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Abstract

We consider the logarithmic minimal models LM(1, p) as ‘rational’ logarithmic conformal field theories
with extended W symmetry. To make contact with the extended picture starting from the lattice,
we identify 4p − 2 boundary conditions as specific limits of integrable boundary conditions of the
underlying Yang-Baxter integrable lattice models. Specifically, we identify 2p integrable boundary
conditions to match the 2p known irreducible W-representations. These 2p extended representations
naturally decompose into infinite sums of the irreducible Virasoro representations (r, s). A further
2p − 2 reducible yet indecomposable W-representations of rank 2 are generated by fusion and these
decompose as infinite sums of indecomposable rank-2 Virasoro representations. The fusion rules in the
extended picture are deduced from the known fusion rules for the Virasoro representations of LM(1, p)
and are found to be in agreement with previous works. The closure of the fusion algebra on a finite
number of representations in the extended picture is remarkable confirmation of the consistency of the
lattice approach.

1 Introduction

Logarithmic conformal field theories [1, 2] are vital in studying the critical behaviour of polymers,
percolation and other non-local processes, such as the Abelian sandpile model, that possess a countably
infinite number of scaling fields [3, 4, 5, 6, 7, 8, 9, 10]. The properties of logarithmic theories, however,
are very different to the familiar properties of rational conformal field theories. Logarithmic theories
are neither rational in the strict sense nor unitary and typically exhibit logarithmic branch cuts in
correlation functions. But perhaps the most characteristic property is that they admit reducible yet
indecomposable representations of the underlying conformal algebra (Virasoro or one of its extensions).
Some useful reviews on logarithmic conformal field theory can be found in [11, 12, 13].

The most studied logarithmic theories to date have central charges

c = cp,p′ = 1− 6
(p− p′)2

pp′
, p, p′ ∈ N coprime (1.1)

These theories are often referred to as augmented cp,p′ minimal models within the algebraic approach
to logarithmic theories. This algebraic approach has proved to be very powerful and has produced a
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substantial body of results [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. However, it is convenient for
us to work here in a lattice approach and consider the logarithmic minimal models LM(p, p′) [26]. The
logarithmic minimal models have precisely the central charges (1.1) and are defined in an unambiguous
and physically consistent manner through the continuum scaling limit of Yang-Baxter integrable models
on the square lattice. There is now accumulating evidence from conformal data, the structure of
indecomposable representations and fusion rules [27, 28, 29] to indicate that the logarithmic minimal
models LM(p, p′) actually coincide with the augmented cp,p′ minimal models.

A very interesting open question concerns the existence of some form of extended conformal
symmetry in these logarithmic theories. From the algebraic approach, it is known [14, 15, 17] that
the augmented c1,p minimal models indeed possess an extended W-algebra symmetry. In the W-
extended picture, the countably infinite Virasoro representations are reorganized into a finite number
of W-representations which close among themselves under fusion.

In this paper, we consider the logarithmic minimal models LM(1, p). The first member LM(1, 2)
of this series, with central charge c = −2, is critical dense polymers [30] in the Virasoro picture
but symplectic fermions [18] in the W-extended picture. Our central result is to demonstrate the
compatibility of the Virasoro and W-extended pictures of the LM(1, p) models within the lattice
approach. This is achieved by identifying the integrable boundary conditions corresponding to the
W-extended representations and using the known Virasoro fusion rules to establish the W-extended
fusion rules. In the process, we also establish that the logarithmic minimal models provide lattice
realizations of symplectic fermions and other logarithmic theories with extended conformal symmetry.

The layout of this paper is as follows. In Section 2, we recall properties of the various Virasoro
representations (Kac, irreducible, indecomposable), their characters, their corresponding integrable
boundary conditions and their associated fusion rules. In Section 3, we recall the properties of the
W-representations (irreducible, indecomposable) and their extended characters. We use fusion of ir-
reducible Virasoro representations to construct 2p integrable boundary conditions as solutions to the
boundary Yang-Baxter equation and identify these with the irreducible W-representations. These
2p extended representations naturally decompose into infinite sums of the irreducible Virasoro rep-
resentations (r, s). Fusion of the irreducible W-representations produces a further 2p − 2 reducible
yet indecomposable W-representations of rank 2 which decompose as infinite sums of indecomposable
rank-2 Virasoro representations. This yields a total of 4p−2 representations in theW-extended picture.
Finally, we use the known Virasoro fusion rules to deduce the fusion rules of the W-representations
and find that they are in agreement with previous works. Explicit Cayley tables for LM(1, 2) and
LM(1, 3) are given in Figure 4. Throughout, we use the notation Zn,m = Z∩ [n,m], with n,m ∈ Z, to
denote the set of integers from n to m, both included.

2 Logarithmic Minimal Model LM(1, p): Virasoro Picture

For a given integer p > 1, the logarithmic minimal model LM(1, p) is defined [26] as a Yang-Baxter
integrable model on the square lattice. The face operators are defined in the planar Temperley-Lieb
algebra [31] by

X(u) = u =
sin(λ− u)

sin λ
+

sinu

sin λ
(2.1)

where u is the spectral parameter and λ = (p−1)π
p is the crossing parameter. The relations in the

diagrammatic algebra ensure that, in addition to the face Boltzmann weights, each closed loop is
weighted by the nonlocal loop fugacity β = 2cos λ. A typical configuration is shown in Figure 1.

In the continuum scaling limit, the LM(1, p) model is described by a logarithmic CFT with central
charge

c = 1− 6
(p− 1)2

p
= −2,−7,−

25

2
,−

91

5
,−24, . . . p = 2, 3, 4, 5, 6, . . . (2.2)
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Figure 1: Typical configuration of a logarithmic minimal model. For the LM(1, 2) model, β = 0 and
closed loops are thus forbidden. Since the nonlocal degrees of freedom are connectivities, the transfer
matrices act on link states which keep track of the planar connectivities. Here the (r, s) = (1, 3)
boundary condition is applied so that there are s− 1 = 2 defects propagating in the bulk.

and Virasoro conformal weights

∆r,s =
(rp− s)2 − (p− 1)2

4p
, r, s ∈ N (2.3)

The Kac tables of the first two members of this sequence are shown in Figure 2. The LM(1, 2) model
is critical dense polymers [30] in the Virasoro picture but symplectic fermions [18] in the W-extended
picture.

2.1 Kac Representations

Extending ideas originating with Cardy [32, 33], the fusion of representations of the conformal algebra
can be implemented on the lattice by combining integrable boundary conditions associated with these
representations on the left and right edges of a strip. On the strip, there is a simple correspondence
between integrable boundary conditions, conformal boundary conditions and representations of the
chiral algebra. If the chiral algebra is the Virasoro algebra, they are each labelled by the Kac labels
(r, s) with r, s ∈ N. The integrable boundary conditions are determined by finding solutions to the
boundary Yang-Baxter equations (BYBE). As in the rational case [34], these solutions are constructed
by fusing integrable seams to the boundary as shown in Figure 3. Schematically,

(r, s) = (r, 1) ⊗ (1, s)⊗ (1, 1), r, s ∈ N (2.4)

The details of the construction need not concern us here but, for each r, there is at least one choice for
the number of columns ρ− 1 and the integers k0 in the column inhomogeneities ξk = (k + k0 + 1

2)λ to
yield the required (r, s) integrable boundary.

Although there is a countably infinite number of integrable boundary conditions and corresponding
Kac representations (r, s), there is no claim that this classification is complete as it is in the rational
cases. Indeed, further integrable boundary conditions and corresponding representations can be found
by applying additional fusions in (2.4). We will exploit this freedom later to construct new boundary
conditions associated to the W-extended picture.

For the LM(1, p) models, the conformal character of the Kac representation (r, s) is given by

χr,s(q) =
q

1−c

24
+∆r,s

η(q)

(
1− qrs

)
=

1

η(q)

(
q(rp−s)2/4p − q(rp+s)2/4p

)
(2.5)
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Figure 2: Extended Kac table of conformal weights ∆r,s for LM(1, 2) and LM(1, 3) with c = −2,−7
respectively. In general, the entries relate to distinct Kac representations (r, s) even if the conformal
weights coincide. The periodicity ∆r,s = ∆r+1,s+p is made manifest by the shading of the rows.
The Kac representations which also happen to be irreducible representations are marked with a red
shaded quadrant in the top-right corner. Pairs of irreducible representations are identified according
to (r, 2) ≡ (1, 2r) and (r, 3) ≡ (1, 3r). The heavy frames in the lower-left corners delimit the Kac tables
in the W-extended picture.

=

=(r,s) (r,1) ⊗

✁
✁
✁✁

❆
❆
❆❆ �

�

� �

� �

u−ξρ−1 u−ξρ−2 u−ξ1

−u−ξρ−2 −u−ξρ−3 −u−ξ0

u

(1,s) (1,1)⊗

✁
✁
✁✁

❆
❆
❆❆�

�

� �

� �

. . .

. . .

︸ ︷︷ ︸

ρ− 1 columns
︸ ︷︷ ︸

s− 1 columns

Figure 3: Construction of the integrable boundary condition corresponding to the Kac representation
(r, s). The (r, s) solution to the BYBE is built by fusing integrable (r, 1) and (1, s) seams to the (1, 1)
or vacuum boundary. The column inhomogeneities are ξk = (k + k0 + 1

2)λ. There is at least one choice
of the integers ρ and k0 for each r. The ρ + s − 2 columns are considered part of the right boundary.
The arches at the top close to the left with up to ρ+ s−2 defects propagating in the bulk. Some of the
s-arches can close with some of the r-arches. Left boundary solutions (r′, s′) are constructed similarly.
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where the Dedekind eta function is defined by

η(q) = q1/24
∞∏

m=1

(1− qm) (2.6)

A priori, a Kac representation is either irreducible or reducible. The only Kac representations to be
used here are the irreducible Kac representations

{(1, kp), (r, s); s ∈ Z1,p; r, k ∈ N} (2.7)

Since their characters all correspond to irreducible Virasoro characters, these Kac representations
must indeed themselves be irreducible. The set (2.7) constitutes an exhaustive list of irreducible Kac
representations. Two Kac representations are naturally identified if they have identical conformal
weights and are both irreducible. For the LM(1, p) models, the relations

(1, kp) ≡ (k, p), k ∈ N (2.8)

are the only such identifications.

2.2 Indecomposable Representations of Rank 2

Indecomposable representations of rank 2 or 3 arise from certain fusions of Kac representations in

LM(p, p′) and are generally denoted Ra,a′

r,s . In the case of LM(1, p), there are no rank-3 representations
and the rank-2 representations are here given by the shorthand notation

Ra
r ≡ R

0,a
1,rp ≡ R

0,a
r,p , r ∈ N; a ∈ Z1,p−1 (2.9)

Their characters read

χ[Ra
r ](q) = χr,p−a(q)+χr,p+a(q) = χ1,rp−a(q)+χ1,rp+a(q) = χr−1,a(q)+2χr,p−a(q)+χr+1,a(q) (2.10)

2.3 Virasoro Fusion Algebra of LM(1, p)

The fundamental fusion algebra of LM(1, p) [29]
〈
(2, 1), (1, 2)

〉

1,p
=

〈
(r, s),Ra

r ; a ∈ Z1,p−1; s ∈ Z1,p; r ∈ N
〉

1,p
(2.11)

is commutative and associative. To describe the fusion rules, we set R0
n ≡ (n, p), Ra

−1 ≡ −R
a
1, R

a
0 ≡ 0

and

δ
(2)
j,{n,n′} = 2− δj,|n−n′| − δj,n+n′

δ
(4)
j,{n,n′} = 4− 3δj,|n−n′|−1 − 2δj,|n−n′| − δj,|n−n′|+1 − δj,n+n′−1 − 2δj,n+n′ − 3δj,n+n′+1 (2.12)

For a, a′, s0, s
′
0 ∈ Z1,p−1, the fusion rules [29] are

(1, s0)⊗R
0
n =

⌊
s0−1

2
⌋

⊕

i=0

Rs0−1−2i
n

R0
n ⊗R

0
n′ =

n+n′−1⊕

j=|n−n′|+1, by 2

{ ⌊ p−1

2
⌋

⊕

i=0

Rp−1−2i
j

}

R0
n ⊗R

a′

n′ =
( n+n′

⊕

j=|n−n′|, by 2

δ
(2)
j,{n,n′}

{
⌊a

′−1

2
⌋

⊕

i=0

Ra′−1−2i
j

})

⊕
( n+n′−1⊕

j=|n−n′|+1, by 2

2
{

⌊ p−a
′−1

2
⌋

⊕

i=0

Rp−a′−1−2i
j

})

(2.13)
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where for s0 + s′0, s0 + a, a + a′ ≤ p

(1, s0)⊗ (1, s′0) =

s0+s′0−1
⊕

j=|s0−s′
0
|+1, by 2

(1, j)

(1, s0)⊗R
a
n =

{
min{s0−1,⌊

s0+a−1

2
⌋}

⊕

i=0

Rs0+a−1−2i
n

}

⊕
{

⌊
s0−a−1

2
⌋

⊕

i=0

Rs0−a−1−2i
n

}

Ra
n ⊗R

a′

n′ =
( n+n′

⊕

j=|n−n′|, by 2

δ
(2)
j,{n,n′}

{(
⌊ |a−a

′|−1

2
⌋

⊕

i=0

R
|a−a′|−1−2i
j

)

⊕
(

⌊a+a
′−1

2
⌋

⊕

i=0

Ra+a′−1−2i
j

)})

⊕
( n+n′−1⊕

j=|n−n′|+1, by 2

2
{(

⌊ p−|a−a
′|−1

2
⌋

⊕

i=0

R
p−|a−a′|−1−2i
j

)

⊕
(

⌊ p−a−a
′−1

2
⌋

⊕

i=0

Rp−a−a′−1−2i
j

)})

(2.14)

while for s0 + s′0, s0 + a, a + a′ > p

(1, s0)⊗ (1, s′0) =
( 2p−s0−s′

0
−1

⊕

j=|s0−s′
0
|+1, by 2

(1, j)
)

⊕
{ ⌊

s0+s
′
0−p−1

2
⌋

⊕

i=0

R
s0+s′

0
−p−1−2i

1

}

(1, s0)⊗R
a
n =

{ ⌊
s0+a−p−1

2
⌋

⊕

i=0

(

Rs0+a−p−1−2i
n−1 ⊕Rs0+a−p−1−2i

n+1

)}

⊕
{ min{p−a−1,⌊

2p−s0−a−1

2
⌋}

⊕

i=0

R2p−s0−a−1−2i
n

}

⊕
{ ⌊

s0−a−1

2
⌋

⊕

i=0

Rs0−a−1−2i
n

}

Ra
n ⊗R

a′

n′ =
( n+n′+1⊕

j=|n−n′|−1, by 2

δ
(4)
j,{n,n′}

{
⌊a+a

′−p−1

2
⌋

⊕

i=0

Ra+a′−p−1−2i
j

})

⊕
( n+n′

⊕

j=|n−n′|, by 2

δ
(2)
j,{n,n′}

{(
⌊
|a−a

′|−1

2
⌋

⊕

i=0

R
|a−a′|−1−2i
j

)

⊕
(

⌊ 2p−a−a
′−1

2
⌋

⊕

i=0

R2p−a−a′−1−2i
j

)})

⊕
( n+n′−1⊕

j=|n−n′|+1, by 2

2
{ p−max{a,a′}−1

⊕

i=0

R
p−|a−a′|−1−2i
j

})

(2.15)

In the special case of critical dense polymers LM(1, 2), the fundamental fusion algebra reads

〈
(2, 1), (1, 2)

〉

1,2
=

〈
(r, s),R1

r ; r ∈ N, s ∈ Z1,2

〉

1,2
(2.16)
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with fusion rules

(r, 1) ⊗ (r′, s) =
r+r′−1⊕

j=|r−r′|+1, by 2

(j, s)

(r, 2) ⊗ (r′, 2) =

r+r′−1⊕

j=|r−r′|+1, by 2

R1
j

(r, 1) ⊗R1
r′ =

r+r′−1⊕

j=|r−r′|+1, by 2

R1
j

(r, 2) ⊗R1
r′ =

r+r′⊕

j=|r−r′|

δ
(2)
j,{r,r′}(j, 2)

R1
r ⊗R

1
r′ =

r+r′⊕

j=|r−r′|

δ
(2)
j,{r,r′}R

1
j

(2.17)

Here the superscript 1 on R1
k is redundant but kept for consistency of notation.

Introducing

ǫ(n) =
1

2

(
1− (−1)n

)
, n ∈ Z (2.18)

a particular subset of the fusion rules (2.13), (2.14) and (2.15) can be written in the following compact
form

(1, s) ⊗ (1, s′) =
( p−|p−s−s′|−1

⊕

j=|s−s′|+1, by 2

(1, j)
)

⊕
( s+s′−p−1

⊕

ℓ=ǫ(s+s′−p−1), by 2

Rℓ
1

)

(1, s)⊗Ra
1 =

( p−|p−s−a|−1
⊕

ℓ=|s−a|+1, by 2

Rℓ
1

)

⊕ 2
( s−a−1⊕

ℓ=ǫ(s−a−1), by 2

Rℓ
1

)

⊕
( s+a−p−1

⊕

ℓ=ǫ(s+a−p−1), by 2

Rℓ
2

)

Ra
1 ⊗R

a′

1 = 2
( p−|a−a′|−1

⊕

ℓ=|p−a−a′|+1, by 2

Rℓ
1

)

⊕ 4
( p−a−a′−1

⊕

ℓ=ǫ(p−a−a′−1), by 2

Rℓ
1

)

⊕
( a+a′−p−1

⊕

ℓ=ǫ(a+a′−p−1), by 2

(
Rℓ

1 ⊕R
ℓ
3

))

⊕
( p−|p−a−a′|−1

⊕

ℓ=|a−a′|+1, by 2

Rℓ
2

)

⊕ 2
( |a−a′|−1

⊕

ℓ=ǫ(a+a′+1), by 2

Rℓ
2

)

(2.19)

where s, s′ ∈ Z1,p and a, a′ ∈ Z1,p−1. These expressions correspond to setting n, n′ = 1 in (2.13), (2.14)
and (2.15) and will be used below.

3 Logarithmic Minimal Model LM(1, p): Extended Picture

We now consider the logarithmic minimal models LM(1, p) as ‘rational’ logarithmic CFTs with ex-
tended W symmetry. In this picture, the characters of the infinity of Kac representations are reor-
ganized into a finite number of extended characters given as infinite sums of the Kac characters with
suitable multiplicities. The central charges are given by (2.2) but now there is a finite Kac table of
conformal weights as shown in Figure 2

∆r,s =
(rp− s)2 − (p− 1)2

4p
, r ∈ Z1,2; s ∈ Z1,p (3.1)

corresponding to the 2p irreducible representations here denoted by

(r, s)W , r ∈ Z1,2; s ∈ Z1,p (3.2)
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Explicitly, the characters of these irreducible representations are given by

χ̂1,s(q) = χ[(1, s)W ] =
1

η(q)

(s

p
ϑp−s,p(q) + 2ϑ′

p−s,p(q)
)

χ̂2,s(q) = χ[(2, s)W ] =
1

η(q)

(s

p
ϑs,p(q)− 2ϑ′

s,p(q)
)

(3.3)

where η(q) is the Dedekind eta function (2.6) and ϑs,p(q) = ϑs,p(q, 1) with

ϑs,p(q, z) =
∑

n∈Z+ s

2p

qn2pzn, ϑ′(q) = z
∂

∂z
ϑs,p(q, z)

∣
∣
∣
z=1

(3.4)

The 2p irreducible characters in the extended picture of LM(1, p) can be expanded in terms of
the characters of the Kac representations as follows

χ̂1,s(q) =

∞∑

n=1

(2n − 1)χ2n−1,s(q)

χ̂2,s(q) =
∞∑

n=1

2n χ2n,s(q) (3.5)

where s ∈ Z1,p. In addition, there are 2p − 2 indecomposable rank-2 representations which we denote
by

(Ra
1)W , (Ra

2)W , a ∈ Z1,p−1 (3.6)

Though inequivalent, their characters are equal in pairs

χ[(Ra
1)W ](q) = χ[(Rp−a

2 )W ](q) = 2χ̂1,p−a(q) + 2χ̂2,a(q) (3.7)

As we will discuss below, the rank-2 representations themselves differ in their Jordan-cell structures
and general embedding structures.

The complete set of 4p−2 representations is believed to close under fusion, with conjectured fusion
rules given in [17, 35, 22]. In our notation and with (R0

r)W ≡ (r, p)W , this conjectured fusion algebra
reads

(r, s)W ⊗̂ (r′, s′)W =
( p−|p−s−s′|−1

⊕

j=|s−s′|+1, by 2

(r · r′, j)W

)

⊕
( s+s′−p−1

⊕

ℓ=ǫ(s+s′−p−1), by 2

(Rℓ
r·r′)W

)

(r, s)W ⊗̂ (Ra
r′)W =

( p−|p−s−a|−1
⊕

ℓ=|s−a|+1, by 2

(Rℓ
r·r′)W

)

⊕ 2
( s−a−1⊕

ℓ=ǫ(s−a−1), by 2

(Rℓ
r·r′)W

)

⊕ 2
( s+a−p−1

⊕

ℓ=ǫ(s+a−p−1), by 2

(Rℓ
3−r·r′)W

)

(Ra
r)W ⊗̂ (Ra′

r′ )W = 2
(

(r, p − a)W ⊕ (3− r, a)W

)

⊗̂ (Ra′

r′ )W (3.8)

where r, r′ ∈ Z1,2 and
r · r′ = 1 + ǫ(r + r′) (3.9)

8



3.1 Extended Boundary Conditions and their Fusion Algebra

The extended vacuum character of LM(1, p) is

χ̂1,1(q) =
∞∑

n=1

(2n− 1)χ2n−1,1(q) (3.10)

This suggests that the corresponding integrable boundary condition should be given by the direct sum

(1, 1)W =

∞⊕

n=1

(2n − 1) (2n − 1, 1) (3.11)

However, the BYBE is not linear and sums of solutions do not usually give new solutions. Rather, the
BYBE is closed under fusions. It follows that if we can construct the desired direct sum from fusions,
then automatically it will be a solution of the BYBE.

We thus consider the triple fusion

(2n− 1, 1) ⊗ (2n − 1, 1)⊗ (2n − 1, 1) =

n⊕

k=1

(2k − 1)(2k − 1, 1)⊕

3n−2⊕

k=n+1

(3n− k − 1)(2k − 1, 1)

= (1, 1) ⊕ 3(3, 1) ⊕ 5(5, 1) ⊕ · · · ⊕ (2n− 1)(2n − 1, 1) ⊕ · · ·

(3.12)

The coefficients in the tail for (2n+1, 1) and beyond have not saturated for this finite n, but as n→∞
the coefficients progressively stabilize and exactly reproduce the multiplicities of the extended vacuum
(1, 1)W . We conclude that the extended vacuum boundary condition can be constructed by fusing
three r-type integrable seams to the boundary

(1, 1)W := lim
n→∞

(2n− 1, 1) ⊗ (2n − 1, 1) ⊗ (2n − 1, 1) =

∞⊕

n=1

(2n − 1) (2n − 1, 1) (3.13)

This extended vacuum has the following remarkable stability property

(2m− 1, 1) ⊗ (1, 1)W = (2m− 1)
( ∞⊕

n=1

(2n− 1) (2n − 1, 1)
)

= (2m− 1) (1, 1)W (3.14)

and more generally satisfies

(2m− 1, s)⊗ (1, 1)W = (2m− 1)
( ∞⊕

n=1

(2n − 1) (2n − 1, s)
)

(2m, s)⊗ (1, 1)W = 2m
( ∞⊕

n=1

2n (2n, s)
)

Ra
2m−1 ⊗ (1, 1)W = (2m− 1)

( ∞⊕

n=1

(2n − 1)Ra
2n−1

)

Ra
2m ⊗ (1, 1)W = 2m

( ∞⊕

n=1

2nRa
2n

)

(3.15)

for all s ∈ Z1,p, a ∈ Z1,p−1 and m ∈ N.
We want the extended vacuum boundary representation (1, 1)W to act as the identity in the fusion

algebra associated to the extended picture. In particular, we require that

(1, 1)W ⊗̂ (1, 1)W = (1, 1)W (3.16)
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where ⊗̂ denotes the fusion multiplication in the extended picture. This can be achieved by interpreting
this extended fusion multiplication as a limit of a rescaled fusion in the logarithmic minimal model

(1, 1)W ⊗̂ (1, 1)W := lim
n→∞

( 1

(2n− 1)3
(2n− 1, 1)⊗ (2n− 1, 1)⊗ (2n− 1, 1)⊗ (1, 1)W

)

= (1, 1)W (3.17)

thus ensuring that fusion in the extended picture has a natural implementation on the lattice.
Now, a representation in the extended picture (Â)W is constructed as the integrable boundary

condition A⊗ (1, 1)W where A is some representation in the logarithmic minimal model. Fusion in the
extended picture is then described by

(Â)W ⊗̂ (B̂)W =
(

A⊗ (1, 1)W

)

⊗̂
(

B ⊗ (1, 1)W

)

=
(

A⊗B
)

⊗
(

(1, 1)W ⊗̂ (1, 1)W

)

=
(⊕

j

Cj

)

⊗ (1, 1)W =
⊕

j

(Ĉj)W (3.18)

where A⊗B =
⊕

j Cj is the fusion of the representations A and B in the logarithmic minimal model.
This extended fusion prescription is readily seen to be both associative and commutative. It is also
immediately confirmed that (1, 1)W is the identity of the ensuing fusion algebra

(1, 1)W ⊗̂ (Â)W =
(

(1, 1) ⊗ (1, 1)W

)

⊗̂
(

A⊗ (1, 1)W

)

=
(

(1, 1) ⊗A
)

⊗ (1, 1)W = (Â)W (3.19)

We proceed by identifying the integrable boundary conditions corresponding to the 2p irreducible
representations (r, s)W and to the 2p − 2 reducible yet indecomposable rank-2 representations (Ra

r)W
in the extended picture

(1, s)W := (1, s)⊗ (1, 1)W =
∞⊕

n=1

(2n − 1) (2n − 1, s)

(2, s)W := 1
2(2, s)⊗ (1, 1)W =

∞⊕

n=1

2n (2n, s)

(Ra
1)W := Ra

1 ⊗ (1, 1)W =
∞⊕

n=1

(2n− 1)Ra
2n−1

(Ra
2)W := 1

2R
a
2 ⊗ (1, 1)W =

∞⊕

n=1

2nRa
2n (3.20)

where s ∈ Z1,p and a ∈ Z1,p−1. These expansions all follow by setting m = 1 in (3.15). Similarly,
from (3.15), fusions such as (2m− 1, s)⊗ (1, 1)W and (2m, s)⊗ (1, 1)W do not add independent fusion
generators to the list (3.20). We also note that

(2, s)W = (1, s)⊗ (2, 1)W = (1, s)W ⊗̂ (2, 1)W

(Ra
2)W = Ra

1 ⊗ (2, 1)W = (Ra
1)W ⊗̂ (2, 1)W (3.21)

It follows from the expansions in (3.20) that the embedding structures of the rank-2 indecomposable
representations (Ra

1)W and (Rp−a
2 )W can be described by

(Ra
1)W :

(2, a)W

(1, p − a)W (1, p − a)W

(2, a)W

←−

տւ

ւտ

(Rp−a
2 )W :

(1, p − a)W

(2, a)W (2, a)W

(1, p − a)W

←−

տւ

ւտ

(3.22)
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where the horizontal arrows indicate the off-diagonal action of the Virasoro mode L0. Similar embed-
ding patterns also appeared in [19, 20, 22].

With the definitions (3.20) and employing the properties (3.15) and (3.21), we now establish that
our fusion prescription (3.18) applied to the fusion rules of the logarithmic minimal model yields the
fusion algebra of the extended picture (3.8).

To do this, we first consider the fusion

(2, 1)W ⊗̂ (2, 1)W =
1

4

(

(1, 1) ⊕ (3, 1)
)

⊗ (1, 1)W =
1

4
(1 + 3)(1, 1)W = (1, 1)W (3.23)

and conclude that the horizontal fusion algebra 〈(2, 1)W〉1,p in the extended picture is isomorphic to
the well-known A2 fusion algebra. This readily implies that

(r, s)W ⊗̂ (r′, s′)W = (r · r′, 1)W ⊗̂
(

(1, s)W ⊗̂ (1, s′)W

)

(3.24)

Likewise, we find that

(r, s)W ⊗̂ (Ra
r′)W = (r · r′, 1)W ⊗̂

(

(1, s)W ⊗̂ (Ra′

1 )W

)

(Ra
r)W ⊗̂ (Ra′

r′ )W = (r · r′, 1)W ⊗̂
(

(Ra
1)W ⊗̂ (Ra′

1 )W

)

(3.25)

The vertical (r- and r′-independent) parts of (3.24) and (3.25) are examined using the compact
expressions (2.19). Only the last of the three types of fusion undergo a simplification in the extended
picture, namely

(Ra
1)W ⊗̂ (Ra′

1 )W =
(

Ra
1 ⊗R

a′

1

)

⊗ (1, 1)W

= 2
( p−|a−a′|−1

⊕

ℓ=|p−a−a′|+1, by 2

(Rℓ
1)W

)

⊕ 4
( |p−a−a′|−1

⊕

ℓ=ǫ(p+a+a′+1), by 2

(Rℓ
1)W

)

⊕ 2
( p−|p−a−a′|−1

⊕

ℓ=|a−a′|+1, by 2

(Rℓ
2)W

)

⊕ 4
( |a−a′|−1

⊕

ℓ=ǫ(a+a′+1), by 2

(Rℓ
2)W

)

(3.26)

It is also recalled that Ra
2⊗(1, 1)W = 2(Ra

2)W . In conclusion, the fusion algebra in the extended picture
reads

(r, s)W ⊗̂ (r′, s′)W =
( p−|p−s−s′|−1

⊕

j=|s−s′|+1, by 2

(r · r′, j)W

)

⊕
( s+s′−p−1

⊕

ℓ=ǫ(s+s′−p−1), by 2

(Rℓ
r·r′)W

)

(r, s)W ⊗̂ (Ra
r′)W =

( p−|p−s−a|−1
⊕

ℓ=|s−a|+1, by 2

(Rℓ
r·r′)W

)

⊕ 2
( s−a−1⊕

ℓ=ǫ(s−a−1), by 2

(Rℓ
r·r′)W

)

⊕ 2
( s+a−p−1

⊕

ℓ=ǫ(s+a−p−1), by 2

(Rℓ
3−r·r′)W

)

(Ra
r)W ⊗̂ (Ra′

r′ )W = 2
( p−|a−a′|−1

⊕

ℓ=|p−a−a′|+1, by 2

(Rℓ
r·r′)W

)

⊕ 4
( |p−a−a′|−1

⊕

ℓ=ǫ(p+a+a′+1), by 2

(Rℓ
r·r′)W

)

⊕ 2
( p−|p−a−a′|−1

⊕

ℓ=|a−a′|+1, by 2

(Rℓ
3−r·r′)W

)

⊕ 4
( |a−a′|−1

⊕

ℓ=ǫ(a+a′+1), by 2

(Rℓ
3−r·r′)W

)

(3.27)
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where the subscript 3 − r · r′ arises from (r · r′) · 2. We recall that (R0
r)W ≡ (r, p)W , r, r′ ∈ Z1,2,

s, s′ ∈ Z1,p, a, a′ ∈ Z1,p−1 and that ǫ(n) and r · r′ are defined in (2.18) and (3.9), respectively. It follows
straightforwardly from the fusion rules (3.27) that

(Ra
r)W ⊗̂ (Ra′

r′ )W = 2
(

(r, p − a)W ⊕ (3− r, a)W

)

⊗̂ (Ra′

r′ )W (3.28)

thus verifying that our fusion algebra in the extended picture (3.27) is equivalent to (3.8).

4 Discussion

We have considered the logarithmic minimal models LM(1, p) from a lattice perspective and looked
for integrable structures which, in the continuum scaling limit, reflect the W-extended symmetry.
Although Virasoro and extended conformal symmetries cannot be seen directly on a finite lattice,
since the finite system size manifestly breaks these symmetries, it is possible to see the shadow of the
extended conformal symmetry in the structure of the ensuing closed finite fusion algebras.

Extending ideas originating with Cardy [32, 33], the fusion of representations of the conformal
algebra can be implemented on the lattice by combining integrable boundary conditions associated with
these fusions on the left and right edges of a strip. For rational theories, such as the minimal models,
these integrable boundary conditions are constructed [34], as solutions to the boundary Yang-Baxter
equation, by fusing (in a lattice formulation of fusion) a finite number of columns to the boundary.
However, in the context of the logarithmic minimal models LM(1, p) in the extended picture, such a
construction with a finite number of columns cannot work. This is clear since it is known [29] that such
constructions lead to finite direct sums of Virasoro representations whereas, from character formulas,
it is clear that the W-representations must in fact correspond to infinite sums of such represenations.

In this paper, we have constructed 4p− 2 integrable boundary conditions of the LM(1, p) models,
associated with the 4p − 2 distinct W-representations, as limits of fusions on the boundary of the
lattice. In effect, this limiting process implies that the boundary condition is described by an infinite
number of columns. On the one hand, this introduces a new class of boundary conditions allowing
an arbitrarily large number of defects to propagate in the bulk compared to the fixed upper bound
on the number of defects that emerges in the Virasoro picture. On the other hand, it also means
that the W-extended fusion on the lattice requires a non-trivial normalization to be well-defined in
the limit of a large system. When normalized appropriately, we have shown that these new boundary
conditions possess some simple stability properties that enable us to deduce the W-extended fusion
rules [17, 35, 22] from the known fusion rules [16, 29] in the Virasoro picture. The closure of this fusion
algebra on a finite number of representations in the extended picture is remarkable confirmation of
the consistency of the lattice approach and a clear demonstration that the logarithmic minimal models
also provide lattice realizations of symplectic fermions and other logarithmic theories with extended
conformal symmetry. Explicit Cayley tables for LM(1, 2) and LM(1, 3) are given in Figure 4.
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Figure 4: Cayley tables of the fusion algebras of LM(1, 2) and LM(1, 3) respectively in the extended picture. The irreducible representations
(r, s)W are denoted ∆r,s. To further facilitate a comparison with [17], we denote the indecomposable rank-2 representations (R1

r)W by R̂r−1 in
the case of LM(1, 2) and (Ra

r)W by R̂a
r in the case of LM(1, 3).
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