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Relating Final State Interactions in B → Dπ and B → DK
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Abstract

A Regge model calculation relates the strong phase in B → DK to that in B → Dπ. This

provides a significant test of a hadronic picture of final state interactions in B decays.
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1. Introduction

Recently the CLEO Collaboration [1] performed a detailed amplitude analysis of the decays

B → Dπ: they determined the absolute values of the isospin 1/2 and isospin 3/2 amplitudes as

well as their relative phase eiδDπ with the result

cos δDπ = 0.86 ± 0.05 (1)

indicating significant final state interaction effects.

On the other hand, the BELLE Collaboration [2] has reported the first measurement of the

decay B
0 → D0K

0
. With this new experimental information, a central value analysis [3] of the

decays B → DK suggests, once again, important final state interaction effects although the data

remain compatible with a small relative phase eiδDK between the isospin zero and isospin one

amplitudes [4].

In our view these strong phases are genuine hadronic effects which, we believe, cannot meaning-

fully be parametrized by pure short-distance considerations. In Refs. [5, 6], a simple Regge model

was proposed to calculate these strong phases. The predictions of the model are in good agreement

with the experimental data for the decays D → ππ, πK and KK. At present it is not yet possible

to significantly test the model in the corresponding B decays.

In this note we extend this Regge model to the decays B → Dπ and B → DK. From the short

distance point of view these decays differ radically from e.g. B → Kπ since there are no penguin

topology contributions. In a hadronic model for strong phases, isospin symmetry is important while

the underlying quark diagram topology is basically irrelevant [7]. It is this idea which we propose

to test in the new class of B decays.

We will first of all argue that a sensible phenomenological model is to identify δDπ with δ3 − δ1

namely the difference in s-wave phase shifts of the Dπ scattering amplitudes in the isospin 3/2

and isospin 1/2 channels respectively. A Regge model would then lead to a prediction of δDπ if

the couplings of the Pomeron and ρ trajectory to the DD channel were known. This would be the

case in an unrealistic SU(4) symmetry limit but it appears more sensible to plot δDπ in terms of a

single variable xDπ which only depends on Regge parameters.

We then proceed to an analogous parametrization and calculation of δDK = δ1 − δ0, i.e. the

difference in phase shifts in the isospin one and isospin zero amplitudes in B → DK. Once again

δDK depends on a single parameter xDK .

The main point of this note is to point out that xDK is uniquely determined from xDπ. In other

words a better determination of δDπ would lead to a precise prediction of δDK . The present data

are certainly compatible with this prediction which lies at the heart of a hadronic approach to final

state interactions.
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2. Hadronic final state interactions

The asymptotic states of QCD are hadrons, not quarks and gluons. Isospin invariance is an

excellent symmetry of the hadronic world, hence the S-matrix for strong interactions commutes

with the isospin generators.

The standard decomposition of B → Dπ decays in terms of isospin amplitudes reads

A(B− → D0π−) =
√

3 A 3

2

A(B̄0 → D+π−) = +

√
2

3
A 1

2

+
1√
3

A 3

2

A(B̄0 → D0π0) = − 1√
3

A 1

2

+

√
2

3
A 3

2

. (2)

Phenomenologically it makes good sense to view the isospin amplitudes as being built up from

a direct (weak) transition followed by rescattering. This is embodied in the standard formula [8]

AI(B → i) = 〈i, out|H(2)
W |B〉I =

∑

j

S
1

2

ij ĀI(B → j) (3)

where i denotes the Dπ channel and j any hadronic channel, with the same quantum numbers as

Dπ, the B mesons can decay into. H
(2)
W is the second order weak hamiltonian and ĀI are the bare

transition amplitudes.

H
(2)
W contains an isospin zero and an isospin one part. The ĀI ’s are directly related to the

reduced matrix elements of these specific isospin components of H
(2)
W . In the absence of CP violation,

the ĀI are thus relatively real in any theory with hadronic asymptotic states.

From Eq.(3) we can now give a precise meaning to what some of us have called the quasi-elastic

approximation. It is defined by the following equations:

S
1

2

ii = σie
iδI (4)

and

∑

j 6=i

S
1

2

ij Ā(B → j) = 0 . (5)

In Eq.(4), σi is a complex number. Its modulus is smaller than one and may depend on the

isospin channel I, but we specifically assume that its phase is isospin independent. On the other

hand, eiδI is the usual elastic s-wave phase shift.

Substituting Eqs.(4) and (5) in Eq.(3) obviously implies that the relative phase between A 1

2

and A 3

2

is simply ei(δ1−δ3).
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We strongly emphasize the fact that the quasi-elastic approximation does by no means imply

the absence of inelasticity: it is not assumed that σi is of modulus one nor that each S
1

2

ij(i 6= j)

vanishes. The latter assumptions i.e. |σi| = 1 and S
1

2

ij(i 6= j) = 0, correspond to the genuine elastic

limit which is of course physically absurd at the B mass [9].

The quasi-elastic approximation as defined by Eqs.(4) and (5) does not violate any basic prin-

ciple. At ultra-high energies, for example, all elastic amplitudes become purely imaginary and the

δI ’s tend to zero. In that limit Eqs.(4) and (5) implement the physically sensible argument of

Bjorken [10] that if the B meson were infinitely heavy there would simply be no time for the final

hadrons to rescatter. But no rescattering does not mean no inelasticity!

The quasi-elastic approximation defines a phenomenological model for final state interaction

phases. The main virtues of this model are that it puts so called ”strong phases” where they

belong, namely in the hadronic world with its excellent isospin symmetry and, more importantly,

it allows for a simple calculation of these phases in a Regge model of hadronic scattering. Other

models have of course been proposed for such strong phases in B-decays, e.g. the random phase

model [8] or the coherent phase model [11].

As mentioned in the introduction, the quasi-elastic model was used to analyze the decays

D → ππ, πK,KK and the results are in good agreement with the data. To our knowledge no other

model has met with similar successes.

We do assume that final state interactions are hadronic effects. The implementation of this

idea in the phenomenologically well-defined quasi-elastic approximation works well for D decays.

We expect this phenomenology to be successful in B decays as well.

3. A Regge model for Dπ scattering

From Eqs.(3) and (5) it follows that δDπ = δ3 − δ1. To calculate this phase we now use a simple

Regge model for elastic Dπ scattering. Our notation and parametrization will be the same as for

the elastic Kπ scattering treated in Ref. [5] where a more detailed discussion can be found.

In the t−channel, DD̄ → ππ, the leading Regge trajectories are the Pomeron (P) and the

exchange degenerate ρ − f0 trajectory (ρ). In the u−channel, the relevant Regge trajectory would

be that of the D∗ but since it lies so much lower than the ρ trajectory, it can safely be neglected.

Following step by step the procedure outlined in Ref. [5], one obtains for the l = 0 partial wave

amplitudes

a 1

2

(s) =
i√
6

βP (0)

bP
s +

1

2

β̄ρ(0)√
π

1

ln s
s

1

2 +
3i

2
√

π
β̄ρ(0)

ln s + iπ

(ln s)2 + π2
s

1

2

a 3

2

(s) =
i√
6

βP (0)

bP
s − β̄ρ(0)√

π

1

ln s
s

1

2 (6)

from which the δI are easily computed. They depend on one single parameter
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xDπ =

√
πβP (0)

bP β̄ρ(0)
(7)

where bP is the slope of the Pomeron residue function, while the couplings are βP (0) = gPDD̄ gPππ

and β̄ρ(0) = gρDD̄ gρππ.

In Fig. 1 we plot δDπ as a function of xDπ. In the unrealistic SU(4) limit [12] for bP , βP and

β̄ρ we would have xDπ = xKπ close to one [5] but, of course, we expect SU(4) to be badly broken.

In Eq.(1), the central value of the CLEO data clearly suggests xDπ < 1.

4. The rescattering phase in B → DK decays

We now consider the decays B → DK. There are two isospin amplitudes A0 and A1 and

A(B− → D0K−) =
√

2A1

A(B̄0 → D+K−) = +
1√
2

A0 +
1√
2

A1

A(B̄0 → D0K̄0) = − 1√
2

A0 +
1√
2

A1 . (8)

Following the procedure given in Ref. [6] for KK scattering, the l = 0 partial wave amplitudes

are given by

ã0(s) =
i

2

β̃P (0)

b̃P

s +
4i ˜̄βρ(0)√

π

(ln s) + iπ

(ln s)2 + π2
s

1

2

ã1(s) =
i

2

β̃P (0)

b̃P

s (9)

and the relevant parameter to determine the rescattering phase δDK ≡ δ1 − δ0 is now

xDK =

√
π

b̃P

β̃P (0)
˜̄βρ(0)

(10)

where the couplings are β̃P (0) = gPDD gPKK and ˜̄βρ(0) = gρDD gρKK .

From Eqs.(7) and (10) and using the data given in Ref. [6], we obtain

xDK

xDπ
=

g
PKK

gρππ

gPππg
ρKK

= 1.6 ± 0.3 (11)

in the SU(3) limit bP = b̃P . In fact, Eq.(11) is compatible with a pure SU(3) estimate

(
xDK

xDπ

)SU(3)

= 4/3. (12)
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In Fig. 1 we also plot δDK as a function of xDπ. If, for the sake of argument we take 0.2 <

xDπ < 0.5, then δDK is predicted to be in the range

14◦ < −δDK < 24◦ (13)

in the SU(3) limit defined by Eq.(12).

Clearly the model is compatible with the present data.

5. Conclusion

In this note we have derived a simple relation between the final state interaction phases for

B → Dπ and B → DK decays in the quasi-elastic approximation. Better data will allow for a

significant test of the point of view that final state interaction phases are due to coherent hadronic

effects.

In the Cabibbo-favored B → Dπ and Cabibbo-suppressed B → DK decays, the dominant

underlying quark diagram seems to be [13] particularly simple (tree-level approximation) and, in

fact, the final state interaction phases are not particularly interesting per se [14]. The situation

is of course quite different in B → Kπ, ππ or KK decays where the quark diagrams are more

complicated (in particular with one-loop penguin diagrams involved) and the physics much more

interesting. Final state interaction phases are then relevant not only in an amplitude analysis but

also in various CP violating asymmetries. The quasi-elastic model predictions for the pattern of

B → Kπ direct CP-asymmetries were already discussed elsewhere [15].
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Figure 1: Final state interaction phases in B → Dπ and B → DK as a function of the Regge

variable xDπ defined in Eq.(7).
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