG−MR
(bk) ⊗ M̃

Tp−Sp

ST−MG−ML
(ℓj))

where:

a)
J
⊕

i,j=1
(M̃

Tp−Sp

ST−MG−MR
(ℓi)⊗M̃

Tp−Sp

ST−MG−ML
(ℓj)) refers to the string fields of a set of J interacting

bisemileptons as developed in proposition 3.2.2 and 3.2.3.

b)
I
⊕

k,ℓ=1
(M̃

(Bar);Tp−Sp

ST−MG−MR
(bk)⊗M̃

(Bar);Tp−Sp

ST−MG−ML
(bℓ)) refers to the string fields of a set of I interacting

bisemibaryons as developed in proposition 3.2.4.

c)
J
⊕
i=1

I
⊕

ℓ=1
(M̃

Tp−Sp

ST−MG−MR
(ℓi) ⊗ M̃

(Bar);Tp−Sp

ST−MG−ML
(bℓ)) (and similarly,

I
⊕

k=1

J
⊕

j=1
(M̃

(Bar);Tp−Sp

ST−MG−MR
(bk) ⊗

M̃
Tp−Sp

ST−MG−ML
(ℓj)) ) refers to the interaction fields between a set of J right (resp. left)

semileptons and a set of I left (resp. right) semibaryons.

They decompose according to:
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J
⊕
i=1

I
⊕

ℓ=1
(M̃

Tp−Sp

ST−MG−MR
(ℓi) ⊗ M̃

(Bar);Tp−Sp

ST−MG−ML
(bℓ))

=
J
⊕
i=1

I
⊕

ℓ=1
(M̃

Tp−Sp

ST−MG−MR
(ℓi) ⊗ (M̃

(Bar);Tp(r)
ST−MG−ML

(bℓ)
3
⊕

α=1
M̃

qℓα ;Tp−Sp

ST−MG−ML
(bℓ)))

=
J
⊕
i=1

I
⊕

ℓ=1

[
(M̃

Tp−Sp

ST−MG−MR
(ℓi) ⊗ M̃

(Bar);Tp(r)
ST−MG−ML

(bℓ))

3
⊕

α=1
(M̃

Tp−Sp

ST−MG−MR
(ℓi) ⊗ (M̃

qℓα ;Tp−Sp

ST−MG−ML
(bℓ))

]

where:

1) (M̃
Tp−Sp

ST−MG−MR
(ℓi) ⊗ M̃

(Bar);Tp(r)
ST−MG−ML

(bℓ))

= (M̃
Tp

ST−MG−MR
(ℓi) ⊗D M̃

(Bar);Tp(r)
ST−MG−ML

(bℓ)) ⊕ (M̃
Sp

ST−MG−MR
(ℓi) ⊗e M̃

(Bar);Tp(r)
ST−MG−ML

(bℓ))

decomposes into a (time) gravitational field (M̃
Tp

ST−MG−MR
(ℓi) ⊗D M̃

(Bar);Tp(r)
ST−MG−ML

(bℓ))

which may be strong (see corollary 3.2.6) and into an electric field (M̃
Sp

ST−MG−MR
(ℓi)⊗e

M̃
(Bar);Tp(r)
ST−MG−ML

(bℓ)) which may also be strong;

2)
3
⊕

α=1
(M̃

Tp−Sp

ST−MG−MR
(ℓi) ⊗ M̃

qℓα ;Tp−Sp

ST−MG−ML
(bℓ)) generate mixed gravito-electro-magnetic

fields of interaction between the right semilepton ℓi and the three left semiquarks

qℓα
of the left semibaryon bℓ (see, for instance, proposition 2.15). �

3.2.6 Corollary

In the case of deep inelastic scattering of leptons by baryons, the gravitational and electric fields

between core time structures of semibaryons and space-time structures of semileptons can be at

the origin of the production of (bisemi)hadrons.

Proof. If we consider, for example, the deep inelastic scattering of electrons by protons, then

the gravitational and electric fields between core time structures of semibaryons and space-time

structures of semileptons are strong according to proposition 3.2.5 and they can generate massive

(bisemi)baryons and mesons as it was seen in proposition 2.16 and in [Pie5]. �

The developments of chapters 2 and 3 lead us then to the following.

3.2.7 Main proposition ((Strong) GEM forces)

The four fundamental forces inside and between massive (bisemi)fermions result

from bilinear interactions between right and left semifermions on the three embedded

shells “ ST ”, “ MG ” and “ M ”.
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They are essentially gravito-electro-magnetic forces on the set of these three embed-

ded shells.

They can be classified according to:

1) electromagnetic forces inside elementary (i.e. simple) bisemifermions. They are mediated

by massless EM bisemibosons;

2) gravito-electro-magnetic forces inside composite bisemifermions, i.e. bisemibaryons. They

are mediated by the massless GEM bisemibosons;

3) strong gravitational and electric forces inside (perturbed) bisemibaryons. They are mediated

by massive bisemibosons, or mesons;

4) gravito-electro-magnetic forces between interacting bisemifermions. They are mediated by

massless GEM bisemibosons;

5) strong gravitational and electric forces between interacting perturbed bisemibaryons. They

are at the origin of the classical strong and weak forces and are mediated by mesons, i.e.

massive bisemibosons.

Proof. The classification of forces inside and between (massive) bisemifermions are essentially

gravito-electro-magnetic forces as it was seen in chapter 3. More specifically, we have that:

1) Inside an elementary (massive) bisemifermion, i.e. a bisemilepton or a bisemiquark, there

are, on each “ ST ”, “ MG ” and “ M ” shell, an internal magnetic field and an internal

electric field responsible for the electric charge as developed in lemma 3.1.1, in proposition

2.14 and in section 3.1.4;

2) Inside a massive bisemibaryon, there are, on each “ ST ”, “ MG ” and “ M ” shell:

a) magnetic and electric fields inside the three bisemiquarks;

b) gravitational, magnetic and electric fields of interaction between different right and

left semiquarks;

c) strong gravitational and electric fields of interaction between the right (resp. left)

core central time semifield and the left (resp. right) space-time semifields of the three

semiquarks;

as shown in section 3.1.5 and in proposition 2.15;

3) These strong gravitational and electric fields of 2)c) inside a perturbed bisemibaryon can

be at the origin of the generation of massive mesons as developed in proposition 2.16;
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4) A set of massive bisemileptons interacts by means of gravito-electro-magnetic fields medi-

ated by massless GEM bisemibosons on the three embedded shells “ ST ”, “ MG ” and

“ M ” as proved in proposition 3.2.3;

5) A set of massive (perturbed) bisemibaryons interacts on three shells “ ST ”, “ MG ” and

“ M ” by means of:

a) strong gravitational fields between left and right core central time structures of different

bisemibaryons;

b) gravito-electro-magnetic fields between left and right semiquarks belonging to different

bisemibaryons;

c) strong gravitational and electric fields between right (resp. left) core central time

structures and left (resp. right) semiquarks belonging to different bisemibaryons.

They can be at the origin of the generation of massive mesons.

This results from proposition 3.2.4. �

3.2.8 Proposition (Mixed fundamental forces)

Besides the four fundamental forces on the products, right by left, STR×STL , MGR×MGL and

MR × ML of the space-time, middle ground and mass shells, there exist mixed fundamental

forces, which are (strong) gravito-electro-magnetic forces, between:

a) the space-time and middle ground levels;

b) the space-time and mass levels;

c) the middle ground and mass levels.

These mixed fundamental forces between different left and right shells are supposed to be

small with respect to the fundamental forces between same left and right shells.

Proof. Referring to section 3.1.4 describing the internal structure of a simple massive bisemi-

fermion, we see that there exist six mixed fields, which are electro-magnetic fields, between

different left and right ST , MG and M shells.

Generalizing this fact to the internal structure of a bisemibaryon and to sets of interacting

bisemileptons and bisemibaryons, we see easily that all the four fundamental forces considered in

proposition 3.2.7 between the same right and left shells can be transposed to different right and

left shells ST , MG and M .

So, these four mixed fundamental forces are (strong) gravito-electro-magnetic forces which are

supposed to be small with respect to the fundamental forces on the same shells due to an effect

of congestion of exchanged biquanta and to the different natures (and rotational velocities) of

these shells. �
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3.2.9 The weak decays

• The decays considered until now in this paper are nonleptonic decays giving rise to

the production of massive mesons from strong gravitational and electric fields

inside (or between) bisemibaryons (see, for instance, proposition 2.16, section3.1.5 (and

proposition 3.2.4)).

• The leptonic decays of the form

A → B + ℓ + νℓ =⇒ qi → qi′ + ℓ + νℓ , qi ∈ A , qi′ ∈ B ,

of a bisemibaryon A results from the diagonal emission of a bisemilepton ℓ by a bisemi-

quark qi of A throughout a biendomorphism of qi transforming it into a lighter bisemi-

quark qi′ of a bisemibaryons B in such a way that a bisemineutrino νℓ is emitted to take

into account the bilinear interaction between the bisemiquark qi′ and the bisemilepton ℓ .

This was developed in proposition 5.4.2 of [Pie1] and will be succinctly recalled in the following

proposition.

3.2.10 Proposition (Leptonic decays)

The emission of a bisemineutrino in a leptonic decay results from the condensa-

tion of the GEM field of interaction between the bisemiquark qi′ of the generated

bisemibaryon B and the emitted massive bisemilepton ℓ .

Proof. Let A → B + ℓ + νℓ such that qi → qi′ + ℓ + νℓ be the leptonic decay envisaged in

section 3.2.9.

Let (M̃
qi;Tp−Sp

ST−MG−MR
⊗ M̃

qi;Tp−Sp

ST−MG−ML
) be the ST , MG and M shells of the bisemiquark qi ∈ A .

Let (ED
R ⊗D ED

L ) be the diagonal smooth biendomorphism applied to the diagonal structures of

the bisemiquak qi :

(ED
R ⊗D ED

L ) : (M̃
qi;Tp−Sp

ST−MG−MR
⊗D M̃

qi;Tp−Sp

ST−MG−ML
)

−−−−→ (M̃
qi′ ;Tp−Sp

ST−MG−MR
⊗ M̃

qi′ ;Tp−Sp

ST−MG−ML
) ⊕ (M̃

ℓ;Tp−Sp

ST−MG−MR
⊗ M̃

ℓ;Tp−Sp

ST−MG−ML
)

⊕
[
(M̃

qi′ ;Tp−Sp

ST−MG−MR
⊗ M̃

ℓ;Tp−Sp

ST−MG−ML
) + (M̃

ℓ;Tp−Sp

ST−MG−MR
⊗ M̃

qi′ ;Tp−Sp

ST−MG−ML
)
]

in such a way that:

(M̃
qi;Tp−Sp

ST−MG−MR
⊗ M̃

qi;Tp−Sp

ST−MG−ML
)

=
(
(M̃

qi′ ;Tp−Sp

ST−MG−MR
⊕ M̃

ℓ;Tp−Sp

ST−MG−MR
) ⊗ (M̃

qi′ ;Tp−Sp

ST−MG−MR
⊕ M̃

ℓ;Tp−Sp

ST−MG−ML
)
)

where:
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a) (M̃
qi′ ;Tp−Sp

ST−MG−MR
⊗ M̃

qi′ ;Tp−Sp

ST−MG−ML
) are the ST , MG and M shells of the lighter bisemiquark

qi′ ;

b) (M̃
ℓ;Tp−Sp

ST−MG−MR
⊗ M̃

ℓ;Tp−Sp

ST−MG−ML
) are the ST , MG and M shells of the emitted bisemilepton

whose shell structures are the difference between the qi and qi′ bisemiquark shell structures

in the sense of proposition 5.4.2 of [Pie1];

c) (M̃
qi′ ;Tp−Sp

ST−MG−MR
⊗ M̃

ℓ;Tp−Sp

ST−MG−ML
) ⊕ (M̃

ℓ;Tp−Sp

ST−MG−MR
⊗ M̃

qi′ ;Tp−Sp

ST−MG−ML
) can be decomposed into

gravito-electro-magnetic fields of interaction between the three shells of the bisemiquarks

qi′ and the bisemilepton ℓ and are able to condense into the sum νℓ = µℓ + µqi′
of two

light bisemileptons µℓ and µqi′
.

This new light bisemilepton of interaction νℓ is interpreted as the neutrino of the bisemilep-

ton ℓ . �

3.2.11 Emitted mesons and neutrinos

Remark that the emitted mesons in the strong weak decays result from the condensation

of strong gravitational and electric fields according to proposition 2.16, section 3.1.5 and

proposition 3.2.4 while the emitted (bisemi)neutrinos in the (leptonic) weak decays result

from the condensation of gravito-electro-magnetic fields of interaction which are not

strong since the core central time structures are assumed not to be involved in this last case.
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