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Abstract

A simple Regge pole model for Kπ scattering explains the large phase e
iδ

between isospin amplitudes which is observed at the D meson mass (δ ≈ π
2 ). It

predicts δ ≈ 14◦ − 20◦ at the B mass. Implications for (B → Kπ) decays and

extensions of the model to other two-body decay channels are briefly discussed.
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1 Introduction

With B-factories forthcoming, detailed checks of the precise CP-violation pattern

predicted by the standard model will become possible. However it is by no means

trivial to extract reliable information on CP-violation parameters from various B-

decay modes. One of the problems is of course how to estimate “hadronic effects”

such as final state interaction (FSI) phases. Although these phases are of no particular

interest by themselves, they do play an important role for many potential signals of

CP violation in hadronic B-decays.

The relevant question concerning these FSI phases is whether they are signifi-

cantly different from 1 or not. Clearly the answer to this question depends on the

hadronic channels considered. Here we will focus our attention on (Kπ) channels

where experimental data also exist for B decays[1]. There are two isospin invariant

scattering amplitudes (I = 1/2 and I = 3/2) and the quantity one wants to estimate,

as a function of energy, is δ(s) = δ3(s) − δ1(s) namely the difference between the

S-wave phase shifts in the I = 3/2 (δ3) and I = 1/2 (δ1) amplitudes. As a matter

of fact δ(s) has been measured at the D mass (s = m2
D) where it is found[2] to be

around π/2. Naively one does not expect such a huge FSI angle at s = m2
D to become

negligible at s = m2
B but, obviously, a more quantitative argument is called for.

The main purpose of this letter is to suggest a Regge model as a general strategy for

determining FSI angles[3]. Past experience with πN and K̄N scattering amplitudes

strongly suggests that such a model should work quite well for Kπ scattering over an

energy range which includes the D and B meson masses.

The dominant Regge exchanges to consider in Kπ → Kπ scattering are, re-

spectively, the Pomeron (P ) and the exchange degenerate ρ − f2 trajectories in the

t-channel and in the u-channel the exchange degenerate K∗−K∗∗ trajectories. In the

next section we briefly recall a few properties of these trajectories and then proceed

to show in section 3 that with all parameters fixed phenomenologically our model

automatically accounts for the observed δ(m2
D) ≃ π

2
. From the known energy de-

pendence of Regge trajectories one then readily predicts δ(m2
B) close to 20 degrees,

namely quite a sizeable FSI angle at the B mass, as näıvely expected. These are our

main results.

To conclude this note we first comment on obvious implications of our results for

(B → Kπ) decays and then end with several general remarks on the parametrization

of any (quasi) two-body decay amplitude of the B mesons.
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2 A Regge model for (Kπ → Kπ) scattering ampli-

tudes

We take s, t, u to be the usual Mandelstam variables. In the s-channel, (Kπ → Kπ)

scattering amplitudes are linear combinations of the isospin invariant amplitudes As
1/2

and As
3/2. In the t-channel (KK → ππ), we have isospin invariant amplitudes At

0

(isospin 0) and At
1 (isospin 1) and, similarly, in the u-channel (Kπ → πK), we define

Au
1/2 and Au

3/2. The relations between these amplitudes are given by the crossing

matrices




As
1/2

As
3/2



 =





1√
6

1
1√
6

−1
2









At
0

At
1



 =





1/3 4/3

−2/3 1/3









Au
1/2

Au
3/2



 . (1)

In a Regge model, s-channel amplitudes at high energy (large s) are parametrized

as sums over (Regge pole) exchanges in the crossed channels: near the forward di-

rection (t small), t-channel exchanges dominate while near the backward direction (t

close to −s or u small), it is the u-channel exchanges which are relevant.

The generic form, at large s, of a Regge pole exchanged in the t-channel is given

by

− β(t)
τ + e−iπα(t)

sin πα(t)

(

s

so

)α(t)

. (2)

In Eq.(2), β(t) is the residue function, τ the signature (τ = ±1) and

α(t) = αo + α′t (3)

is the (linear) Regge trajectory with intercept αo and slope α′; finally so is a scale

factor usually taken as 1 Gev2. For a Regge pole exchanged in the u-channel, the

generic form is similar to Eq.(2) but with the variable t replaced by u.

The leading trajectory (highest intercept) is the so-called Pomeron (P ). It has

the quantum numbers of the vacuum (I = 0, τ = +1) and its exchange describes

“diffractive scattering”. The Pomeron always contributes to elastic scattering and

describes quite well the bulk of hadronic differential cross-sections over a wide energy

range.

In the energy interval which is of interest to us here, namely

3 Gev2<∼ s <∼ 35 Gev2 (4)

a very simple but excellent phenomenological parametrization of the Pomeron trajec-

tory and residue function is given by

αP (t) = 1 (5)
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and

βP (t) = βP (0)ebP t (6)

with

2.5 Gev−2<∼ bP <∼ 3 Gev−2 (7)

obtained from fits[4] to elastic πp, pp and Kp differential cross-sections (using factor-

ization). As a result the Pomeron contribution to At
0 now reads (so = 1 Gev2)

AP = iβP (0)ebP ts. (8)

The next trajectories to consider are the ρ − f2 trajectories in the t-channel and

the K∗−K∗∗ trajectories in the u-channel. The ρ trajectory has T = 1, τ = −1 while

the f2 trajectory has T = 0, τ = +1; similarly the K∗ trajectory has T = 1/2, τ = −1

while the K∗∗ trajectory has the opposite signature. Because of the absence of exotic

resonances (no Kπ resonances with I = 3/2), the ρ and f2 trajectories as well as the

K∗ − K∗∗ ones must be exchange degenerate. Specifically this means that the ρ and

f2 trajectories cöıncide

αρ(t) = αf2
(t) ∼= 1

2
+ t (9)

and that their residues are related i.e.

βf2
(t)√
6

=
βρ(t)

2
. (10)

Similarly, for the K∗ − K∗∗ trajectories (in the SU(3)-limit)

αK∗(u) = αK∗∗(u) ∼= 1

2
+ u (11)

and

− βK∗(u) = βK∗∗(u). (12)

Eqs(9-10) and Eqs(11-12) guarantee that the non diffractive imaginary part of As
3/2

vanishes. They used to be called “duality constraints”[5].

We neglect lower lying trajectories such as the ρ′(I = 1, τ = −1) and the f0(I =

0, τ = +1) in the t-channel as well as their SU(3) partners in the u-channel. Were

we to include them they should also be taken as exchange degenerate.

It is customary to write the residue function of the ρ trajectory as

βρ(t) =
βρ(t)

Γ(α(t))
. (13)

Since Γ(α(t)) sin πα(t) is a very smooth function of t, no harm is done in using at

small t the approximations

Γ(α(t)) sin πα(t) ≈ Γ(α(0)) sinπα(0) =
√

π (14)

βρ(t) ≈ βρ(0) (15)
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and in writing the ρ trajectory contribution to At
1 as

Aρ(s, small t) =
βρ(0)√

π

(

1 + i exp(−iπt)
)

s0.5+t. (16)

An exactly similar reasoning gives for the f2 trajectory contribution to At
0

Af2
(s, small t) =

√

3

2

βρ(0)√
π

(

−1 + i exp(−iπt)
)

s0.5+t (17)

while for the K∗ and K∗∗ trajectories contributions to Au
1/2 one writes

AK∗(s, small u) =
βK∗(0)√

π

(

1 + i exp(−iπu)
)

s0.5+u (18)

AK∗∗(s, small u) = −βK∗(0)√
π

(

−1 + i exp(−iπu)
)

s0.5+u (19)

with

βK∗(0) =
3

4
βρ(0) (20)

in the SU(3) limit.

Putting everything together and using the crossing matrices given in Eq.(1), our

Regge model for Kπ scattering is now completely defined by the amplitudes

As
1/2(s, small t) =

i√
6
βP (0)ebP ts +

βρ(0)

2
√

π
s0.5+t +

3iβρ(0)

2
√

π
e−iπts0.5+t (21a)

As
1/2(s, small u) =

βρ(0)

2
√

π
s0.5+u (21b)

and

As
3/2(s, small t) =

i√
6
βP (0)ebP ts − βρ(0)√

π
s0.5+t (22a)

As
3/2(s, small u) = −βρ(0)√

π
s0.5+u (22b)

3 S-wave Rescattering Phases

The remaining task is now to extract from Eqs(21-22) the ℓ = 0 partial wave

amplitudes a1/2(s) and a3/2(s). Neglecting π and K masses, we have, up to irrelevant

real factors

aI(s) ∝
∫ 0

−s
dtAs

I(s, t). (23)

From the physical ideas underlying Eqs(21-22) it is clear that outside the forward

and backward regions, the integral in Eq.(23) gives a negligibly small contribution to

aI(s). We thus write

aI(s) ∝
∫ 0

to
dtAs

I(s, small t) +
∫ 0

uo

duAs
I(s, small u). (24)
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With the explicit expressions given in Eqs(21-22), the integrals in Eq.(24) are triv-

ial to perform. Furthermore, the integrated contributions at the to and uo boundaries

(around 1 GeV2) are considerably smaller than at the boundary 0 of both integrals

in Eq.(24). Neglecting these contributions, one thus obtains

a1/2(s) =
i√
6

βP (0)

bP
s +

βρ(0)√
π

1

ln s
s1/2 +

3i

2
√

π
βρ(0)

ln s + iπ

(ln s)2 + π2
s1/2 (25)

and

a3/2(s) =
i√
6

βP (0)

bP
s − 2

βρ(0)√
π

1

ln s
s1/2 (26)

from which the tan(δI) = Im aI(s)
Re aI(s)

are straightforward to compute. Note that both

tan(δ1) and tan(δ3) depend on one single phenomenologically determined parameter

namely

x =

√
πβP (0)

bP βρ(0)
. (27)

From fits[6] to πp, pp and Kp total cross sections in the energy range given in

Eq.(4) (again using factorization), we find

√
πβP (0)

βρ(0)
= 2.9 ± 0.2. (28)

From Eq.(7), we thus conclude that x is close to one

x = 1.07 ± 0.17. (29)

Similar results are obtained using the fits given in Ref.[7] for a larger energy range.

With these values for x, the range for the FSI angle at the D mass is calculated

to be

δ(m2
D) ≡ δ3(m

2
D) − δ1(m

2
D) = (85 ± 6)◦ (30)

in spectacular agreement with the recent analysis of CLEO data[2]

δ(m2
D) = (96 ± 13)◦. (31)

We stress that both the analysis of CLEO data and our calculation are based on the

quasi-elastic approximation.

At the B mass, we predict a sizeable angle close to 20 degrees, namely

δ(m2
B) = (17 ± 3)◦. (32)

Before commenting on our prediction for δ(m2
B), it may be worthwhile to point

out a few facts about our calculation of δ(s)
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- it is a no-parameter calculation: x is determined from the data on total cross-

sections[6] and dσ
dt

’s [4];

- in performing our calculation of δ(s), we have made several approximations

a.o. we neglected lower trajectories as well as the intermediate region in the

S-wave projection integral. These approximations are certainly sound from a

phenomenological point of view and they become better and better as s in-

creases. At the D mass we do not believe that our end result should be trusted

to better than 10-20% but in any case, agreement with the data remains excel-

lent;

- the calculations presented here for Kπ scattering can of course be repeated for

ππ or KK̄ scattering. A detailed account and discussion of these calculations

will be presented elsewhere[8]. Here we simply point out that the results of both

calculations are once again in excellent agreement with the data available[2] at

the D mass : δππ is found to be around π/3 and δKK̄ around π/6. These results

considerably strenghten our confidence in a simple Regge parametrization of

hadronic scattering amplitudes.

4 Conclusions

The main results of this letter are given by Eqs(30-32) and can be summarized

as follows: a Regge model for Kπ scattering explains the large S-wave rescattering

phase difference δ observed at the D meson mass namely δ(m2
D) ≈ π

2
, and predicts

δ(m2
B) ≈ 20◦.

Such a sizeable FSI angle at the B meson mass leads to important implications for

B → Kπ decays[9]: it invalidates the Fleischer-Mannel bound[10] on the Cabibbo-

Kobayashi-Maskawa angle γ and implies a potentially large CP asymmetry, a, in

(B± → Kπ±) decays:

a ≈ 4(sinγ)%. (33)

Strong interaction hadronic phases can be parametrized a la Regge for any (quasi)

two body decay mode of the B meson (ππ, KK̄ as already mentioned, but also

πρ, K∗π, K∗ρ etc...).

The fact that our quasi-elastic treatment of the scattering amplitudes for Kπ,ππ

and KK̄ agrees so well with the data at the D meson mass is a strong argument for

neglecting inelastic effects on hadronic phases.

In view of the previous comments, a general parametrization for all two-body

decay modes of the B mesons naturally suggests itself. The decay amplitude can

be written as a sum of reduced matrix elements ≪ B | HW | (M1M2), I ≫ of
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the effective weak hamiltonian, multiplied by the appropriate hadronic FSI phases

eδI . These reduced matrix elements are in general complex numbers which can be

systematically calculated in terms of tree-level, colour suppressed, penguin, exchange

or annihilation quark diagrams. Of course, no isospin violating ”scattering phases”

are allowed between these diagrams and furthermore, as already shown elsewhere[9],

classes of diagrams which would näıvely be excluded can reappear due to factors of

the type (1 − eiδI ). On the other hand, penguin diagrams can provide an absorptive

(i.e. imaginary) component to the reduced matrix elements[11]. But these imaginary

parts are very model-dependent and probably quite small. Therefore we suggest[12],

as a first approximation to simply ignore these ”quark phases” whenever the hadronic

phases are sizeable. This was assumed in Ref.[9]. This happens to be the case for

B → Kπ decays.
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