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We show that the initial field values required to produce inflation in the two fields original hybrid
model, and its supergravity F-term extension, do not suffer from any fine-tuning problem, even when
the fields are restricted to be sub-planckian and for almost all potential parameter values. This is
due to the existence of an initial slow-roll violating evolution which has been overlooked so far.
Due to the attractor nature of the inflationary valley, these trajectories end up producing enough
accelerated expansion of the universe. By numerically solving the full non-linear dynamics, we
show that the set of such successful initial field values is connected, of dimension two and possesses
a fractal boundary of infinite length exploring the whole field space. We then perform a Monte–
Carlo–Markov–Chain analysis of the whole parameter space consisting of the initial field values, field
velocities and potential parameters. We give the marginalised posterior probability distributions for
each of these quantities such that the universe inflates long enough to solve the usual cosmological
problems. Inflation in the original hybrid model and its supergravity version appears to be generic
and more probable by starting outside of the inflationary valley. Finally, the implication of our
findings in the context of the eternal inflationary scenario are discussed.
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I. INTRODUCTION

The paradigm of inflation [1, 2, 3, 4] is currently the
simplest way to solve the standard cosmological prob-
lems and explain the Cosmic Microwave Background
(CMB) anisotropies observed so far, though other al-
ternative mechanisms have been proposed (for a review
see [5] and references therein). Many models of infla-
tion have been proposed [6, 7], based on single field or
multi-field potentials. If single field models are efficient
effective models, hybrid models explore the possibility
that the inflaton is coupled to other scalar fields, as
first proposed by Linde [8]. When coupled to a Higgs-
type field, inflation is realized in the so-called “inflation-
ary valley” when the Higgs vacuum expectation value
(vev) vanishes and the inflation end is triggered when the
Higgs becomes tachyonic and develops and non-vanishing
vacuum expectation value (vev). Similar models have
rapidly been constructed in various theoretical frame-
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works [9, 10, 11], the most popular of them being the
supersymmetric/supergravity versions of F-term or D-
term inflation [12, 13, 14, 15].

In the limit of sub-planckian field values, all hybrid in-
flation models were however thought to require extremely
fine-tuned initial field values to produce enough e-folds of
acceleration, from the original model proposed by Linde
to most supersymmetric versions [16, 17, 18], with the
exception of hilltop potentials which assume that infla-
tion takes place near a maximum of the potential [19, 20].
The successful initial field values were found located only
in an extremely narrow band around the inflationary val-
ley, or on a few scattered points away from it [21]. This
was considered as a fine-tuning problem for these mod-
els since any pre-inflationary era would have to be fine-
tuned to allow inflation to last long enough to solve the
standard cosmological problems. This fine-tuning has re-
cently been revisited in Ref. [22] for the original hybrid
model as well as for the supersymmetric “smooth” and
“shifted” models. Using higher precision, it was shown
that the successful initial field values are rather organised
in intricate dense regions outside of the inflationary valley
(see for instance Fig. 7 of Ref. [22]). The area occupied
by these regions was found to represent up to 15% of the
sub-planckian field regime for the original hybrid model
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and up to 80% for smooth hybrid inflation. The physical
explanation of these new successful regions comes from
the existence of an initial fast-roll phase during which the
fields roll down the potential in a chaotic way followed
by a climbing up of the valley and a slow-rolling phase
back down.

However, as discussed in Ref. [22], these new successful
regions appeared to depend on the shape of the poten-
tial, and therefore on the potential parameters. One may
wonder whether these features are a new solution of the
fine-tuning problem, i.e. if they are robust with respect to
the potential parameters. Moreover, Ref. [22] did not dis-
cuss the statistical properties of this space and the effect
of the initial field velocities which were assumed vanish-
ing. Finally, the popular supersymmetric extensions, F-
or D-term hybrid models, were not studied. The purpose
of the present paper is to quantify how these new suc-
cessful inflationary regions are widespread in the higher
dimensional space of all the model parameters, i.e. by
considering not only the initial field values but also their
initial velocities and the potential parameters. We also
extend our analysis to the F-term hybrid model, studied
in SUGRA [12, 13].

In order to deal with a multi-dimensional parameter
space, after having discussed the fractal nature of the
successful inflationary regions, we introduce a probability
measure and perform their exploration by using Monte–
Carlo–Markov–Chains (MCMC) methods. The outcome
of our approach is a posterior probability distribution on
the model parameters, initial velocities and field values
such that inflation lasts more than 60 e-folds1. As will be
shown in the following, thanks to inflation starting “out
of the valley”, a high number of e-folding appears to be
generic, and favoured, in the original hybrid model for
parameter ranges covering several orders of magnitude.
We have also checked that such a result is not peculiar
to a given potential by applying the same analysis to the
more realistic two-field F-term inflation potential. This
treatment allows us to establish natural bounds on the
parameters (or combination of parameters) for each of
these scenarios.

At this point, we would like to emphasize that our aim
is not (yet) to constrain these models with the current
Cosmic Microwave Background (CMB) and astrophysi-
cal data but rather to discuss in details their ability to
generate an inflationary phase. In particular, in the small
field limit, original hybrid model are known to generate
a blue spectrum of scalar initial perturbations2, which is
disfavoured by recent CMB experiments [24]. Our use of
this model here is motivated by its simplicity and its rep-

1 Such probability distributions are almost independent of the cho-
sen number of e-folds: once the field rolls down in a flat enough
region of the potential, the total number of e-folds generated is
always very large.

2 This conclusion can be altered when additional couplings are
assumed for the inflaton [23].

resentativity of the non-linear two-field dynamics. The
more realistic F-term SUGRA model is in agreement with
the current CMB data: it predicts an almost scale invari-
ant spectrum and the generic formation of cosmic strings
[25], a combination which was shown to be favoured by
observations in Ref. [26].

The paper is organised as follows. In the following
section, we discuss the fractal nature of the successful re-
gions of inflation in the original hybrid model and define
a probability measure over the full parameter space. In
Sec. III, the MCMC method is introduced and we study
step by step the effect of the initial field velocities and
the potential parameters on the probability of obtaining
60 e-folds of inflation. We then present the full posterior
probability distributions of these parameters for the orig-
inal hybrid scenario. In Sec. IV, we perform the same
analysis of the F-SUGRA hybrid potential. Some con-
clusions and perspectives are finally presented in the last
section.

II. FRACTAL INITIAL FIELD VALUES

A. The model

The original hybrid model of inflation was proposed in
Refs. [8, 13], its potential reads

V (φ, ψ) =
1

2
m2φ2 +

λ

4

(

ψ2 −M2
)2

+
λ′

2
φ2ψ2. (1)

The field φ is the inflaton and ψ is the auxiliary Higgs-
type field while λ, λ′ are two positive coupling constants
and m, M are the two mass parameters. Inflation is
assumed to be realized in the false-vacuum along the val-
ley3 〈ψ〉 = 0 and ends due to a tachyonic instability of ψ

when the inflaton reaches a critical value φc = M
√

λ/λ′.
The classical system evolves toward its true minimum
〈φ〉 = 0, and 〈ψ〉 = ±M whereas in a realistic scenario
one expects the tachyonic instability to trigger a preheat-
ing era [27, 28, 29, 30, 31, 32].

To observe the effects of varying the free parameters in
the dynamics of inflation, it is more convenient to rewrite
the potential into

V (φ, ψ) = Λ4

[

(

1 − ψ2

M2

)2

+
φ2

µ2
+
φ2ψ2

ν4

]

, (2)

under which M,µ, ν are three mass parameters. With
this expression, the critical point of instability now reads

φc =

√
2ν2

M
. (3)

3 Throughout the paper 〈.〉 denotes the vev of a field.
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It is common usage to consider the effective one-field po-
tential by restricting the field dynamics to the inflation-
ary valley and one gets

Veff(φ) = Λ4

[

1 +

(

φ

µ

)2
]

. (4)

B. Equations of motion

In a flat Friedmann–Lemâıtre-Robertson–Walker
(FLRW) metric, the equations governing the two-field
dynamics are the Friedmann-Lemâıtre equations4,

H2 =
8π

3m2
pl

[

1

2

(

φ̇2 + ψ̇2
)

+ V (φ, ψ)

]

,

ä

a
=

8π

3m2
pl

[

−φ̇2 − ψ̇2 + V (φ, ψ)
]

,

(5)

as well as the Klein-Gordon equations

φ̈+ 3Hφ̇+
∂V (φ, ψ)

∂φ
= 0 ,

ψ̈ + 3Hψ̇ +
∂V (φ, ψ)

∂ψ
= 0 .

(6)

where H ≡ ȧ/a is the Hubble parameter, a is the scale
factor and a dot denotes derivative with respect to cosmic
time.

In order to study the two-fields dynamics of the hybrid
model, without assuming slow-roll, one has to integrate
these equations numerically from a given set of initial
conditions (IC) for the field values. Throughout the pa-
per we will define a successful IC as a point in field space
that lead to a sufficiently long phase of inflation to solve
the horizon and flatness problem. We will assume that
N = ln(a/aini) ≃ 60 e-folds is the critical value required,
though this value can change by a factor of two depending
on the reheating temperature and the Hubble parameter
at the end of inflation [33, 34]. However, generically, once
inflation starts it lasts for much more than 60 e-folds and
our results are not sensitive to the peculiar value chosen.

C. The set of successful initial field values

As already mentioned in the introduction, the space of
successful IC for the field values alone has been discussed
in Ref. [22] and found to be composed of a intricate en-
semble of points organized into continuous patterns. In
Fig. 1, we have represented the mean number of e-folds
generated at each sub-Planckian initial field values, for

4 Throughout the paper, mpl denotes the physical Planck mass,
and Mpl stands for the reduced Planck mass Mpl ≃ 0.2mpl ≃
2.4 × 1018 GeV.
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FIG. 1: Mean number of e-folds obtained from 5122 initial
field values in the plane (ψi/Mpl, φi/Mpl). This figure has
been obtained by averaging the number of e-folds (truncated
at 100) produced by 20482 trajectories down to 5122 pixels.
The potential parameters have been set to M = 0.03mpl,
µ = 636mpl, ν

2 = 3 × 10−4m2
pl.

a set of fixed potential parameters and assuming vanish-
ing initial velocities. We have computed the trajectories
obtained from 20482 initial field values and stopped the
integration when the fields are trapped in one of the min-
imum of the potential, i.e. for H2 ≤ V/(3M2

pl), or when

the accelerated expansion exceeds 102 efolds. The re-
sulting grid has a small intricated structure of successful
regions spread over the whole plane which ends up being
difficult to represent in a figure. As a result, we have
chosen to present in Fig. 1 a downgraded 5122 pixels im-
age in which each pixel has been given a color according
to the average number of e-folds obtained in our original
20482 grid. A given pixel may therefore hide both suc-
cessful and unsuccessful initial field values and the color
measures their relative density. An higher resolution im-
age would be self-similar to Fig. 1, with more thinner
successful domains visible.

Notice that we recover the inflationary valley as the
white vertical narrow strip located along ψi = 0 whereas
the minima of the potential are along the horizontal axis
at ψ = ±0.15Mpl (for M = 0.03mpl as chosen in the fig-
ure). The black region in Fig. 1 precisely corresponds to
the trajectories “below” the critical point φ < φc which
are fast-rolling inside the minima. In analogy with the
anamorphosis of light produced by a distorted mirror,
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each point outside the inflationary valley is connected by
a trajectory to a point inside the inflationary valley. The
trajectory first fast-rolls towards the bottom of the po-
tential, and after a few rebounds becomes oriented along
the valley, climbs it and then produces inflation when
slow-rolling back down. There is thus a one-to-one corre-
spondence between the IC and the point in the valley for
which the trajectory stops to climb and starts to slow-
roll.

It was shown in Ref. [22] that such “anamorphosis
points” can cover up to 15% of the total area when re-
stricting the IC to sub-planckian values. Moreover, as
can be checked in Fig. 1, these regions exhibits a frac-
tal looking aspect. Before studying the influence of the
potential parameters and initial field velocities, one may
wonder if the area of this two-dimensional set of points is
indeed well-defined? Equivalently, do new successful re-
gions appear inside unsuccessful domains and conversely?
In order to quantify how much the anamorphosis points
are a probable way to have inflation in the whole pa-
rameter space, we first address the question of defining
a measure on the initial field values space. In particular,
this requires to determine the dimension of the set

S ≡ {(φi, ψi) � N > 60} . (7)

D. Chaotic dynamical system

1. Phase space analysis

As suggested by Fig. 1, at fixed potential parameter
values, the dynamical system defined by Eqs. (5) and
(6) seems to exhibit a chaotic behaviour. In particular,
the sensitivity of the trajectories to the initial field values
comes from the presence of three attractors. Two of them
are the global minima of the potential, M± respectively
at (φ = 0, ψ = ±M), in which all classical trajectories
will end, whereas the less obvious is a quasi-attractor I
defined by the inflationary valley itself (ψ = 0, φ > φc).
Indeed, whatever the initial field values, as soon as the
system enters slow-roll one has (in Planck units) [35],

v2 ≡
(

dφ

dN

)2

+

(

dψ

dN

)2

= 2ǫ1 ≪ 1, (8)

where ǫ1 is the first Hubble flow function [36]. The sys-
tem therefore spends an exponentially long amount of
cosmic time in the valley. The sensitivity to the initial
conditions comes from the presence of these three attrac-
tors: either the trajectory ends rapidly into one of the
two minima, or it lands on the valley where it freezes.

A phase space plot is represented in Fig. 2 in which
we have computed 25 trajectories from a grid of initial
field values. The inflationary valley clearly appears as the
attractor with quasi null velocity vector (ǫ1 ≪ 1), while
around the two global minima, two “towers” appear due
to the field oscillations around them.

FIG. 2: Phase space v2(φ, ψ) for 25 trajectories and vanish-
ing initial velocities. The potential parameters are fixed to the
values M = 0.03mpl, µ = 636mpl, ν = 6.36 × 10−4. All tra-
jectories end on the three attractor of the dynamical system:
the two global minima of the potential, and the inflationary
valley with almost vanishing slow-roll velocity. These three
attractors induce the chaotic behavior.

2. Basins of attraction

From the definition of S in Eq. (7), one has

S = F−1(I), (9)

where F (φ, ψ) stands for the mapping induced by the
differential system of equations (5) and (6). The set of
successful initial field values S is therefore the basin of
attraction of the attractor I [37, 38]. Since the attractor
I is a dense set of dimension 2 and F is continuous, one
expects S to contain a dense set of dimension 2 [38]. As
can be intuitively guessed, the boundary of S can how-
ever be of intricate structure because of the sensitivity
to the initial conditions: two trajectories infinitely close
initially can evolve completely differently. As we show in
the following, S is actually a set of dimension two having
a fractal boundary of dimension greater than one.

Finally, by the definition of a continuous mapping,
all parts of S, boundary included, must be connected
together and to the inflationary valley I. The fractal
looking aspect of Fig. 1 is only induced by the intricate
boundary structure of S which is exploring all the ini-
tial field values space. The fractality of the boundaries
of the space of initial fields values was first mentioned
in Ref. [39], but the study was restricted to a small re-
gion of the field space and the model included dissipative
coefficients. As an aside remark, let us notice that the
existence of a fractal boundary may have strong impli-
cations in the context of eternal chaotic inflation: there
would exist inflationary solution close to any initial field
values.

In order to quantify the chaotic properties of the dy-
namical system defined by the mapping F (φ, ψ), we turn
to the calculation of the Lyapunov exponents.
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FIG. 3: Highest Lyapunov exponent as a function of the ini-
tial field values in the orginal hybrid model. The potential
parameters are the same as in Fig. 1. The field evolution is
therefore stable on the set S of successful initial field values
(black) but exhibits chaotic behaviour elsewhere.

3. Lyapunov exponents

The Lyapunov exponents at an initial point χi =
(φ, ψ, φ,N , ψ,N )|i measures how fast two infinitely close
trajectories mutually diverge or converge. They give a
mean to characterize the stretching and contracting char-
acteristics of sets under the mapping induced by the dif-
ferential system. A small perturbation δχ around the
trajectory χ(N) will evolve according to

dδχ

dN
= dF · δχ , (10)

where dF stands for the Jacobian of the differential sys-
tem F . The Lyapunov exponents at the initial point
χi and along the direction δχ0 are the numbers defined
by [37]

h(χi, δχ0) = lim
N→∞

1

N
ln

|δχ(N)|
|δχ0|

, (11)

where δχ(N) is the solution of Eq. (10) with δχ(0) =
δχ0 and χ(0) = χi. If the considered set is an attrac-
tor or an invariant set of the differential system having a
natural measure, one can show that the exponents do not
depend on the initial point χi. At fixed potential param-
eters, there are four Lyapunov exponents associated with

the differential system of Eqs. (5) and (6). If the largest
exponent is positive, then the invariant set is chaotic.

In Fig. 3, we have computed the largest Lyapunov ex-
ponent at each point of the plane (φi, ψi). The numerical
method we used is based on Refs. [40, 41] and uses the
public code LESNLS. Let us notice that since I is only a
quasi-attractor, we have stopped the evolution at most
when H2

end = V/(3M2
pl), i.e. just before the fields would

classically enter either M+ or M−. As can be seen, all
points belonging to S exhibit the same and small nega-
tive Lyapunov exponent: the invariant set S is therefore
non-chaotic. On the other hand, all the other initial field
values associated with the basins of attraction of M±

have a positive Lyapunov exponent. For those, the field
evolution is chaotic and exhibits a sensitivity to the ini-
tial conditions. Notice that these exponents may slightly
vary from point to point due to our choice to stop the in-
tegration at Hend instead of the classical attractors M±.
This is particularly visible for the trajectories starting
close to Hend (green shading): there is not enough evolu-
tion to get ride of the transient evolution associated with
the initial conditions.

E. Fractal dimensions of S and its boundary

1. Hausdorff and box-counting dimension

Since we suspect a set with fractal properties, the nat-
ural measure over S, extending the usual Lebesgue mea-
sure, is the Hausdorff measure. The s-dimensional Haus-
dorff measure of S is defined by [38]

Hs(S) = lim
δ→0

inf

{

∞
∑

i=1

|Ui|s � S ⊂
∞
⋃

i=1

Ui ; |Ui| ≤ δ

}

.

(12)
In this definition, the sets Ui form a δ-covering of S
and the diameter function has been defined by |U | ≡
sup{|x− y| � x, y ∈ U}. As a result, Hs(S) is the small-
est sum of the sth powers of all the possible diameters
δ of all sets covering S, when δ → 0. Having such a
measure, the fractal dimension of S is defined to be the
minimal value of s such that the Hausdorff measure re-
mains null (or equivalently the maximal value of s such
that the measure is infinite). In practice, measuring the
Hausdorff dimension using this definition is not trivial,
due to the necessity of exploring all δ-coverings. How-
ever, in our case, we are interested in the fractal proper-
ties of a basin of attraction associated with a continuous
dynamical system and one can instead consider the so-
called box-counting dimension [38]. This method simply
restricts the class of the Ui to a peculiar one, all having
the same diameter δ. When the mapping F is self-similar,
one can show that box-counting and Hausdorff dimen-
sions are equal. In general, the Hausdorff dimension is
less or equal than the box-counting one. Here, F being
a contracting continuous flow, we expect the equality to
also hold.
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To define the box-counting dimension, we cover the
set S with grids of step size δ, and count the minimal
number of boxes N(δ) necessary for the covering. The
box-counting dimension is then given by

DB = lim
δ→0

logN(δ)

log(1/δ)
. (13)

This method has the advantage to be easily implemented
numerically and, in the following, we will apply it to cal-
culate the dimension of S and its boundary.

2. Fractal boundary of S

For each randomly chosen point of the plane (φi, ψi),
we compute three trajectories. The first one starts from
the point under consideration while the two others have
initial conditions modified by +δ and −δ along one direc-
tion (for example along φ, but the chosen direction does
not affect the result). For each of these trajectories, we
determine in which attractor (M± or I) the flow ends.
Since we are interested in the boundary of S, we calcu-
late the proportion f(δ) of points for which at least one
trajectory ends in I, and another in M+ or M−. The
process is iterated for increasingly smaller values of δ and
we evaluate how the area of the δ-grid covering of S scales
with δ. So strictly speaking, our evaluation of the box-
counting dimension is made through the determination
of the Minkowski dimension of the boundary of S [38].
From Eq. (13), assuming that, at small δ,

f(δ) ∝ δα, (14)

the box-counting dimension of the S boundary is then
given by [37]

DB = 2 − α. (15)

In Fig. 4, we have plotted f(δ) as a function of δ
at fixed potential parameters. We recover the expected
power law behaviour, the slope of which is approximately
α ≃ 0.80. As a result, the boundary of S is indeed a frac-
tal of box-counting dimension

DB ≃ 1.20. (16)

Notice that this value depends on the chosen set of po-
tential parameters, as one may expect since they affect
the shape of S and the typical size of the structures.

3. Dimension of S

In order to determine the box-counting dimension of S
itself one can apply a similar method than the one used
for its boundary. Now f(δ) denotes the proportion of
points for which at least one of the three trajectories end
in the attractor I (this condition therefore includes also

-7 -6 -5 -4 -3 -2
-4

-3

-2

-1

0

log ∆

lo
g

fH
∆
L

FIG. 4: Fraction of initial field values in a δ-sized box in-
tercepting the set S , as a function of δ. The field has been
restricted to sub-planckian values and the potential parame-
ters are fixed to λ = λ′ = 1, m = 10−6mpl and M = 0.03mpl.
The exponent α of the power law dependency gives the box-
counting dimension DB = 2 − α ≃ 1.2 showing that S pos-
sesses a fractal boundary.

10-7 10-6 10-5 10-4 0.001 0.01

0.20

0.30

∆

fH
∆
L

FIG. 5: Fraction of initial field values leading to inflation in a
δ-sized box as a function of δ. The potential parameters are
the same as in Fig. 4. Once the box is small enough to be
fully contained in S , f(δ) remains constant. As a result, the
box-counting dimension of S is DB = 2 and the interior of S
is not fractal.

the points belonging to the boundaries). The resulting
power-law is represented in Fig. 5.

For small enough values of δ, the δ-sized boxes are
small enough to be fully contained in S and the function
f(δ) appears to be constant in that case. As a result,
the box-counting dimension of S is 2. We therefore con-
clude that, like for the well-known Mandelbrot set [42],
the boundary of S is fractal but the set of successful infla-
tionary points is not and has the dimension of a surface.
Consequently, although the boundary of S has an infinite
length (DB = 1.2), it has a vanishing area: the Hausdorff
dimension of S (boundary included) is therefore also 2.
As a result, the two-dimensional Hausdorff measure on
S reduces to the usual two-dimensional Lebesgue mea-
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sure and this will be our choice for defining a probability
measure in the rest of the paper.

As previously emphasized, the potential parameters
and initial field velocities have been fixed in this section
and the set S is actually the two-dimensional section of
an higher dimensional set, whose boundary is also cer-
tainly fractal (and therefore of null measure). Since one
can no longer use griding method to explore such a high
dimensional space, we move on in the next section to a
MCMC exploration of the full parameter space to assess
the overall probability of getting inflation in the hybrid
model.

III. PROBABILITY DISTRIBUTIONS IN

HYBRID INFLATION

The aim of this section is to use Monte-Carlo-Markov-
Chains (MCMC) techniques in order to explore the whole
parameter space, including the initial field velocities and
all the potential parameters. With unlimited computing
resources, we could have used a griding method to lo-
calise the hypervolumes in which inflation occurs, as we
have done for the two-dimensional plane (φi, ψi) in the
previous section. For the original hybrid model, we have
in total seven parameters that determine a unique tra-
jectory: two initial field values, initial field velocities and
the three potential parameters M , µ and ν. To probe
this seven-dimensional space, more than just measuring
the hypervolume of the successful inflationary regions,
we define a probability measure over the full parameter
space. Using Bayesian inference, one can assess the pos-
terior probability distribution of all the parameters to
get enough e-folds of inflation. Monte–Carlo–Markov–
Chains (MCMC) method is a widespread technique to
estimate these probabilities, its main power being that
it numerically scales linearly with the number of dimen-
sions, instead of exponentially.

Several algorithms exist in order to construct the
points of a Markov chain, the Metropolis–Hastings al-
gorithm being probably the simplest [43, 44]. Each point
xi+1, obtained from a Gaussian random distribution (the
so-called proposal density) around the previous point xi,
is accepted to be the next element of the chain with the
probability

P (xi+1) = min

[

1,
π(xi+1)

π(xi)

]

, (17)

where π(x) is the function that has to be sampled via the
Markov chain. MCMC methods have been intensively
used in the context of CMB data analysis [45, 46, 47, 48,
49] where the function π(θ|d) ∝ L(d|θ)P (θ) is the pos-
terior probability distribution of the model parameters
given the data. In the context of Bayesian inference, this
one is evaluated from the prior distributions P (θ) and the
likelihood of the experiment L(d|θ). After a relaxation
period, one can show that Eq. (17) ensures that π is the
asymptotic stationary distribution of the chain [50]. The

MCMC elements directly sample the posterior probabil-
ity distribution π(θ|d) of the model given the data.

In our case, we can similarly define a likelihood L as a
binary function of the potential parameters, initial field
values and velocities. Either the trajectory ends up on I
and produces more than 60 e-folds of inflation, or it does
not. In the former case we set L = 1 whereas L = 0 for
no inflation. The function π we sample is then defined
by π = LP (θ) where θ stands for field values, velocities
and potential parameters and P is our prior probability
distribution that we will discuss in the next section.

A. Prior choices

MCMC methods require a prior assumption on the
probability distributions of the fields, velocities and po-
tential parameters. As we only consider in this work
the initial conditions and parameters space leading to at
least 60 e-folds of inflation, the prior choices are only
based on theoretical arguments. These arguments can
be linked to the framework from which the potential is
deducted. If one considers the hybrid model to be em-
bedded in supergravity, the fields have to be restricted to
values less than the reduced Planck mass. We adopt here
this restriction for initial field values, not only because
of this argument, but also because it has been shown in
Ref. [22] that if super-plankian fields are allowed, trajec-
tories become generically successful. On the other hand,
the model was considered to suffer some fine-tuning when
one of the fields has to be order of magnitudes smaller
than the other. As inflation is not possible for very small
initial values of both fields (because of the Higgs instabil-
ity), we have considered a flat prior for initial field values
in [−Mpl,Mpl] as opposed to a flat prior for the logarithm
of the fields. Note that one has to include negative values
of the fields in order to take into account the orientation
of the initial velocity vector.

Concerning the initial field velocities, from the equa-
tions of motion, one can easily show that there exist a
natural limit5

v2 =

(

dφ

dN

)2

+

(

dψ

dN

)2

< 6. (18)

Similarly, our prior choices are flat distributions inside
such a circle in the plane (φ,N , ψ,N ), where “, N” denotes
a partial derivative with respect to the number of e-folds.

In the absence of a precise theoretical setup determin-
ing the potential there are no a priori theoretical con-
straint on its parametersM , µ and ν. Let us just mention
that for µ < 0.3, the dynamics of inflation in the valley
is possibly strongly affected by slow-roll violations [22].
As a result, with the concern to not support a particular

5 This is just the limit ǫ1 < 3 in Planck units [35].
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mass scale, we have chosen the following flat priors on
the logarithm of the parameters:

−1 < log
µ

mpl

< 4,

−3 < log
M

mpl

< −0.7,

−6 < log
ν2

m2
pl

< 2,

(19)

in which the upper and lower limits have been set for
numerical convenience, and M ≤Mpl.

Notice that the Λ dependencies are not important here
because this parameter only rescales the potential and
thus does not change the dynamics.

In the next sections, we perform the MCMC ex-
ploration of the parameter space from these priors.
Firstly by reproducing the results of Sec. II in the two-
dimensional section (φi, ψi), then by including the initial
field velocities and finally by considering all the model
parameters. Unless otherwise mentioned, the chains con-
tain 106 points, which corresponds to one percent error
on the marginalised probability distributions. In the fig-
ures, the overall values of the posterior probability den-
sity distributions have not been represented since they
are determined by the imposing the integral over the pa-
rameters to be equal to one.

B. MCMC on initial field values

In order to test our MCMC, we have first explored the
space of initial field values leading or not to more than 60
e-folds of inflation. The potential parameters have been
fixed to various values already explored by griding meth-
ods in Sec. II and Ref. [22], while the initial velocities
are still assumed to vanish. The MCMC chain samples
have been plotted in Fig. 6. Notice that to recover the
fractal structure of the boundary of S, one has to adjust
the choice of the Gaussian widths of the proposal density
distribution. If those are too large, the acceptance rate
will be small because the algorithm tends to test points
far away from the last successful point, and if they are
too small the chains remain stuck in the fractal struc-
tures without exploring the entire space. Nevertheless,
with an intermediate choice, Fig. 6 shows that the intri-
cate structure of the boundary of S can be probed with
the MCMC. More than being just an efficient exploration
method compared to griding, the MCMC also provides
the marginalised probability distributions of φi and ψi

such that one gets inflation. They have been plotted
in Fig. 10 (top two plots), the normalisation being such
that their integral is unity. As one can guess from Fig. 6,
with vanishing initial velocities and a fixed set of poten-
tial parameters, inflation starting in the valley is not the
preferred case since the area under the distribution of
ψi outside of the valley is larger than inside. Moreover,
these distributions take non-vanishing values everywhere

-0.2 -0.1 0 0.1 0.2

-0.2

-0.1

0

0.1

0.2

Ψi

mpl

Φ
i

m
pl

FIG. 6: Two-dimensional posterior probability distribution in
the plane (φi, ψi) leading to more than 60 e-fold of inflation
in the hybrid model. Notice that its integral over the plane
is normalised to unity. The dark blue regions corresponds to
a maximal probability density whereas it vanishes elsewhere.
The potential parameters are set toM = 0.03mpl, ν

2 = 6.36×
10−4 m2

pl, µ = 636 mpl. As expected, the MCMC exploration
matches with the griding methods (see Fig. 1).

and there is therefore no fine-tuning problem. Of course,
one still have to consider the other parameters and this
is the topic of the next sections.

C. MCMC on initial field values and velocities

The initial values of the field velocity are inside a
disk of radius

√
6 in the plane (φ,N , ψ,N ) (in Planck

units). The marginalised two-dimensional posteriors for
the initial field values is plotted in Fig. 7 whereas the
marginalised posterior for each field are represented in
Fig. 10 (middle line). Even if non-vanishing velocities
are considered, the successful inflationary patterns re-
main. Notice that they appear to be blurred simply be-
cause of the weighting induced by marginalising the full
probability distribution over the initial velocities.

In Fig. 8, we have also represented the marginalised
posterior probability distribution for the modulus and
direction of the initial velocity vector. Their flatness im-
plies that there are no preferred values. This is an im-
portant result because one could think that large initial
velocities could provide a way to kick trajectories in or
out of the successful regions. This actually never happens
because of the Hubble damping term in the Friedmann
equations, allowing only a generation of a small number
of e-folds before the trajectory falls in one of the three
attractors.
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FIG. 7: Two-dimensional marginalised posterior probability
distribution for the initial fields values. The marginalisation
is over the initial field velocities whereas the potential pa-
rameters are still fixed. The shading is proportional to the
probability density value while the two-dimensional integral
over the plane is equal to one. Although the inflationary valley
has the highest probability density, its area remains restricted
such that the most probable initial field values to get inflation
are still out of the valley (see Fig. 10).

D. MCMC on initial field values, velocities and

potential parameters

The most interesting part of the exploration by MCMC
technique concerns the study of the full parameter space.
The only restriction being associated to the necessity of
M < Mpl as discussed in Sec. III A. The chains contain
200000 elements and the estimated error on the posteriors
is about a few percents.

We have plotted in Fig. 9 the marginalised two-
dimensional posterior for the initial field values. In com-
parison with Fig. 6 and 7, the most probable initial field
values are now widespread all over the accessible values;
the intricate patterns that were associated with the suc-
cessful field values (at fixed potential parameters) are
now diluted over the full parameter space. The resulting
one-dimensional probability distributions for each field
are plotted in Fig. 10 (bottom panels). One can observe
that the ψ distribution is nearly flat outside the valley but
remains peaked around a extremely small region around
ψ = 0. Integrating over the field values, initial conditions
outside the valley are still the preferred case.

Concerning the probability distributions of the modu-
lus v and the angular direction θ of the initial velocity
vector, results integrated over the whole parameter space
do not present qualitative differences compared to the
posteriors with fixed potential parameters, as one may

0.0 0.2 0.4 0.6 0.8 1.0

v Κ

6

-
Π

2
0 Π

2
Π 3 Π

2

Θ

FIG. 8: Marginalised posterior probability distributions for
the modulus (top) and angle (bottom) of initial field velocity.
The thin superimposed blue (lighter) curves are obtained at
fixed potential parameters, while the thick red are after a full
marginalisation over all the model parameters. As expected
from Hubble damping, all values are equiprobable since the
field do not keep memory of the initial velocity.

expect since the Hubble damping prevents the initial ve-
locities to influence the dynamics (see Fig. 8).

The marginalised probability distributions for the po-
tential parameters are represented in Fig. 11. These pos-
teriors seem to indicate that the three parameters are
bounded but one should pay attention to the influence
of our prior choices over the posterior [51]. In fact, the
posteriors for M and ν are found to depend on our prior
choice: changing the upper or lower limit on the ν-prior
(or M -prior) affects the values at which the M - and ν-
posteriors fall off. Such a situation is typical of the exis-
tence of correlations between these two parameters. We
have therefore computed the two-dimensional posterior
distribution in the plane (ν2,M) and found out that this
probability distribution clearly exhibits a correlation be-
tween these two parameters: the lower bound on M de-
pends on the minimal allowed value of ν in the prior.
Such a correlation comes from the fact that, to realize
enough inflation for a given IC, the critical/instability
point φc should not be larger than the anamorphosis im-
age of the IC (the point in the valley where slow-roll
starts). Restricting initial fields to sub-Planckian values
leads to an uper bound on the largest image, and thus an
upper bound on the instability point. From Eq. (3), the
relevant quantity that is constrained is the combination
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FIG. 9: Two-dimensional marginalised posterior probability
distribution for the initial fields values. The marginalisation
is over the initial field velocities and all the potential param-
eters. The shading is proportional to the probability density
value. The inflationary valley is still visible around ψi = 0
and the posterior takes non-vanishing values everywhere in
the (φi, ψi) plane.

√
2ν2/M = φc.
We have plotted in Fig. 12 the marginal posterior dis-

tribution associated with the parameter log(
√

2ν2/M),
and at 95% of confidence level, we find

√
2ν2

M
< 4 × 10−3. (20)

The parameter µ is the other constraint that the
MCMC exibits. It is explained by the possible appari-
tion of slow-roll violations in the valley, when µ becomes
too small. These slow-roll violations prevent the genera-
tion of an inflationary phase if the trajectory climbs too
high in the valley. At a two-sigma level, one has

µ

mpl

> 1.7 . (21)

This lower limit is equivalent to the upper limit on m
observed in [22]: a large inflaton mass induces a fast roll
evolution and requires super-planckian initial conditions
to realize inflation in a chaotic way. Let us stress that
these constraints come only from requiring enough infla-
tion in the hybrid model whatever the initial field values,
velocities, and other potential parameters. In this re-
spect, the limits of Eqs. (20) and (21) can be considered
as “natural”.

To conclude this section, we have shown that inflation
is generic in the context of the hybrid model and we have
derived the marginalised posterior probability distribu-
tions of all the parameters such that 60 e-folds of inflation

occur. As discussed in the introduction, the original hy-
brid model under scrutiny is however a toy model known
to be disfavored by the current CMB data. In this re-
spect, one may wonder whether our results are peculiar
to this model or can be generalised to other more realis-
tic two field inflationary models. This point is addressed
in the next section in which we have performed a com-
plete study of the SUGRA F-term hybrid inflation. In
that model, the dynamics depends on only one potential
parameter; also constrained by cosmic strings formation.
The challenge will thus be to confront this constraint to
the natural bounds that can be deducted from MCMC
methods by requiring enough e-folds of inflation.

IV. PROBABILITY DISTRIBUTIONS IN

F-SUGRA INFLATION

The minimal supersymmetric versions of hybrid infla-
tion are known as the F-term and D-term inflationary
models [12, 14, 15], where the slope of the valley is gener-
ated by radiative corrections. The F-term model is com-
patible with the current CMB data since a red spectrum
of the cosmological perturbations is generic [12, 52, 53].
In addition, this model is more predictive and testable
than its non-SUSY version since it contains only one cou-
pling constant and one mass scale.

A. The model

In the following, we are analysing the space of initial
conditions and model parameters leading to enough in-
flation for the so-called F-term model based on the su-
perpotential [12]

WF
infl = κS(Φ+Φ− −M2) . (22)

The inflaton is contained in the superfield S. The Higgs
pair Φ+,Φ− is charged under a gauge group G, that is
broken at the end of inflation when the Higgs pair de-
velop a non-vanishing expectation value (vev) M . The
superpotential leads in global SUSY to a tree level po-
tential

V SUSY
tree (s, ψ) = κ2

(

M2 − ψ2

4

)2

+
1

8
κ2s2ψ2 , (23)

where the effective inflaton s and Higgs field φ can be
made real and canonically normalized [s ≡

√
2ℜ(S), φ =

2ℜ(φ+) = 2ℜ(φ−)]. The local minima of the potential at
large S provide a flat direction for the inflaton s: V0 =
κ2M4.

This tree level flat direction is lifted by two effects.
Firstly, radiative corrections are induced by the SUSY
breaking that supports inflation. In addition, if the
field values are close to the reduced Planck mass Mpl,
one should expect supergravity corrections S/Mpl to the
tree level potential. The radiative corrections along the
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FIG. 10: Marginalised posterior probability distributions for the initial field values φi and ψi. The top panels correspond to
vanishing initial velocities and fixed potential parameters, the middle ones are marginalised over velocities at fixed potential
parameters, while the lower panels are marginalised over velocities and all the potential parameters.

inflationary valley can be derived using the Coleman-
Weinberg formula [54]. They reduce to [12]

V cw
1−loop(s) =

κ4M4N
32π2

[

2 ln
s2κ2

Λ2
+ (z + 1)2 ln(1 + z−1)

+ (z − 1)2 ln(1 − z−1)
]

,

(24)

where z = s2/M2, N stands for the dimensionality of
the representations to which Φ± belong and Λ represents
a non-physical energy scale of renormalization. Realistic
values of N can be derived from the embedding of the
model in realistic SUSY Grand Unified Theories (GUT)
as shown in Ref. [25]. For example, in the case of an
embedding of the model in SUSY SO(10), Φ± belong
to the representation 16,16 or 126,126. However, as
pointed out in Ref. [55], it is possible that only some
components of Φ± take a mass correction of order M so

that effectively6 N = 2, 3. For the sake of generality, we
will assume that N can take values in the range [2, 126].
This model is also known to generically produce cosmic
strings at the end of inflation [25] and this imposes an
upper limit on the inflationary mass scale [53, 55, 56]

M . 2 × 15 GeV, κ . 7 × 10−7 126

N . (25)

Secondly, SUGRA corrections also contribute to lifting
the tree-level flat direction and will be taken into account
since the field values we are probing are not always negli-
gible compared to the Planck mass. It has been noticed in
Ref. [13] that the F-term hybrid inflation model doesn’t
suffer from the η-problem only when the Kähler potential

6 This depends on the mass spectrum of the assumed GUT model.



12

-3.0 -2.5 -2.0 -1.5 -1.0

logHM � mpl L

-1 0 1 2 3 4

log H Μ � mpl L

-6 -4 -2 0 2

logH Υ2 � mpl
2 L

FIG. 11: Marginalised probability distribution for the poten-
tial parameters of the hybrid model. Notice that some of the
bound are set by the prior choices.

is (close to) minimal7

K ≃ |S|2 + |Φ+|2 + |Φ−|2 , (26)

which is what we assume in the following. In terms of the
canonically normalized effective inflaton s and waterfall

7 We will restrict ourselves to minimal SUGRA corrections, ne-
glecting SUSY breaking soft terms and the non-renormalizable
corrections to the superpotential (see [52, 53, 55] for an analysis
of their effects).

-4 -3 -2 -1 0 1

log
2 Υ2

M mpl

FIG. 12: Prior independent marginalised posterior probability
distribution for the parameter ν2/(MMpl). This parameter
fixes the position of the instability point and a too large value
may prevent inflation from occurring in the sub-planckian
field regime [see Eq. 20)].

fields ψ, the SUGRA corrected potential now reads

V sugra
tree (s, ψ) = κ2 exp

(

s2 + ψ2

2M2
pl

)

×
{

(

ψ2

4
−M2

)2
(

1 − s2

2M2
pl

+
s4

4M4
pl

)

+
s2ψ2

4

[

1 +
1

M2
pl

(

1

4
ψ2 −M2

)

]2}

.

(27)

The dynamics along the inflationary valley is driven by
the radiative corrections and by the SUGRA corrections.
The radiative corrections play a major role in the last e-
folds of inflation (thereby generating the observable spec-
tral index), whereas most of the dynamics takes actually
place for field values dominated by the SUGRA correc-
tions. We have calculated the amplitudes for both correc-
tions and found that only at the end of the inflationary
potential (for s ∈ [M, 8M ] if N = 3 and s ∈ [M, 3.5M ] if
N = 126), the radiative corrections may dominate over
the SUGRA corrections. In the present work, the regions
of the parameter space leading to inflation do not depend
on the very last part of the field evolution: as soon as
60 e-folds are obtained, the initial conditions are consid-
ered successful and this generically occurs in the valley
at larger field values. Outside the inflationary valley, we
therefore expect the tree level dynamics to dominate over
the radiative corrections, especially for small coupling κ.
There also, in addition to the tree level, at large fields,
SUGRA corrections are expected to be important.

Resulting of these considerations, we have neglected
radiative corrections and used for our study below the
potential of Eq. (27).
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FIG. 13: Mean number of e-folds (truncated at 100) obtained
from 5122 initial field values (ψi/Mpl, si/Mpl) for the SUGRA
F-term model. The initial field velocities are assumed to van-
ish and the potential parameter is fixed at M = 10−2mpl.
As for the original hybrid model, the mean is computed from
20482 trajectories (see Fig. 1). The set of initial field values
producing enough inflation is again of dimension two with a
fractal boundary.

B. Fractal initial field values

The analysis of the SUGRA F-term model of inflation
has been conducted along the lines described in Sec. II
and Sec. III. We have first verified that, at fixed potential
parameter M and vanishing initial velocities, the set of
initial field values S defined by Eq. (7) is two-dimensional
with a fractal boundary. In Fig. 13, we have represented
the set S of successful initial field values for the mass
scale M = 10−2mpl. Notice that the coupling constant
κ being an overall factor, it doesn’t impact the dynamics
of the fields. Our study is therefore valid for any value
of κ and of the dimensionality of the Higgs field N , since
the relationship M(κ) depends only on N .

As for the original hybrid model, the highest Lyapunov
exponent for the successful initial field values is negative
and the set S is non-chaotic. Outside of S, trajectories
have positive Lyapunov exponents and exhibit chaos.

For vanishing initial velocities, we have reported in Ta-
ble I the area occupied by the set S in the plane (si, ψi)
for various section along the potential parameterM . Like
for the original hybrid model, we recover a significant pro-
portion of successful initial field values outside the valley.
This result holds even for M ≪ 1 though at small M, the

Values of M Area of S (%)

M = 10−1 mpl 0 (exact)

M = 10−2 mpl 12.9 ± 0.1

M = 10−3mpl 12.0 ± 0.3

M = 10−4mpl 10.3 ± 0.5

TABLE I: Percentage of successful initial field values, at van-
ishing initial velocities, for various values of the potential pa-
rameter M . The error bars come from the finite numerical
precision, which decreases with M .
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FIG. 14: Fraction of initial field values in a δ-sized box
intercepting the set S as a function of δ for the SUGRA
F-term model. The potential parameter has been fixed to
M = 10−2mpl. The box-counting dimension of boundary of
S is given by the power law behaviour for small δ and found
to be DB ≃ 1.5.

potential becomes very flat and the number of oscilla-
tions of the system before being trapped in the inflation-
ary valley can exceed 103. Simulations become therefore
more time-consuming and error-bars in Tab. I increase.
Reducing M also reduces the typical size of structures in
the plane (si, ψi), which evolves from Fig. 13 to a more
intricated space of thinner successfull IC. As suggested
by the Tab. I, we will see below that this doesn’t affect
the probability of getting inflation by starting the field
evolution outside the valley.

Concerning the fractal properties of S, we have ap-
plied the same method as in Sec. II E 1 to compute the
box-counting dimensions of S and its boundary. As ex-
pected, we recover that S is of box-counting dimension
two whereas the function f(δ) for its boundary is repre-
sented in Fig. 14. We obtain that, as in the non-SUSY
case, the boundaries are fractal with dimension

DB ≃ 1.5 . (28)

These results allow us to use the usual Lebesgue mea-
sure to define the probability distribution over the whole
parameter space.
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FIG. 15: Marginalised posterior probability distributions for
the initial field values (upper panels) and the initial velocities,
modulus v and angle θ. The F-SUGRA inflationary valley
has a slightly higher probability density around ψ = 0 but is
extremely localised: as a result, inflation is more probable by
starting out of the valley.

C. MCMC on the initial field values, velocities and

the potential parameter

As already mentioned, there is only one potential pa-
rameter M in F-term SUGRA model that may influence
the two field dynamics. The goal of this section is to
evaluate the probability distributions of the initial field
values, velocities and of M such that inflation lasts more
than 60 e-folds. As for the original hybrid model, we have
performed an MCMC analysis on the five-dimensional
parameter space defined by si, ψi, v, θ and M where

ds

dN

∣

∣

∣

∣

i

= v cos θ,
dψ

dN

∣

∣

∣

∣

i

= v sin θ. (29)

We have chosen the same sub-planckian priors for the
initial field values and initial velocities than in Sec. III.
Since the order of magnitude of M is not known, we have
chosen a flat prior on

− 2 < log
M

Mpl

< 0. (30)

The lower limit on M is motivated by computational
rather than physical considerations. The resulting
marginalised posterior probability distributions for each
of the parameters are represented in Fig. 15. The chains
contain 400000 samples producing an estimated error on
the posteriors around a few percent (from the variance
of the mean values between different chains).

The posteriors for the field velocities are flat show-
ing that all values are equiprobable to produce inflation.
The initial field values are also flat, up to a sharp peak
of higher probability density around ψ = 0 correspond-
ing to the inflationary valley. As for the hybrid model
of Sec. II, after integration of these curves over the field

−2 −1.9 −1.8 −1.7 −1.6 −1.5 −1.4 −1.3 −1.2 −1.1 −1

log(M/M
pl

)

FIG. 16: Marginalised posterior probability distribution of
the mass scale M of F-SUGRA inflation.

values, inflation is clearly more probable by starting out
of the valley. Finally, only the posterior probability dis-
tribution of logM is strongly suppressed at large values.
We find, at 95% of confidence level (see Fig. 16).

log(M) < −1.33 . (31)

As for the original hybrid model, this limit comes from
the condition of existence of a sub-planckian inflationary
valley which is related to the position of the instability
point. Indeed, from Eq. (27), one finds

dV SUGRA
tree

dψ

∣

∣

∣

∣

ψ=0

= 0 ⇒ s = sc = ± M

Mpl

√

√

√

√1 −
√

1 − 4
M4

M4
pl

,

(32)
where we have kept only the sub-planckian solutions.
This expression shows that there is an inflationary valley
at ψ = 0 only for M/Mpl < 1/

√
2, and for field values

such that s > sc. As a result of the two-field dynam-
ics, we find that a valley supporting at least 60 e-folds
of inflation require the more stringent bound of Eq. (31).
Let us finally notice that the most probable values we
obtain on M to get inflation in Eq. (31) are compati-
ble with the existing upper bound coming from cosmic
strings constraint: M . 10−3mpl (see Ref. [53, 56]).

V. CONCLUSION

In this paper, by numerically solving the two-field dy-
namics of the original hybrid model and its SUGRA F-
term version, we have shown that 60 e-folds of inflation
is a generic outcome. Contrary to what is usually as-
sumed, one does not need to fine-tune the initial field
values around ψ = 0 to get inflation. In fact, the infla-
tionary valley, indeed of small extension in field space, is
one of the three dynamical attractors of the differential
system given by the Einstein and Klein–Gordon equa-
tions in a FLRW universe (the others being the minima
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of the potential). As a result, any trajectory will end
in one of these three attractors and the set S of suc-
cessful initial conditions therefore belongs to the basin
of attraction of the inflationary valley. We have shown
that such a set is connected and of dimension two while
exhibiting a fractal boundary of dimension greater than
one. Moreover, it occupies a significant fraction of the
sub-planckian field regime. In order to quantify what are
the natural field and parameter values to get inflation for
both of these models, we have introduced a probability
measure and performed a MCMC exploration of the full
parameter space. It appears that the inflationary out-
come is independent of the initial field velocities, is more
probable when starting out of the inflationary valley, and
favours some “natural” ranges for the potential param-
eter values that cover many order of magnitudes. The
only constraints being that the inflationary valley should
at least exist.

Let us notice that the posterior probability distribu-
tions we have derived are not sensitive on the fractal
property of the boundary of S. This is expected since,
even fractal, the boundary remains of null measure com-
pared to S. However, its existence may have implica-
tions in the context of chaotic eternal inflation [57, 58].
Indeed, the boundary itself leads to inflation and spawn

the whole field space such that its mere existence im-
plies that inflationary bubbles starting from almost all
sub-planckian field values should be produced. Here, we
have been focused to the classical evolution only and our
prior probability distributions have been motivated by
theoretical prejudice (flat sub-planckian prior). In the
context of chaotic eternal inflation, our results are how-
ever still applicable provided one uses the adequate prior
probabilities which are the outcome of the super-Hubble
chaotic structure of the universe [59]. Provided the eter-
nal scenario does not correlate with the classical dynam-
ics, one should simply factorise the new priors with the
posteriors presented here to obtain the relevant posterior
probability distributions in this context.
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