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Abstract. We present several results on the geometry of the quantum projective plane.

They include: explicit generators for the K-theory and the K-homology; a real calcu-

lus with a Hodge star operator; anti-selfdual connections on line bundles with explicit

computation of the corresponding ‘classical’ characteristic classes (via Fredholm mod-

ules); complete diagonalization of gauged Laplacians on these line bundles; ‘quantum’

characteristic classes via equivariant K-theory and q-indices.
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1. Introduction

Quantum spaces are revealing rich geometrical structures and are the subject of intense

research activities. In this paper we present a construction of monopoles on the quantum

projective plane CP2
q. By a monopole we mean a line bundle over CP2

q, that is to say

a ‘rank 1’ (in a sense to be made precise) finitely generated projective module over the

coordinate algebra A(CP2
q), endowed with a connection having anti-selfdual curvature;

these are described in Sect. 6. Necessary for the anti-selfduality was a differential calculus

and a Hodge star operators on forms. In Sect. 5 we give a full differential ∗-calculus on

CP2
q with an Hodge star operator which satisfies all the required properties.

Both the K-theory and the K-homology groups of the quantum projective plane are

known: K0(A(CP2
q)) ' Z3 ' K0(A(CP2

q)) while K1(A(CP2
q)) = 0 = K1(A(CP2

q)). Thus,

a finitely generated projective module overA(CP2
q) is uniquely identified by three integers.

Hermitian vector bundles over a homogeneous space – actually the corresponding mod-

ules of sections – can be equivalently described as vector valued functions over the total

space which are equivariant for a suitable action of the structure group: that is to say,

one thinks of sections as ’equivariant maps’. This construction still makes sense for quan-

tum homogeneous spaces. In Sect. 3 we describe general Hermitian ‘vector bundles’ on

CP2
q as modules of equivariant elements; we then specialize to line bundles, for which we

construct explicit projections (they are all finitely generated projective modules). The

generators of the K-homology are obtained in Sect. 4 where we also compute their pair-

ings with the line bundle projections; the resulting numbers are interpreted as the rank

(always 1 for line bundles) and 1st and 2nd Chern numbers of the underlying ‘vector

bundles’. In particular, we identify three natural generators for the K-theory of CP2
q and

three dual generators for its K-homology.

Classically, topological invariants are computed by integrating powers of the curva-

ture of a connection, and the result depends only on the class of the vector bundle, and

not on the chosen connection. In order to integrate the curvature of a connection on

the quantum projective space CP2
q one needs ‘twisted integrals’; moreover, one does not

gets integers any longer but rather q-analogues of integers. In Sect. 7 we give some gen-

eral result on equivariant K-theory and K-homology and corresponding Chern-Connes
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characters, and then focus on CP2
q with equivariance under the action of the symmetry

algebra Uq(su(3)). In particular, we construct twisted cocycles that, when paired with

the line bundle projections, give q-analogues of monopole and instanton numbers of the

line bundle. As a corollary, we obtain that when the deformation parameter q is tran-

scendental the equivariant K0-group has (at least) a countable number of generators,

K
Uq(su(3))
0 (A(CP2

q)) ⊃ Z∞.

After this introduction, we start in Sect. 2 with some basic results on the geometry of

the quantum projective plane CP2
q and its symmetry algebra Uq(su(3)).

One of our motivation for the present work was to study quantum field theories on

noncommutative spaces. The construction of monopoles on CP2
q that we present here

(instanton configurations on CP2
q will be reported in [10]) is a step in this direction. In

this spirit, in Sect. 6.2 we study gauged Laplacian operators acting on modules of sections

of monopole bundles. Their complete diagonalization is made possible by the presence of

many symmetries. From the point of view of physics, such an operator would describe

‘excitations moving on the quantum projective space’ in the field of a magnetic monopole.

In the limit q → 1 it provides a model of quantum Hall effect on the projective plane.

Notations.

Throughout this paper the real deformation parameter will be taken to be 0 < q < 1.

The symbol [x] denotes the q-analogue of x ∈ C,

[x] :=
qx − q−x

q − q−1
;

For n a positive integer the q-factorial is [n]! := [n][n− 1] . . . [2][1], with [0]! := 1 and the

q-binomial is given by [
n

m

]
:=

[n]!

[m]![n−m]!
.

For convenience we define the q-trinomial coefficient as

[j, k, l]! = q−(jk+kl+lj)
[j + k + l]!

[j]![k]![l]!
. (1.1)

We shall use Sweedler notation for coproducts ∆(h) = h(1)⊗h(2) with a sum understood.

Finally, all algebras will be unital ∗-algebras over C, and their representations will be

implicitly assumed to be unital ∗-representations.

2. The quantum projective plane and its symmetries

We recall from [7] some results on the geometry of the quantum projective plane.

2.1. The algebra of ‘infinitesimal’ symmetries.

Let Uq(su(3)) denote the Hopf ∗-algebra generated by elements {Ki, K
−1
i , Ei, Fi}i=1,2,

with ∗-algebra structure Ki = K∗i and Fi = E∗i , and relations

[Ki, Kj] = 0 , [Ei, Fi] =
K2
i −K−2i
q − q−1

, [Ei, Fj] = 0 if i 6= j ,

KiEiK
−1
i = qEi , KiEjK

−1
i = q−1/2Ej if i 6= j ,
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and (Serre relations)

E2
iEj − (q + q−1)EiEjEi + EjE

2
i = 0 ∀ i 6= j . (2.1)

Additional relations for the Fi’s are obtained from the above ones by taking their ∗-
conjugated. Our Uq(su(3)) is the ‘compact’ real form of the Hopf algebra denoted

Ŭq(sl(3)) in Sect. 6.1.2 of [13]. With the q-commutator defined as

[a, b]q := ab− q−1ba ,

relations (2.1) can be rewritten in the form [Ei, [Ej, Ei]q]q = 0 or [[Ei, Ej]q, Ei]q = 0 .

Counit, antipode and coproduct are given by

ε(Ki) = 1 , ε(Ei) = ε(Fi) = 0 ,

S(Ki) = K−1i , S(Ei) = −qEi , S(Fi) = −q−1Fi ,

∆(Ki) = Ki ⊗Ki , ∆(Ei) = Ei ⊗Ki +K−1i ⊗ Ei , ∆(Fi) = Fi ⊗Ki +K−1i ⊗ Fi ,

for i = 1, 2. An easy check on generators gives for the square of the antipode:

S2(h) = (K1K2)
4 h (K1K2)

−4 , for all h ∈ Uq(su(3)) . (2.2)

For obvious reasons we denote Uq(su(2)) the Hopf ∗-subalgebra of Uq(su(3)) generated

by the elements {K1, K
−1
1 , E1, F1}, while Uq(u(2)) denotes the Hopf ∗-subalgebra gener-

ated by Uq(su(2)) and L = K1K
2
2 and L−1 = (K1K

2
2)−1. We shall also use the notation

Uq(u(1)) for the Hopf ∗-subalgebra generated by L and L−1.

We need finite-dimensional highest weight irreducible representations for which the Ki’s

are positive operators; these are all the finite-dimensional irreducible representations that

are well defined for q → 1. For Uq(su(3)) these representation are labelled by a pair of

non-negative integers (n1, n2) ∈ N2. Basis vectors of the representation (n1, n2) carry a

multi-index j = (j1, j2,m) satisfying the constraints

ji = 0, 1, 2, . . . , ni , i = 1, 2, and 1
2
(j1 + j2)− |m| ∈ N . (2.3)

The representation (n1, n2) is conveniently described as follows. We let |↑〉 denote its

highest weight vector, i.e. Ei |↑〉 = 0 and Ki |↑〉 = qni/2 |↑〉 for i = 1, 2, and we let

Xn1,n2

i ∈ Uq(su(3)) be the element

Xn1,n2

j1,j2,m
:= Nn1,n2

j1,j2,m

n1−j1∑
k=0

q−k(j1+j2+k+1)

[j1 + j2 + k + 1]!

[
n1 − j1
k

]
F

1
2
(j1+j2)−m+k

1 [F2, F1]
n1−j1−k
q F j2+k

2 , (2.4)

with

Nn1,n2

j1,j2,m
:=
√

[j1 + j2 + 1]

√
[ j1+j2

2
+m]!

[ j1+j2
2
−m]!

[n2 − j2]![j1]!
[n1 − j1]![j2]!

[n1 + j2 + 1]![n2 + j1 + 1]!

[n1]![n2]![n1 + n2 + 1]!
.

Then, the vector space Vn1,n2 underlying the representation is spanned by the vectors

|i〉 := Xn1,n2

i |↑〉. Using the commutation rules of Uq(su(3)) one proves that in this basis

the representation is given by (cf. [7, Sect. 2])

K1 |j1, j2,m〉 := qm |j1, j2,m〉 ,
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K2 |j1, j2,m〉 := q
3
4
(j1−j2)+ 1

2
(n2−n1−m) |j1, j2,m〉 ,

E1 |j1, j2,m〉 :=
√

[1
2
(j1 + j2)−m][1

2
(j1 + j2) +m+ 1] |j1, j2,m+ 1〉 ,

E2 |j1, j2,m〉 :=
√

[1
2
(j1 + j2)−m+ 1]Aj1,j2 |j1 + 1, j2,m− 1

2
〉

+
√

[1
2
(j1 + j2) +m]Bj1,j2 |j1, j2 − 1,m− 1

2
〉 ,

with Fi the transpose of Ei, and with coefficients given by

Aj1,j2 :=

√
[n1 − j1][n2 + j1 + 2][j1 + 1]

[j1 + j2 + 1][j1 + j2 + 2]
,

Bj1,j2 :=


√

[n1 + j2 + 1][n2 − j2 + 1][j2]

[j1 + j2][j1 + j2 + 1]
if j1 + j2 6= 0 ,

1 if j1 + j2 = 0 .

It is a ∗-representation for the inner product 〈i|i′〉 = δi,i′ . With our notation, the highest

weight vector is |↑〉 =
∣∣n1, 0,

1
2
n1

〉
. The representation ρn1,n2 : Uq(su(3)) → End(Vn1,n2),

has matrix elements ρn1,n2

i,j (h) :=
〈
i|h|j

〉
.

Since L = K1K
2
2 commutes with all elements of Uq(su(2)), any irreducible representa-

tion σ`,N of Uq(u(2)) is the product of a representation of Uq(su(2)) (these are labelled

by the ‘spin’ ` with ` ∈ 1
2
N), and a representation of charge N of the Hopf ∗-subalgebra

Uq(u(1)) generated by L, that is σ`,N(L) = qN . Restricting the representation ρn1,n2 of

Uq(su(3)) to Uq(u(2)) we get:

ρn1,n2
∣∣
Uq(u(2))

'
n1+n2⊕
2`=0

min{`,n1−`}⊕
N+n1−n2

3
=max{−`,`−n2}

σ`,N ,

and thus the representations σ`,N of Uq(u(2)) appearing as components in at least one

representation of Uq(su(3)) are only those for which `+ 1
3
N ∈ 1

3
Z, or equivalently `+N ∈ Z

(since 2` ∈ Z).

For later use (in Sect. 6.2) we need the Casimir operator; it is the operator given (in a

slightly enlarged algebra, cf. [7]) by

Cq = (q − q−1)−2
{

(H +H−1)
(
(qK1K2)

2 + (qK1K2)
−2)+H2 +H−2 − 6

}
+
(
qHK2

2 + q−1H−1K−22

)
F1E1 +

(
qH−1K2

1 + q−1HK−21

)
F2E2

+ qH[F2, F1]q[E1, E2]q + qH−1[F1, F2]q[E2, E1]q , (2.5)

with H := (K1K
−1
2 )2/3. In the representation ρn1,n2 it has spectrum

Cq
∣∣
Vn1,n2

= [1
3
(n1 − n2)]

2 + [1
3
(2n1 + n2) + 1]2 + [1

3
(n1 + 2n2) + 1]2 . (2.6)
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2.2. The quantum SU(3) group.

The deformation A(SUq(3)) of the Hopf ∗-algebra of representative functions of SU(3) is

given in [18] (see also [13], Sect. 9.2). As a ∗-algebra it is generated by elements uij, with

i, j = 1, 2, 3 , having commutation relations

uiku
j
k = qujku

i
k , uki u

k
j = qukju

k
i , ∀ i < j ,

[uil, u
j
k] = 0 , [uik, u

j
l ] = (q − q−1)uilu

j
k , ∀ i < j, k < l .

There is also a cubic relation∑
π∈S3

(−q)||π||u1π(1)u2π(2)u3π(3) = 1 ,

with the sum over all permutations π of the three elements {1, 2, 3} and ||π|| is the length

of π. The ∗-structure is given by

(uij)
∗ = (−q)j−i(uk1l1 u

k2
l2
− quk1l2 u

k2
l1

) ,

with {k1, k2} = {1, 2, 3} r {i} and {l1, l2} = {1, 2, 3} r {j}, as ordered sets. Thus for

example (u11)
∗ = u22u

3
3 − qu23u32. Coproduct, counit and antipode are the standard ones:

∆(uij) =
∑

k
uik ⊗ ukj , ε(uij) = δij , S(uij) = (uji )

∗ .

There is a non-degenerate dual pairing (cf. [13], Sect. 9.4)

〈 , 〉 : Uq(su(3))×A(SUq(3))→ C ,

which allows one to define left . and right / canonical actions of Uq(su(3)) on A(SUq(3)),

h . a = a(1)
〈
h, a(2)

〉
, and a / h =

〈
h, a(1)

〉
a(2).

By using the counit on these equations one gets that

〈h, a〉 = ε(h . a) = ε(a / h), (2.7)

for all h ∈ Uq(su(3)) and a ∈ A(SUq(3)). Also, it is known that the left (resp. right)

canonical action is dual to the right (resp. left) regular action. For the case at hand this

is the statement that

〈xh y, a〉 =
〈
x, a(1)

〉 〈
h, a(2)

〉 〈
y, a(3)

〉
= 〈h, y . a / x〉 , (2.8)

for all x, y, h ∈ Uq(su(3)) and a ∈ A(SUq(3)). On generators the actions are given by

Ki . u
j
k = q

1
2
(δi+1,k−δi,k)ujk , Ei . u

j
k = δi,ku

j
i+1 , Fi . u

j
k = δi+1,ku

j
i ,

ujk / Ki = q
1
2
(δi+1,j−δi,j)ujk , ujk / Ei = δi+1,ju

i
k , ujk / Fi = δi,ju

i+1
k . (2.9)

By the Peter-Weyl theorem [13] a linear basis {tn1,n2

i,j } of A(SUq(3)) is defined implicitly

by

〈h, tn1,n2

i,j 〉 = ρn1,n2

i,j (h) , ∀ h ∈ Uq(su(3)) .
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From the definition it follows that ∆(tn1,n2

i,j ) =
∑

k t
n1,n2

i,k ⊗ tn1,n2

k,j and (tn1,n2

i,j )∗ = S(tn1,n2

j,i )

(that is, tn1,n2 is a unitary matrix). Also, this matrix transforms according to the repre-

sentation ρn1,n2 under the left/right canonical action:

h . tn1,n2

i,j =
∑

k
tn1,n2

i,k ρn1,n2

k,j (h) , tn1,n2

i,j / h =
∑

k
ρn1,n2

i,k (h)tn1,n2

k,j , (2.10)

for all h ∈ Uq(su(3)). For (n1, n2) = (0, 1) the elements tn1,n2

i,j are just the generators uij
(properly reordered). Let us describe them in general.

Proposition 2.1. We have

tn1,n2

i,j = Xn1,n2

j . {(u11)∗}n1(u33)
n2 / (Xn1,n2

i )∗ , (2.11)

where Xn1,n2

i are given in (2.4).

Proof. By the Poincaré-Birkhoff-Witt theorem [13, Thm. 6.24′], the vector space Uq(su(3))

is spanned by elements of the form h = f Kr
1K

s
2 e, where e is a product of Ei’s and f is

a product of Fi’s. Since Ei |↑〉 = 〈↑|Fi = 0, it follows that ρn1,n2

↑,↑ (h) = 0 unless e and f

have degree zero. For e = f = 1 one gets ρn1,n2

↑,↑ (h) = q
1
2
(rn1+sn2), since Ki |↑〉 = qni/2 |↑〉.

Let us define un1,n2

↑,↑ := {(u11)∗}n1(u33)
n2 . From the explicit formulæ (2.9) it follows

that Ei . u
n1,n2

↑,↑ = 0 = un1,n2

↑,↑ / Fi. Thus, by using (2.7),
〈
fKr

1K
s
2e, u

n1,n2

↑,↑
〉

= 0 unless

e = f = 1. When e = f = 1, from Ki . u
n1,n2

↑,↑ = un1,n2

↑,↑ / Ki = qni/2un1,n2

↑,↑ it derives that〈
Kr

1K
s
2 , t

n1,n2

↑,↑
〉

= q
1
2
(rn1+sn2). Hence,

〈
h, un1,n2

↑,↑
〉

= ρn1,n2

↑,↑ (h) for all h ∈ Uq(su(3)). But

this implies that

〈h, tn1,n2

i,j 〉 = ρn1,n2

i,j (h) = 〈i|h|j〉 = 〈 ↑ |(Xn1,n2

i )∗hXn1,n2

j |↑ 〉

= ρn1,n2

↑,↑ ((Xn1,n2

i )∗hXn1,n2

j ) = 〈(Xn1,n2

i )∗hXn1,n2

j , un1,n2

↑,↑ 〉

= 〈h,Xn1,n2

j . un1,n2

↑,↑ / (Xn1,n2

i )∗〉 ,

using the identity (2.8). Thus tn1,n2

i,j = Xn1,n2

j . un1,n2

↑,↑ / (Xn1,n2

i )∗, which is just (2.11). �

2.3. The quantum 5-sphere and the quantum projective plane.

The most natural way to arrive to CP2
q is via the 5-sphere S5

q . We shall therefore start

from the algebra of coordinate functions on the latter, defined as

A(S5
q ) :=

{
a ∈ A(SUq(3))

∣∣ a / h = ε(h)a , ∀ h ∈ Uq(su(2))
}

and, as such, it is the ∗-subalgebra of A(SUq(3)) generated by elements {u3i , i = 1, . . . , 3}
of the last ‘row’. In [20] it is proved to be isomorphic, through the identification zi = u3i ,

to the abstract ∗-algebra with generators zi, z
∗
i , i = 1, 2, 3, and relations:

zizj = qzjzi ∀ i < j , z∗i zj = qzjz
∗
i ∀ i 6= j ,

[z∗1 , z1] = 0 , [z∗2 , z2] = (1− q2)z1z∗1 , [z∗3 , z3] = (1− q2)(z1z∗1 + z2z
∗
2) ,

z1z
∗
1 + z2z

∗
2 + z3z

∗
3 = 1 .

These relations will be useful later on.
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The ∗-algebra A(CP2
q) of coordinate functions on the quantum projective plane CP2

q is

the fixed point subalgebra of A(SUq(3)) for the right action of Uq(u(2)),

A(CP2
q) :=

{
a ∈ A(SUq(3))

∣∣ a / h = ε(h)a , ∀ h ∈ Uq(u(2))
}

∼=
{
a ∈ A(S5

q )
∣∣ a / K1K

2
2 = a

}
. (2.12)

Clearly, both A(S5
q ) and A(CP2

q) are left Uq(su(3))-module ∗-algebras.

The ∗-algebra A(CP2
q) is generated by elements pij := z∗i zj = (u3i )

∗u3j = p∗ji and from

the relations of A(S5
q ) one gets analogous commutation relations for A(CP2

q):

pijpkl = qsign(i−k)+sign(l−j) pklpij if i 6= l and j 6= k ,

pijpjk = qsign(i−j)+sign(k−j)+1 pjkpij − (1− q2)
∑

l<j pilplk if i 6= k ,

pijpji = q2sign(i−j)pjipij + (1− q2)
(∑

l<i q
2sign(i−j)pjlplj −

∑
l<j pilpli

)
if i 6= j ,

with sign(0) := 0. The elements pij are the matrix entries of a projection P = (pij), that

is P 2 = P = P ∗. This projection has q-trace:

Trq(P ) := q4p11 + q2p22 + p33 = 1.

This projection gives the ‘tautological line bundle’ on CP2
q; general line bundles will be

discussed in Sect. 3.2 below.

Remark 2.2. The two equalities in (2.12) give algebra inclusions A(CP2
q) ↪→ A(SUq(3))

and A(CP2
q) ↪→ A(S5

q ). These could be seen as ‘noncommutative principal bundles’ with

‘structure Hopf algebra’ Uq(2) and U(1) respectively. Indeed, the action of Uq(u(2)) on

A(SUq(3)) dualizes to a coaction of Uq(2) for which A(CP2
q) is the algebra of coinvariants.

Analogously, the action of Uq(u(1)) on A(S5
q ) dualizes to a coaction of Uq(1) ' U(1) for

which again A(CP2
q) is the algebra of coinvariants. These are noncommutative analogues

of the classical U(2)-principal bundle SU(3)→ CP2 and U(1)-principal bundle S5 → CP2.

3. Hermitian vector bundles

On the manifold CP2
q we shall select suitable ‘monopole’ bundles. These will come as

associated bundles to the principal fibrations on CP2
q mentioned in the previous section.

We start with the general construction of associated bundles: the starting idea is to define

their modules of ‘sections’ as equivariant vector valued functions on SUq(3).

3.1. Hermitian bundles of any rank.

With any n-dimensional ∗-representation σ : Uq(u(2)) → End(Cn), one associates an

A(CP2
q)-bimodule of equivariant elements:

M(σ) = A(SUq(3))�σCn

:=
{
v ∈ A(SUq(3))n

∣∣ σ(S(h(1)))(v / h(2)) = ε(h)v ; ∀ h ∈ Uq(u(2))
}
,

where v = (v1, . . . , vn)t is a column vector and row by column multiplication is implied.

It is easy to see that M(σ) is also a left A(CP2
q) o Uq(su(3))-module. In particular,
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A(CP2
q) = M(ε) is the module associated to the trivial representation given by the

counit. A natural A(CP2
q)-valued Hermitian structure on M(σ) is defined by

M(σ)×M(σ)→ A(CP2
q) , (v, v′) 7→ v† · v′ , (3.1)

where v† is the conjugate transpose of v and again one multiplies row by column. Indeed,

if v, v′ ∈M(σ), for h ∈ Uq(u(2)), and denoting t := S(h)∗, we have that

v† · v′ / h = (v† / h(1))(v
′ / h(2)) = (v† / h(1))σ(h(2))σ(S(h(3)))(v

′ / h(4))

= (v† / h(1))σ(h(2))ε(h(3))v
′ =
{
σ(h∗(2))v / S(h(1))

∗}∗v′
=
{
σ(S(t(1)))v / t(2))

}∗
v′ = ε(t)∗v† · v′ = ε(h) v† · v′ ;

thus v† ·v′ ∈ A(CP2
q) as it should be. We think of each M(σ) endowed with this Hermitian

structure as the module of sections of an equivariant ‘Hermitian vector bundle’ over CP2
q.

Remark 3.1. Composing the Hermitian structure with (the restriction to A(CP2
q) of)

the Haar functional ϕ : A(SUq(3))→ C, we get a non-degenerate C-valued inner product

on M(σ), 〈v, v′〉 := ϕ(v† · v′). This will be used later on in Sect. 5.3 when defining a

Hodge operator on forms and gauged Laplacian operators on modules of sections.

Clearly M(σ1) ⊕ M(σ2) ' M(σ1 ⊕ σ2) for any pair of representations σ1, σ2. We

have also an inclusion M(σ1) ⊗A(CP2
q)
M(σ2) ⊂ M(σ), where σ := σ1 ⊗ σ2 is the Hopf

tensor product of the two representations. Indeed, for v = (v1, . . . , vn)t ∈ M(σ1) and

v′ = (v′1, . . . , v
′
n′)

t ∈M(σ2), the product w = v ⊗A(CP2
q)
v′ satisfies

σ(S(h(1))) · (w / h(2)) = σ1(S(h(1))(1))(v / h(2)(1))⊗A(CP2
q)
σ2(S(h(1))(2))(v

′ / h(2)(2))

= σ1(S(h(2)))(v / h(3))⊗A(CP2
q)
σ2(S(h(1)))(v

′ / h(4))

= ε(h(2))v ⊗A(CP2
q)
σ2(S(h(1)))(v

′ / h(3))

= v ⊗A(CP2
q)
σ2(S(h(1)))(v

′ / h(2))

= ε(h)v ⊗A(CP2
q)
v′ = ε(h)w ,

where we used anti-comultiplicativity of the antipode,

S(h)(1) ⊗ S(h)(2) = S(h(2) ⊗ h(1)) .

Thus, w ∈M(σ). The inclusion is an isometry for the natural inner product〈
v1 ⊗A(CP2

q)
v2, v

′
1 ⊗A(CP2

q)
v′2
〉

= 〈v1, v′1〉 〈v2, v′2〉

on M(σ1)⊗A(CP2
q)
M(σ2).

For the representations discussed at the end of Sect. 2.1, σ`,N : Uq(u(2))→ End(C2`+1),

with ` ∈ 1
2
N and ` + N ∈ Z, we denote Σ`,N := M(σ`,N). All these Σ`,N are finitely-

generated and projective as one sided (i.e. both as left or right) A(CP2
q)-modules. Now,

since there always exists an irreducible representation ρn1,n2 of Uq(su(3)) containing σ`,N as

a summand, and since M(σ`,N) is a direct summand (as a bimodule) in the corresponding

bimodule M(ρn1,n2|Uq(u(2))), to establish the statement it is enough to show that all the
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M(ρn1,n2|Uq(u(2))) are free both as left and right (but not as bimodules!) A(CP2
q)-modules.

But this is easy; indeed, as left A(CP2
q)-modules, we have the following isomorphism

φ : A(CP2
q)

dim ρn1,n2 →M(ρn1,n2|Uq(u(2))) , φ(a)i :=
∑

jajt
n1,n2

i,j ,

φ−1 : M(ρn1,n2|Uq(u(2)))→ A(CP2
q)

dim ρn1,n2 , φ−1(v)i :=
∑

jvj(t
n1,n2

j,i )∗ ,

where tn1,n2

i,j ∈ A(SUq(3)) are the elements defined in (2.11). The maps φ and φ−1 are

well defined from (2.10); and clearly, they are left A(CP2
q)-module maps. That they are

one the inverse of the other follows from the unitarity of the matrix tn1,n2 .

Similarly, as right A(CP2
q)-modules we have the following isomorphism

φ′ : A(CP2
q)

dim ρn1,n2 →M(ρn1,n2|Uq(u(2))) , φ′(a)i :=
∑

jt
n1,n2

i,j aj ,

φ′−1 : M(ρn1,n2|Uq(u(2)))→ A(CP2
q)

dim ρn1,n2 , φ′−1(v)i :=
∑

j(t
n1,n2

j,i )∗vj .

3.2. Line bundles.

In the construction of the vector bundles over CP2
q we have in particular Σ0,0 = A(CP2

q).

Moreover Σ0,N are ‘sections’ of ‘line bundles’; before we discuss them in more details in

this section, we note that they can equivalently be obtained out of the sphere S5
q :

Σ0,N '
{
η ∈ A(S5

q )
∣∣ η / K1K

2
2 = qNη

}
. (3.2)

We are ready to compute projections PN for the modules Σ0,N , thus realizing them as

Σ0,N ' PNA(CP2
q)
dN as right modules, and Σ0,N ' A(CP2

q)
dNP−N as left modules (notice

the ‘−’ sign; and remember that N labels representations), for a suitable integer dN .

Lemma 3.2. For N ≥ 0 we have∑
j+k+l=N

[j, k, l]!(zj1z
k
2z

l
3)(z

j
1z
k
2z

l
3)
∗ = 1 ,∑

j+k+l=N
q2(j−l)[j, k, l]!(zj1z

k
2z

l
3)
∗(zj1z

k
2z

l
3) = q−2N ,

where [j, k, l]! are the q-trinomial coefficients in (1.1).

Proof. We seek coefficients cj,k,l(N) such that
∑

j+k+l=N cj,k,l(N)(zj1z
k
2z

l
3)(z

j
1z
k
2z

l
3)
∗ = 1.

From the algebraic identity

1 =
∑

j+k+l=N+1
cj,k,l(N + 1)(zj1z

k
2z

l
3)(z

j
1z
k
2z

l
3)
∗

=
∑

j+k+l=N
cj,k,l(N)(zj1z

k
2z

l
3)(z1z

∗
1 + z2z

∗
2 + z3z

∗
3)(zj1z

k
2z

l
3)
∗

=
∑

j+k+l=N
q−2(k+l)cj,k,l(N)(zj+1

1 zk2z
l
3)(z

j+1
1 zk2z

l
3)
∗

+
∑

j+k+l=N
q−2lcj,k,l(N)(zj1z

k+1
2 zl3)(z

j
1z
k+1
2 zl3)

∗

+
∑

j+k+l=N
cj,k,l(N)(zj1z

k
2z

l+1
3 )(zj1z

k
2z

l+1
3 )∗ ,

we get the recursive equations

cj,k,l(N + 1) = q−2(k+l)cj−1,k,l(N) + q−2lcj,k−1,l(N) + cj,k,l−1(N) , (3.3)
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where N + 1 = j + k + l and with ‘initial datum’ c0,0,0(0) = 1. Thus, cj,k,l(N) are the

vertices of a q-Tartaglia tetrahedron. Since

[j + k + l] = q−k−l[j] + qj−l[k] + qj+k[l] ,

one verifies that cj,k,l(N) = [j, k, l]! is a solution by plugging it into (3.3).

Similarly, since q4z∗1z1 + q2z∗2z2 + z∗3z3 = 1, we have the algebraic identity

1 =
∑

j+k+l=N+1
dj,k,l(N + 1)(zj1z

k
2z

l
3)
∗(zj1z

k
2z

l
3)

=
∑

j+k+l=N
dj,k,l(N)(zj1z

k
2z

l
3)
∗(q4z∗1z1 + q2z∗2z2 + z∗3z3)(z

j
1z
k
2z

l
3)

=
∑

j+k+l=N
q4dj,k,l(N)(zj+1

1 zk2z
l
3)
∗(zj+1

1 zk2z
l
3)

+
∑

j+k+l=N
q−2j+2dj,k,l(N)(zj1z

k+1
2 zl3)

∗(zj1z
k+1
2 zl3)

+
∑

j+k+l=N
q−2(j+k)dj,k,l(N)(zj1z

k
2z

l+1
3 )∗(zj1z

k
2z

l+1
3 ) ,

that gives the recursive equations on the coefficients

dj,k,l(N + 1) = q4dj−1,k,l(N) + q−2j+2dj,k−1,l(N) + q−2(j+k)dj,k,l−1(N) ,

with ‘initial datum’ d0,0,0(0) = 1. The solution is dj,k,l(N) = q2Nq2(j−l)[j, k, l]!, as one can

check by using the identity [j + k + l] = qk+l[j] + ql−j[k] + q−j−k[l]. �

Proposition 3.3. Define

(ψNj,k,l)
∗ :=

√
[j, k, l]! zj1z

k
2z

l
3 , if N ≥ 0 and with j + k + l = N ,

(ψNj,k,l)
∗ := q−N+j−l

√
[j, k, l]! (zj1z

k
2z

l
3)
∗ , if N ≤ 0 and with j + k + l = −N .

Let ΨN be the column vector with components ψNj,k,l and PN be the projection – of size

dN := 1
2
(|N |+ 1)(|N |+ 2) – given by

PN := ΨNΨ†N . (3.4)

Then one has Σ0,N ' PNA(CP2
q)
dN as right A(CP2

q)-modules and Σ0,N ' A(CP2
q)
dNP−N

as left A(CP2
q)-modules.

Proof. The column vector ΨN has entries in number dN = 1
2
(|N |+ 1)(|N |+ 2) and Ψ†N is

a row vector of the same size. By the previous lemma Ψ†NΨN = 1, so PN := ΨNΨ†N is a

projection. Next, consider the right A(CP2
q)-module map

PNA(CP2
q)
dN → A(SUq(3)) , v = (vj,k,l) 7→ Ψ†N · v =

∑
i+j+k=N

(ψNj,k,l)
∗vj,k,l .

Since each zi is Uq(su(2))-invariant and zi / K2 = q
1
2 zi, it follows that Ψ†N / h = ε(h)Ψ†N

for all h ∈ Uq(su(2)) and Ψ†N / K1K
2
2 = qNΨ†N . Hence, the image of v is in Σ0,N . The

inverse A(CP2
q)-module map is

Σ0,N → PNA(CP2
q)
dN , a 7→ ΨNa ,
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thus proving that we have an isomorphism of right A(CP2
q)-modules. The proof for the

left module structure is completely analogous, the two module maps being in this case

v 7→
∑

i+j+k=N vj,k,lψ
−N
j,k,l and a 7→ aΨ†−N . �

It turns out that what we just computed are the elements t0,N↑,i for N ≥ 0 (resp. t−N,0↑,i

if N ≤ 0). The next proposition yields the exact relation with the matrix entries of Ψ†N .

Proposition 3.4. It holds that

ψNj,k,l =

(t0,N0,i )∗ , with i =
(
0, j + k, 1

2
(k − j)

)
and for all N ≥ 0 ,

(t−N,00,i )∗ , with i =
(
j + k, 0, 1

2
(j − k)

)
and for all N ≤ 0 .

Proof. For N ≥ 0 and i = (0, 2l,m) the generic label of the representation (0, N), defini-

tion (2.11) gives

t0,N0,i = X
(0,N)
i . zN3 =

1

[2l]!

√
[N − 2l]!

[N ]!

[l +m]!

[l −m]!
F l−m
1 F 2l

2 . zN3 .

Induction on N yields

F2 . z
N
3 = q−

N−1
2 [N ]z2z

N−1
3 ,

and induction on l yields

F 2l
2 . zN3 = q−

N−1
2 q−l(2l−1)

[N ]!

[N − 2l]!
z2l2 z

N−2l
3 .

Similarly, changing the labels 3→ 2 and 2→ 1:

F l−m
1 . z2l2 = q−

2l−1
2 q−

1
2
(l−m)(l−m−1) [2l]!

[l +m]!
zl−m1 zl+m2 .

Thus

t0,N0,i =
√

[N ]!
[N−2l]![l+m]![l−m]!

q−
N−1

2 q−l(2l−1)q−
2l−1
2 q−

1
2
(l−m)(l−m−1)zl−m1 zl+m2 zN−2l3

= (ψNl−m,l+m,N−2l)
∗ ,

which establishes the case N ≥ 0. The proof for the case N ≤ 0 is similar. �

It is computationally useful to introduce the left action h 7→ Lh, of Uq(su(3)) on

A(SUq(3)), given by Lha := a / S−1(h); it satisfies Lx(ab) = (Lx(2)a)(Lx(1)b) due to the

presence of the antipode. Also, it is a unitary action for the inner product on A(SUq(3))

coming from the Haar state ϕ. The proof is a simple computation:

ϕ
(
(Lh∗a)∗b

)
= ϕ

(
{a / S−1(h∗)}∗b

)
= ϕ

(
{a∗ / h}b

)
= ϕ

(
{a∗ / h(1)}ε(h(2))b

)
= ϕ

(
{a∗ / h(1)}{b / S−1(h(3))h(2)}

)
= ϕ

(
{a∗(b / S−1(h(2)))} / h(1)

)
= ε(h(1))ϕ

(
a∗{b / S−1(h(2))}

)
= ϕ

(
a∗{b / S−1(h)}

)
= ϕ

(
a∗(Lhb)

)
,

for all a, b ∈ A(SUq(3)) and h ∈ Uq(su(3)). With this action the bimodule M(σ) can be

viewed as the set of elements of A(SUq(3)) ⊗ Cdimσ that are invariant under the action

Lh(1) ⊗ σ(h(2)) of h ∈ Uq(u(2)).
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4. Characteristic classes

Equivalence classes of finitely generated projective (left or right) modules over an

algebra A – the algebraic counterpart of vector bundles – are elements of the group

K0(A). Equivalence classes of even Fredholm modules – the algebraic counterpart of

‘fundamental classes’ – gives a dual group K0(A). The natural non-degenerate pair-

ing between K-theory and K-homology, which pairs projective modules with even Fred-

holm modules, gives index maps K0(A(CP2
q)) → Z. For the quantum projective plane,

K0(A(CP2
q)) ' Z3 ' K0(A(CP2

q)). The result for K-theory can be proved viewing the

corresponding C∗-algebra as the Cuntz–Krieger algebra of a graph [12]. The group K0

is given as the cokernel of the incidence matrix canonically associated with the graph;

the result for K-homology can be proven using the same techniques: the groups K0

is now given as the kernel of the transposed matrix [3]. It is worth mentioning that

K1(A(CP2
q)) = K1(A(CP2

q)) = 0 with the group K1 (resp. K1) given as the kernel (resp.

the cokernel) of the incidence matrix (resp. the transposed matrix).

Thus a finitely generated projective (left or right) module over A(CP2
q) is uniquely

identified by three integers and these are obtained by pairing the corresponding idempo-

tent with the three generators of the K-homology. This section is devoted to the explicit

construction of three Fredholm modules that, in the next section will be shown to be

generators of the K-homology by pairing them with suitable idempotents.

4.1. Fredholm modules and their characters.

We recall that a (k + 1)-summable even Fredholm module for the algebra A is a triple

(π,H, F ) consisting of a Z2-graded Hilbert space H = H+⊕H−, a graded representation

π = π+⊕π− : A → B(H+)⊕B(H−) and an odd operator F such that [F, a0][F, a1] . . . [F, ak]

is of traceclass for any a0, . . . , ak ∈ A. With a (k + 1)-summable even Fredholm mod-

ule there are canonically associated even cyclic cocycles chn(π,H,F ), for 2n ≥ k. The map

chn(π,H,F ) : A2n+1 → C is given by

chn(π,H,F )(a0, . . . , a2n+1) := 1
2
(−1)nTrH (γF [F, a0][F, a1] . . . [F, a2n])

where γ is the grading and the symbol π for the representation is understood. We recall

that a cyclic 2n-cocycle τn is a C-linear map τn : A2n+1 → C which is cyclic, i.e. it satisfies

τn(a0, a1, . . . , a2n) = τn(a2n, a0, . . . , an−1) ,

and is a Hochschild coboundary, i.e. it satisfies b τn = 0, with b the boundary operator:

b τn(a0, . . . , a2n+1) :=
2n∑
j=0

(−1)jτ(a0, . . . , ajaj+1, . . . , a2n+1)− τ(a2n+1a0, a1, . . . , a2n) .

When applied to an idempotent one gets a pairing

〈 , 〉 : K0(A)×K0(A)→ Z ,

〈[(π,H, F )], [e]〉 := chn(π,H,F )([e]) = 1
2
(−1)nTrH⊗Cm(γF [F, e]2n+1), (4.1)
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where m is the size of e and matrix multiplication is understood. The pairing is inte-

ger valued, being the index of the Fredholm operator π−m(e)Fmπ
+
m(e) from π+

m(e)H+
m to

π−m(e)H−m, with the natural extensions

Hm = H⊗ Cm , Fm = F ⊗ 1 ,

forming an even Fredholm module over Mm = A ⊗Mm(C). The result of the pairing

depends only on the classes of e and of the Fredholm module (for details see [2]).

To construct three independent Fredholm modules we need (at least) four representa-

tions. Four is exactly the number of irreducible representations of the algebra A(CP2
q),

that we describe in the next section. It is peculiar of the quantum case that one we needs

to consider only irreducible representations: at q = 1 irreducible representation are 1-

dimensional and give only one of the generators of the K-homology (the trivial Fredholm

module). An additional true ‘quantum effect’ is that for CP2
q one gets three independent

1-summable Fredholm modules corresponding to independent traces on A(CP2
q). Thus

all relevant information leaves in degree zero. In contrast, for the classical CP2 one needs

(there exist) cohomology classes in degree zero, two and four.

Both at the algebraic and at the C∗-algebraic levels there is a sequence

A(CP2
q)→ A(CP1

q)→ A({pt}) = C→ A(∅) = 0 , (4.2)

of ∗-algebra morphisms. In reverse order: the empty space, the space with one point, the

quantum projective line and the quantum projective plane.

The first map is the quotient of A(CP2
q) by the ideal generated by p1i and pi1: roughly

speaking, by putting p1i = pi1 = 0 the remaining generators satisfy the relations of CP1
q,

the quantum projective line – also known as the standard Podleś sphere –; and any

∗-representation of A(CP2
q) with p1i in the kernel comes from a representation of CP1

q.

The second map is the further quotient by the ideal generated by p2i and pi2: roughly

speaking, in A(CP2
q) we send pij 7→ χ0(pij) = δi3δj3 and get the algebra C; this is the

only non-trivial character χ0 of the algebra A(CP2
q), the ‘classical point’ of CP2

q. The last

map is simply 1 7→ 0.

4.2. The rank and the 1st Chern number of a projective module.

For A(∅) there is only one irreducible representation, the trivial one, not enough to

construct a Fredholm module (and indeed, K0(0) = 0).

For C = A({pt}) there is the representation coming from the morphism C → 0, and

one further faithful irreducible representation given by the identity map c 7→ c. These

two are all1 the irreducible ∗-representations of C, and are enough to construct an even

Fredholm module,

H0 = C⊕ C , π0(c) =
(
c 0

0 0

)
, F0 =

(
0 1

1 0

)
.

1Irreducible ∗-representations of C are 1-dimensional (it is abelian). By linearity, they are in 1 to 1

correspondence with maps 1 → p, with p ∈ C a projection. Hence p = 0 or 1, and the corresponding

representations are the trivial map c 7→ 0, and the identity map c 7→ c.
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which generates K0(C) = Z. The pairing (4.1) with K0(C) = Z (projections in Mat∞(C)

are equivalent iff they have the same rank) is given by the matrix trace:

ch0
(π0,H0,F0)

([e]) = Tr(e).

The pullback of this Fredholm module to CP2
q just substitutes the representation π0

of C with the character χ0 : A(CP2
q) → C of A(CP2

q). Using the same symbol for the

character, one gets a map

ch0
(π0,H0,F0)

: K0(A(CP2
q))→ Z , ch0

(π0,H0,F0)
([e]) = Trχ0(e) , (4.3)

The geometrical meaning is the following: the rank of a vector bundle is the dimension of

the fiber at any point x of the space, and this coincides with the trace of the corresponding

projection evaluated at x. Here we have only one ‘classical point’, and the map in (4.3)

computes the rank of the restriction of the vector bundle to this classical point. Notice

that if the module is free, then (4.3) is really the rank of the module.

We pass to the next level of the sequence (4.2), that is the algebra A(CP1
q). There are

two irreducible ∗-representations coming from the map in the sequence – the trivial one

and the character of the algebra –, and one further representation that is faithful and

irreducible. The latter is the restriction of the representation χ1 : A(S5
q ) → B(`2(N))

given by

χ1(z1) = 0 , (4.4a)

χ1(z2) |n〉 = qn |n〉 , (4.4b)

χ1(z3) |n〉 =
√

1− q2(n+1) |n+ 1〉 , (4.4c)

A potential Fredholm module is given by

H1 = `2(N)⊕ `2(N) , π1(a) =
(
χ1(a) 0

0 χ0(a) id`2(N)

)
, F1 =

(
0 1

1 0

)
.

However, this is not a Fredholm module over A(S5
q ), since

γF1[F1, π(z3)] =
{
χ1(z3)− χ0(z3)

}( 1 0

0 1

)
is not compact. On the other hand, this is a Fredholm module when restricted to A(CP2

q)

(or A(CP1
q)). Indeed, due to the tracial relation q4p11 + q2p22 + p33 = 1, a complete set

of generators for A(CP2
q) is made of {p11, p12, p13, p22, p23} and their adjoints. On these

generators the representation χ1 is

χ1(p1i) = 0 , ∀ i = 1, 2, 3 , (4.5a)

χ1(p22) |n〉 = q2n |n〉 , (4.5b)

χ1(p23) |n〉 = qn+1
√

1− q2(n+1) |n+ 1〉 , (4.5c)

and χ1(pij) − χ0(pij) is of trace class for all i, j. In particular, this means that the

Fredholm module is 1-summable. The associated character is

ch0
(π1,H1,F1)

: K0(A(CP2
q))→ Z , ch0

(π1,H1,F1)
([e]) = Tr`2(N)⊗Cm (χ1 − χ0)(e) , (4.6)
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where m is the size of the matrix e. The value in (4.6) depends only on the restriction of

the ‘vector bundle’ to the subspace CP1
q, and will be called for this reason the 1st Chern

number (or also the monopole charge).

4.3. The 2nd Chern number of a projective module.

Besides the representations (and the Fredholm modules) coming from the sequence (4.2),

the algebra A(CP2
q) has a further irreducible representation and a further Fredholm mod-

ule, which is independent from the previous two. The representation is faithful and comes

from the representation χ2 : A(S5
q )→ B(`2(N2)) given by

χ2(z1) |k1, k2〉 := qk1+k2 |k1, k2〉 , (4.7a)

χ2(z2) |k1, k2〉 := qk1
√

1− q2(k2+1) |k1, k2 + 1〉 , (4.7b)

χ2(z3) |k1, k2〉 :=
√

1− q2(k1+1) |k1 + 1, k2〉 . (4.7c)

The construction of the Fredholm module is a bit involved. Let us use the labels

` = 1
2
(k1 + k2) and m = 1

2
(k1 − k2). A new basis for the Hilbert space is then given by

|`,m〉 with ` ∈ 1
2
N and m = −`,−`+ 1, . . . , `. In this basis the representation reads

χ2(z1) |`,m〉 = q2` |`,m〉 ,

χ2(z2) |`,m〉 = q`+m
√

1− q2(`−m+1) |`+ 1
2
,m− 1

2
〉 ,

χ2(z3) |`,m〉 =
√

1− q2(`+m+1) |`+ 1
2
,m+ 1

2
〉 .

For the third Fredholm module we take as Hilbert space H2 two copies of the linear span

of orthonormal vectors |`,m〉, with ` ∈ 1
2
N and ` + m ∈ N. The grading γ2 and the

operator F2 are the obvious ones. It remains to describe the representation π2 = π+⊕π−.

As subrepresentation π+ we choose

π+(a) |`,m〉 :=

χ2(a) |`,m〉 if m ≤ ` ,

χ0(a) |`,m〉 if m > ` .

One checks that modulo traceclass operators:

π+(p11) ∼ π+(p12) ∼ π+(p13) ∼ 0 ,

π+(p22) |`,m〉 ∼

q2(`+m) |`,m〉 if m ≤ ` ,

0 if m > ` ,

π+(p23) |`,m〉 ∼

q`+m+1
√

1− q2(`+m+1) |`,m+ 1〉 if m ≤ `− 1 ,

0 if m ≥ ` .

We define the subrepresentation π− by adding multiplicities to χ1. On the generators:

π−(p11) = π−(p12) = π−(p13) = 0 ,

π−(p22) |`,m〉 = q2(`+m) |`,m〉 , π−(p23) |`,m〉 = q`+m+1
√

1− q2(`+m+1) |`,m+ 1〉 .
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On each invariant subspace with a fixed `, putting n = `+m one recovers the represen-

tation χ1. Since
∑

m>` q
2(`+m) = (1− q4)−2 is finite, on the subspace m > ` the operators

π−(p22) and π−(p23) are trace class, and so π+(a)− π−(a) is of trace class as well for all

a ∈ A(CP2
q): the Fredholm module is 1-summable with corresponding character

ch0
(π2,H2,F2)

: K0(A(CP2
q))→ Z , ch0

(π2,H2,F2)
([e]) = TrH2⊗Cm (π+ − π−)(e) , (4.8)

where m is the size of the matrix e. The above replaces the 2nd Chern class of the module.

Working with generators and relations as done in [11] for quantum spheres, it is not

difficult to prove that any irreducible ∗-representation of A(CP2
q) is equivalent to one of

the representations described above. For completeness, we give the proof in App. D.

By iterating the construction, for any positive integer n one obtains the n+2 irreducible

representations of the quantum projective spaces CPn
q (only one of these is faithful, the

others coming from the morphism A(CPn
q ) → A(CPn−1

q )), and the corresponding n + 1

Fredholm modules; details will be reported elsewhere [9].

4.4. Chern numbers of line bundles.

We know from Sect. 3.2 that the bimodule Σ0,N := M(σ0,N) is isomorphic toA(CP2
q)
dNP−N

as left module and to PNA(CP2
q)
dN as right module, with dN = 1

2
(|N |+ 1)(|N |+ 2) and

PN := ΨNΨ†N given by Prop. 3.3. We next compute rank, and 1st and 2nd Chern numbers

of PN . We focus the discussion on N ≥ 0, the case N ≤ 0 being similar.

Since χ0(PN)j,k,l|j′,k′,l′ = δj,0δk,0δl,Nδj′,0δk′,0δl′,N , the rank given by (4.3) results in

ch0
(π0,H0,F0)

([PN ]) = 1 ,

thus justifying the name ‘line bundles’ for the virtual bundles underlying the modules

Σ0,N . The same result is valid when N ≤ 0.

Next, we compute

TrCdN (PN) =
∑

j+k+l=N
q−(jk+kl+lj)

[N ]!

[j]![k]![l]!
(zl3)

∗(zk2 )∗(zj1)
∗zj1z

k
2z

l
3 (4.9)

and

χ1 (TrCdN (PN)) =
∑

k+l=N
q−kl

[N ]!

[k]![l]!
χ1(z

∗
3)lχ1(z

∗
2)kχ1(z2)

kχ1(z3)
l ,

χ0 (TrCdN (PN)) = χ0(z
∗
3)Nχ0(z3)

N = 1 .

The use of (4.4b) and (4.4c) leads to

xn :=
〈
n
∣∣χ1TrCdN (PN)

∣∣n〉
=
∑

k+l=N
q−kl

[N ]!

[k]![l]!
q2k(n+l)(1− q2(n+1))(1− q2(n+2)) . . . (1− q2(n+l))

=
∑N

k=0
q2kn +O(q) =

1−q2n(N+1)

1−q2n +O(q) = 1 +O(q) if n > 0 ,

N + 1 +O(q) if n = 0 .
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As usual we can compute the index for q → 0+ (see [4, 8]); we get∑
n≥0

(xn − 1) =
∑
n≥0

lim
q→0+

(xn − 1) = (x0 − 1)|q=0 = N .

The very same result holds for N ≤ 0. So, the 1st Chern number is

ch0
(π1,H1,F1)

([PN ]) = N.

It remains to compute the last Chern number. The representations π± in the third

Fredholm module are the restriction of (homonymous) representations of A(S5
q ) given as

follows. With χ0 and χ2 the representation described in the previous section, one has

that π+(zi) |`,m〉 = χ2(zi) |`,m〉 if m ≤ `, and π+(zi) |`,m〉 = χ0(zi) |`,m〉 if m > `. On

the other hand, for any m, ` it holds that

π−(z1) = 0 ,

π−(z2) |`,m〉 = q`+m |`,m〉 ,

π−(z3) |`,m〉 =
√

1− q2(`+m+1) |`,m+ 1〉 .

The use of (4.9) yields:〈
`,m

∣∣π−TrCdN (PN)
∣∣`,m〉 =

∑
r+s=N

q−rs
[N ]!

[r]![s]!
q2r(`+m+s)

∏s

k=1
(1− q2(`+m+k))

=
∑N

r=0
q2r(`+m){1 +O(q)} = 1 +Nδ`,−m +O(q) ,

for the representation π−; for the representation π+ one gets instead〈
`,m

∣∣π+TrCdN (PN)
∣∣`,m〉 = 1

if m > `, and〈
`,m

∣∣π+TrCdN (PN)
∣∣`,m〉 =

∑
i+j+k=N

q−(ij+jk+ki)
[N ]!

[i]![j]![k]!
q2i(2`+j+k)q2j(`+m+k)×

×
∏j

r=1
(1− q2(`−m+r))

∏k

s=1
(1− q2(`+m+s))

=
∑

i+j+k=N
q4i`+2j(`+m) +O(q)

= 1 +Nδ`,−m + 1
2
N(N + 1)δ`,0 +O(q),

if m ≤ `. In the computation we have used [N ]!
[i]![j]![k]!

= q−(ij+jk+ki)
(
1 + O(q)

)
. Putting

things together results in

〈
`,m

∣∣π+TrCdN (PN)− π−TrCdN (PN)
∣∣`,m〉 =

O(q) if m > ` .

1
2
N(N + 1)δ`,0 +O(q) if m ≤ ` .

Again, we compute in the limit for q → 0+ to get

ch0
(π2,H2,F2)

([PN ]) = lim
q→0+

∑
`∈ 1

2
N

∑`

m=−`
1
2
N(N + 1)δ`,0 +O(q)

= 1
2
N(N + 1) .
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The same formula is valid for N ≤ 0. We summarize the results in a proposition.

Proposition 4.1. For any N ∈ Z, the (right) module Σ0,N has ‘rank’

ch0
(π0,H0,F0)

([PN ]) = 1 ,

‘1st Chern number’

ch0
(π1,H1,F1)

([PN ]) = N ,

and ‘2nd Chern number’

ch0
(π2,H2,F2)

([PN ]) = 1
2
N(N + 1) .

Corollary 4.2. A complete set of generators {e1, e2, e3} of K0(A(CP2
q)) is given by

e1 = [1] the class of the rank one free (left or right) A(CP2
q)-module Σ0,0,

e2 the class of the left module Σ0,1 (or equivalently of the right module Σ0,−1),

e3 the class of the left module Σ0,−1 (or equivalently of the right module Σ0,1).

Thus, in terms of left modules, e2 is the class of the tautological bundle and e3 the class

of the dual vector bundle. A complete set of generators of K0(A(CP2
q)) is given by the

classes of the Fredholm modules (πi,Hi, Fi), i = 0, 1, 2, given in Sect. 4.

Proof. We have already mentioned that K0(A(CP2
q)) ' K0(A(CP2

q)) ' Z3. A set of

generators of the abelian group Z3 is the same as a basis of Z3 as a Z-module.

Suppose we have three elements ei ∈ Z3 and three elements ϕi : Z3 → Z in the dual

space of Z-linear maps; call g ∈ Mat(3,Z) the matrix with elements gij = ϕi(ej). Assume

that det g 6= 0 and that the inverse g−1 = ((gij)) of g is an element of GL(3,Z). Then for

any linear map ψ the difference ψ −
∑

ij ψ(ei)g
ijϕj vanishes on all the ei’s and, by the

linear independence over Z of the ei’s, we deduce that any element ψ ∈ (Z3)∗ is a sum

ψ =
∑

ij
ψ(ei)g

ijϕj

with integer coefficients ψ(ei)g
ij ∈ Z. Hence, the ϕj’s are a basis of (Z3)∗. Similarly for

any v ∈ Z3 the difference v −
∑

ij eig
ijϕj(v) is in the kernel of all ϕi, meaning that the

ei’s are a basis of Z3 over Z.

Now, let ei ∈ K0(A(CP2
q)) and ϕi = [(πi−1,Hi−1, Fi−1)] ∈ K0(A(CP2

q)), i = 1, 2, 3, be

the classes in the Corollary. By Prop. 4.1 the matrix g is given by

g =

 1 1 1

0 −1 1

0 0 1

 .

It is invertible in GL(3,Z) with inverse

g−1 =

 1 1 −2

0 −1 1

0 0 1

 .

This proves that we have generators of K-theory and K-homology. �
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5. The differential calculus

On the line bundles described previously we aim to define and study (anti-)selfdual

connections. To this end we need the full machinery of a differential calculus on CP2
q and

additional ingredients like a Hodge star operator. We start with forms.

5.1. Holomorphic and antiholomorphic forms.

In [7] we studied the antiholomorphic part of the differential calculus on CP2
q. Antiholo-

morphic forms were defined as

Ω0,0(CP2
q) := A(CP2

q) , Ω0,1(CP2
q) := Σ 1

2
, 3
2

and Ω0,2(CP2
q) := Σ0,3 .

We complete the calculus presently. Each bimodule of forms Ωi,j(CP2
q) will be identified

with a suitable bimodule M(σ) of equivariant elements as described in the previous sec-

tion. That is to say, Ωi,j(CP2
q) = M(σi,j) = A(SUq(3))�σi,j V i,j for a (not necessarily

irreducible) representation σi,j : Uq(u(2)) → Aut(V i,j) of the Hopf algebra Uq(u(2)) on

V i,j ' Cdimσi,j
. The representations σ0,j are known from [7] and the σj,0 are obtained

by conjugation. The dimension of σi,j does not depend on q, and for q = 1 gives the

rank r =
(
2
i

)(
2
j

)
of Ωi,j(CP2

q). There is a unique sub-representation of the Hopf tensor

product σi,0 ⊗ σ0,j with the prescribed dimension: this allows one to identify σi,j. The

representations relevant for the calculus are listed in the following figure:

V 0,0

V 0,1 V 1,0

V 0,2 V 1,1 V 2,0

V 1,2 V 2,1

V 2,2

..............................................................
....
............

.................................................................. ........
....

..............................................................
....
............

.................................................................. ........
....

..............................................................
....
............

.................................................................. ........
....

.................................................................. ........
....

..............................................................
....
............

..............................................................
....
............

.................................................................. ........
....

.................................................................. ........
....

..............................................................
....
............

=

(0, 0)

(1
2
, 3
2
) (1

2
,−3

2
)

(0, 3) (1, 0)⊕ (0, 0) (0,−3)

(1
2
, 3
2
) (1

2
,−3

2
)

(0, 0)

........................................
....
............

............................................ ........
....

............................................
....
............

................................................ ........
....

............................................
....
............

................................................ ........
....

............................................ ........
....

........................................
....
............

........................................
....
............

............................................ ........
....

................................................ ........
....

............................................
....
............

In the diamond on the right, in the position (i, j), we give the values of spin and charge

(`,N) of the representation σi,j.

For later use, we list the representations σ 1
2
,N and σ1,N explicitly:

σ 1
2
,N(K1) =

(
q

1
2 0

0 q−
1
2

)
, σ 1

2
,N(E1) =

(
0 1

0 0

)
, σ 1

2
,N(F1) =

(
0 0

1 0

)
,

σ1,N(K1) =

 q 0 0

0 1 0

0 0 q−1

 , σ1,N(E1) = [2]
1
2

 0 1 0

0 0 1

0 0 0

 , σ1,N(F1) = [2]
1
2

 0 0 0

1 0 0

0 1 0

 ,

and furthermore, σ 1
2
,N(K1K

2
2) (resp. σ1,N(K1K

2
2)) is qN times the identity matrix.

5.2. The wedge product.

We first make Ω•,•(CP2
q) =

⊕
i,j Ωi,j(CP2

q) a bi-graded associative algebra.

Let V •,• =
⊕

i,j V
i,j, and suppose we have a bi-graded associative left Uq(u(2))-

covariant product on V •,•, denoted ∧q. For ω = av and ω′ = a′v′, with a, a′ ∈ A(SUq(3))
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and v ∈ V i,j, v′ ∈ V i′,j′ , define

ω ∧q ω′ := (a a′) (v ∧q v′).

Using left Uq(u(2))-covariance of the product on V •,• and the fact that A(SUq(3)) is a

Uq(u(2))-bimodule algebra so that aa′ / S−1(h) = {a / S−1(h(2))}{a / S−1(h(1))}, we get

(Lh(1) ⊗ σ
i+i′,j+j′(h(2)))(ω ∧q ω′) = (Lh(2)a)(Lh(1)a

′)(σi,j(h(3))v) ∧q (σi,j(h(4))v
′) .

If ω is invariant (i.e. it belongs to Ωi,j(CP2
q)), this can be simplified and becomes

(Lh(1) ⊗ σ
i+i′,j+j′(h(2)))(ω ∧q ω′) = a(Lh(1)a

′)v ∧q (σi,j(h(2))v
′) .

If also ω′ is invariant (i.e. it belongs to Ωi′,j′(CP2
q)), we get

(Lh(1) ⊗ σ
i+i′,j+j′(h(2)))(ω ∧q ω′) = ε(h) aa′(v ∧q v′) = ε(h)ω ∧q ω′ .

Thus, ∧q defines a bilinear map Ωi,j(CP2
q) × Ωi′,j′(CP2

q) → Ωi+i′,j+j′(CP2
q). Its associa-

tivity follows from associativity of both the products in A(SUq(3)) and V •,•.

The datum (Ω•,•(CP2
q),∧q) is automatically a left A(CP2

q)oUq(su(3))-module algebra,

since left and right canonical actions commute andA(SUq(3)) is a leftA(CP2
q)oUq(su(3))-

module algebra. This means that

h . (ω ∧q ω′) = (h(1) . ω) ∧q (h(2) . ω
′) ,

for all h ∈ Uq(su(3)) and ω, ω′ ∈ Ω(CP2
q)
•,•.

All we need is then a graded associative left Uq(u(2))-covariant product on V •,•. For all

i, j, i′, j′, we shall now construct a left Uq(u(2))-module map ∧q : V i,j × V i′,j′ → V i+i′,j+j′

which is unique up to some normalization constants.

When q = 1, one can fix the normalization, up to some phase factors and angles,

by requiring that these maps are partial isometries. Requiring that vectors with real

components form a subalgebra (so that real forms are an algebra), the phases must be

±1; the remaining angles and signs are then fixed by the requirement of associativity and

graded commutativity of the product.

For q 6= 1, partial isometries do not give an associative product. We determine in

App. A the most general value of the normalization constants in order to have a left

Uq(u(2))-covariant product on V •,• which is i) associative, ii) graded commutative for

q = 1, and iii) it sends real vectors into real vectors. Here we just present the result.

Proposition 5.1. A left Uq(u(2))-covariant graded associative product ∧q on V •,•, send-

ing real vectors to real vectors and graded commutative for q = 1, is given by

V 0,1 × V 0,1 → V 0,2 , v ∧q w := c0µ0(v, w)t ,

V 0,1 × V 1,0 → V 1,1 , v ∧q w :=
(
c1µ1(v, w), c2µ0(v, w)

)t
,

V 0,1 × V 2,1 → V 2,2 , v ∧q w := c3µ0(v, w)t ,

V 0,1 × V 1,1 → V 1,2 , v ∧q w :=
c0

[2]c1
µ2(v, w)t − c0

[2]c2
vw4 ,

V 1,0 × V 1,0 → V 2,0 , v ∧q w := c4µ0(v, w)t ,
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V 1,0 × V 0,1 → V 1,1 , v ∧q w :=
(
−q

1
2
sc1µ1(v, w), q−

3
2
sc2µ0(v, w)

)t
,

V 1,0 × V 1,2 → V 2,2 , v ∧q w :=
c3c4
c0

µ0(v, w)t ,

V 1,0 × V 1,1 → V 2,1 , v ∧q w := −q−
1
2
s c4
[2]c1

µ2(v, w)t − q
3
2
s c4
[2]c2

vw4 ,

V 1,2 × V 1,0 → V 2,2 , v ∧q w :=
c3c4
c0

µ0(v, w)t ,

V 2,1 × V 0,1 → V 2,2 , v ∧q w := c3µ0(v, w)t ,

V 1,1 × V 0,1 → V 1,2 , v ∧q w := −q−
1
2
s c0
[2]c1

µ3(v, w)t − q
3
2
s c0
[2]c2

v4w ,

V 1,1 × V 1,0 → V 2,1 , v ∧q w :=
c4

[2]c1
µ3(v, w)t − c4

[2]c2
v4w ,

V 1,1 × V 1,1 → V 2,2 , v ∧q w := −q−
1
2
s c3c4
[2]|c1|2

µ4(v, w)− q
3
2
s c3c4
[2]|c2|2

v4w4 ,

where the maps µi’s are

µ0 : R2 × R2 → R , µ0(v, w) := [2]−
1
2 (q

1
2v1w2 − q−

1
2v2w1) ,

µ1 : R2 × R2 → R3 , µ1(v, w) :=
(
v1w1, [2]−

1
2 (q−

1
2v1w2 + q

1
2v2w1), v2w2

)
,

µ2 : R2 × R3 → R2 , µ2(v, w) :=
(
qv1w2 − q−

1
2 [2]

1
2v2w1, q

1
2 [2]

1
2v1w3 − q−1v2w2

)
,

µ3 : R3 × R2 → R2 , µ3(v, w) :=
(
q

1
2 [2]

1
2v1w2 − q−1v2w1, qv2w2 − q−

1
2 [2]

1
2v3w1

)
,

µ4 : R3 × R3 → R , µ4(v, w) := qv1w3 − v2w2 + q−1v3w1 .

The parameters c0, . . . , c4 ∈ R× and s = ±1 are not fixed for the time being.

To get an involution we use the fact that the spin 1/2 (resp. spin 1) representation

of Uq(su(2)) is quaternionic (resp. real). Rephrased in terms of the representations σ 1
2
,N

and σ1,N of Uq(u(2)) we have the following lemma, which takes into account the fact that

real/quaternionic structures change sign to N .

Lemma 5.2. Let V`,N = C2`+1 be the vector space underlying the representation σ`,N of

Uq(u(2)). An antilinear map J : V`,N → V`,−N satisfying J2 = (−1)2` and such that

Jσ`,N(h) = σ`,−N(S(h)∗)J, (5.1)

for any h ∈ Uq(u(2)), is given, for ` = 0, 1
2
, 1, by

Ja = a∗ , J(v1, v2)
t = (−q−

1
2v∗2, q

1
2v∗1)t , J(w1, w2, w3)

t = (−q−1w∗3, w∗2,−qw∗1)t ,

for any a ∈ V0,N , v ∈ V 1
2
,N and w ∈ V1,N respectively. Moreover, if c0 = c4, the map

? : V •,• → V •,• , (vi,j) 7→ (v?)i,j := (−1)iJ(vj,i) ,

is a graded involution, i.e. it satisfies (v?)? = v and

(v ∧q v′)? = (−1)kk
′
v′? ∧q v? , (5.2)

for all v ∈ V i,k−i and v′ ∈ V i′,k′−i′.
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Proof. The property J2 = (−1)2` is easily checked in all the above mentioned cases, and

the condition ?2 = id is a direct corollary: ?2|V i,j = (−1)i+jJ2, and V i,j is a sum of spaces

V`,N having 2` with the same parity of i+ j. Since J always commutes with σ`,N(K1K
2
2),

and σ`,N(K1K
2
2) = σ`,−N(S(K1K

2
2)∗), the claim (5.1) for h = K1K

2
2 is trivially satisfied.

We have to check (5.1) for the remaining generators h = K1, E1, F1, and in the not-trivial

cases ` = 1
2
, 1. A direct computation yields:

Jσ 1
2
,N(K1)J

−1 =
(

0 −q− 1
2

q
1
2 0

)(
q

1
2 0

0 q−
1
2

)(
0 q−

1
2

−q 1
2 0

)
=
(
q−

1
2 0

0 q
1
2

)
= σ 1

2
,−N(K−11 ) ,

Jσ 1
2
,N(E1)J

−1 =
(

0 −q− 1
2

q
1
2 0

)(
0 1

0 0

)(
0 q−

1
2

−q 1
2 0

)
=
(

0 0

−q 0

)
= −qσ 1

2
,−N(F1) ,

Jσ 1
2
,N(F1)J

−1 =
(

0 −q− 1
2

q
1
2 0

)(
0 0

1 0

)(
0 q−

1
2

−q 1
2 0

)
=
(

0 −q−1

0 0

)
= −q−1σ 1

2
,−N(E1) ,

Jσ1,N(K1)J
−1 =

 0 0 −q−1

0 1 0

−q 0 0

 q 0 0

0 1 0

0 0 q−1

 0 0 −q−1

0 1 0

−q 0 0

 =

 q−1 0 0

0 1 0

0 0 q


= σ1,−N(K−11 ) ,

Jσ1,N(E1)J
−1 = [2]

1
2

 0 0 −q−1

0 1 0

−q 0 0

 0 1 0

0 0 1

0 0 0

 0 0 −q−1

0 1 0

−q 0 0

 0 0 0

−q 0 0

0 −q 0


= −qσ1,−N(F1) ,

Jσ1,N(F1)J
−1 = [2]

1
2

 0 0 −q−1

0 1 0

−q 0 0

 0 0 0

1 0 0

0 1 0

 0 0 −q−1

0 1 0

−q 0 0

 =

 0 −q−1 0

0 0 −q−1

0 0 0


= −q−1σ1,−N(E1) .

Also, by a direct computation one checks that

Jµ0(v, v
′) = −µ0(Jv

′, Jv) , Jµ1(v, v
′) = −µ1(Jv

′, Jv) ,

Jµ2(v, v
′) = µ3(Jv

′, Jv) , Jµ3(v, v
′) = µ2(Jv

′, Jv) , Jµ4(v, v
′) = µ4(Jv

′, Jv) .

With these, (5.2) is straightforwardly established. �

From now on, we take that c4 = c0 for the coefficients of Prop. 5.1.

The composition of the involution on A(SUq(3)) with the ? in the previous Lemma,

yields a map ω 7→ ω∗ sending forms into forms and extending the involution of the algebra
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A(CP2
q) = Ω0,0(CP2

q). Indeed, with h ∈ Uq(u(2)), and t := S(h)∗, from (5.1), we get

(Lh(1) ⊗ σ
i,j(h(2)))(ω

∗)i,j = (−1)i(Lh(1) ⊗ σ
i,j(h(2)))(∗ ⊗ J)ωj,i

= (−1)i(∗ ⊗ J)(LS(h∗
(1)

) ⊗ σj,i(S(h(2))
∗))ωj,i

= (−1)i(∗ ⊗ J)(LS2(t(2)) ⊗ σ
j,i(t(1)))ωj,i .

Invariance of ωj,i gives

Lhωj,i = (1⊗ σj,i(S−1(h(3))))(Lh(1) ⊗ σ
j,i(h(2)))ωj,i = σj,i(S−1(h))ωj,i ,

and in turn, using ε(S(h)∗) = ε(h),

(Lh(1) ⊗ σ
i,j(h(2)))(ω

∗)i,j

= (−1)i(∗ ⊗ J)(1⊗ σj,i(t(1)S(t(2))))ωj,i = ε(h)(−1)i(∗ ⊗ J)ωj,i = ε(h)(ω∗)i,j .

Thus, the involution maps invariant elements into invariant elements, i.e. forms into forms.

As a consequence of (5.2), (Ω•,•(CP2
q),∧q ,∗ ) is a graded ∗-algebra:

(ω ∧q ω′)∗ = (−1)dg(ω)dg(ω
′) ω′∗∧q ω∗ , ∀ ω, ω′ ∈ Ω•,•(CP2

q) . (5.3)

Lemma 5.3. The algebra (V •,•,∧q) is generated in degree 1, that is any form of degree

≥ 1 can be written as a sum of products of 1-forms.

Proof. We need to show that the maps

V 0,1 × V i,j → V i,j+1 , (v, w) 7→ v ∧q w ,

and

V 1,0 × V i,j → V i+1,j , (v, w) 7→ v ∧q w ,

are surjective for all i, j. We give the proof for the first map, the second being analogous.

If w is a scalar, the claim is clearly true.

If (i, j) = (0, 1) (resp. (2, 1)) the scalar

(1, 0)t ∧q (0, 1)t = c0[2]−
1
2 , resp. (1, 0)t ∧q (0, 1)t = c3[2]−

1
2 ,

is a basis V 0,2 (resp. V 2,2), and the map is clearly surjective.

If (i, j) = (1, 0), the map ∧q is invertible; indeed, v∧qw = diag(c1, c1, c1, c2)U(v⊗w) with

U the unitary matrix in (A.1).

Finally, if (i, j) = (1, 1) the vectors

(1, 0)t ∧q (0, 0, 0, 1)t = −c0c−12 [2]−1(1, 0)t , (0, 1)t ∧q (0, 0, 0, 1)t = −c0c−12 [2]−1(0, 1)t ,

form a basis of V 1,2, and the maps surjective. This concludes the proof. �
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5.3. Hodge star and a closed integral.

Having an (associative, graded involutive) algebra of forms, the next steps consist in

endowing it with i) two derivations ∂ and ∂̄ giving a double complex, with d := ∂+ ∂̄ the

total differential; ii) a closed integral; iii) an Hodge star operator.

We postpone to the next section the explicit construction of the exterior differentials

and start here with the integral. Recall from Remark 3.1 that an inner product on forms

is given by composing the natural Hermitian structure on the module ωi,j of forms with

the restriction to A(CP2
q) of the Haar state ϕ : A(SUq(3))→ C; that is

〈ω, ω′〉 :=
∑

i,j
ϕ
(
ω†i,j · ω′i,j

)
,

where the sum is over all the homogeneous components ωi,j, ω
′
i,j ∈ Ωi,j(CP2

q) of ω and

ω′. Both the left canonical action . and the left action L of Uq(su(3)) on A(SUq(3)) are

unitary for this inner product, as well as the action of A(CP2
q) by left multiplication.

Now Ω2,2(CP2
q) = A(CP2

q) is a free module of rank one, with basis a central element

which we denote 1 (the volume form). Indeed, we call vol the form with all components

equal to zero but for the one in degree 4, which is 1. We think of this as the volume form

and define an integral by∫
− ω := 〈vol, ω〉 = ϕ(ω2,2) , ∀ ω ∈ Ω•,•(CP2

q) . (5.4)

In particular,
∫
− vol = 1. If the differentials ∂ and ∂̄ are given via the (right) action of

elements of Uq(su(3)) which are in the kernel of the counit ε, the integral is automatically

closed, i.e. ∫
− ∂̄ω =

∫
− ∂ω = 0 ,

a simple consequence of the invariance of the Haar state: ϕ(a / h) = ε(h)ϕ(a).

Using the Hermitian structure on Ω•,•, given by

(ω, ω′) :=
∑

i,j
ω†i,j · ω′i,j

the Hodge star operator is defined on real forms via the usual requirement that ω∧qω′ =
(∗H ω, ω′)vol. This can be extended to complex forms both linearly (as e.g. in [22]) or

antilinearly (as e.g. in [19]). In the context of solutions of the Yang-Mills equations, a

curvature, being the square of a connection, is always real and it doesn’t matter which

extension we choose. We choose the former. Recalling that the Hermitian structure ( , )

is linear in the second entry and antilinear in the first, the Hodge star on complex forms

is the linear operator ∗H : Ωi,j(CP2
q)→ Ω2−j,2−i(CP2

q) defined by

ω∗∧q ω′ = (∗H ω, ω′)vol . (5.5)

Applying the Haar states to both sides of previous equation we get the usual relation∫
− ω∗∧q ω′ = 〈∗H ω, ω′〉 . (5.6)
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With a ∗-calculus, a closed integral and the graded Leibniz rule for the differential, the

equality (5.6) implies that

〈∗H dω, ω′〉 =

∫
− (dω)∗∧q ω′ = −

∫
− d(ω∗) ∧q ω′

= −
∫
− d(ω∗ ∧q ω′) + (−1)dg(ω)

∫
− ω∗∧q dω′ = 0 + (−1)dg(ω) 〈∗H ω, dω′〉 ,

which becomes

d†ω = ∗H d ∗H ω , (5.7)

if ∗2Hω = (−1)dg(ω)ω. To obtain this last property, which is automatic when q = 1, one

needs suitable constraints on the parameters ci’s in Prop. 5.1.

Proposition 5.4. On any form ω one has ∗2Hω = (−1)dg(ω)ω if

c1 = ±q−
1
4
s[2]−

1
4

√
|c0| , c2 = ±q

3
4
s[2]−

1
4

√
|c0| , c3 = ±[2]

1
2 ,

with arbitrary signs. For this choice of parameters, on (anti-)holomorphic 2-forms the

Hodge star is the identity, and on (1, 1) forms it is the linear map

∗H : (w,w4) 7→ sign(c3)(−w,w4) . (5.8)

Proof. If ∗H ω and ω′ are homogeneous with different degree, both sides of (5.5) are zero.

It is then enough to consider the case ω ∈ Ωj,i(CP2
q), ω

′ ∈ Ω2−i,2−j(CP2
q). From the

definition of the involution on forms, for the possible values of the labels, one gets

(i, j) = (0, 0), (0, 2), (2, 0), (2, 2) : ω∗∧q ω′ = ω† · ω′ ,

(i, j) = (0, 1), (1, 0), (1, 2), (2, 1) : ω∗∧q ω′ = c3µ0(ω
∗, ω′) = (−1)j[2]−

1
2 c3 ω

† · ω′ ,

(i, j) = (1, 1) : ω∗∧q ω′ =
c3c4
[2]

(
−q−

1
2
s|c1|−2w†, q

3
2
s|c2|−2w†4

)
ω′ .

Condition (5.5) is satisfied if

(∗H ω)2−i,2−j =


ωj,i if (i, j) = (0, 0), (0, 2), (2, 0), (2, 2) ,

(−1)j[2]−
1
2 c3ωj,i if (i, j) = (0, 1), (1, 0), (1, 2), (2, 1) ,

1
[2]
c3c0(−q−

1
2
s|c1|−2w, q

3
2
s|c2|−2w4) if (i, j) = (1, 1) .

The square of ∗H on ω is verified to be (−1)dg(ω)ω if the ci are those given in the statement

of the proposition. With these, (5.8) is immediately checked. �

With the previous lemma, all parameters are fixed, but for some arbitrary signs and a

global rescaling2 encoded in c0. On the other hand, fixing the sign of c3 corresponds

to fixing an orientation, as flipping the the orientation results in exchanging selfdual

with anti-selfdual forms. From now on we assume that c3 < 0, so that by (5.8) selfdual

(1, 1)-forms are of the type (w, 0), and anti-self dual ones are of the type (0, w4).

Corollary 5.5. The Hodge star operator is an isometry.

2Notations are simplified by choosing c0 = [2]
1
2 . In the notations of [7] we would have c0 = 2[2]−

1
2 .
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Proof. Notice that since ϕ(a∗) = ϕ(a), by graded involutivity of the conjugation of forms

we have

〈∗H ω, ∗H ω′〉 = 〈∗H ω′, ∗H ω〉 =

(∫
− ω′∗∧q ∗H ω

)∗
=

∫
−
(
ω′∗∧q ∗H ω

)∗
= (−1)dg(ω)

∫
− (∗H ω)∗ ∧q ω′ = (−1)dg(ω)

〈
∗2Hω, ω′

〉
= 〈ω, ω′〉 ,

where we used the fact that ω and ω′ have the same degree, and dg(ω) and dg(ω)2 have

the same parity. �

Remark 5.6. There is an equivalent definition of the Hodge star operator. Firstly, one

can define the “exterior multiplication” e : Ω•,•(CP2
q) → End(Ω•,•(CP2

q)) and the dual

“contraction” i : Ω•,•(CP2
q)→ End(Ω•,•(CP2

q)) by the formulæ:

e(ω)ω′ := ω ∧ ω′ , i(ω) := e(ω)† , ∀ ω, ω′ ∈ Ω•,•(CP2
q) .

Then, from (5.6) and (5.4) one has

〈∗H ω, ω′〉 = 〈vol, ω∗∧ ω′〉 = 〈vol, e(ω∗)ω′〉 = 〈i(ω∗)vol, ω′〉

which, from the non degeneracy of the scalar product, yields

∗H ω = i(ω∗)vol

for any ω ∈ Ω•,•(CP2
q).

5.4. The exterior derivatives.

We are left with the definition of the exterior derivative d. As we recall in App. B,

in order to have a real differential calculus for Ω•(CP2
q) =

⊕
k Ωk(CP2

q) one needs a

derivation, that is a map d : A(CP2
q) → Ω1(CP2

q) obeying the Leibniz rule and such

that A(CP2
q)
(
dA(CP2

q)
)

= Ω1(CP2
q) and da = −(da∗)∗. Then the exterior derivative d

is extended uniquely to forms of higher degree. If Ωk(CP2
q) :=

⊕
i+j=k Ωi,j(CP2

q), this

is equivalent to write d = ∂ + ∂̄ with two derivations ∂ : A(CP2
q) → Ω1,0(CP2

q) and

∂̄ : A(CP2
q) → Ω0,1(CP2

q), such that ∂̄ω = −(∂ω∗)∗; again both ∂ and ∂̄ are extended

uniquely to forms of higher degree.

We write X =
∑

iXi ⊗ ei ∈ Uq(su(3)) ⊗ V 1,0, with e1 = (1, 0)t and e2 = (0, 1)t the

basis vectors of V 1,0. Then, we set

∂( · ) := LX ∧q ( · ) =
∑

kLXk
⊗ ek ∧q ( · )

and determine the conditions on the elements Xi’s that yield a ∂ mapping (i, j)-forms,

that is any ω ∈ Ωi,j(CP2
q) = A(SUq(3))�σi,j V i,j, to (i + 1, j)-forms; namely we impose

that ∂ω ∈ Ωi+1,j(CP2
q) = A(SUq(3))�σi+1,jV i+1,j.

Since the assignment h→ Lh is a representation, for all h, x ∈ Uq(su(3)) one gets that

LhLx = L
x
ad
/ S−1(h(2))

Lh(1) , with the right adjoint action given by

x
ad
/ h = S(h(1))xh(2) .
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In turn, left covariance of the wedge product yields{
Lh(1) ⊗ σ

i+1,j(h(2))
}
∂( · ) =

∑
k Lh(1)LXk

⊗ σi+1,j(h(2))e
k ∧q ( · )

=
∑

k(LXk
ad
/ S−1(h(2))

⊗ σ1,0(h(3))e
k∧q)(Lh(1) ⊗ σi,j(h(4)))( · ) ,

for any h ∈ Uq(u(2)). Then, for X an element which is invariant for the tensor product

of the right adjoint action with σ1,0, i.e. for X such that∑
kXk

ad
/ S−1(h(1))⊗ σ1,0(h(2))e

k = ε(h)
∑

kXk ⊗ ek,

we conclude that {
Lh(1) ⊗ σ

i+1,j(h(2))
}
◦ ∂ = ∂ ◦

{
Lh(1) ⊗ σ

i,j(h(2))
}
. (5.9)

This means that ∂ maps invariant elements of A(SUq(3))⊗V i,j into invariant elements of

A(SUq(3))⊗ V i+1,j, that is forms to forms. Since both Lh and σi,j are ∗-representation,

taking the adjoint of equation (5.9) yields

∂†
{
Lh∗

(1)
⊗ σNk+1(h

∗
(2))
}

=
{
Lh∗

(1)
⊗ σNk (h∗(2))

}
∂† ,

which means that ∂† maps (i, j)-forms to (i− 1, j)-forms.

Similarly, by replacing V 1,0 with the representation V 0,1, an invariant element Y of

Uq(su(3))⊗ V 0,1 would give an operator ∂̄ = LY ∧q ( · ) mapping (i, j)-forms to (i, j + 1)-

forms and the adjoint ∂̄† mapping (i, j)-forms to (i, j − 1)-forms.

On CP2
q the only elements of Uq(su(3)) which act on the right as derivations of A(CP2

q)

are the operators E2, F2, [E1, E2]q and [F2, F1]q. These must be applied in such a way to

get an element of Ω1(CP2
q).

Proposition 5.7. One defines two exterior derivations ∂ : A(CP2
q) → Ω1,0(CP2

q) and

∂̄ : A(CP2
q)→ Ω0,1(CP2

q) by

∂a := q−
1
2 (Lq−1K2E2

a,L−K1K2[E1,E2]qa)t , ∂̄a := (LK1K2[F2,F1]qa,LK2F2a)t , (5.10)

for all a ∈ A(CP2
q). The map d = ∂ + ∂̄ : A(CP2

q) → Ω1(CP2
q) satisfies the conditions

A(CP2
q)dA(CP2

q) = Ω1(CP2
q) and da∗ = −(da)∗.

Proof. The elements X ∈ Uq(su(3))⊗ V 1,0 and Y ∈ Uq(su(3))⊗ V 0,1 given by

X := (q−1K2E2,−K1K2[E1, E2]q)
t , Y := (K1K2[F2, F1]q, K2F2)

t , (5.11)

are invariant, hence by the above discussion the maps ω 7→ LX ∧q ω and ω 7→ LY ∧q ω
send Ωi,j(CP2

q) into Ωi+1,j(CP2
q), resp. Ωi,j+1(CP2

q). The wedge product on zero forms is

diagonal multiplication and on functions these maps become (proportional to) (5.10).

Since S−1 is anticomultiplicative and Lha = a/S−1(h), from the covariance of the right

canonical action we get that for all a, b ∈ A(SUq(3))

LX1(ab) = (LX1a)b+ (a / K−22 )(LX1b) ,

LX2(ab) = (LX2a)b+ (a / K−21 K−22 )(LX2b) + q−
1
2 (q − q−1)(a / K−11 K−22 E1)(LX1b) ,

LY1(ab) = (LY1a)b+ (a / K−21 K−22 )(LY1b)− q
1
2 (q − q−1)(a / K−11 K−22 F1)(LY2b) ,
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LY2(ab) = (LY2a)b+ (a / K−22 )(LY2b) .

If a, b are indeed in A(CP2
q), right Uq(u(2))-invariance gives LX(ab) = (LXa)b + a(LXb)

and LY (ab) = (LY a)b+ a(LY b), so ∂ and ∂̄ are derivations on A(CP2
q).

Reality is a simple check. From (a∗ / h)∗ = a / S(h)∗ it follows that

∂̄a+ (∂a∗)∗ = a /
(
S−1(Y1)− q−1X∗2 , S−1(Y2) +X∗1

)
= a /

(
K1K2[F2, F1]q + q(K1K2)

−1[F1, F2]q, (K2 −K−12 )F2

)
= a /

(
(q − q−1)F1F2, 0

)
= 0 .

For the generators pij = z∗i zj of A(CP2
q) one computes that

∂pij = −q−1(u3i )∗
(
u2j
u1j

)
, ∂̄pij = q−1

(−q− 1
2 (u1i )

∗

q
1
2 (u2i )

∗

)
u3j ,

and shows that dpij are a generating family for

Ω1,0(CP2
q)⊕ Ω0,1(CP2

q) = M(σ 1
2
,− 3

2
)⊕M(σ 1

2
, 3
2
)

as a left A(CP2
q)-module. Indeed, for any ω = (v1, v2)

t⊕(w1, w2)
t ∈ Ω1,0(CP2

q)⊕Ω0,1(CP2
q)

the coefficients

aij(ω) := −q1−2j
{
q2v1(u

2
j)
∗ + v2(u

1
j)
∗}u3i ,

bij(ω) := q5−2j
{
−q

1
2w1(u

3
j)
∗u1i + q−

1
2w2(u

3
j)
∗u2i
}
,

are right Uq(u(2))-invariant, i.e. aij(ω), bij(ω) ∈ A(CP2
q). Since∑

j
q2(a−j)(uaj )

∗ubj =
∑

j
uaj (u

b
j)
∗ = δa,b ,

∑
j
u3j(u

3
j)
∗ =

∑
j
q6−2j(u3j)

∗u3j = 1,

the following algebraic identities∑
i,j
aij(ω) ∂pij = (v1, v2)

t ,
∑

i,j
bij(ω) ∂̄pij = (w1, w2)

t ,∑
i,j
aij(ω) ∂̄pij = 0 ,

∑
i,j
bij(ω) ∂pij = 0

hold. Assembling all together, for any 1-form ω one finally gets

ω =
∑

i,j

{
aij(ω) + bij(ω)

}
dpij ,

proving that the vectors dpij are a generating family for Ω1(CP2
q) as a leftA(CP2

q)-module.

This concludes the proof. �

Remark 5.8. Using the properties a / K1 = a, a / K2 = a and a / E1 = a / F1 = 0, for

any element a ∈ A(CP2
q), simple manipulations in (5.10) yields

∂a := −q−
3
2 (a / E2, a / E2E1)

t , ∂̄a := −(a / F2F1, a / F2)
t .

Also, modulo a proportionality constant the operator ∂̄ coincides with the one of [7].
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We close this section with few remarks on invariant (anti-)selfdual 2-forms that we shall

use later on in the paper when dealing with monopole connections. Since Ω0,2(CP2
q) '

Σ0,3, Ω2,0(CP2
q) ' Σ0,−3, and Ω1,1(CP2

q) ' Σ1,0 ⊕ Σ0,0, by the harmonic decomposition

Σ0,0 '
⊕
n∈N

(n, n) , Σ0,3 '
⊕
n∈N

(n, n+ 3) , Σ0,−3 '
⊕
n∈N

(n+ 3, n) ,

Σ1,0 '
⊕
n∈N

(n+ 1, n+ 1)⊕
⊕
n∈N

(n, n+ 3)⊕ (n+ 3, n) ,

a 2-form ω is invariant iff ω ∈ Ω1,1(CP2
q) and it has the form ω = (0, w4) with w4 ∈ C.

By (5.8) such a 2-form is anti-selfdual, for the choice of orientation (c3 < 0) made above.

6. Monopoles

As mentioned in the introduction, by a monopole we mean a line bundle over CP2
q,

that is to say a ‘rank 1’ finitely generated projective module over the coordinate algebra

A(CP2
q), endowed with a connection having anti-selfdual curvature. In this section we

present some of these connections.

In Sect. 3.2 we have described at length the isomorphism Σ0,N → A(CP2
q)
dNP−N as left

A(CP2
q)-modules and the isomorphism Σ0,N → PNA(CP2

q)
dN as right A(CP2

q)-modules.

Any of the two isomorphisms may be used to transport the Grassmannian connection on

the bimodule Σ0,N . We use the second one because it is notationally simpler.

Recall that the isomorphism φ : Σ0,N → PNA(CP2
q)
dN is given φ(a) := ΨNa, with

inverse φ−1 : PNA(CP2
q)
dN → Σ0,N , φ−1(v) = Ψ† · v; and ΨN is the column vector with

components ψNj,k,l given in Prop. 3.3, dN := 1
2
(|N |+ 1)(|N |+ 2) and PN := ΨNΨ†N .

6.1. The anti-selfdual connections.

The Grassmannian connection on the right A(CP2
q)-module EN := PNA(CP2

q)
dN , with

respect to the differential calculus of Sect. 5 is the map

∇̃N : EN ⊗A(CP2
q)

Ωn(CP2
q)→ EN ⊗A(CP2

q)
Ωn+1(CP2

q) , ∇̃Nω := PNdω .

For its curvature we get

∇̃2
N ω = PNd

(
PNd(PNω)

)
= PNdPN ∧q d(PNω)

= PNdPN ∧q
{
PNdω + dPN ∧q ω

}
=
{
PNdPN ∧q dPN

}
∧q ω ,

were we used that ω = PNω for any ω ∈ EN ⊗A(CP2
q)

Ωn(CP2
q) and the identity

ede = (de)(1− e) (6.1)

and so e(de)e = 0, both valid for any idempotent e (and any differential calculus).

When transported to equivariant maps, the connection

∇N := φ−1∇̃N φ : Σ0,N ⊗A(CP2
q)

Ωn(CP2
q)→ Σ0,N ⊗A(CP2

q)
Ωn+1(CP2

q) ,

is readily found to be given by

∇Nη = Ψ†Nd(ΨNη) , (6.2)

30



and the curvature ∇2
N = φ−1∇̃2

N φ becomes the operator of left wedge multiplication by

the 2-form, still denote ∇2
N , given by

∇2
N = Ψ†N(dPN ∧q dPN)ΨN . (6.3)

Lemma 6.1. The connection ∇N is left Uq(su(3))-invariant.

Proof. From Prop. 3.4 we deduce

Ψ†N ⊗ΨN =
∑

i
t0,N↑,i ⊗ (t0,N↑,i )∗ .

In turn, for any h ∈ Uq(su(3)), (2.10) yields

h(1) .Ψ†N ⊗ h(2) .ΨN =
∑

i
(h(1) . t

0,N
↑,i )⊗ (S(h(2))

∗ . t0,N↑,i )∗

=
∑
i,j,k

ρ0,Nj,i (h(1))ρ
0,N
i,k (S(h(2)))t

0,N
↑,j ⊗ (t0,N↑,k )∗

= ε(h)
∑

j
t0,N↑,j ⊗ (t0,N↑,j )∗ = ε(h)Ψ†N ⊗ΨN .

Thus, for any h ∈ Uq(su(3)),

h . (∇Nη) = h . (Ψ†NdΨNη) = (h(1) .Ψ†N)d(h(2) .ΨN)(h(3) . η) = Ψ†NdΨN(h . η)

= ∇N(h . η) .

This concludes the proof. �

The connection being invariant from Lemma 6.1, its curvature ∇2
N is invariant as

well. Then, from the discussion at the end of Sect. 5, the two-form ∇2
N ∈ Ω1,1(CP2

q) is

necessarily of the type ∇2
N = (0, wN) for some wN ∈ R. Hence by (5.8) it is anti-selfdual.

Lemma 6.2. The connection ∇N is anti-selfdual, that is to say, its curvature is a (con-

stant) anti-selfdual two-form:

∗H ∇2
N = −∇2

N ,

For its use later on we compute the constant wN for N ≥ 0; a similar computation

being possible for N ≤ 0 as well. By construction

ΨN / K2 = q−
N
2 ΨN and ΨN / h = ε(h)ΨN ∀ h ∈ Uq(u(2)) . (6.4)

Since zi / F2 = 0, it also holds that

ΨN / E2 = 0 , Ψ†N / F2 = 0 . (6.5)

Using the condition Ψ†NΨN = 1 and covariance of the action one deduces that

(Ψ†N / E2)ΨN = 0 , Ψ†N(ΨN / F2) = 0 . (6.6)

These equations allow one to compute

q−
N
2 Ψ†NdPN = −q−

3
2

(
Ψ†N / E2

Ψ†N / E2E1

)
∈ Ω1,0(CP2

q) ,
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q−
N
2 (dPN)ΨN = −

(
ΨN / F2F1

ΨN / F2

)
∈ Ω0,1(CP2

q) . (6.7)

By (2.10) we have

q−N∇2
N = −c2q−

3
2
s−3[2]−

1
2

∑
i
q(t0,N↑,i / E2)(t

0,N
↑,i / E2)

∗ + q−1(t0,N↑,i / E2E1)(t
0,N
↑,i / E2E1)

∗

= −c2q−
3
2
s−3[2]−

1
2

∑
i,j,k

{
qρ0,N↑,j (E2)ρ

0,N
k,↑ (F2)

+ q−1ρ0,N↑,j (E2E1)ρ
0,N
k,↑ (F1F2)

}
t0,Nj,i (t0,Nk,i )∗

= −c2q−
3
2
s−3[2]−

1
2

∑
j,k

{
qρ0,N↑,j (E2)ρ

0,N
k,↑ (F2) + q−1ρ0,N↑,j (E2E1)ρ

0,N
k,↑ (F1F2)

}
δj,k

= −c2q−
3
2
s−3[2]−

1
2ρ0,N↑,↑ (qE2F2 + q−1E2E1F1F2)

= −c2q−
3
2
s−3[2]−

1
2

〈
0, 0, 0|qE2F2 + q−1E2E1F1F2|0, 0, 0

〉
.

with |↑〉 = |0, 0, 0〉 the highest weight vector of the representation ρ0,N . Using the van-

ishing E1F2 |0, 0, 0〉 = F2E1 |0, 0, 0〉 = 0, one gets that

〈0, 0, 0|E2E1F1F2|0, 0, 0〉 = 〈0, 0, 0|E2[E1, F1]F2|0, 0, 0〉 = 〈0, 0, 0|E2
K2

1−K
−2
1

q−q−1 F2|0, 0, 0〉

= 〈0, 0, 0|E2F2
qK2

1−q−1K−2
1

q−q−1 |0, 0, 0〉 = 〈0, 0, 0|E2F2|0, 0, 0〉 ,

giving wN = −q− 3
2
s−3c2[2]

1
2 qN 〈0, 0, 0|E2F2|0, 0, 0〉.

Since F2 |0, 0, 0〉 =
√

[N ] |0, 1, 1
2
〉 we finally get wN = −q− 3

2
s−3c2[2]

1
2 qN [N ]. Hence

∇2
N = qN−1[N ]∇2

1 , (6.8)

where ∇2
1 = w1 ∈ R is an irrelevant normalization constant.

6.2. Gauged Laplacians.

With monopoles connection on the modules Σ0,N we can study the corresponding gauged

Laplacian operator acting on Σ0,N . Such an operator describes ‘excitations moving on

the quantum projective space’ in the field of a magnetic monopole and in the limit q → 1

provides a model of quantum Hall effect on the projective plane.

We know that on both the modules Σ0,N of sections and Ωn(CP2
q) of forms there are

A(CP2
q)-valued Hermitian structures. These can be combined to get a similar Hermitian

structure on their tensor products Σ0,N ⊗A(CP2
q)

Ωn(CP2
q) which, when composed with the

restriction to A(CP2
q) of the Haar functional ϕ : A(CP2

q) → C, gives a non-degenerate

C-valued inner product. Using the latter inner product, one generalized the equation

(5.7) for forms to an analogous statement on connections, that is to say

∇†Nη = ∗H ∇N ∗H η . (6.9)

Having this, as usual we define the gauged Laplacian acting on elements η ∈ Σ0,N by

�∇η = ∇†N∇Nη = Ψ†Nd†[ΨNΨ†Nd(ΨNη)] .

where ∇Nη = Ψ†Nd(ΨNη) is the connection in (6.2). Using the covariance of the action

– remember that Lx(ab) = (Lx(2)a)(Lx(1)b) due to the presence of the antipode – , and
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equation (6.4), straightforward computations yield

∂(ΨNη) = q
N
2
− 1

2 (LXΨN)η+q
N
2
− 1

2 ΨN(LXη) , ∂̄(ΨNη) = q
N
2 (LY ΨN)η+q

N
2 ΨN(LY η) .

From (6.5) and (6.6): LXΨN = 0 and Ψ†N(LY ΨN) = 0; hence

�∇η = qN/2Ψ†Nd†
(
ΨN

{
q−

1
2LX ⊕ LY

}
η
)

= qN/2Ψ†N
{
q−

1
2LX† ⊕ LY †

}(
ΨN

{
q−

1
2LX ⊕ LY

}
η
)
.

Again, (6.5) and (6.6) yield LY †ΨN = 0 and Ψ†N(LX†ΨN) = 0; hence using the coproduct,

�∇η = qNLq−1X†X+Y †Y η = η / S−1(q−1X†X + Y †Y ) qN .

Now,

S−1(q−1X†X + Y †Y ) = K−22 (q−1E2F2 + q−2F2E2)

+K−21 K−22

(
q[E2, E1]q[F1, F2]q + q−2[F1, F2]q[E2, E1]q

)
,

which, with the commutation rule[
[F1, F2]q, [E2, E1]q

]
=
[
[F1, [E2, E1]q], F2

]
q

+
[
F1, [F2, [E2, E1]q]

]
q

=
[
[E2, [F1, E1]]q, F2

]
q

+
[
F1, [[F2, E2], E1]q

]
q

= −
[
[E2,

K2
1−K

−2
1

q−q−1 ]q, F2

]
q
−
[
F1, [

K2
2−K

−2
2

q−q−1 , E1]q
]
q

= −[K2
1E2, F2]q + [F1, E1K

−2
2 ]q

= K2
1(q−2F2E2 − E2F2) + (F1E1 − q−2E1F1)K

−2
2 ,

can be rewritten as

S−1(q−1X†X + Y †Y ) = K−22

(
[2]

K2
2−K

−2
2

q−q−1 + (q + q−2)F2E2

)
+K−21 K−22 (q + q−2)[F1, F2]q[E2, E1]q − qK−21 K−42 (F1E1 − q−2E1F1) .

By construction the action of Uq(su(2)) is trivial on η, that is to say η / E1 = η / F1 = 0

and η / K1 = η, while η / K2 = qN/2η. Then, an intermediate result states that

�∇η = η /
(
K2

2−K
−2
2

q−q−1 [2] + (q + q−2)
(
F2E2 − q−1F2F1[E2, E1]q

))
Using the commutator [F2, E1] = 0 and again η / E1 = 0, a further simplification comes

from the computation

η / F2F1E1E2 = η / F2[F1, E1]E2 = −η / F2
K2

1−K
−2
1

q−q−1 E2 = η / F2E2 , (6.10)

leading to:

�∇η = η /
(

[2][N ] + (1 + q−3)
(
[2]F2E2 − F2F1E2E1

))
. (6.11)

Next, we relate the gauged Laplacian operator to the Casimir operator in (2.5). Now,

when acting from the right on Σ0,N , a straightforward computation leads to

η / Cq = η /
{

[1
3
N ]2 + [1

3
N + 1]2 + [2

3
N + 1]2 + (q

1
3
N+1 + q−

1
3
N−1)F2E2

+ F2F1

(
q−

1
3
N+1[E1, E2]q − q

N
3 [E2, E1]q

)}
,
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which, using again (6.10) reduces to

η / Cq = η /
{

[1
3
N ]2 + [1

3
N + 1]2 + [2

3
N + 1]2 + (q

1
3
N + q−

1
3
N)
(
[2]F2E2 − F2F1E2E1

)}
.

(6.12)

The generator L = K1K
2
2 of the ‘structure algebra’ Uq(u(1)) act on Σ0,N as η/L = qN/2η.

Then, a comparison of (6.11) and (6.12) yields the following proposition.

Proposition 6.3. The gauged Laplacian is related to the Casimir operator by

q
3
2
L

1
3 + L−

1
3

q
3
2 + q−

3
2

(
�∇ + [2]

L− L−1

q − q−1

)
= Cq − (q − q−1)−1

(
(L

1
3 − L−

1
3 )2 + (qL

1
3 − q−1L−

1
3 )2 + (qL

2
3 − q−1L−

2
3 )2
)
.

or

q
3
2
q

N
3 + q−

N
3

q
3
2 + q−

3
2

(
�∇ − [2][N ]

)
= Cq − [1

3
N ]2 − [1

3
N + 1]2 − [2

3
N + 1]2 .

The diagonalization of the gauged Laplacian is made simple by the observation that

for the Casimir left and right action is the same: Cq . a = a / Cq for all a ∈ A(SUq(3)),

and by the fact that with respect to the left action of Uq(su(3)) there are decompositions:

Σ0,N '
⊕
n∈N

ρ(n,n+N) if N ≥ 0 , Σ0,N '
⊕
n∈N

ρ(n−N,n) if N ≤ 0 .

Proposition 6.4. The eigenvalues of the gauged Laplacian �∇ are given by

λn,N = (1 + q−3)[n][n+N + 2] + [2][N ] if N ≥ 0 ,

λn,N = (1 + q−3)[n+ 2][n−N ] + [2][N ] if N ≤ 0 ,

with n ∈ N.

Proof. Using the above harmonic decomposition of Σ0,N and the spectrum (2.6) of the

Casimir operator, one gets

λn,N := q−
3
2
q

3
2 + q−

3
2

q
N
3 + q−

N
3

(
[n+ 1

3
|N |+ 1]2 + [n+ 2

3
|N |+ 1]2− [1

3
N + 1]2− [2

3
N + 1]2

)
+ [2][N ] .

with n ∈ N and for any N ∈ Z. This expression can be simplified using the identity

[a+ b]2 − [b]2 = [a][a+ 2b]. For N ≥ 0 this becomes

λn,N = q−
3
2
q

3
2 + q−

3
2

q
N
3 + q−

N
3

[n]
(
[n+ 2

3
N + 2] + [n+ 4

3
N + 2]

)
+ [2][N ] ,

that with a further simplification is the claimed expression in the proposition. One

proceeds similarly for the case N ≤ 0. �

It is worth stressing that the spectrum of �∇ is not symmetric under the exchange

N ↔ −N , not even when exchanging in addition the parameter as q ↔ q−1. A similar

phenomenon was already observed in [14] for gauged Laplacians on the standard Podleś

sphere; the latter can be though of as the quantum projective line CP1
q.
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7. Quantum characteristic classes

Classically, topological invariants are computed by integrating powers of the curvature

of a connection, the result being independent of the particular connection. On the other

hand, in order to integrate the curvature of a connection on the quantum projective space

CP2
q one needs ‘twisted integrals’; the results are not integers any longer but rather q-

analogues, as we shall see in Sect. 7.2. We start with some general result on equivariant

K-theory and K-homology and corresponding Chern-Connes characters.

7.1. Equivariant K-theory and K-homology.

Classically, the equivariant topological K0-group of a manifold is the Grothendieck group

of the abelian monoid whose elements are equivalence classes of equivariant vector bun-

dles. It has an algebraic version that can be generalized to noncommutative algebras.

One has a bialgebra U and a left U -module algebra A. Equivariant vector bundles are

replaced by one sided (left, say) AoU -modules that are finitely generated and projective

as left A-modules; these will be simply called ‘equivariant projective modules’. Any such

a module is given by a pair (e, σ), where e is an N × N idempotent with entries in A,

and σ : U → MatN(C) is a representation and the following compatibility requirement is

satisfied (see e.g. [6, Sect. 2]),(
h(1) . e

)
σ(h(2))

t = σ(h)te , for h ∈ U , (7.1)

with ‘ t’ denoting transposition.

The corresponding module E = ANe is made of elements v = (v1, . . . , vN) ∈ AN in the

range of the idempotent, ve = v, with left-module structure given by

(a.v)i := avi , (h.v)i :=
∑N

j=1
(h(1) . vj)σij(h(2)) , for a ∈ A and h ∈ U .

An equivalence between any two equivariant modules is simply an invertible left AoU -

module map between them; V U(A) will denote the abelian monoid whose elements are

equivalence classes of equivariant projective left modules with operation the direct sum,

as usual. The equivariant K-theory group KU0 (A) is the Grothendieck group of the abelian

monoid V U(A). The equivalence of equivariant projective modules can be rephrased in

terms of idempotents. What follows is a direct extension of well known results [1]. We

give the proof for completeness.

Lemma 7.1. Two equivariant projective modules E = ANe and E ′ = AN ′e′ are equivalent

iff e = uv and e′ = vu for some u ∈ MatN×N ′(A) and v ∈ MatN ′×N(A) satisfying the

equivariance conditions

(h(1) . u)σ′(h(2))
t = σ(h)tu , (h(1) . v)σ(h(2))

t = σ′(h)tv . (7.2)

Proof. Let w• =
∑

iwiei • be the generic element of ANe. If π : ANe → AN ′e′ is a left

A-module map, then π(w•) =
∑

iwiπ(ei •), so the map is uniquely determined by the

its value on rows of the idempotent e, and similarly for π−1. We call u ∈ MatN×N ′(A)

(resp. v ∈ MatN ′×N(A)) the matrix with entries uij := π(ei •)j (resp. vij := π−1(e′i •)j).
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Since π maps into the range of e′ (resp. π−1 maps into the range of e), we have the

conditions∑
j
π(ei •)je

′
jk = π(ei •)k , and

∑
j
π−1(e′i •)jejk = π−1(e′i •)k ,

that in term of row vectors become∑
j
uije

′
j • = ui • , and

∑
j
vijej • = vi • .

Next, we apply π−1 to the equation on the left, π to the one on the right, and use A-

linearity. Since uij is the j-th component of image, via π, of the i-th row of e, and π−1 is

the inverse map, we have π(ui •) = ei • and similarly for π−1. Thus:∑
j
uijvjk = eik ,

∑
j
vijujk = e′ik .

From the definition of u, the equivariance properties of e, and the fact that π is an

U -module map, we get

h.ui • = h(1).ui • σ
′(h(2))

t = π(h.ei •) = π(h(1).ei • σ(h(2))
t) = π

(
(σ(h)te)i •

)
= (σ(h)tu)i • ,

which is the first equivariance condition in (7.2). Similarly one proves the equivariance

condition for v. With this, the ‘only if’ part is proved.

Next, assume that e = uv and e′ = vu for some u and v satisfying (7.2) above. Then,

(h(1) . e)σ(h(2))
t = (h(1) . u)(h(2) . v)σ(h(3))

t = (h(1) . u)σ′(h(2))
tv = σ(h)tuv ,

which means e that satisfies (7.1). Similarly for e′.

We define π : ANe→ AN ′e′ and π−1 : AN ′e′ → ANe via the formulæ π(w) := wu and

π−1(w) := wv; we need to show that (i) the maps are well defined, (ii) they are one the

inverse of the other, (iii) they are left A o U -module maps. Point (iii) is a consequence

of the fact that left and right multiplication commute, and of the equivariance conditions

for u and v. Point (ii) follows from the identity π−1π(w) = we (resp. ππ−1(w) = we′),

and the fact that w is in the range of e (resp. e′). Finally if w ∈ ANe, we have

π(w)e′ = w(uvu) = (we)u = wu = π(w) ,

i.e. π(w) ∈ AN ′e′, and similarly for π−1: the maps are well defined. �

There is a natural map from equivariant K-theory to equivariant cyclic homology

given for instance in [16]. We adapt that construction to our situation. One start with

HomC(U ,An+1), the collection of C-linear maps from U to An+1, and defines operations

bn,i : HomC(U ,An+1)→ HomC(U ,An), for i = 0, . . . , n,

bn,i(a0 ⊗ a1 ⊗ . . .⊗ an)(h) := (a0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an)(h) , if i 6= n ,

bn,n(a0 ⊗ a1 ⊗ . . .⊗ an)(h) :=
(
(h(1) . an)a0 ⊗ a1 ⊗ . . .⊗ an−1

)
(h(2)) , (7.3)

and an operation λn : HomC(U ,An+1)→ HomC(U ,An+1),

λn(a0 ⊗ a1 ⊗ . . .⊗ an)(h) := (−1)n
(
(h(1) . an)⊗ a0 ⊗ a1 ⊗ . . .⊗ an−1

)
(h(2)) . (7.4)
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They are the face operators and the cyclic operator of equivariant cyclic homology as

we are going to show. The maps bn,i make up a presimplicial module – one checks that

bn−1,ibn,j = bn−1,j−1bn,i for all 0 ≤ i < j ≤ n –, so that

bn :=
∑n

i=0
(−1)ibn,i

is a boundary operator [15]. The Hopf algebra U acts on An+1 via the rule

hI (a0 ⊗ a1 ⊗ . . .⊗ an) := h(1) . a0 ⊗ h(2) . a1 ⊗ . . .⊗ h(n+1) . an ,

and CUn (A) will denote the collection of elements ω ∈ HomC(U ,An+1) which are ‘equi-

variant’, meaning that

(h(1) Iω)(xh(2)) = ω(hx) ,

for all h, x ∈ U . Next, one establishes that the operators bn,i commute with the action

of U (a not completely trivial task for the last one bn,n), and it makes sense to consider

the complex of equivariant maps. The cyclic operator λn commutes with the action of U
thus it descends to an operator on CUn (A) as well. Finally, with

b′n :=
∑n−1

i=0
(−1)nbn,i ,

it holds that bn(1− λn) = (1− λn−1)b′n, which says that the boundary operator bn maps

CUn (A)/Im(1 − λn) into CUn−1(A)/Im(1 − λn−1). The homology of this last complex is

called the ‘U -equivariant cyclic homology’ of A with corresponding homology groups

usually denoted HCUn (A).

Next, for σ : U → MatN(C) a representation as above, consider the set

MatσN(A) :=
{
T ∈ MatN(A)

∣∣ (h(1) . T)σ(h(2))
t = σ(h)t T , ∀ h ∈ U

}
.

This is a subalgebra of MatN(A); indeed given any two of its elements T1, T2 one has:(
h(1) . (T1T2)

)
σ(h(2))

t =
(
(h(1) . T1)(h(2) . T2)

)
σ(h(3))

t

= (h(1) . T1)σ(h(2))
t T2 = σ(h)t T1T2 .

Moreover, σ-equivariant N × N idempotents as in (7.1) are elements of MatσN(A). Due

to the definition of MatσN(A) there exists a map Trσ : MatσN(A)n+1 → CUn (A) given by

Trσ(T0 ⊗ T1 ⊗ . . .⊗ Tn)(h) := Tr
(
T0 ⊗̇T1 ⊗̇ . . . ⊗̇Tn σ(h)t

)
=

∑
i0,i1,...,in+1

(T0)i0i1 ⊗ (T1)i1i2 ⊗ . . .⊗ (Tn)inin+1 σ(h)i0in+1 ,

where ⊗̇ denotes composition of the tensor product over C with matrix multiplication.

Also,

(−1)nλnTrσ(T0 ⊗ T1 ⊗ . . .⊗ Tn)(h) = Tr
(
h(1) . Tn σ(h)t ⊗̇T0 ⊗̇T1 ⊗̇ . . . ⊗̇Tn−1

)
= Tr

(
σ(h)tTn ⊗̇T0 ⊗̇T1 ⊗̇ . . . ⊗̇Tn−1

)
= Trσ(Tn ⊗ T0 ⊗ . . .⊗ Tn−1)(h) ,

which amounts to say that Trσ transform the ordinary cyclic operator for the algebra

MatσN(A) into the ‘U -equivariant’ cyclic operator for A. Since bn,n = bn,0λn, the map Trσ
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is a morphism of differential complexes, mapping the complex of the cyclic homology of

MatσN(A) to the complex of the U -equivariant cyclic homology of A. This construction

is completely analogous to the ‘non-equivariant’ case, cf. [15, Cor. 1.2.3].

At this point, one can repeat verbatim the proof of Thm 8.3.2 in [15], replacing the

ring R := MatN(A) there, with MatσN(A) (which is still a matrix ring) and replacing the

generalized trace map there, with Trσ, to prove the following theorem.

Theorem 7.2. A map chn : KU0 (A)→ HCUn (A) is defined by

chn(e, σ) := Trσ(e⊗n+1) .

We give in App. C an alternative, more explicit proof for the cases n ≤ 4. We stress

that what we denote here HCn and call cyclic homology is Connes’ first version of cyclic

homology, i.e. the homology of Connes’ complex denoted Hλ
n in [15].

Modulo a normalization, the cycle chn(e, σ)(1) is the usual Chern-Connes character in

cyclic homology (and in fact, no σ’s in the formulæ). On the other hand, chn(e, σ)((K1K2)
−4)

is what we are about to use for CP2
q. In general, one fixes a group-like element K ∈ U

calling η the corresponding automorphism of A, η(a) := K . a for all a ∈ A. Then,

one pairs HCU• (A) with the Hochschild cohomology of A with coefficients in ηA; the

latter is A itself with bimodule structure a′(a)a′′ = η(a′)aa′′. Indeed, the pairing 〈 , 〉 :

HomC(An+1,C)× HomC(U ,An+1)→ C defined by

〈τ, ω〉 := τ
(
ω(K)

)
, (7.5)

when used to compute the dual b∗n,i : HomC(An,C)→ HomC(An+1,C) of the face opera-

tors introduced in (7.3), yields the formulæ:

b∗n,iτ(a0, a1, . . . , an) = τ(a0, . . . , aiai+1, . . . , an) , if i 6= n ,

b∗n,nτ(a0, a1, . . . , an) := τ
(
η(an)a0, a1, . . . , an−1

)
.

These are just the face operators of the Hochschild cohomology H•(A, ηA) of A with

coefficients in ηA (cf. [15]). Thus, the pairing in (7.5) descends to a pairing

Hn(A, ηA)×HCUn (A)→ C .

7.2. The example of CP2
q.

As mentioned, for CP2
q we take K = (K1K2)

−4 the element implementing the square of

the antipode (cf. (2.2)). Now, the Haar state of A(SUq(3)), satisfies (cf. Eq. (11.26) and

Eq. (11.36) in [13])

ϕ(ab) = ϕ
(
(K . b / K)a

)
, for a, b ∈ A(SUq(3)) ,

which for a, b ∈ A(CP2
q) results in

ϕ(ab) = ϕ
(
(K . b)a

)
= ϕ

(
η(b)a

)
. (7.6)

This just means that the restriction of the Haar state of A(SUq(3)) to A(CP2
q) is the

representative of a class in H0(A(CP2
q), ηA(CP2

q)). An additional zero cocycle is given by
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the restriction of the counit ε of SUq(3), which on CP2
q yields the ‘classical point’, that is

the character χ0 in (4.3).

On the other hand, with the integral defined in (5.4) by using the Haar state as well,

an element [τ4] ∈ H4(A(CP2
q), ηA(CP2

q)) is constructed as

τ4(a0, . . . , a4) :=

∫
− a0da1 ∧q . . . ∧q da4 .

Let us check that it is a cocycle. Leibniz rule gives

b∗5τ4(a0, . . . , a5) =

∫
− a0a1da2 ∧q a3 ∧q a4 ∧q da5−

∫
− a0(a1da2 + da1 a2)∧q a3 ∧q a4 ∧q da5

+

∫
− a0da1 ∧q (a2da3 + da2 a3) ∧q a4 ∧q da5 −

∫
− a0da1 ∧q a2 ∧q (a3da4 + da3 a4) ∧q da4

+

∫
− a0da1 ∧q a2 ∧q a3 ∧q (a4da5 + da4 a5)−

∫
− η(a5)a0 ∧q a1da2 ∧q a3 ∧q a4

=

∫
− a0(da1 ∧q . . . ∧q da4)a5 −

∫
− η(a5)a0(da1 ∧q . . . ∧q da4) ,

which is zero by the modular property (7.6) of the Haar state.

A 2-cocycle can be defined in a similar way. Recall that elements of Ω1,1(CP2
q) have the

form ω = (α, α4), with α4 ∈ A(CP2
q). Let π : Ω1,1(CP2

q)→ A(CP2
q) be the projection onto

the second component π(ω) = α4, and extend it to a projection π : Ω2(CP2
q) → A(CP2

q)

by setting π(ω) = 0 if ω ∈ Ω0,2 or ω ∈ Ω2,0. The map π is an A(CP2
q)-bimodule map.

Then, the map

τ2(a0, a1, a2) := ϕ ◦ π(a0da1 ∧q da2)

is the representative of a class [τ2] ∈ H2(A(CP2
q), ηA(CP2

q)). Indeed, by the Leibniz rule,

b∗3τ2(a0, a1, a2, a3) = ϕ ◦ π
(
a0(da1 ∧q da2)a3 − η(a3)a0(da1 ∧q da2)

)
.

Being π a bimodule map we get in turn

b∗3τ2(a0, a1, a2, a3) = ϕ
(
a0π(da1 ∧q da2)a3 − η(a3)a0π(da1 ∧q da2)

)
,

which is zero by the modular property of the Haar state.

Both classes [τ4] and [τ2] will be proven to be not trivial by pairing them with the

monopole projections (3.4). Firstly,

Lemma 7.3. The monopole projections PN = ΨNΨ†N in (3.4) are equivariant with respect

to the representation σN of Uq(su(3)) defined as

σN(h) :=

ρ0,N(S(h))t if N ≥ 0 ,

σN(h) := ρ−N,0(S(h))t if N ≤ 0 .

Proof. By Prop. 3.4,

h .Ψ†N =

Ψ†Nρ
0,N(h) if N ≥ 0 ,

Ψ†Nρ
−N,0(h) if N ≤ 0 ,
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for all h ∈ Uq(su(3)). Using (h . a∗)∗ = S(h)∗ . a, we get h . ΨN = σN(h)tΨN , and the

equivariance of PN follows. �

From the construction of the previous section, we can pair ch4(PN , σ
N) with [τ4] and

ch2(PN , σ
N) with [τ2]. The pairing of [τ2] with ch2(PN , σ

N) gives〈
τ2, ch2(PN , σ

N)
〉

= ϕTr
(
PNπ(dPN ∧q dPN)σN(K−41 K−42 )t

)
= q−2Nϕ

(
Ψ†Nπ(dPN ∧q dPN)ΨN

)
.

Since ΨN are ‘functions’ on the total space of the bundle, we cannot move them inside π

(which is an A(CP2
q)-bimodule map, not an A(SUq(3))-bimodule map). Nevertheless, –

with a little abuse of notations – the form ∇2
N = π(∇2

N) is a constant, and

PNdPN ∧q dPN = ΨN∇2
NΨ†N = π(∇2

N)ΨNΨ†N = π(∇2
N)PN .

With this, and using Ψ†NPNΨN = 1, we come to the final formula〈
τ2, ch2(PN , σ

N)
〉

= q−2Nϕ ◦ π(∇2
N) .

In (6.8), we have already shown that ∇2
N = qN−1[N ]∇2

1 with ∇2
1 = (0, w1). Thus the

corresponding quantum characteristic class is proportional to q−N [N ]:〈
τ2, ch2(PN , σ

N)
〉

=
(
ϕ ◦ π(∇2

1)
)
q−N−1[N ] .

At q = 1 the integral of the curvature is (modulo a global normalization constant) the

monopole number of the bundle; it is the same as the first Chern number.

As for the pairing of ch4(PN , σ
N) with τ4,〈

τ4, ch4(PN , σ
N)
〉

=

∫
− Tr

(
PN(dPN)4σN(K−41 K−42 )t

)
.

Using the modular properties of the Haar state, which means∫
− Tr(ΨNV ) =

∫
− Tr

(
V (K1K2)

4 .ΨN / (K1K2)
−4) = q−2N

∫
− Tr

(
V σN(K4

1K
4
2)tΨN

)
and is valid for any row vector V with entries in A(SUq(3)), we get:〈

τ4, ch4(PN , σ
N)
〉

= q−2N
∫
− Ψ†N(dPN)4ΨN .

We need to compute the top form Ψ†N(dPN)4ΨN . From the identity (6.1) it follows that

PN(dPN)2ΨN = (dPN)2PNΨN = (dPN)2ΨN , and

Ψ†N(dPN)4ΨN = Ψ†N(dPN)2 ∧q PN(dPN)2ΨN

= Ψ†N(dPN)2ΨN ∧q Ψ†N(dPN)2ΨN = ∇2
N ∧q∇2

N ,

leading to 〈
τ4, ch4(PN , σ

N)
〉

= q−2N
∫
− ∇2

N ∧q∇2
N .
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Using ∇2
N = qN−1[N ]∇2

1 the corresponding quantum characteristic class is found to be

proportional to [N ]2:

〈
τ4, ch4(PN , σ

N)
〉

=

(
q−2

∫
− ∇2

1 ∧q∇2
1

)
[N ]2 .

At q = 1, the integral of the square of the curvature is (modulo a global normalization

constant) the instanton number of the bundle. The pairing of a projection with the third

Fredholm module as in Sect. 4.3 does not give the ‘classical’ instanton number, that is

N2, but rather the 2nd Chern number which is combination of the instanton number and

of the monopole number.

By pairing ch0(PN , σ
N) with the Haar state, and using its modular property, one gets〈

ϕ, ch0(PN , σ
N)
〉

= ϕ
(
TrPNσ

N(K−41 K−42 )
)

= q−2Nϕ(Ψ†NΨN)

= q−2N .

On the other hand, the pairing with the classical point χ0 yields〈
χ0, ch0(PN , σ

N)
〉

= Trχ0(PN)σN(K−41 K−42 ) =
〈
0, 0, 0|K4

1K
4
2 |0, 0, 0

〉
= q2N ,

with |0, 0, 0〉 the highest weight of the representation ρ0,N if N ≥ 0 or ρ−N,0 if N ≤ 0.

As a byproduct, we see that if q is transcendental, the equivariant K0-group has (at

least) a countable number of generators: K
Uq(su(3))
0 (A(CP2

q)) ⊃ Z∞, i.e. all [PN ] are

independent. Indeed, were the classes [PN ] not independent, there would exist a sequence

{kN} of integers – all zero but for finitely many – such that
∑

N kNq
2N = 0, and q would

be the root of a non-zero polynomial with integer coefficients.

The results above are analogous to the ones for the standard Podleś sphere (cf. Prop. 5.1

and 5.2 in [21]). In fact they are instances of the general fact (cf. [16, Thm. 3.6]) that

the equivariant K0 group is a free abelian group and generators are, for the present case,

in bijection with equivalence classes of irreducible corepresentations of Uq(u(2)).

8. Concluding remarks

On a four-dimensional manifold (anti)self-dual connections are stationary points (usu-

ally minima) of the Yang-Mills action functional, i.e. they are solutions of the corre-

sponding equations of motion. In dimension greater than four, ‘generalized’ instantons

can be defined as solutions of Hermitian Yang-Mills equations. On CPn a basic instan-

ton solution is associated to the canonical (universal) connection on the Stiefel bundle

U(n) ↪→ U(n+ 1)/U(1)→ CPn. The extension of this construction to quantum complex

projective spaces – using the differential calculus in [5] – will be explored in future works,

and it should help, in particular, to understand how to generalize Hermitian Yang-Mills

equations to noncommutative spaces.
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Appendix A. Proof of Proposition. 5.1

In this appendix, we determine the most general value of the normalization constants

in order to have a left Uq(u(2))-covariant product on V •,• which is i) associative, ii) graded

commutative for q = 1, and iii) it sends real vectors into real vectors.

Indeed, as a way of illustration, let us start by considering the cases V 0,1×V 1,0 → V 1,1

and V 0,1 × V 0,1 → V 0,2. As vector spaces V 0,1 ' V 1,0 ' C2. For v, w ∈ C2 we order

the components of v ⊗w as: v ⊗w = (v1w1, v1w2, v2w1, v2w2)
t. A unitary equivalence U

between σ 1
2
,N ⊗ σ 1

2
,N ′ and σ1,N+N ′ ⊕ σ0,N+N ′ is given by

U =


1 0 0 0

0 q−
1
2 [2]−

1
2 q

1
2 [2]−

1
2 0

0 0 0 1

0 q
1
2 [2]−

1
2 −q− 1

2 [2]−
1
2 0

 (A.1)

It is easy to check that U(σ 1
2
,N(h(1))v⊗σ 1

2
,N ′(h(2))w) = (σ1,N+N ′(h)⊕σ0,N+N ′(h))U(v⊗w)

for all h ∈ Uq(u(2)) by doing it explicitly on all generators. For h = K1, K1K
2
2 this is

trivial. For h = E1, and omitting the representation symbols, we have

U(E1v ⊗K1w +K−11 v ⊗ E1w) = U


q−

1
2v2w2

q
1
2v2w2

0

q−
1
2v1w2 + q

1
2v2w1

 =


q−

1
2v1w2 + q

1
2v2w1

[2]
1
2v2w2

0

0

 ,

and

E1U(v ⊗ w) = [2]
1
2


0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

U(v ⊗ w) =


0 q−

1
2 q

1
2 0

0 0 0 [2]
1
2

0 0 0 0

0 0 0 0

 (v ⊗ w) .

Thus U∆(E1) = E1U . Then the statement holds for F1 since F1 = E∗1 . The map

∧q : V 0,1 × V 1,0 → V 1,1 is then v ∧q w = diag(c1, c1, c1, c2)U(v ⊗ w), where c1, c2 ∈ R
are arbitrary for the time being. When ci = ±1 we would get partial isometries; by

composing U with the orthogonal projection onto the last component, we would get a

partial isometry from V 0,1 × V 0,1 → V 0,2.

The general situation is listed in the following proposition.

Proposition A.1. The most general left Uq(u(2))-covariant graded product ∧q on V •,•,

sending real vectors to real vectors, is given by

V 0,1 × V 0,1 → V 0,2 , v ∧q w := c0µ0(v, w)t ,

V 0,1 × V 1,0 → V 1,1 , v ∧q w :=
(
c1µ1(v, w), c2µ0(v, w)

)t
,

V 0,1 × V 2,1 → V 2,2 , v ∧q w := c3µ0(v, w)t ,

V 0,1 × V 1,1 → V 1,2 , v ∧q w := c10[3]−
1
2µ2(v, w)t + c20vw4 ,

V 1,0 × V 1,0 → V 2,0 , v ∧q w := c4µ0(v, w)t ,
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V 1,0 × V 0,1 → V 1,1 , v ∧q w :=
(
−d0µ1(v, w), d1µ0(v, w)

)t
,

V 1,0 × V 1,2 → V 2,2 , v ∧q w := d2µ0(v, w)t ,

V 1,0 × V 1,1 → V 2,1 , v ∧q w := c11[3]−
1
2µ2(v, w)t + c21vw4 ,

V 1,2 × V 1,0 → V 2,2 , v ∧q w := d3µ0(v, w)t ,

V 2,1 × V 0,1 → V 2,2 , v ∧q w := d4µ0(v, w)t ,

V 1,1 × V 0,1 → V 1,2 , v ∧q w := −c12[3]−
1
2µ3(v, w)t + c22v4w ,

V 1,1 × V 1,0 → V 2,1 , v ∧q w := −c13[3]−
1
2µ3(v, w)t + c23v4w ,

V 1,1 × V 1,1 → V 2,2 , v ∧q w := c14[3]−
1
2µ4(v, w) + c24v4w4 .

The coefficients ci, dj and cji ∈ R are arbitrary for the time being; and the maps µi’s are

µ0 : R2 × R2 → R , µ0(v, w) := [2]−
1
2 (q

1
2v1w2 − q−

1
2v2w1) ,

µ1 : R2 × R2 → R3 , µ1(v, w) :=
(
v1w1, [2]−

1
2 (q−

1
2v1w2 + q

1
2v2w1), v2w2

)
,

µ2 : R2 × R3 → R2 , µ2(v, w) :=
(
qv1w2 − q−

1
2 [2]

1
2v2w1, q

1
2 [2]

1
2v1w3 − q−1v2w2

)
,

µ3 : R3 × R2 → R2 , µ3(v, w) :=
(
q

1
2 [2]

1
2v1w2 − q−1v2w1, qv2w2 − q−

1
2 [2]

1
2v3w1

)
,

µ4 : R3 × R3 → R , µ4(v, w) := qv1w3 − v2w2 + q−1v3w1 .

On the other hand, there is no need to to specify the multiplication rule by elements in

V 0,0 = V 0,2 = V 2,0 = V 2,2 = C, being scalars.

When all the coefficients ci’s and di’s are equal to ±1 and (c1i )
2 +(c2i )

2 = 1, the maps in

the proposition are partial isometries. In general, not all the choices give an associative

product. Associativity fixes the value of the parameters di’s and cji ’s.

Lemma A.2. We have

µ4(µ1(v, v
′), w) = µ0(v, µ2(v

′, w)) , (A.2a)

µ0(µ2(v, w), v′) = µ0(v, µ3(w, v
′)) , (A.2b)

µ0(µ3(w, v), v′) = µ4(w, µ1(v, v
′)) , (A.2c)

µ2(v, µ1(v
′, v′′)) = [2]µ0(v, v

′)v′′ + v µ0(v
′, v′′) , (A.2d)

µ3(µ1(v, v
′), v′′) = µ0(v, v

′)v′′ + [2] v µ0(v
′, v′′) , (A.2e)

for all v, v′, v′′ ∈ C2 and w ∈ C3.

Proof. By direct computation. Both sides of (A.2a) are equal to

qv1v
′
1w3 − [2]−

1
2 (q−

1
2v1v

′
2 + q

1
2v2v

′
1)w2 + q−1v2v

′
2w1 ,

both sides of (A.2b) are equal to

q
3
2 [2]−

1
2v1w2v

′
2 − v1w3v

′
1 − v2w1v

′
2 + q−

3
2 [2]−

1
2v2w2v

′
1 ,

43



both sides of (A.2c) are equal to

qv1w2v
′
2 − [2]−

1
2v2(q

− 1
2w1v

′
2 + q

1
2w2v

′
1) + q−1v3w1v

′
1 ,

both sides of (A.2d) are equal to( q
1
2 [2]−

1
2v1v

′
1v
′′
2 + q

3
2 [2]−

1
2v1v

′
2v
′′
1 − q−

1
2 [2]

1
2v2v

′
1v
′′
1

q
1
2 [2]

1
2v1v′2v

′′
2 − q−

3
2 [2]−

1
2v2v′1v

′′
2 − q−

1
2 [2]−

1
2v2v′2v

′′
1

)
,

both sides of (A.2e) are equal to(q 1
2 [2]

1
2v1v

′
1v
′′
2 − q−

3
2 [2]−

1
2v1v

′
2v
′′
1 − q−

1
2 [2]−

1
2v2v

′
1v
′′
1

q
1
2 [2]−

1
2v1v′2v

′′
2 + q

3
2 [2]−

1
2v2v′1v

′′
2 − q−

1
2 [2]

1
2v2v′2v

′′
1

)
.

�

Proposition A.3. The map ∧q in Prop. A.1 is a graded associative product on V •,• if

d0 = s1q
1
2
s2c1 , d1 = s1q

− 3
2
s2c2 , (A.3a)

c11 =

√
[3]

[2]

c0
c1
, c13 = s1q

− 1
2
s2

√
[3]

[2]

c0
c1
, (A.3b)

c21 = − 1

[2]

c0
c2
, c23 = −s1q

3
2
s2

1

[2]

c0
c2
, (A.3c)

c12 = −s1q−
1
2
s2

√
[3]

[2]

c4
c1
, c14 = −

√
[3]

[2]

c4
c1
, (A.3d)

c22 = −s1q
3
2
s2

1

[2]

c4
c2
, c24 = − 1

[2]

c4
c2
, (A.3e)

c15 = −s1q−
1
2
s2

√
[3]

[2]

c3c4
|c1|2

, c25 = −s1q
3
2
s2

1

[2]

c3c4
|c2|2

, (A.3f)

d2 =
c3c4
c0

, d3 =
c3c4
c0

, (A.3g)

d4 = c3 , , (A.3h)

where {s1, s2} ∈ {±1} are arbitrary signs. The algebra is graded commutative in the

q → 1 limit iff s1 = 1.

Proof. We seek solutions with all parameters different from zero The product is graded

by construction. We impose the condition:

(v ∧q v′) ∧q v′′ = v ∧q (v′ ∧q v′′) .

If one of the three vectors v, v′, v′′ is a scalar, i.e. an element of V 0,0, V 0,2, V 2,0 or V 2,2,

the equality follows by the bilinearity of ∧q. The non-trivial cases are when all three

vectors are not scalars. If the total degree is greater than 4, we get 0 = 0. The remaining

non-trivial cases are firstly (v, v′, v′′) ∈ V 0,1 × V 0,1 × V 1,0 and (two) permutations:

(v ∧q v′) ∧q v′′ = c0µ0(v, v
′)v′′ ,

v ∧q (v′ ∧q v′′) = c1c
1
1[3]−

1
2µ2(v, µ1(v

′, v′′)) + c2c
2
1vµ0(v

′, v′′) ,
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(v ∧q v′′) ∧q v′ = −c1c13[3]−
1
2µ3(µ1(v, v

′′), v′) + c2c
2
3µ0(v, v

′′)v′ ,

v ∧q (v′′ ∧q v′) = −d0c11[3]−
1
2µ2(v, µ1(v

′′, v′)) + d1c
2
1vµ0(v

′′, v′) ,

(v′′ ∧q v) ∧q v′ = d0c
1
3[3]−

1
2µ3(µ1(v

′′, v), v′) + d1c
2
3µ0(v

′′, v)v′ ,

v′′ ∧q (v ∧q v′) = c0v
′′µ0(v, v

′) .

Using (A.2d-A.2e) one sees that associativity is just the conditions

(A.3a-A.3c) respectively.

Then, (v, v′, v′′) ∈ V 1,0 × V 1,0 × V 0,1 and (two) permutations:

(v ∧q v′) ∧q v′′ = c4µ0(v, v
′)v′′ ,

v ∧q (v′ ∧q v′′) = −d0c12[3]−
1
2µ2(v, µ1(v

′, v′′)) + d1c
2
2vµ0(v

′, v′′) ,

(v ∧q v′′) ∧q v′ = d0c
1
4[3]−

1
2µ3(µ1(v, v

′′), v′) + d1c
2
4µ0(v, v

′′)v′ ,

v ∧q (v′′ ∧q v′) = c1c
1
2[3]−

1
2µ2(v, µ1(v

′′, v′)) + c2c
2
2vµ0(v

′′, v′) ,

(v′′ ∧q v) ∧q v′ = −c1c14[3]−
1
2µ3(µ1(v

′′, v), v′) + c2c
2
4µ0(v

′′, v)v′ ,

v′′ ∧q (v ∧q v′) = c4v
′′µ0(v, v

′) .

Using again (A.2d-A.2e) one sees that associativity is just the condition (A.3d-A.3e)

respectively.

Finally, (v, v′, v′′) ∈ V 0,1 × V 1,0 × V 1,1 and (five) permutations:

{v ∧q v′} ∧q v′′ = c2c
2
5µ0(v, v

′)w4 + c1c
1
5[3]−

1
2µ4(µ1(v, v

′), v′′) ,

v ∧q {v′ ∧q v′′} = c3c
2
2µ0(v, v

′w4) + c3c
1
2[3]−

1
2µ0(v, µ2(v

′, v′′)) ,

{v ∧q v′′} ∧q v′ = c21d3µ0(vw4, v
′) + d3c

1
1[3]−

1
2µ0(µ2(v, v

′′), v′) ,

v ∧q {v′′ ∧q v′} = c3c
2
4µ0(v, w4v

′)− c3c14[3]−
1
2µ0(v, µ3(v

′′, v′)) ,

{v′ ∧q v} ∧q v′′ = d1c
2
5µ0(v

′, v)w4 − d0c15[3]−
1
2µ4(µ1(v

′, v), v′′) ,

v′ ∧q {v ∧q v′′} = d2c
2
1µ0(v

′, vw4) + d2c
1
1[3]−

1
2µ0(v

′, µ2(v, v
′′)) ,

{v′ ∧q v′′} ∧q v = d4c
2
2µ0(v

′w4, v) + d4c
1
2[3]−

1
2µ0(µ2(v

′, v′′), v) ,

v′ ∧q {v′′ ∧q v} = d2c
2
3µ0(v

′, w4v)− d2c13[3]−
1
2µ0(v

′, µ3(v
′′, v)) ,

{v′′ ∧q v} ∧q v′ = d3c
2
3µ0(w4v, v

′)− d3c13[3]−
1
2µ0(µ3(v

′′, v), v′) ,

v′′ ∧q {v ∧q v′} = c2c
2
5w4µ0(v, v

′) + c1c
1
5[3]−

1
2µ4(v

′′, µ1(v, v
′)) ,

{v′′ ∧q v′} ∧q v = d4c
2
4µ0(w4v

′, v)− d4c14[3]−
1
2µ0(µ3(v

′′, v′), v) ,

v′′ ∧q {v′ ∧q v} = d1c
2
5w4µ0(v

′, v)− d0c15[3]−
1
2µ4(v

′′, µ1(v
′, v)) .
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Using (A.2), associativity for the first couple is shown to be equivalent to (A.3f), for the

second couple to the second condition in (A.3g), for the third couple to the first condition

in (A.3g), for the fourth couple to (A.3h). For the last two couples the associativity is

automatically satisfied.

Graded anticommutativity in the q → 1 limit is a simple check, based on the observation

that for q = 1: µ0 is antisymmetric, µ1 is symmetric, µ2(v
′, v′′) = −µ3(v

′′, v′), and µ4 is

symmetric. This concludes the proof. �

Appendix B. Some general facts on calculi

In this appendix we review the material that leads to the construction of the differential

calculus (Ω•(CP2
q), d) on CP2

q, in particular the fact that it is enough to define things for

one-forms and then extend them in a natural and unique (by universality) way.

Recall that a first order differential calculus on a unital ∗-algebra A is a pair (Ω1A, d),

where Ω1A is an A-bimodule giving the space of one-forms and d : A → Ω1A is the

exterior differential – a linear map satisfying the Leibniz rule,

d(ab) = a(db) + (da)b for all a, b ∈ A.

We also assumes that Ω1A = A(dA) and that we are dealing with a ∗-calculus with the

∗-structure on Ω1A given (uniquely) by (da)∗ = −d(a∗) for all a ∈ A.

To go beyond one forms a differential graded ∗-algebra (Ω• = ⊕kΩkA, d) is defined as

follows. The set Ω•A is a graded algebra, with Ω0A = A and graded product denoted

∧q : ΩkA× ΩlA → Ωk+lA. The universal differential calculus of A is obtained when ∧q
is the tensor product, Ω1A is the kernel of the multiplication map m(a ⊗ b) = ab and

da = a ⊗ 1 − 1 ⊗ a. With a general associative (unital) graded multiplication ∧q, the

calculus will always be a quotient of the universal calculus by a differential ideal.

Element in ΩkA (that is k-forms) are (sums of ) products of k 1-forms: ω = v1∧q. . .∧qvk.
The differential is extended to ΩkA by requiring that its square vanishes, d2 = 0, and

that it is a graded derivation of degree 1, that is d : ΩkA → Ωk+1A and

d(ω ∧q ω′) = dω ∧q ω′ + (−1)dg(ω)ω ∧q dω′ ,

for any two forms ω and ω′. By universality, these two properties uniquely identify d. It

is the map given on 1-forms by

d(adb) = da ∧q db = −d(da b)

on any product of k 1-forms by

d(v1 ∧q . . . ∧q vk) =
k∑
i=1

(−1)i−1v1 ∧q . . . ∧q dvi ∧q . . . ∧q vk ,

and extended by linearity. Finally, a ∗-structure on a differential calculus is given by a

graded involution which anti-commutes with the differential. Given a ∗-structure on A, a
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∗-structure on (Ω•A, d) is uniquely defined firstly on 1-forms by (adb)∗ = −(db∗)a∗, and

then by induction on k-forms by

(v ∧q w)∗ = (−1)k−1w∗ ∧q v∗ ,

where v is a 1-form and w is a k−1 form. With this, one easily check, again by induction,

that dω∗ = −(dω)∗ for any form ω.

An equivalent way to give a ∗-differential calculus (Ω•A, d) is via a differential double

complex (Ω•,•A, ∂, ∂̄). That is to say, starting with a bigradation ΩkA :=
⊕

i+j=k Ωi,jA
with a bigraded product, the following statements are equivalent:

i) there is a graded derivation d : Ω•A → Ω•+1A satisfying

d2 = 0 and dω = −(dω∗)∗ ;

ii) there are two graded derivations ∂ : Ω•,•A → Ω•+1,•A and ∂̄ : Ω•,•A → Ω•,•+1A,

satisfying

∂2 = ∂̄2 = ∂∂̄ + ∂̄∂ = 0 and ∂̄ω = −(∂ω∗)∗ .

Appendix C. An alternative proof of Theorem 7.2 for n ≤ 4

We give an alternative proof that the map chn : KU0 (A)→ HCUn (A) given by

chn(e, σ)(h) := Tr(e ⊗̇n+1σ(h)t) , (C.1)

is well-defined. This proof is valid for n ≤ 4 and for it we use the results of Lemma 7.1

stating the equivalence of equivariant projective modules in terms of idempotents.

Thus, we aim at proving that for any [(e, σ)] ∈ KU0 (A), the expression in (C.1) is an

equivariant cyclic n-cycle, and that if (e, σ) is in the same class of (e′, σ′), the difference

chn(e, σ)− chn(e′, σ′) is a boundary. In fact, when n is odd (C.1)

chn(e, σ) = 1
2
(1− λn)chn(e, σ) ,

and chn(e, σ) reduces in CUn (A)/Im(1− λn) to the trivial equivariant cyclic cocycle 0.

For n even, one finds that bnchn(e, σ) = chn−1(e, σ) which vanishes in CUn (A)/Im(1−λn)

since n− 1 is now odd and the class of chn−1(e, σ) is zero as before. Thus, chn(e, σ) is an

equivariant cyclic cocycle.

For the last part of the proof, ch0(e, σ)− ch0(e′, σ′) is the boundary of the function

Tr
(
u ⊗̇ vσ(h)t

)
;

ch2(e, σ)− ch2(e′, σ′) is the boundary (modulo the image of 1− λ2) of

Tr
(
e ⊗̇ 2 ⊗̇u ⊗̇ vσ(h)t

)
+ Tr

(
u ⊗̇ e′ ⊗̇ 2 ⊗̇ vσ(h)t

)
+ 1

2
Tr
(
u ⊗̇ v ⊗̇u ⊗̇ vσ(h)t

)
;

and ch4(e, σ)− ch4(e′, σ′) is the boundary (modulo the image of 1− λ4) of

Tr
(
e ⊗̇ 4 ⊗̇u ⊗̇ vσ(h)t

)
+ Tr

(
u ⊗̇ e′ ⊗̇ 4 ⊗̇ vσ(h)t

)
− 1

2
Tr
(
e ⊗̇ 2 ⊗̇u ⊗̇ v ⊗̇u ⊗̇ vσ(h)t

)
− 1

2
Tr
(
u ⊗̇ e′ ⊗̇ 2 ⊗̇ v ⊗̇u ⊗̇ vσ(h)t

)
+ 1

2
Tr
(
e ⊗̇ 2 ⊗̇u ⊗̇ e′ ⊗̇ 2 ⊗̇ vσ(h)t

)
+ 1

6
Tr
(
u ⊗̇ v ⊗̇u ⊗̇ v ⊗̇u ⊗̇ vσ(h)t

)
.
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This concludes the proof. In general, for an arbitrary high n, it is not an easy task to

write chn(e, σ)− chn(e′, σ′) explicitly as the boundary of something else.

Appendix D. Irreducible ∗-representations of CP2
q

In this appendix we prove the result mentioned at the end of Sect. 4.3, namely that any

non-trivial irreducible ∗-representation (irrep for short) of A(CP2
q) (by bounded operators

on a Hilbert space) is unitarily equivalent to one of the representations χ0, χ1 or χ2

described in the paper.

Lemma D.1. Let π : A(CP2
q)→ B(H) be a ∗-representation such that kerπ(p11) = {0}.

Then there exists Zi ∈ B(H), i = 1, 2, 3, such that Z1 is positive and

π(P ) =

 Z2
1 qZ2Z1 qZ3Z1

qZ1Z
∗
2 Z∗2Z2 Z∗2Z3

qZ1Z
∗
3 Z∗3Z2 Z∗3Z3

 . (D.1)

With this, a ∗-representation π̃ : A(S5
q )→ B(H) is defined by π̃(zi) = Zi and it satisfies

ker π̃(z1) = {0}. Moreover, Z∗i Zj = π(pij), so that the restriction of π̃ to A(CP2
q) is

exactly π. The ∗-representation π̃ is irreducible if π is irreducible.

Proof. Recall that the generators pij of A(CP2
q) satisfy the commutation relations in

Sect. 2.3, the quadratic relations
∑

j pijpji = pii, i = 1, 2, 3, and the real structure is

given pij = p∗ji. They are related to the generators zi of A(S5
q ) by pij = z∗i zj.

Since π is a ∗-representation, π(pii) =
∑

j π(pij)π(pji) =
∑

j π(pji)
∗π(pji) is a sum of

positive operators and then it is positive as well. The positive operators Ai = π(pii)
1
2 are

well defined and are mutually commuting since pii are mutually commuting.

We have (q4p11 + q2p22 + p33)pii = pii =
∑

j pijpji, for all i = 1, 2, 3. Using the

commutation rules between pij and pji yields

q2p11p22 + p11p33 = p21p12 + q−2p31p13 ,

q4p11p22 + p22p33 = q2p21p12 + (q−2 − 1)p31p13 + q−2p32p23 ,

q4p11p33 + q2p22p33 = p31p13 + p32p23 .

By solving these equations we get

pi1p1i = q2p11pii , i = 2, 3 , (D.2)

and a third relation for p32p23 that we don’t need. Similarly, using the commutation rule

[p33, p23] = (1− q2)(p21p13 + p22p23), the relation (q4p11 + q2p22 + p33)p23 = p23 =
∑

i p2ipi3

can be rewritten as

p11p23 = q−2p21p13 . (D.3)

Writing T = V |T | for the polar decomposition of a bounded operator T , for the polar

decomposition of π(p1i), i = 2, 3, from (D.2) we get |π(p1i)|2 = q2A2
1A

2
i = (qA1Ai)

2.

Therefore π(p1i) = qViA1Ai. Applying π to both sides of the equation (D.3) yields

A1π(p23)A1 = A1A2V
∗
2 V3A3A1 , (D.4)
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where we used the fact that p11 and p23 commute, and so do A1 and π(p23).

For any bounded operator T , it holds that ker(T )⊥ = range(T ∗). Being A1 positive

with ker(A1) = {0}, we have range(A1) = H. Since the range of A1 is dense in H, we

can simplify the A1 factor on the right of both sides of (D.4), and since ker(A1) = {0}
we can simplify the A1 on the left too. We get π(p23) = A2V

∗
2 V3A3.

Setting A1 =: Z1, V2A2 =: Z2 and V3A3 =: Z3 concludes the proof of (D.1).

Next, we show that π̃(zi) := Zi defines a ∗-representation of A(S5
q ), i.e. that the

Zi’s satisfy the commutation rules of the algebra A(S5
q ). Then the rest of the proof

is straightforward: if the relations of A(S5
q ) are satisfied, some algebraic manipulation

immediately gives from (D.1) that Z∗i Zj = π(pij) with kerZ1 = ker π(p11) = {0} by

hyphothesis. Also, since π̃(A(S5
q ))H ⊃ π(A(CP2

q))H, if the latter space is dense in H, so

must be the former: so if π is irreducible, π̃ is irreducible too.

Among the defining relations of CP2
q we have p11p1i = q2p1ip11 for i = 2, 3. Applying

π to both sides and using (D.1) it becomes Z1(Z
2
1Zi − q2ZiZ

2
1) = 0. This reduces to

Z2
1Zi = q2ZiZ

2
1 , since kerZ1 = {0} allowing to simplify the factor Z1 on the left and

get. Being Z1 positive it can be diagonalized, and by previous relation Zi intertwines the

eigenspace of Z2
1 with eigenvalue λ ≥ 0 with the eigenspace of Z2

1 with eigenvalue q2λ,

i.e. it maps the eigenvalue
√
λ of Z1 to q

√
λ (−q

√
λ is excluded by the positivity of Z1).

This proves

Z1Zi = qZiZ1 , i = 2, 3 . (D.5)

Since Z1 = Z∗1 , by conjugating we get Z∗1Zi = qZiZ
∗
1 .

The defining relation p12p13 = qp13p12 yields Z2
1(Z2Z3 − qZ3Z2) = 0, using (D.1) and

(D.5). Again Z2
1 can be simplified having kernel {0} and so Z2Z3 = qZ3Z2. Similarly

from p21p13 = q3p13p21 we deduce Z∗2Z3 = qZ3Z
∗
2 – and by conjugation Z∗3Z2 = qZ2Z

∗
3 .

From Z1 = Z∗1 we get the relation [Z∗1 , Z1] = 0; from q−2p21p12 − p12p21 = (1 − q2)p211
we get [Z∗2 , Z2] = (1 − q2)Z1Z

∗
1 , from q−2p31p13 − p13p31 = (1 − q2)(p211 + p12p21) we get

[Z∗3 , Z3] = (1− q2)(Z1Z
∗
1 + Z2Z

∗
2). Using previous formulas for [Z∗2 , Z2] and [Z∗3 , Z3], the

tracial relation Trqπ(P ) = 1 gives the spherical relation
∑

i ZiZ
∗
i = 1. With this, all the

defining relations of S5
q are satisfied and the proof is complete. �

It is in general not true that a representation on a Hilbert space of a subalgebra of a

given algebra can be extended to a representation of the full algebra on the same Hilbert

space: one needs at least to extend the Hilbert space. The point here is that we can

extend the representation from A(CP2
q) to A(S5

q ) without enlarging the Hilbert space.

By previous lemma any irrep π : A(CP2
q)→ B(H) with ker π(p11) = {0} is the restric-

tion of an irrep π̃ : A(S5
q ) → B(H) with ker π(z1) = {0}. On the other hand any irrep

π : A(CP2
q) → B(H) with π(p1i) = 0 for all i = 1, 2, 3 is the pullback of an irrep of the

standard Podleś sphere, the ∗-algebra morphism A(CP2
q)→ A(CP1

q) being the map

p1j, pj1 7→ 0 ∀ j , p22 7→ A , p23 7→ B∗ , p32 7→ B , p33 7→ 1− q2A ,

where A and B are the original generators of Podleś [17]. Next lemma shows that only

these two cases are possible.
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Lemma D.2. For any irrep π of A(CP2
q) it is either kerπ(p11) = {0} or π(p1i) = 0 for

all i = 1, 2, 3.

Proof. Suppose there is a vector v such that π(p11)v = 0. The element p11 commutes with

the generators pij for all i, j > 1, while p11p1i = q2p1ip11 and p11pi1 = q−2pi1p11 for all i >

1. This means that for any polynomial a in the generators π(p11)π(a)v ∝ π(a)π(p11)v = 0

and by linearity π(p11)π(a)v = 0 for any a ∈ A(CP2
q). We conclude that the kernel of

π(p11) carries a subrepresentation of π, but π is irreducible thus we have only two cases:

kerπ(p11) = {0} or π(p11) = 0. In the latter case∑
i π(pi1)

∗π(pi1) = π (
∑

i p1ipi1) = π(p11) = 0 .

A sum of positive operators π(pi1)
∗π(pi1) is zero iff each one is zero, and for a bounded

operator T the condition T ∗T = 0 implies T = T ∗ = 0. Thus π(p11) = 0 implies that

π(p12) = π(p13) = 0 as well. �

We need to recall the representation theory of quantum spheres. Irreps of quantum

orthogonal spheres A(Snq ) are classified in [11] – and in particular we are interested in

A(S5
q ) –, while the case of the standard Podleś sphere CP1

q is in [17]. The generators zi of

A(S5
q ) are related to the xi’s used in [11] by xi = z∗i and by the replacement q → q−1. We

collect some results of [11, 17] into the following proposition, adapted to our notations.

Proposition D.3. Any non-trivial irrep of A(CP1
q) is unitarily equivalent to one of the

following two representations (cf. [17, Prop. 4.I], with parameter c = 0). The first is

one-dimensional, χ0(pij) = δi3δj3 (and χ0(1) = 1), the second is just the map χ1 in (4.5).

Any irrep of A(S5
q ) with z1 not in the kernel is unitarily equivalent to one of the

following family, parametrized by λ ∈ U(1) (cf. [11], eq. (3.10), n = 2):

ψ5
λ(z1) |k1, k2〉 := λqk1+k2 |k1, k2〉 ,

ψ5
λ(z2) |k1, k2〉 := qk1

√
1− q2(k2+1) |k1, k2 + 1〉 ,

ψ5
λ(z3) |k1, k2〉 :=

√
1− q2(k1+1) |k1 + 1, k2〉 .

Note that kerψ5
λ(z1) = {0}. For λ = 1 we get the representation ψ5

λ=1 = χ2 in (4.7).

Notice that restricted to A(CP2
q) all the representations ψ5

λ are unitarily equivalent.

Indeed, let U be the unitary transformation U |k1, k2〉 := λk1+k2 |k1, k2〉; one easily checks

that Uψ5
λ(a)U∗ = ψ5

λ=1(a) = χ2(a) for all a ∈ A(CP2
q) (indeed it is enough to prove it

for a = pij). By Lemma D.1 and Lemma D.2 any non-trivial irrep of A(CP2
q) is either

the pullback of one of A(CP1
q) – and then unitarily equivalent to χ0 or χ1 – or it is the

restriction of an irrep π̃ of A(S5
q ) such that ker π̃(z1) = {0} – and by Prop. D.3 it is

unitarily equivalent to (the restriction of) χ2.
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Noncomm. Geom. 1 (2007) 213–239.

[9] F. D’Andrea and G. Landi, Bounded and unbounded Fredholm modules for quantum projective spaces,

J. K-Theory (2009); First view: [doi:10.1017/is010001012jkt102]; arXiv:0903.3553v2 [math.QA].

[10] , Anti-selfdual connections on the quantum projective plane: families of instantons, in prepa-

ration, 2009.

[11] E. Hawkins and G. Landi, Fredholm Modules for Quantum Euclidean Spheres, J. Geom. Phys. 49

(2004) 272–293.
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