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Abstract

Hyperfine spectroscopy of positronium formed in the presence of a static mag-
netic field is considered. Generalising the situation hitherto developed in the
literature, the magnetic field is not assumed to be parallel to the momentum
of incoming polarised positrons, while the possibility of electron polarisation is
also included in the analysis. The results are of application to high sensitivity
positron polarimeters used in current β decay experiments.
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1 Introduction

Hyperfine structure in positronium is a basic physical fact with wide ranging impli-
cations. The energy difference between singlet and triplet states, and their lifetimes
dominated by disintegrations into two and three photons, respectively, are observ-
ables providing crucial tests for quantum electrodynamics (QED)[1] and the Standard
Model[2] of electroweak and strong interactions. On a more practical level, positronium
physics is also essential in a series of technological developments both in the design of
detectors for particle physics experiments and in applications to problems of solid state
physics (for a detailed review with references to the original literature, see Refs.[1, 3]).

In particular, hyperfine structure of positronium has been put to use since over
thirty years[4] in measurements of positron polarisations. One instance where such
experiments come immediately to bear on the structure of fundamental interactions
is in the case of positrons emitted in the β decay of radioactive nuclei. Specifically,
any deviation from purely right-handed polarisation of positrons emitted in the β
decay of polarised nuclei would point to physics beyond the Standard Model in its
electroweak sector. Actually, experiments with this purpose in mind and using such
a positronium based positron polarisation measurement technique, have been pursued
at our Institute[5, 6, 7]. Results are promising[5, 6], and compete well with limits
on physics beyond the Standard Model obtained from experiments at much higher
energies.

Typically in such β decay experiments, one is interested in measuring the longitu-
dinal polarisation of positrons emitted parallel or antiparallel to the direction in which
the decaying nucleus is polarised. The emitted positron is stopped in some specific
medium where positronium is formed. The medium being placed in a strong magnetic
field1, the decay spectrum of positronium formed provides information[4] on the po-
larisation of the incoming positron. The analysis of actual experimental positronium
spectra usually assumes that, at the location where positronium is formed, the ap-
plied magnetic field is exactly parallel to the direction in which the positron is emitted.
Since, strictly speaking, such an assumption can never be correct in practice, the more
general situation has to be considered, namely when the direction of the magnetic field
is arbitrary with respect to the positron momentum. However, the present author has
been unable to find in the literature[3, 4, 9, 10] a detailed discussion of this point,
hence this note addressing the problem specifically.

In sect.2, a brief review of positronium hyperfine structure in the absence of any
external electromagnetic field is presented, with also the purpose of specifying our no-
tation. Sect.3 develops the discussion of the positronium ground state and its hyperfine
structure in the presence of an arbitrary static magnetic field. Sects. 4 and 5 consider
lifetimes and time evolution of hyperfine populations, respectively, while sect.6 ends
with some conclusions.

1Since positrons and electrons have opposite electric charges, an external electric field does not
affect positronium states nor their intrinsic decay rates (however, “pick-up” processes of external
electrons or other “quenching” effects can affect these rates[3]). Nevertheless, an external electric field
can indeed improve[8] the positronium formation rate in a given medium.
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2 Hyperfine Structure of Positronium

As is well known, the 1S positronium ground state is in fact split into two hyperfine
levels of total spin S = 0 and S = 1. Their energy difference is due to spin-spin
interactions between the positron and the electron, to relativistic corrections to their
kinetic energies and to virtual pair annihilation in the S = 1 channel2.

A non relativistic representation of the associated wave functions is sufficient for our
purposes, as well as being justified. Accordingly, wave functions separate into space
and spin components, with the space component being identical for both hyperfine
states. Namely, the S = 0 singlet or parapositronium state is given by a wave function
of the form3

| 0, 0 >= ψ(r)
1√
2

[ |+ > |− > − |− > |+ > ] . (1)

Here, ψ(r) is the space wave function of the 1S ground state, while the second factor in
the r.h.s. of this expression is the spin wave function. The convention used throughout
is that in the product of two spin ket vectors, the first always stands for the electron
spin component whereas the second stands for the positron spin component. These
components are taken with respect, say to the z axis of some reference frame. Later
on, this axis will of course correspond to the direction in which the β decay positron is
emitted. It is also assumed that the space wave function ψ(r) is properly normalised,

4π
∫ ∞

0
dr r2 | ψ(r) |2= 1 , (2)

and that the basis vectors |+ > and |− > in spin space both for the electron and for
the positron are normalised in the usual way, namely

< +|+ > = 1 = < −|− > , < +|− > = 0 = < −|+ > . (3)

Consequently, the | 0, 0 > state in (1) is also of norm 1.
Similarly, the three components m = ±1, 0 of the S = 1 triplet orthopositronium

state are given by the normalised state vectors

| 1, m = 1 >= ψ(r) |+ > |+ > ,

| 1, m = −1 >= ψ(r) |− > |− > , (4)

| 1, m = 0 >= ψ(r)
1√
2

[ |+ > |− > + |− > |+ > ] .

The hyperfine states in (1) and (4) are eigenstates of the total HamiltonianH0 of the
system in the absence of an external magnetic field. In the non relativistic limit, this
Hamiltonian is comprised of the ordinary Schrödinger type Hamiltonian H(C)—which,
apart from the usual kinetic term, only includes the Coulomb interaction between the

2The latter effect is absent in the S = 0 channel due to charge conjugation. A photon has C = −1,
whereas the S = 0 and S = 1 states have C = +1 and C = −1, respectively.

3Note that a compactified notation for state vectors is used throughout, whereby their isotropic
radial dependence is not displayed explicitly.
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two oppositely charged particles—to which diverse relativistic corrections are added.
The latter contributions correspond to spin-spin interactions between the electron and
the positron, to relativistic corrections to their kinetic energies, to virtual pair anni-
hilation effects for orthopositronium states and to further QED radiative corrections.
Restricting for a moment the discussion to the non relativistic purely Coulomb Hamil-
tonian, the singlet and triplet states above are degenerate eigenstates of H(C) with
energy4

E(C) = −1

4
α2mc2 = −6.803 eV . (5)

In fact, in this purely Coulomb limit, the space wave function is simply

ψ(C)(r) =
(

πa3
)−1/2

e−r/a , (6)

with the positronium radius

a =
2h̄

αmc
= 1.0584 Å . (7)

Even though the complete wave function ψ(r) in (1) departs from the simple radial
dependence in (6), the parameter a in (7) gives a measure of the spatial extension of
the positronium ground state.

Relativistic effects just mentioned lift the singlet-triplet degeneracy5 according to
the eigenvalues

H0 | 0, 0 >= E0 | 0, 0 > , H0 | 1, m = ±1, 0 >= E1 | 1, m = ±1, 0 > , (8)

with energies[3]

E0 =
{

−1

4
+ α2

[

−1

4
− 5

64

]

+ O(α3, α2 lnα−1)
}

α2mc2 , (9)

E1 =
{

−1

4
+ α2

[

1

12
− 5

64
+

1

4

]

+ O(α3, α2 lnα−1)
}

α2mc2 , (10)

and the hyperfine difference[13, 14]

∆E = E1 −E0 =
[

7
3
− α

π

(

32
9

+ 2 ln 2
)

+ 5
6
α2 lnα−1 + O(α2)

]

1
4
α4mc2

= 8.41 × 10−4 eV .

(11)

Except for their first term corresponding to the purely Coulomb contribution (5),
the different contributions of order α4 in (9) and (10) are as follows. Both in E0 and
in E1, the first such contribution is that of the spin-spin interaction energy, while the

4Throughout, α, m and c of course stand for the fine structure constant, the electron and positron
mass and the speed of light, respectively. Numerical values for these parameters are from Ref.[11].

5In the purely Coulomb situation of (5), the singlet-triplet degeneracy is due[12] to a dynami-
cal SO(4) symmetry explicitly broken by effects now considered. Nevertheless, the S = 1 triplet
states m = ±1, 0 remain degenerate since, in the absence of external electromagnetic fields, the total
Hamiltonian H0 is invariant under rotations in space.
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second—common to both expressions—is that due to relativistic corrections to the
total kinetic energy. Finally, the third term of order α4 in E1 follows from virtual pair
annihilation in the orthopositronium triplet state.

To conclude, let us consider positronium lifetimes. Due to charge conjugation prop-
erties, the singlet state can only decay into an even number of photons and the triplet
states into an odd number (beginning of course with three photons). Therefore in very
good approximation, parapositronium decays predominantly into two photons and or-
thopositronium into three photons, since compared to each of these processes, the rate
for any further photon pair emission is suppressed each time by an additional power of
α2. Hence, only 2γ and 3γ decay processes are considered in this note, and these two
channels are assumed to encompass all possible decay modes of positronium.

The associated lifetimes, including radiative corrections, have been computed within
QED[15, 16]. For the singlet state, one has the 2γ decay rate

λS = 1
2
α5 mc2

h̄

[

1 − α
π

(

5 − π2

4

)

+ 2
3
α2 lnα−1 + O(α2)

]

= (0.125209× 10−9 s)−1 = 7.98665 × 109 s−1 .

(12)

Similarly for triplet states, their 3γ decay rate is

λT = 2
9π
α6 mc2

h̄
(π2 − 9)

[

1 − (10.266 ± 0.008)α
π
− 1

3
α2 lnα−1 + O(α2)

]

= (142.074 × 10−9 s)−1 = 7.03859× 106 s−1 .

(13)

Note the rather large ratio
λS

λT
= 1134.695 . (14)

3 Coupling to a Magnetic Field

Let us now consider positronium states formed in the presence of some external static
magnetic field ~B = (Bx, By, Bz). For all practical purposes, certainly always realised

in actual experimental conditions, it will be assumed that whenever ~B(~x) might have
a non vanishing gradient, this gradient is nevertheless negligible on the scale of the
spatial extension of the positronium state, namely

a
| ~∇Bi |
| ~B |

≪ 1 , for all i = x, y, z . (15)

Here, a is the positronium radius of (7). Effectively, one may then consider the magnetic

field ~B not only to be static but also to be constant, which is thus the situation to be
assumed in the analysis developed in this note. Furthermore, the field ~B is not taken to
be necessarily parallel to the z axis with respect to which spin eigenstates were defined
in the previous section, since in practical applications, the latter axis is often defined
by the positron momentum instead.

4



The presence of the magnetic field ~B induces an additional interaction term in the
total Hamiltonian for the positronium system. The total Hamiltonian H now includes
the previous Hamiltonian H0 with its lowest energy eigenstates in (1) and (4), to which
the magnetic coupling to magnetic moments is added, namely

HB = −~µ− · ~B − ~µ+ · ~B . (16)

Here, ~µ− and ~µ+ are the electron and positron magnetic moments, respectively. In
terms of their spin operators ~σ−/2 and ~σ+/2, respectively, we have6

~µ± = ∓µ~σ±
2
. (17)

The magnetic dipole moment µ is given by

µ = g
eh̄

2m
, (18)

with the gyromagnetic factor[17, 18, 19, 20, 1]

g = 2

{

1 +
α

2π
+
[

3

4
ζ(3) − 3ζ(2) ln 2 +

1

2
ζ(2) +

197

144

] (

α

π

)2

+ O
(

(

α

π

)3
)}

. (19)

Therefore, the magnetic energy contribution to the total Hamiltonian reads

HB =
1

2
µ(~σ− − ~σ+) · ~B . (20)

To complete this list of notations, it turns out that the parameter setting the
physical scale of magnetic fields in the present system, is the combination

2µ

∆E
=

1

3.628575 Tesla
, (21)

leading to the definition of the positive quantity

x =
2µ

∆E
| ~B | =

| ~B |
3.63 Tesla

. (22)

In addition, it proves convenient7 to introduce the following combinations of the Bx

and By components of the magnetic field ~B,

B+ =
Bx + iBy√

2
, B− =

Bx − iBy√
2

. (23)

Given the total Hamiltonian

H = H0 +HB , (24)

6Here, ~σ are the usual Pauli matrices defining the spin 1/2 representation of the (double covering
SU(2)) of the rotation group SO(3) in three dimensions.

7The actual reason why these definitions are convenient is the fact that it is the spin 1/2 represen-
tation of the three dimensional rotation group which appears throughout.
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it is now a simple matter to proceed diagonalising it for its lowest energy states with
spherical symmetry, namely in the sector of positronium 1S hyperfine states of the
previous section. First, one easily finds

H | 0, 0 >= E0 | 0, 0 > +µBz | 1, 0 > −µB− | 1, 1 > +µB+ | 1,−1 > , (25)

H | 1, 0 >= E1 | 1, 0 > +µBz | 0, 0 > , (26)

H | 1, 1 >= E1 | 1, 1 > −µB+ | 0, 0 > , (27)

H | 1,−1 >= E1 | 1,−1 > +µB− | 0, 0 > . (28)

Given these results, eigenstates of H and their eigenvalues can be derived after
some work. The corresponding four eigenstates are denoted | ψS′ >, | ψT ′ > and

| ψ± >. In the limit of vanishing magnetic field ~B, these states reduce—possibly up
to some phase—to the singlet | 0, 0 >, the triplet | 1, 0 > and the triplet | 1,±1 >
states, respectively, hence the notation. In particular, the | ψS′ > and | ψT ′ > states
are referred to as the “pseudo-singlet” and “pseudo-triplet” states, respectively.

The pseudo-singlet state is given by

| ψS′ >= 1√
2

(1 + x2)−1/4(
√

1 + x2 + 1)−1/2 ×
{

(
√

1 + x2 + 1) | 0, 0 > −

− 2µ
∆E
Bz | 1, 0 > + 2µ

∆E
B− | 1, 1 > − 2µ

∆E
B+ | 1,−1 >

}

,

(29)

with the eigenvalue

ES′ = −1

2
∆E

[√
1 + x2 − 1

]

+ E0 . (30)

The pseudo-triplet state is

| ψT ′ >= 1√
2

(1 + x2)−1/4(
√

1 + x2 − 1)−1/2 ×
{

(
√

1 + x2 − 1) | 0, 0 > +

+ 2µ
∆E
Bz | 1, 0 > − 2µ

∆E
B− | 1, 1 > + 2µ

∆E
B+ | 1,−1 >

}

,

(31)

with the eigenvalue

ET ′ = +
1

2
∆E

[√
1 + x2 + 1

]

+ E0 . (32)

Finally, the remaining two states are

| ψ± >= 1√
2

√
B2

x+B2
y

| ~B| | 1, 0 > +

+ 1√
2

Bz±| ~B|
| ~B|

B−√
B2

x+B2
y

| 1, 1 > + 1√
2

−Bz±| ~B|
| ~B|

B+√
B2

x+B2
y

| 1,−1 > ,

(33)

with the degenerate eigenvalue

E± = ∆E + E0 = E1 . (34)

Here, upper (resp. lower) signs in the r.h.s. of (33) correspond to the state | ψ+ >
(resp. | ψ− >).
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By construction, the four states just given not only diagonalise the total Hamilto-
nian H , but are also orthonormalised. Namely, these states are orthogonal by pairs and
are normalised to 1. Of course, orthogonality is automatic for non degenerate states
but not for degenerate ones; by construction, the states | ψ+ > and | ψ− > given above
do indeed have a vanishing inner product.

Before commenting on these expressions, it is useful to consider the limit in which
the magnetic field ~B is parallel to the z axis, namely when Bx = 0 and By = 0.
Of course, in this limit, the eigenvalues of the four states above remain unchanged,
since their energies only depend on the variable x, i.e. the norm of the magnetic field.
However, the states specified above, which diagonalise the total Hamiltonian H , then
reduce to

| ψS′ >= cos θ | 0, 0 > − sin θ | 1, 0 > , (35)

| ψT ′ >= η { sin θ | 0, 0 > + cos θ | 1, 0 > } , (36)

| ψ± >= ±e±iηω | 1,±η > . (37)

In these expressions, η = sign(Bz) is the sign of Bz, ω is some arbitrary phase whose
value is dependent on the manner in which the limit Bx = 0, By = 0 is taken8, and
the mixing angle θ is defined by

cos θ =
1√
2

√

1 +
1√

1 + x2
, sin θ = η

1√
2

√

1 − 1√
1 + x2

. (38)

Of course, these expressions coincide with those usually found in the literature[4, 10, 3],
in which case it is customary to take | ψ± >=| 1,±1 > and the z axis along the magnetic

field ~B, namely η = +1. In particular, note that in the limit of an infinite magnetic
field ~B, the pseudo-singlet and pseudo-triplet states in (35) and (36) further reduce to
(in the notation of (1))

| ψS′ >= −η ψ(r) | −η >| +η > , | ψT ′ >= +η ψ(r) | +η >| −η > . (39)

In order to comment on the physical significance of these results, let us first consider
the case where the magnetic field is parallel to the z axis. Even though the vector ~B
then explicitly breaks rotational invariance of the positronium system in vacuum, there
still remains the symmetry of arbitrary rotations around the z axis. Consequently, the
spin projection m on that axis still defines a good quantum number for positronium
states (of vanishing angular momentum.). Therefore, the states | 1, 1 > and | 1,−1 >
must remain eigenstates of the total Hamiltonian, whereas the other two states with
m = 0, namely | 0, 0 > and | 1, 0 >, are now allowed to mix. Moreover, for the
former two states with m = ±1, since the electron and positron have their spins then
aligned and since their magnetic moments are equal in norm but opposite, the magnetic
coupling energy HB vanishes identically, leading for these two states to the same energy
eigenvalue E1 as in the absence of any field ~B. Finally, for the remaining two states

8Indeed, the coefficients of the states | 1, 1 > and | 1,−1 > in (33) are non analytic functions of
Bx and By.
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with m = 0 diagonalising the total Hamiltonian H , in the limit9 where the magnetic
coupling HB is much larger than all other contributions to H , namely for magnetic
fields whose magnitude is much larger than (∆E/(2µ) = 3.63 Tesla), the state of
lowest (resp. highest) energy, i.e. | ψS′ > (resp. | ψT ′ >), is the one for which the
electron and positron magnetic moments are both aligned parallel (resp. antiparallel)

to the magnetic field ~B, or equivalently the one for which the electron spin is aligned
antiparallel (resp. parallel) to ~B and the positron spin is parallel (resp. antiparallel)

to ~B.
These properties—indeed, solely expected on physical grounds independently of any

explicit calculation—are beautifully confirmed by the results above in the case where
Bx = 0 and By = 0. At this stage, it thus appears that an explicit calculation serves
the purpose only of determining the mixing angle θ in (38) between the two m = 0
states, and of deriving the energy eigenvalues ES′ and ET ′ in (30) and (32), as functions

of the magnetic field ~B = (0, 0, Bz).

Consider now the general situation when the direction of the magnetic field ~B is
arbitrary with respect to the z axis. In fact, the results just discussed can be used
in order to understand the general case as well. Indeed, the only difference between
the two configurations is that the axis with respect to which the spin part of state
vectors is expanded, is different. Hence, by an appropriate change of basis in the spin
sector, effected through a rotation in the spin 1/2 representation, the eigenstates of
the total Hamiltonian H in the arbitrary case (Bx, By) 6= (0, 0) can in principle be
constructed from the expressions of these states when (Bx, By) = (0, 0). Therefore,
since under such a rotation in spin space representations of spin 0 and of spin 1 are
invariant, only the states | 1, m = 0,±1 > can mix among themselves. Consequently,
in the general case, both the pseudo-singlet and pseudo-triplet states should be given
as some superposition of all four states | 0, 0 > and | 1, m = 0,±1 >, with in particular
the coefficient of the | 0, 0 > component independent of the components of the magnetic

field but only dependent on its norm | ~B |, whereas the remaining two states | ψ± >
can only involve the three states | 1, m = 0,±1 >. In addition, for all four eigenstates,
the coefficients of the states | 1, m = 0,±1 > must depend on all three components Bx,
By and Bz of the magnetic field.

Indeed, these are features of the results in (29), (31) and (33), which therefore find
their origin in the fact that spin 0 and spin 1 representations are invariant under space
rotations. However, only an explicit calculation—either along the lines just sketched or
by direct diagonalisation of the Hamiltonian as done in this note—can determine the
specific mixing coefficients defining each of the eigenstates of the total Hamiltonian H .
Incidentally, note that the same argument of invariance under space rotations explains
why eigenvalues of H remain unchanged when the magnetic field ~B is no longer parallel
to the z axis, i.e. why these eigenvalues only depend on the norm | ~B | of the magnetic
field.

9This situation was pointed out to the author by J. Deutsch.
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4 Positronium Lifetimes

As a first application of results so far, let us compute decay rates for all four eigenstates
of the total Hamiltonian H in the presence of a magnetic field ~B. Actually, such a
calculation is rather straightforward, given the decay rates λS and λT of the singlet
and triplet states | 0, 0 > and | 1, m = 0,±1 >, respectively.

First, consider decay rates into two photons. Due to charge conjugation, only the
| 0, 0 > state has 2γ decays. Therefore, the 2γ decay rate of the pseudo-singlet state
| ψS′ > is

λ
(2γ)
S′ =

1

2

[

1 +
1√

1 + x2

]

λS = λS cos2 θ . (40)

For the pseudo-triplet state | ψT ′ >, we have

λ
(2γ)
T ′ =

1

2

[

1 − 1√
1 + x2

]

λS = λS sin2 θ . (41)

Finally, the 2γ decay rate of the remaining two states | ψ± > is

λ
(2γ)
± = 0 . (42)

Similarly, for the 3γ decay rates of these states in the same order, one finds

λ
(3γ)
S′ =

1

2

[

1 − 1√
1 + x2

]

λT = λT sin2 θ , (43)

λ
(3γ)
T ′ =

1

2

[

1 +
1√

1 + x2

]

λT = λT cos2 θ , (44)

λ
(3γ)
± = λT . (45)

In these expressions, the angle θ is defined in (38).
Finally, total decay rates—ignoring the much suppressed rates into four or more

photons—are simply

λS′ =
1

2
(λS + λT ) +

1

2

1√
1 + x2

(λS − λT ) = λS cos2 θ + λT sin2 θ , (46)

λT ′ =
1

2
(λS + λT ) − 1

2

1√
1 + x2

(λS − λT ) = λS sin2 θ + λT cos2 θ , (47)

λ± = λT . (48)

As ought to be expected, these expressions only depend on the norm of the magnetic
field ~B, but not on its direction. Indeed, since the choice of axis with respect to which
spin states are expanded does not affect the calculation of decay rates10, that axis can

10Indeed, positronium states can “remember” the direction and polarisation of the incoming positron
only through the populations of the four Hamiltonian eigenstates (this is the topic of the next section).
Decay rates are intrinsic properties of each of these states, and as such, are thus independent of any
variable possibly affecting positronium formation.
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always be taken along the magnetic field, in which case decay rates can only depend
on | Bz |, namely the norm of the magnetic field. Incidentally, note that total 2γ

and 3γ decay rates—λS and λT , respectively—are independent of ~B—a consequence
of unitarity.

It is also easy to check that the statistical decay rates into two and three photons,
i.e. the average of each of these rates over the four Hamiltonian eigenstates, are
independent of the magnetic field. These statistical rates thus coincide with their values
when ~B = ~0, namely λS/4 and 3λT/4 for two and three photon decays, respectively.

Finally, let us remark that the difference between the total decay rates for the
pseudo-triplet and | ψ± > states,

λT ′ − λT =
1

2
(λS − λT )

[

1 − 1√
1 + x2

]

= (λS − λT ) sin2 θ , (49)

is a quantity always positive for all values of the magnetic field.

5 Positronium Populations

Let us now address the specific topic of this note; the formation of positronium in
a medium placed in a magnetic field. In view of applications, the incoming positron
is assumed to have a polarisation P+ (−1 ≤ P+ ≤ +1). This polarisation P+ is the
expectation value of the positron spin projected onto its momentum, the latter vector
thus also defining the z axis for spin quantisation from now on. Therefore, up to a
physically irrelevant overall phase, the spin component of the incoming positron wave
function is given by

1√
2

√

1 + P+ | + > + eiφ+
1√
2

√

1 − P+ | − > . (50)

Here, φ+ is an arbitrary phase difference—thus possibly leading to observable physical
effects—between the two spin components defining a positron state of polarisation P+.

Similarly, it will be assumed11 that the positron capturing electron has a polarisation
P− (−1 ≤ P− ≤ +1) along the same z axis. Though in most practical applications, the
positronium formation medium is at temperatures such that electrons are effectively
not polarised, some experiments at very low temperatures are being planned, for which
an investigation of possible effects due to electron polarisation in the applied magnetic
field might therefore be found useful. Consequently, again up to a physically irrelevant
overall phase, the spin part of the electron wave function is also of the form

1√
2

√

1 + P− | + > + eiφ−

1√
2

√

1 − P− | − > , (51)

where φ− is another arbitrary phase shift.
Hence, at the moment of positronium formation, it is assumed that the spin com-

ponent of the positronium state vector | ψ, t = 0 > is simply given by the tensor

11The interest of this possibility was pointed out to the author by F. Gimeno-Nogues.
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product12 of the electron and positron spin vectors in (50) and (51), while the space
part of the state vector is of course the wave function ψ(r) in (1). In order to obtain
the time evolution of the associated state vector, and thus also the time dependence of
its decay products, the resulting wave function | ψ, t = 0 > of formed positronium has
to be expanded in the basis of eigenstates of the total Hamiltonian H in the presence
of the magnetic field ~B. This change of basis thus defines coefficients CS′, CT ′ and C±
such that

| ψ, t = 0 >=
∑

a=S′,T ′,+,−
Ca | ψa > . (52)

Explicit expressions for these coefficients are given in Appendix A. Time evolution of
the positronium state formed is then given by

| ψ, t >=
∑

a=S′,T ′,+,−
Ca | ψa > exp

(

− i

h̄
Eat−

1

2
λat

)

, (53)

with the quantities Ea and λa (a = S ′, T ′,+,−) defined in (30), (32), (34) and (46),
(47) and (48).

Given these expressions, time evolution of each of the populations associated to
each of the four states | ψa > (a = S ′, T ′,+,−) is simply obtained as

| Ca |2 e−λat , a = S ′, T ′,+,− . (54)

Expressions for all observables of interest are then easily written down. For example,
2γ and 3γ production rates are13, respectively,

R(2γ)(t) =
∑

a=S′,T ′,+,−
λ(2γ)

a | Ca |2 e−λat , (55)

R(3γ)(t) =
∑

a=S′,T ′,+,−
λ(3γ)

a | Ca |2 e−λat , (56)

while the total photon production rate—simply the sum of the latter two rates—is
itself

R(t) =
∑

a=S′,T ′,+,−
λa | Ca |2 e−λat . (57)

The rather lengthy expressions for the populations at t = 0, namely the coefficients
| Ca |2 (a = S ′, T ′,+,−), are given in Appendix B. Results probably more relevant
at this point are the same coefficients averaged14 over the phase shifts φ− and φ+.
Indeed, one ought to expect that for most sources where the β decay process responsible

12Note that it is always possible to “rotate away” one of the two phases φ
−

or φ+—but not both—
by an appropriate rotation around the z axis. However, dependence on the cancelled phase then
reappears through the Bx and By components of the rotated magnetic field.

13Note that when actual experimental data are considered, the 2γ production rate in (55) should
also include a “fast” component due to direct pair annihilation of incoming positrons with electrons
of the positronium forming medium.

14This average does not amount to setting eiφ± = 0 in the original expressions for the coefficients
Ca, and can only be applied once the complete expressions of Appendix B for the coefficients | Ca |2
have been obtained.
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for positron production is taking place, positron states with all possible phase shifts
φ+ are statistically populated, thereby justifying an average of the final positronium
populations over φ+. Similarly, in the positronium forming medium, one should also
expect that all electron states with different phase shifts φ− are statistically populated,
again justifying an average over the phase φ−. Under these assumptions15, the averaged
populations are given by

| CS′,T ′ |2 =
1

4
[1 − P−P+] ∓ 1

4

1√
1 + x2

2µ

∆E
Bz [P− − P+] +

+
1

2

[

1 ∓ 1√
1 + x2

]

B−B+

| ~B |2
P−P+ , (58)

and

| C± |2 =
1

4

[

1 ± Bz

| ~B |
P−

] [

1 ± Bz

| ~B |
P+

]

. (59)

In the r.h.s. of these two expressions, the upper (resp. lower) sign refers to | CS′ |2
(resp. | CT ′ |2) and | C+ |2 (resp. | C− |2), respectively. Note that the sum of the four
phase averaged populations does indeed reduce to 1, as ought be the case since, by
definition, the state | ψ, t = 0 > is normalised to 1.

In turn, phase averaged photon production rates R(2γ)(t), R(3γ)(t) and R(t) are
defined as in (55), (56) and (57), of course involving now the phase averaged coefficients
| Ca |2 (a = S ′, T ′,+,−) just given. Clearly, these averaged photon rates are more
readily amenable to experimental measurement than are the non phase averaged rates
considered previously.

6 Conclusions

This note reports on the calculation of hyperfine positronium populations formed in the
presence of an arbitrary magnetic field—whose gradient is assumed to be vanishingly
small over the spatial extension of the positronium bound state—for arbitrary positron
and electron polarisations. The analysis generalises results available[4, 10, 3] in the
literature in two respects. On the one hand, the magnetic field is not assumed to be
necessarily aligned along the momentum of the incoming positron. On the other hand,
allowing for possible electron polarisation effects enables the present results to be of
application to positron polarimeters operated at very low temperatures.

Expressions derived in this note provide the basic information required in any ex-
perimental analysis of results obtained using positron polarimeters based on either
time or energy distributions of positronium decay photons. As a simple but explicit
illustration of relevance to current β decay experiments[5, 6, 7], let us consider for

15Note that taking such averages is even more justifiable in the instance—often realised in practice—
that the magnetic fields present in an experimental set-up possess an axial symmetry along the axis
of incoming positrons. Indeed, as was noticed previously, either of the phases φ

−
or φ+ can always be

“rotated away” by an appropriate rotation around the z axis, then also a symmetry transformation
of the magnetic fields.
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example the phase averaged photon production time spectrum R(t) when electrons in
the positronium formation medium are not polarised (P− = 0). Expressions derived in
the previous section then lead to

R(t) =
1

2
λT e

−λT t +
1

4
λT ′

[

1 − 1√
1 + x2

2µ

∆E
BzP+

]

e−λT ′ t+

+
1

4
λS′

[

1 +
1√

1 + x2

2µ

∆E
BzP+

]

e−λS′ t . (60)

However, since the pseudo-singlet decay rate λS′ is much larger than the pseudo-triplet
one λT ′, the pseudo-singlet contribution in the r.h.s. of (60) becomes effectively neg-
ligible after a nanosecond or so, leaving only the first two terms. Hence in effect, the
photon time spectrum R(t)

R(t ≥ 1 ns) ≈ 1

2
λT e

−λT t +
1

4
λT ′ [1 − ǫP+] e−λT ′ t , (61)

with the analysing power

ǫ =
1√

1 + x2

2µ

∆E
Bz , (62)

provides the means of measuring positron polarisations. Note that, when compared
to the usual result obtained for a magnetic field ~B assumed to be parallel to the
incoming positron momentum, the sole effect of non vanishing components Bx and By

in this simple example is to decrease the effective analysing power ǫ multiplying the
positron polarisation P+. Nevertheless, there certainly exist other instances where the
effects of non vanishing components Bx and By have to be properly accounted for when
analysing actual experimental data. The results of this note provide the basis for such
investigations.
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Appendix A

This Appendix gives the coefficients of the linear combination of the total Hamiltonian
eigenstates defining the state vector of positronium formed in the presence of a magnetic
field ~B (see (53)).

For the pseudo-singlet and pseudo-triplet states, one has

CS′,T ′ =
1√
2

(1 + x2)−1/4 (
√

1 + x2 ± 1)−1/2×

×
{

1

2
√

2

[

√

1 + P−
√

1 − P+ eiφ+ −
√

1 − P−
√

1 + P+ eiφ−

]

(
√

1 + x2 ± 1) ∓

∓ 1

2
√

2

[

√

1 + P−
√

1 − P+ eiφ+ +
√

1 − P−
√

1 + P+ eiφ−

]

2µ

∆E
Bz ±

± 1

2

√

1 + P−
√

1 + P+
2µ

∆E
B+ ∓ (63)

∓ 1

2

√

1 − P−
√

1 − P+ ei(φ−+φ+) 2µ

∆E
B−

}

,

where the upper (resp. lower) sign refers to the coefficient CS′ (resp. CT ′).
Similarly, the coefficients of the remaining two states | ψ± > are

C± =
1

4

[

√

1 + P−
√

1 − P+ eiφ+ +
√

1 − P−
√

1 + P+ eiφ−

]

√

B2
x +B2

y

| ~B |
+

+
1

2
√

2

√

1 + P−
√

1 + P+
Bz± | ~B |

| ~B |
B+

√

B2
x +B2

y

+ (64)

+
1

2
√

2

√

1 − P−
√

1 − P+ ei(φ−+φ+) −Bz± | ~B |
| ~B |

B−
√

B2
x +B2

y

.

Here again, the upper (resp. lower) sign refers to the coefficient C+ (resp. C−).
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Appendix B

This Appendix gives the populations of positronium states formed in the presence of
a magnetic field, for electrons and positrons of initial polarisation P− and P+, respec-
tively. With the same conventions as to upper and lower signs as in Appendix A, the
results are as follows.

The | ψS′,T ′ > populations are

| CS′,T ′ |2= 1

2
(1 + x2)−1/2 (

√
1 + x2 ± 1)−1×

×
{

1

2
(1 + x2)1/2(

√
1 + x2 ± 1) [1 − P−P+] ∓

∓ 1

2
(
√

1 + x2 ± 1)
2µ

∆E
Bz [P− − P+] +

(

2µ

∆E

)2

(B−B+)P−P+ ∓

∓ 1

2
(
√

1 + x2 ± 1)
√

1 − P 2
−

√

1 − P 2
+ cos(φ− − φ+) − (65)

− 1

4

(

2µ

∆E

)2√

1 − P 2
−

√

1 − P 2
+

[

B−e
iφ+ +B+e

−iφ+

] [

B−e
iφ− +B+e

−iφ−

]

±

± 1

2
√

2

(

2µ

∆E

)

√

1 − P 2
+

[

B−e
iφ+ +B+e

−iφ+

]

[√
1 + x2 ± 1) ∓ 2µ

∆E
Bz P−

]

∓

∓ 1

2
√

2

(

2µ

∆E

)

√

1 − P 2
−
[

B−e
iφ− +B+e

−iφ−

]

[

(
√

1 + x2 ± 1) ± 2µ

∆E
Bz P+

]

}

.

Similarly, the | ψ± > populations are

| C± |2= 1

4

B2
z

| ~B |2
[1 + P−P+] ± 1

4

Bz

| ~B |
[P− + P+] +

1

2

B−B+

| ~B |2
±

± 1

4
√

2

√

1 − P 2
+

[

1 ± Bz

| ~B |
P−

] [

B−

| ~B |
eiφ+ +

B+

| ~B |
e−iφ+

]

±

± 1

4
√

2

√

1 − P 2
−

[

1 ± Bz

| ~B |
P+

] [

B−

| ~B |
eiφ− +

B+

| ~B |
e−iφ−

]

+ (66)

+
1

8

√

1 − P 2
−

√

1 − P 2
+

[

B−

| ~B |
eiφ+ +

B+

| ~B |
e−iφ+

] [

B−

| ~B |
eiφ− +

B+

| ~B |
e−iφ−

]

.

Note that in each of these two equations, the last three terms could be combined
further into the product of two terms. However, results in the form given here are
more amenable to the phase average discussed in the main text. Incidentally, it is
straightforward to check that the sum of all four populations does indeed reduce to 1,
since, by construction, the state | ψ, t = 0 > is normalised to 1.
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