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Abstract: We present the implementation of the dipole subtraction formalism for the

real radiation contributions to any next-to-leading order QCD process in the Mad-

Graph/MadEvent framework. Both massless and massive dipoles are considered. Starting

from a specific (n + 1)-particle process the package provides a Fortran code for all possible

dipoles to all Born processes that constitute the subtraction term to the (n+1)-particle pro-

cess. The output files are given in the usual “MadGraph StandAlone” style using helicity

amplitudes.
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1. Introduction

Physics studies at the upcoming CERN LHC collider will frequently involve multi-particle

final states. Especially searches for physics beyond the standard model rely on the recon-

struction of new particles from their decay products, often through decay chains. Equally,

requiring accompanying particles in the final state may serve to improve the ratio of signal

to background processes, as done for example in the Higgs boson search through the vector

boson fusion channel. Meaningful searches for these signals require not only a very good

anticipation of the expected signal, but also of all standard model backgrounds yielding

identical final state signatures. From the theoretical point of view, high precision implies

that one has to go beyond the leading order in perturbation theory to be able to keep up

with the precision of the measurements.

For leading order processes there have been many developments concerning event gener-

ation and simulation tools in the last two decades such as MadGraph/MadEvent [1–3]

CompHEP/CalcHEP [4]/ [5], SHERPA [6] and WHIZARD [7] and also programs using

different approaches such as ALPGEN [8] and HELAC [9]. All these programs are multi-

purpose event generator tools, which are able to compute any process (up to technical

restrictions in the multiplicity) within the standard model, or within alternative theories

specified by their interaction Lagrangian or Feynman rules. They usually provide event

information which can be interfaced into parton shower, hadronization and/or detector

simulation.

Next-to-leading order (NLO) calculations are at present performed on a process-by-process

basis. The widely-used programs MCFM [10,11], NLOJET++ [12], MC@NLO [13,14] and

programs based on the POWHEG method [15–20] collect a variety of different processes
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in a standardized framework, the latter two methods also match the NLO calculation onto

a parton shower.

The NLO QCD corrections to a given process with a n-parton final state receive two types

of contributions: the one-loop virtual correction to the (2 → n)-parton scattering process,

and the real emission correction from all possible (2 → n + 1)-parton scattering processes.

For the numerical evaluation, one has to be able to compute both types of contributions

separately.

The computation of one-loop corrections to multi-particle scattering amplitudes was per-

formed on a case-by-case basis up-to-now, the calculational complexity increased consider-

ably with increasing number of external partons. Since only a limited number of one-loop

integrals can appear [21,22] in the final result, the calculation of one-loop corrections can

be reformulated as determination of the coefficients of these basis integrals, plus potential

rational terms. Enormous progress [23–42] has been made in the recent past in the sys-

tematic determination of the one-loop integral coefficients and rational terms, and steps

towards fully automated programs for the calculation of one-loop multi-parton amplitudes

were made with the packages CutTools [43], BlackHat [44], Rocket [45] and GOLEM [46].

The real emission corrections contain soft and collinear singularities, which become ex-

plicit only after integration over the appropriate real radiation phase space yielding a hard

n-parton final state. They are canceled by the singularities from the virtual one-loop contri-

butions, thus yielding a finite NLO correction. To systematically extract the real radiation

singularities from arbitrary processes, a variety of methods, based either on phase-space

slicing [47] or on the introduction of process-independent subtraction terms [48] have been

proposed. Several different algorithms to derive subtraction terms are available: residue

subtraction [49], dipole subtraction [50,51] and antenna subtraction [52–55].

Especially the dipole subtraction formalism, which provides local subtraction terms for all

possible initial and final state configurations [50] and allows to account for radiation off

massive partons [51], is used very widely in NLO calculations. It has recently also been au-

tomated in the SHERPA framework [56] and the TeVJet framework [57], and most recently

in the form of independent libraries [58] interfaced to MadGraph. The dipole subtraction

within the SHERPA framework is not available as a stand-alone tool, while within the

TeVJet framework, the user needs to provide all the necessary process dependent infor-

mation. Moreover both approaches have only included massless particles for the dipoles.

There is still no general tool available which is able to produce the dipole terms for an

arbitrary process and which can also deal with massive partons.

In this paper we present MadDipole, an automatic generation of the dipole subtraction

terms using the MadGraph/MadEvent framework. The results are Fortran subroutines

which return the squared amplitude for all possible dipole configurations in the usual

MadGraph style. We describe the construction of the dipole subtraction terms and their

implementation in Section 2. Results from various checks of the implementation are pro-

vided Section 3, and instructions on the practical usage of the package are contained in

Section 4.
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2. Construction of dipole terms

The fundamental building blocks of the subtraction terms in the dipole formalism [50,51]

are dipole splitting functions Vij,k, which involve only three partons: emitter i, unresolved

parton j, spectator k. A dipole splitting function accounts for the collinear limit of j with

i, and for part of the soft limit of j in between i and k. The dipole factors, which constitute

the subtraction terms, are obtained by multiplication with reduced matrix elements, where

partons i, j and k are replaced by recombined pseudo-partons ĩj, k̃. The full soft behavior

is recovered after summing all dipole factors.

Throughout the whole paper we are using the notation introduced in Refs. [50] and [51].

Independent on whether we have initial or final state particles we can write an arbitrary

dipole in the form

Dij,k ∼ m〈1, ...ĩj, ..., k̃, ...,m + 1|Tk ·Tij

T2
ij

Vij,k|1, ...ĩj, ..., k̃, ...,m + 1〉m. (2.1)

The amplitude factors 〈. . . | (‘bra’) and | . . .〉 (‘ket’) on the right hand side are tensors in

color space. The helicities of the external particles in them are a priori fixed (but can be

summed over for unpolarized processes), while the helicities of the pseudo-partons have to

be summed over after contraction with the dipole splitting function.

These Born-level amplitude factors are provided by the usual MadGraph code. The two

elements that combine the ket with the bra are the additional color structure
Tk·Tij

T
2
ij

and

the dipole splitting function Vij,k.

2.1 Color and helicity management

For the calculation of the color factors there already exist routines in the MadGraph pro-

gram. Our intension was to use exactly these routines because this code is very well-

confirmed and efficient. We have included the additional color operator, Tk · Tij, by

rewriting the internal MadGraph color labelling for the ket-side only. After insertion of

this color operator the color structure is no longer multiplied by its own complex conju-

gate and therefore the routine that squares the color needed to be altered, to multiply

the modified ket by its original complex conjugate. We emphasize that due to the facto-

rial growth of the color factors MadGraph can not handle more than seven colored particles.

For the insertion of the splitting function Vij,k several changes with respect to the original

code are required. One has to keep in mind that in general the splitting function is a tensor

in helicity space, i.e.,

Vij,k ≡ 〈µ|Vij,k|ν〉 = V
µν
ij,k.

As MadGraph deals with helicity amplitudes, we have to write the dipole in a slightly

different way to be able to include the calculation of the splitting function in the code.

Neglecting the color for a moment we start from the definition of the dipole in (2.1) and
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by inserting a full set of helicity states −gµν =
∑

λ ǫ∗µ(λ)ǫν(λ) we get

Dij,k ∼ m〈1, ...ĩj, ..., k̃, ...,m + 1|µVµν
ij,k ν |1, ...ĩj, ..., k̃, ...,m + 1〉m (2.2)

= m〈1, ...ĩj, ..., k̃, ...,m + 1|µ′

(
−gµ′

µ

)
V

µν
ij,k

(
−g ν′

ν

)
ν′ |1, ...ĩj, ..., k̃, ...,m + 1〉m

=
∑

λa,λb

m〈. . . |µ′ ǫ∗µ
′

(λb)ǫµ(λb)V
µν
ij,k ǫ∗ν(λa)ǫ

ν′

(λa) ν′ | . . .〉m

=
∑

λa,λb

m〈. . . |λb
V (λb, λa) λa

| . . .〉m

with V (λb, λa) = ǫµ(λb) V
µν
ij,k ǫ∗ν(λa) and ǫµ(λ) µ| . . .〉m = λ| . . .〉m.

The polarization vectors are calculated using the HELAS routines [59] already available in

the MadGraph code. The parts that are diagonal in helicity space are trivial to calculate in

that sense that one only has to multiply the MadGraph output for the squared amplitude

for a given helicity combination with the splitting function. To calculate the off-diagonal

helicity terms, the amplitude for each helicity combination is stored and then combined

with the according amplitude with opposite helicity.

For the calculation of the splitting functions and for the remaping of the momenta we use

modified versions of the routines used in MCFM [10,11].

2.2 Massive particles

If some of the masses of the external particles are non-zero, in particular for processes

involving top and/or bottom quarks, there are dipoles for which the unresolved parton is

massive. In this case the collinear singularities are regulated by the mass of the unresolved

parton and the unsubtracted matrix element does therefore no longer diverge in these

collinear limits, but only develops potentially large logarithms. Our code still calculates

all possible dipoles, also in which the unresolved parton is massive, but puts them in a

separate subroutine, dipolsumfinite(...), that is not evaluated by default. In the limit

of large center of momentum energy or, similarly, small external masses, the user can easily

include the non-divergent dipoles to subtract the associated large logarithms, which can

then be included analytically through the integrated subtraction terms. In the limit of zero

external masses we have checked that the results obtained after summing all dipoles are

the same as obtained by generating the code with massless particles from the start.

2.3 Phase space restriction

The calculation of the subtraction terms is only necessary in the vicinity of a soft and/or

collinear limit. Away from these limits the amplitude is finite and there is in principle no

need to calculate the computationally heavy subtraction terms. The distinction between

regions near to a singularity from regions without need for a subtraction can be parame-

terized by a parameter usually labelled α with α ∈ [0, 1], which was introduced in Ref. [60]

for processes involving partons only in the final state. The case with incoming hadrons,

i.e., with partons in the initial state, is described in Ref. [12].
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Using the notation of Ref. [12], the contribution from the subtraction term to the differen-

tial cross section can be written as

dσA
ab =

∑

{n+1}

dΓ(n+1)(pa, pb, p1, ..., pn + 1)
1

S{n+1}

×
{

∑

pairs

i,j

∑

k 6=i,j

Dij,k(pa, pb, p1, ..., pn+1)F
(n)
J (pa, pb, p1, .., p̃ij , p̃k, .., pn+1)Θ(yij,k < α)

+
∑

pairs

i,j

[
Da

ij(pa, pb, p1, ..., pn+1)F
(n)
J (p̃a, pb, p1, .., p̃ij , .., pn+1)Θ(1 − xij,a < α)

+(a ↔ b)

]

+
∑

i6=k

[
Dai

k (pa, pb, p1, ..., pn+1)F
(n)
J (p̃a, pb, p1, .., p̃k, .., pn+1)Θ(ui < α) + (a ↔ b)

]

+
∑

i

[
Dai,b(pa, pb, p1, ..., pn+1)F

(n)
J (p̃a, pb, p̃1, ..., p̃n+1)Θ(ṽi < α) + (a ↔ b)

]}
.

(2.3)

The functions Dij,k, Da
ij, Dai

k and Dai,b are the dipole terms for the various combinations

for emitter and spectator.
∑

{n+1} denotes the summation over all possible configurations

for this (n+1)-particle phase space which is labelled as dΓ(n+1) and the factor S{n+1} is the

symmetry factor for identical particles. We have introduced four different α-parameters,

one for each type of dipoles. In our code they are called alpha ff, alpha fi, alpha if and

alpha ii for the final-final, finial-initial, initial-final and initial-initial dipoles, respectively.

The actual values for these parameters are by default set to unity, corresponding to the

original formulation of the dipole subtraction method [50, 51], but can be changed by the

user in the file dipolsum.f.

It has to be kept in mind that the integrated dipole factors, which are to be added with

the virtual n-parton contribution, will also depend on α. For case of massless partons, the

α-dependence of the integrated terms is stated in [12,60] while for massive partons results

for most cases can be found in [61,62].

3. Checks

The MadDipole package provides a code, check dip.f, which allows the user to test the

limits of the (n + 1)-particle matrix element and the dipole subtraction terms. This code

builds up a trajectory of randomly selected phase space point approaching a given soft or

collinear limit of the (n+1)-parton matrix element and yields the values of matrix element,

sum of all the dipoles, and their ratio along this trajectory. The result is printed to the

screen in a small table for which each successive row is closer to the singularity. The ratio

between matrix element and the sum of the dipoles should go to unity. We have tested

our code in all possible limits, both for massless as well as massive dipoles and found no
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(a) (b)

Figure 1: Matrix element squared |MR|2 (upper plots, solid line) and the subtraction terms D

(upper plots, dashed/dotted/dot-dashed lines) for the process e+(p1)e
−(p2) → Z → q(p3)q̄(p4)g(p5)

as a function of 1 − xq̄ = (p3.p5)/(p1.p2) and xg = 1 − (p3.p4)/(p1.p2) in figures (a) and (b),

respectively. Also plotted are the ratio D/|MR|2, the difference |MR|2 − D (averaged over 100

random points per bin) and the maximal difference max(||MR|2 − D|) per bin. The dashed lines

include the dipoles for each point in phase space, αff = 1, while for the dotted αff = 0.1 and

dot-dashed αff = 0.01 the phase space for the dipoles has been restricted to the collinear/soft

regions.

inconsistencies. Choosing small values for α-parameters, e.g., α = 0.1, improves the com-

putation time and the convergence of the subtraction procedure.

To show that the subtraction terms are implemented correctly we provide a couple of ex-

amples in the form of plots and argue that the cancellation between the matrix element

squared and the subtraction term is as expected. In the figures 1 and 2 we show the matrix

element squared and the subtraction term as a function of a variable that represents a soft

and/or collinear limit of the process specified. For these figures we have binned the x-axis

(equally sized bins for the logarithmic scale) and generated random points in phase space

to fill each of the bins with exactly 100 events. In the upper plot, |MR|2 and D are the per

bin averages of the matrix element squared and the subtraction term, respectively. The

second to upper plot shows the per bin average of the ratio of the matrix element squared

and the subtraction term, while the third plot from the top shows the per bin average of

the difference. The lowest plot shows the absolute value of the maximal difference among

the 100 points in a bin. To show the effects of the phase space restriction for the dipoles,

see section 2.3, all the plots are given for α = 1 (dashed lines), α = 0.1 (dotted lines) and

α = 0.01 (dot-dashed lines).

In figure 1(a) we show the matrix element squared and the subtraction term as a function of

1−xq̄, where xq̄ is the fraction of the energy carried by the anti-quark, xq̄ = s34+s45

s12
= 1− s35

s12
,

with sij = pi.pj . For this process, e+(p1)e
−(p2) → Z → q(p3)q̄(p4)g(p5), there are only

final-final state dipoles contributing to the subtraction term. The center of mass energy

is set equal to the Z boson mass
√

s = mZ . To restrict the discussion to the collinear
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divergence only, points close to the soft divergence (xq̄ = xq̄ = 1) have been removed by

forcing xq + xq̄ < 1.5 in the generation of the phase space points.

From the upper plot it is clear that both the matrix element squared and the subtraction

term diverge in the collinear limit xq̄ → 1, as 1/xq̄. The ratio D/|MR|2 goes to 1 and the

average values of the differences fluctuate close to 0 as can be seen in the second and third

plots from the top. The numerical fluctuations for small 1−xq̄ can be completely explained

by statistical fluctuations. They are of the order of 1% of the maximal difference given

in the lower plot. As can be expected, the cancellations are not exact, which is shown

by the lower plot. The maximal difference between |MR|2 and D rises like 1/
√

1 − xq̄,

which does not lead to a divergent phase space integral, because the integration measure is

proportional to xq̄. The small peaks/fluctuations in the region for small xq̄ are due to the

fact that we are approaching the other collinear limit, i.e., for which the gluon is collinear

to the anti-quark xq → 1, where the matrix elements squared and the subtraction term

also diverge.

In figure 1(b) the same matrix elements and subtraction terms are presented, but as a

function of the fraction of the energy carried away by the gluon xg = 2 − xq − xq̄. The

limit for which xg goes to zero represents the soft divergence of this process, while the

collinear divergences for this process are removed by excluding phase space points for

which xq̄ > (1 + xq)/2 or xq > (1 + xq̄)/2. The same conclusion as for figure 1(a) can

be drawn here: the matrix element squared and the subtraction term diverge in the soft

limit, their ratio goes to one and the average difference to zero, while the absolute value of

the maximal difference still rises when approaching the soft limit, but does not lead to a

divergent phase space integral.

An example for a collinear limit between final state and initial state particles is given

in figure 2(a). In this plot the matrix element squared and the subtraction term for the

process e−(p1)q(p2) → e−(p3)q(p4)g(p5) are given as a function of the invariant mass of the

initial state quark and the final state gluon s25/s12. As this invariant mass goes to zero,

the matrix element squared and the subtraction term diverge like 1/s25, and their ratio

goes to one. To remove the other possible divergences a cut on the momentum transfered

s13/s12 > 0.5 and on the invariant mass of the final state quark and gluon s45/s12 > 0.2

have been imposed. Like for the final-final state dipoles the average difference goes to a

constant, as can be seen from the second plot from the bottom, but the dipoles have a

sizeable constant contribution. Therefore the normalization of the average value for the

difference |MR|2 −D depends on the number of dipoles included for the phase space point.

If all the dipoles are included for all points the difference goes to a smaller constant than if

we restrict the phase space of the subtraction term to be close to the singularities by setting

α < 1. Due to this restriction only the dipoles to cancel that divergence are included in the

subtraction term and therefore give a smaller constant contribution, hence the difference

|MR|2 − D is larger. Also here the maximal left-over difference, the lowest plot, increases

for small invariant masses but does not lead to a divergent phase space integral.

In figure 2(b) an example with massive final state particles is shown. The process is tt̄

production at a linear collider, e+(p1)e
−(p2) → t(p3)t̄(p4)g(p5) at 1 TeV center of mass

energy. The plot shows a behavior very similar to the massless case, fig. 1, and the conclu-
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(a) (b)

Figure 2: Matrix element squared |MR|2 (upper plots, solid line) and the subtraction term D

(upper plots, dashed/dotted/dot-dashed lines) for (a) the process e−(p1)q(p2) → e−(p3)q(p4)g(p5)

as a function of s25/s12 = (p2.p5)/(p1.p2) and (b) the process e+(p1)e
−(p2) → Z → t(p3)t̄(p4)g(p5)

as a function of xg = 1 − (p3.p4)/(p1.p2). Also plotted are the ratio D/|MR|2, the difference

|MR|2−D (averaged over 100 random points per bin) and the maximal difference max(||MR|2−D|)
per bin. The dashed lines include the dipoles for each point in phase space, α = 1, while for the

dotted α = 0.1 and dot-dashed α = 0.01 the phase space for the dipoles has been restricted to the

collinear/soft regions.

sions drawn there apply to this plot as well.

As a further check we have tested the code extensively against MCFM [10,11]. We have

generated random points in phase space and compared the subtraction terms calculated

by MCFM with the subtraction terms calculated by our code. See table 1 for a list of

processes that have been checked. We observed differences only in the case where dipoles

were introduced entirely to cancel collinear limits, which can be made independently of the

spectator particle. In our code all possible dipoles are calculated, which implies a sum over

all spectator particles. However, if there is only a collinear divergence, i.e., the unresolved

parton cannot go soft, this sum is redundant and one dipole with the appropriate coefficient

is enough to cancel the singularity. In MCFM, these special limits are implemented using

a single spectator momentum, while MadDipole sums over all spectator momenta, thereby

yielding a different subtraction term. We have checked in the relevant cases that close to

the singularities the MCFM subtraction terms behave identical to the subtraction terms

calculated by our code.

We also tested the CPU time which is needed to produce the squared matrix element and

the dipoles for a given phase space point. These checks were performed with an Intel

Pentium 4 processor with 3.20Ghz. As an example we picked out three different processes:

1) gg → gggg: |M|2: 26ms,
∑

dipoles: 68ms

2) uū → dd̄ggg: |M|2: 10ms,
∑

dipoles: 45ms

3) uū → uūggg: |M|2: 34ms,
∑

dipoles: 0.15s
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process subprocesses

Drell-Yan (W ) qq̄′ → W+(→ e+νe)g

qg → W+(→ e+νe)q
′

Drell-Yan (Z) qq̄ → Z(→ e+e−)g

qg → Z(→ e+e−)q

Drell-Yan (Z+jet) qq̄ → Z(→ e+e−)q′q̄′

qq̄ → Z(→ e+e−)qq̄

qq̄ → Z(→ e+e−)gg

qḡ → Z(→ e+e−)qg

gḡ → Z(→ e+e−)qq̄

top quark pair (tt̄) qq̄ → t(→ bl+νl)t̄(→ b̄l−ν̄l)g

qg → t(→ bl+νl)t̄(→ b̄l−ν̄l)q

gg → t(→ bl+νl)t̄(→ b̄l−ν̄l)g

t-channel single top gg → tb̄qq̄′

with massive b-quark [63] qq′ → tb̄q′q′′

qq′ → tb̄q′q′′

qg → tb̄q′g

Table 1: Set of processes for which the MadDipole code has been tested against MCFM for random

points in phase space. All the possible initial-initial, initial-final and final-initial, dipoles for massless

and massive final state particles have been checked with this set of subprocesses. No inconsistencies

were found.

The time which is needed to produce the Fortran code is strongly dependent on the process

and ranges from a few seconds to at most a few minutes. The process gg → 5g is currently

not yet feasible within MadGraph because of the size of the color factors. Once MadGraph

has been adjusted to handle this process, it will equally become accessible for MadDipole.

4. How to use the package

The installation and running of the MadDipole package is very similar to the usual Stand-

Alone version of the MadGraph code. In this section, we only provide a brief description

for MadDipole, while more information can also be found on the MadGraph wiki page,

http://cp3wks05.fynu.ucl.ac.be/twiki/bin/view/Software/MadDipole.

1. Download and extract the MadDipole package, MG ME DIP V4.4.3.tar.gz, from one

of the MadGraph websites, e.g., http://madgraph.hep.uiuc.edu/.

2. Run make in the MadGraphII directory.

3. Copy the Template directory into a new directory, e.g., MyProcDir to ensure that

you always have a clean copy of the Template directory.

4. Go to the new MyProcDir directory and specify your process in the file ./Cards/proc card.dat.

This is the (n + 1)-particle process you require the subtraction term for.

5. Running ./bin/new process generates the code for the (n + 1)-particle matrix el-

ement and for all dipole terms. After running this you will find a newly generated
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directory ./Subprocesses/P0 yourprocess (e.g., ./Subprocesses/P0 e+e- uuxg)

which contains all required files.

6. For running the check program change to this directory and run make and ./check.

The directory ./Subprocesses/P0 yourprocess contains all necessary files needed for fur-

ther calculations. As in the usual MadGraph code the (n + 1)-particle matrix element is

included in the file matrix.f. For the dipoles there exist several files called dipol???.f

where ??? stands for a number starting from 001. Each file contains only one dipole. Note

that the syntax for calling the dipoles is exactly the same as calling the (n + 1)-particle

matrix element. In particular, also the dipoles have to be called with (n + 1) momenta

rather than with only n momenta. The remapping of the momenta going from the (n+1)-

particle phase space to a n-parton phase space is done within the code for the dipoles.

The file dipolsum.f calculates the sum over all dipoles for a given (n + 1)-particle phase

space point. It contains two subroutines called DIPOLSUM and DIPOLSUMFINITE. As dis-

cussed in Section 2.2 above, the subroutine DIPOLSUMFINITE contains the dipoles which

only contribute potentially large logarithms but not a real singularity.

In both subroutines the contribution of a certain dipole is only added to the sum if the

phase space restriction specified by the α parameter is fulfilled. The value of the four α

parameters can be changed in these two subroutines. They are all set to unity by default.

5. Conclusions

In this paper we have presented MadDipole, an implementation to fully automatize the

calculation of the dipole subtraction formalism for massless and massive partons in the

MadGraph/MadEvent framework. The implementation is done in such a way that the

user only needs to specify the desired (n + 1)-particle process and our code returns a For-

tran code for all dipoles combined with possible Born processes which can lead to the

(n + 1) process specified by the user.

For the calculation of the new color factors we have used as far as possible the routines

already provided by the original MadGraph code. We inserted the two additional operators

for emitter and spectator and modified the evaluation of the squared color factors.

For the contributions that are not diagonal in helicity space we again used the already

available routines for calculating amplitudes for a given helicity combination and combined

amplitudes with different helicity combinations to yield the off-diagonal helicity contribu-

tions to the subtraction terms.

We have validated the code on numerous different processes with massive and massless

partons using two checking procedures. The ratio of M2
n+1/

∑
(dipoles) was confirmed to

approach unity as one approaches any soft or collinear limit. The package includes a file

check dip.f which allows the user to reproduce this check for any process under consid-

eration.

Secondly, we compared our code against the results of MCFM [10,11], where subtraction is

performed using the dipole formalism, finding point-wise agreement wherever anticipated.

– 10 –



Differences with MCFM are understood to be due to different details in the implementa-

tion.

The MadDipole package allows the automated computation of real radiation dipole subtrac-

tion terms required for NLO calculations. Together with the fastly developing automation

of one-loop calculations of multi-leg processes, it could lead to a full automation of NLO

calculations for collider processes. In view of the large number of potentially relevant

multi-particle production processes at LHC, such automation will be crucial for precision

phenomenology, in order to establish and interpret potential deviations from standard

model expectations.
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