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Abstract

Given the eventuality of neutrino and muon factories in the foreseeable future, all possible 2 → 2
processes involving two neutrinos, whether Dirac or Majorana ones, and two charged fermions are
considered on the basis of the most general Lorentz invariant four-fermion effective interaction
possible, in the limit of massless particles. Such a parametrization should enable the assessment
of the sensitivity to physics beyond the Standard Model, including the eventual discrimination
between the Dirac or Majorana character of neutrinos, of specific experimental beam and detector
designs.
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1 Introduction.

As is widely appreciated, the most general Lorentz invariant four-fermion effective parametrization of
electroweak processes has played a central role in unravelling the basic structure and chiral properties
of this fundamental interaction. Still to this day, the original analysis of Ref.[1] is used in precision
studies of β-decay[2, 4], aiming at identifying at low energies tell-tale signs for physics beyond the
Standard Model (SM). Likewise at intermediate and high energies in the purely muon and tau leptonic
sectors, a similar parametrization[3] has become the standard[4] in terms of which to confine ever
further parameter space, hoping to uncover a lack of overlap with that of the SM. A similar approach
is also possible for precision studies of semi-leptonic processes which involve both the muon sector and
the first (u, d) quark generation, for example at the intermediate energies of nuclear muon capture[5].

With the foreseen advent of neutrino factories and muon colliders, an analogous general analysis,
involving in particular neutrino beams, appears to be of potential interest in the design of eventual
experiments and detectors. For instance, the possibility of intersecting neutrino beams should not be
dismissed, especially in the eventuality of very large intensities. Indeed, in spite of small rates, if only
a single νaνb → ℓ−i ℓ

+
j event for instance—as opposed to νaν̄b → ℓ−i ℓ

+
j —were to be observed, lepton

number violation would definitely have been established, which most likely would imply the Majorana
character of neutrinos, one of the most pressing issues in neutrino physics today.

This note presents such an analysis, based on the most general four-fermion effective interaction
possible of two neutrinos and two charged fermions (whether leptons or quarks) of fixed “flavours”, or
rather more correctly, of definite mass eigenstates, solely constrained by the requirements of Lorentz
invariance and electric charge conservation. For instance, even though this might be realized only in
small and peculiar classes of models beyond the SM, allowance is made for the possibility that both
the neutrino fields and their charge conjugates couple in the effective Lagrangian density. Further-
more, the analysis is developed separately whether for Dirac or Majorana neutrinos, with the hope to
identify circumstances under which scattering experiments involving neutrinos could help discriminate
between these two cases through different angular correlations for differential cross sections, given the
high rates to be expected at neutrino factories. As is well known, the “practical Dirac-Majorana con-
fusion theorem”[6] states that within the SM, namely in the limit of massless neutrinos and (V − A)
interactions only, these two possibilities are physically totally equivalent, and hence cannot be distin-
guished. On the other hand, relaxing the purely (V − A) structure of the electroweak interaction by
including at least another interaction whose chirality structure is different should suffice to evade this
conclusion, even in the limit of massless neutrinos.

The general classes of processes considered in this note comprise neutrino pair annihilation into
charged leptons1, the inverse process of neutrino pair production through lepton annihilation, and
finally neutrino-lepton scattering. These processes will also be considered whether either one or both
pairs of neutrino and lepton flavours2, (a, b) and (i, j) respectively, are identical or not. The sole
implicit assumption is that the energy available to the reaction is both sufficiently large in order
to justify ignoring neutrino and lepton masses, and sufficiently small in order to justify the four-
fermion parametrization of the boson exchanges responsible for the interactions. In other words, the
calculations are all performed in the limit of zero mass for all external neutrino and lepton mass

1Henceforth, the charged fermions are referred to as leptons, even though exactly the same analysis and results apply
to quark states, with due account then for the quark colour degree of freedom and the quark structure of the hadrons
involved. Also, charged leptons will simply be called leptons, for short.

2In fact, our analysis considers specific mass eigenstates for the external neutrino and lepton states, in the massless
limit, namely when all other energy scales are much larger than the masses of these particles. By abuse of language, we
shall refer to these mass eigenstates as “flavour” ones, following a widespread usage.
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eigenstates. Nonetheless, effects that distinguish Majorana from Dirac neutrinos should survive in
this massless limit. In addition to being much larger than the neutrino and lepton mass scales, the
energy scale available to the process must also be much smaller than the energy scales associated to
the interactions modeled by the four-fermion interactions.

In terms of classes of processes, our analysis thus covers a wide variety of possibilities, and its
results are presented in a manner which, it is hoped, will be found readily useful for implementation
in numerical codes, whatever a specific model for physics beyond the SM, namely a specific set of
effective couplings parametrizing the four-fermion interactions. In this note, no attempt is made at
developing a systematic analysis to assess the physics potential of specific processes based on some
particular beam and detector design, whether to look for physics beyond the SM, or discriminate
between the Dirac or Majorana character of neutrinos. The main purpose of this work is to provide
the general parametrization that is required for such a dedicated assessment, left for future analysis.

The note is organized as follows. The next section provides what might be called the “kine-
matics” of the analysis, by recalling some simple facts about Dirac and Majorana fermions. Sect.3
discusses the general four-fermion effective Lagrangian used in our analysis. Sects.4 to 6 then list the
results for the three classes of processes mentioned above, with Sect.7 only superficially illustrating
the potential reach of these types of processes at neutrino factories. Concluding remarks are presented
in Sect.8.

2 A Compendium of Simple Properties

2.1 Dirac, Weyl and Majorana spinors

The purpose of this section is to recall a series of results relevant to Dirac, Weyl and Majorana
quantum fermionic fields, and to specify our conventions. Since all processes are considered in the
limit of massless neutrinos and leptons, the representation of the Clifford-Dirac algebra {γµ, γν} = 2gµν

used througout is the chiral one, which we take to be

γ0 =

(

0 −11
−11 0

)

, γi =

(

0 σi

−σi 0

)

, i = 1, 2, 3, , γ5 = iγ0γ1γ2γ3 =

(

11 0
0 −11

)

, (1)

σi (i = 1, 2, 3) being of course the usual Pauli matrices (our choice of Minkowski metric signature gµν

is (+ −−−)). The chiral projectors Pη (η = ±) are given by

Pη =
1

2
[1 + ηγ5] , P 2

η = Pη , PηP−η = 0 , η = +,− . (2)

By definition, the charge conjugation matrix C is such that

C−111C = 11T , C−1γ5C = γT
5 , C−1γµC = −γµT , C−1 (γµγ5)C = (γµγ5)

T , (3)

C−1σµνC = −σT
µν , C

−1 (σµνγ5)C = − (σµνγ5)
T , (4)

with
CT = C† = −C , CC† = 11 = C†C , (5)

and which, in the chiral representation, is given by

C =

(

−iσ2 0
0 iσ2

)

. (6)
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Given a four component Dirac spinor ψ, our definition of the associated charge conjugate spinor
is such that

ψc = ψc = λCψ
T
, (7)

where λ is some arbitrary unit phase factor, whose value would depend a priori on the choice of spinor
field (i.e. on the neutrino or lepton flavour hereafter). This freedom in the choice of phase factor
under charge conjugation is directly related to the “creation phase factor” of Ref.[7], as shown below.

Solutions to the free massless Dirac equation may be expanded in the helicity basis, in terms of
the following mode representation of a Dirac quantum spinor ψD(x),

ψD(x) =

∫

(∞)

d3~k

(2π)32|~k|
∑

η=±

[

e−ik·xu(~k, η)b(~k, η) + eik·xv(~k, η)d†(~k, η)
]

. (8)

Here, the fermionic creation and annihilation operators have the Lorentz covariant normalization
{

b(~k, η), b†(~k′, η′)
}

= (2π)32|~k|δη,η′δ(3)(~k − ~k′) =
{

d(~k, η), d†(~k′, η′)
}

, (9)

while the plane wave spinors u(~k, η) and v(~k, η) are given by,

u(~k,+) = v(~k,−) =
√

2|~k|
(

χ+(k̂)
0

)

, u(~k,−) = v(~k,+) =
√

2|~k|
(

0

χ−(k̂)

)

, (10)

with the Pauli bi-spinors

χ+(k̂) =

(

e−iϕ/2 cos θ/2

eiϕ/2 sin θ/2

)

, χ−(k̂) =

(

−e−iϕ/2 sin θ/2

eiϕ/2 cos θ/2

)

, (11)

such that

k̂ · ~σ χη(k̂) = η χη(k̂) , χη(k̂)χ
†
η(k̂) =

1

2

[

11 + ηk̂ · ~σ
]

, (12)

ϕ and θ being of course the usual spherical angles for the unit vector k̂ = ~k/|~k| with respect to the
axes i = 1, 2, 3, namely k̂ = (sin θ cosϕ, sin θ sinϕ, cos θ).

The value of the index η = ± coincides with the helicity of the corresponding massless one-
particle states, and coincides of course with the chirality of the associated quantum field. Namely,
left- or right-handed four component Weyl spinors, with η = − et η = + respectively, have the
following mode decompositions

ψη(x) =

∫

(∞)

d3~k

(2π)32|~k|

[

e−ik·xu(~k, η)b(~k, η) + eik·xv(~k,−η)d†(~k,−η)
]

, (13)

as implied by the identification
ψη(x) = Pη ψD(x) . (14)

Hence, b†(~k, η) and d†(~k, η) are the creation operators of a particle and of an antiparticule, respectively,
both of helicity η and momentum ~k.

This identification may also be established from the chiral properties of the plane wave spinors,

Pη u(~k, η) = u(~k, η) , Pη u(~k,−η) = 0 ; Pη v(~k, η) = 0 , Pη v(~k,−η) = v(~k,−η) , (15)

u(~k, η)Pη = 0 , u(~k,−η)Pη = u(~k,−η) ; v(~k, η)Pη = v(~k, η) , v(~k,−η)Pη = 0 , (16)
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as well as

u(~k, η)u(~k, η) =
11 + ηγ5

2
/k , v(~k, η)v(~k, η) =

11 − ηγ5

2
/k . (17)

Likewise, their properties under charge conjugation are such that

CuT(~k, η) = v(~k, η) , CvT(~k, η) = u(~k, η) ; v(~k, η) = uT(~k, η)C , u(~k, η) = vT(~k, η)C , (18)

these results being specific to the helicity basis. Charge conjugates of spinors are then given by, say
for a Dirac spinor ψD(x),

ψc
D(x) =

∫

(∞)

d3~k

(2π)32|~k|
∑

η=±

[

e−ik·xλu(~k, η)d(~k, η) + eik·xλv(~k, η)b†(~k, η)
]

, (19)

as one should expect of course.

Finally, let us turn to Majorana spinors. As opposed to a Dirac spinor which is comprised
of two independent Weyl spinors of opposite chiralities, namely one of each of the two fundamental
representations of the (covering group of the) Lorentz group,

ψD(x) = ψ+(x) + ψ−(x) , (20)

a Majorana spinor ψM (x) is a four component spinor which is covariant under Lorentz transformations
but which is constructed this time from a single Weyl spinor, say of left-handed chirality3 η = −, and
which is invariant under charge conjugation4

ψM (x) = ψ−(x) + ψc
−(x) , ψc

M (x) = λMCψ
T

= ψM (x) , (21)

where it is now emphasized that the arbitrary phase factor λM arising in the definition of spinors
which are self-conjugate under charge conjugation may a priori be different for each Majorana field.
Consequently, the mode expansion of a Majorana spinor in the helicity basis is of the form,

ψM (x) =

∫

(∞)

d3~k

(2π)32|~k|
∑

η=±

[

e−ik·xu(~k, η)a(~k, η) + eik·xλMv(~k, η)a†(~k, η)
]

, (22)

where the annihilation and creation operators a(~k, η) and a†(~k, η) obey the fermionic algebra
{

a(~k, η), a†(~k′, η′)
}

= (2π)32|~k|δη,η′δ(3)(~k − ~k′) . (23)

In terms of the quanta of the basic Weyl spinor used in the construction, we thus have the following
correspondence5,

a(~k,−) : b(~k,−) ; a†(~k,−) : b†(~k,−) ,

a(~k,+) : λMd(~k,+) ; a†(~k,+) : λ∗Md
†(~k,+) ,

(24)

3Since charge conjugation exchanges left- and right-handed chiralities, the chirality of the basic Weyl spinor used in
this construction is irrelevant to the definition of a Majorana spinor.

4Note that a similar definition starting from a Dirac rather than a Weyl spinor might be contemplated, then leading
however to two independent Majorana spinors, each of which is obtained in the manner just described from a single
distinct Weyl spinor, namely ψ

(1)
M = (ψD +ψc

D)/
√

2 and ψ
(2)
M = −i(ψD −ψc

D)/
√

2, in complete analogy with the real and
imaginary parts of a single complex scalar field as well as the physical interpretation of the associated quanta as being
particles which are or not their own antiparticles. Specifically, we have ψ

(1)
M = ψ

(1)
−

+ ψ
(1)
−

c
, ψ

(2)
M = ψ

(2)
−

+ ψ
(2)
−

c
with

ψ
(1)
−

= (ψ− +ψc
+)/

√

2, ψ
(2)
−

= −i(ψ−−ψc
+)/

√

2, where ψD = ψ− +ψ+. Setting either ψ− or ψ+ to zero, the Weyl spinors

ψ
(1)
−

, ψ
(2)
−

hence also the Majorana ones ψ
(1)
M , ψ

(2)
M are then no longer independent, leading back to the construction

above.
5The complex conjugate of a complex number z is denoted z∗ throughout.
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which once again shows that a†(~k, η) is the creation operator of a particle of momentum ~k and helicity
η, which furthermore is in the present case also its own antiparticle.

Note the charge conjugation phase factor λM multiplying the creation operator contribution to
the mode expansion of the Majorana quantum field ψM (x). This phase factor corresponds exactly to
the “creation phase factor” whose role has been emphasized already in Ref.[7] on different grounds,
and again more recently[8].

2.2 Differential cross sections

All 2 → 2 processes of interest in this note are directly considered in the center-of-mass (CM) frame
of the reaction, with a kinematics of the form

p1 + p2 → q1 + q2 , (25)

the quantities p1,2, q1,2 standing of course for the four-momenta of the respective in-coming and out-
going massless particles. Given rotation invariance, and the fact that all particles are of spin 1/2
and of zero mass, hence of definite helicity, the sole angle of relevance is the CM scattering angle θ
between, say, the momenta ~p1 and ~q1. For all the reactions listed hereafter, the same order is used
for the pairs (p1, p2) and (q1, q2) of the initial and final particles involved, hence leading always to the
same interpretation for this angle θ as being the scattering angle between the first particles in these
two pairs of in-coming and out-going particles.

For specific external particles of definite helicity, the differential CM cross section of all such
processes is given by

dσ

dΩq̂1

=
1

Sf

1

64π2 s
|M|2 ,

dσ

d cos θ
=

1

Sf

1

32π s
|M|2 . (26)

Here,
√
s stands for the total invariant energy of the reaction, with

s = (p1 + p2)
2 = (q1 + q2)

2 , (27)

dΩq̂1 is the solid angle associated to the outgoing particle of normalized momentum q̂1 = ~q1/|~q1|,
Sf = 2 or Sf = 1 depending on whether the two particles—including their helicity—in the final state
are identical or not, respectively, and M is Feynman’s scattering matrix element. Thus, it is only
through |M|2 that the differential cross section depends on6 the scattering angle θ. Furthermore, this
expression also shows that it is sufficient for our purposes to simply determine the amplitude M for
each of the relevant processes, a single complex quantity function of θ. All our results are thus listed
in terms of the amplitude M for each process given an arbitrary combination of helicities for the
external states.

3 The Effective Lagrangian

Given a choice of external states including their helicities, Feynman’s amplitude M is determined
from the interaction Lagrangian for these particles. Assuming that the energy

√
s remains much

6Note that this fact implies that relative angular dependencies of cross sections are energy independent (within the
regime to which the four-fermion parametrization applies), while of course reaction rates are directly energy dependent
with their usual linear dependency in s.
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smaller than any of the mass scales of the fundamental interactions at work, an effective four-fermion
parametrization of this interaction is warranted, constrained by the sole requirements of Lorentz
invariance and electric charge conservation. Since fermion number is not necessarily conserved in
interactions involving neutrinos, a priori one may couple equally well the neutrino fields and their
charge conjugates to the charged fermionic fields. For the latter, the Dirac fields that will be used
represent the usual charged leptons (or quarks), rather than their antiparticules. It is relative to this
choice for the charged fields that the neutrino fields and their charge conjugates are thus specified.

With this understanding in mind, we shall consider all processes involving neutrinos (or their
antineutrinos) of definite flavours a and b as well as leptons (or their antileptons) of flavours i and j, all
denoted as νa, νb, ℓ

−
i and ℓ−j , respectively. The same notation is used for the associated spinor fields,

except for the indication of the lepton charge. Hence, the total four-fermion effective Lagrangian that
is considered throughout in the case of Dirac neutrino fields is of the form7

Leff = 4
g2

8M2

[

LD + L†
D

]

, (28)

where
LD = L1 + L2 + L3 + L4 , (29)

while each of the separate contributions is given by

L1 = Sηa,ηb

1 νaP−ηaℓi ℓjPηb
νb + V ηa,ηb

1 νaγ
µPηaℓi ℓjγµPηb

νb +
1

2
T ηa,ηb

1 νaσ
µνP−ηaℓi ℓjσµνPηb

νb , (30)

L2 = Sηa,ηb

2 νc
aPηaℓi ℓjPηb

νb + V ηa,ηb

2 νc
aγ

µP−ηaℓi ℓjγµPηb
νb +

1

2
T ηa,ηb

2 νc
aσ

µνPηaℓi ℓjσµνPηb
νb , (31)

L3 = Sηa,ηb

3 νaP−ηaℓi ℓjP−ηb
νc

b + V ηa,ηb

3 νaγ
µPηaℓi ℓjγµP−ηb

νc
b +

1

2
T ηa,ηb

3 νaσ
µνP−ηaℓi ℓjσµνP−ηb

νc
b ,

(32)

L4 = Sηa,ηb

4 νc
aPηaℓi ℓjP−ηb

νc
b + V ηa,ηb

4 νc
aγ

µP−ηaℓi ℓjγµP−ηb
νc

b +
1

2
T ηa,ηb

4 νc
aσ

µνPηaℓi ℓjσµνP−ηb
νc

b , (33)

an implicit summation over the chiralities ηa and ηb being understood of course. On the other hand,
it is important to keep in mind that no summation over the flavour indices a and b, nor i and j is
implied; all four of these values are fixed at the outset, keeping open still the possibility that a and b
might be equal or not, and likewise for i and j.

The overall normalization factor 4g2/8M2 involves a dimensionless coupling constant g as well
as a mass scale M , while the factor 4 cancels the two 1/2 factors present in the definition of the
chiral projection operators P±ηa and P±ηb

which appear in the effective interactions. The motivation
for this choice of normalization is that in the specific limit of the SM, the effective interaction is
normalized precisely in this manner with g then being the SU(2)L gauge coupling constant gL and M
the massive W± gauge boson mass MW , with in particular their tree-level relation to Fermi’s constant,
GF /

√
2 = g2

L/(8M
2
W ) (see further details below in the case of the SM).

In the above definitions, the complex coupling coefficients {S, V, T}ηa,ηb

1,2,3,4 parametrize the most
general four-fermion interactions possible, including the eventuality of CP violation whenever at least
one of these coefficients is complex. The choice for the indices ηa and ηb is made such that they each
correspond to the chirality and helicity ηa or ηb of the neutrino spinor fields and associated particles
involved in the effective coupling, with the chiralities of the leptonic fields being then determined

7The charge exchange form of these interactions is used here, but a charge conserving one could likewise be contem-
plated, one being related to the other through a Fierz transformation.
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according to the selection rules governing scalar, vector or tensor couplings, namely these chiralities are
those of the associated neutrino for vector couplings, and opposite to it for scalar an tensor couplings.
The situation with regards to tensor couplings is particular, in that the relation σµνγ5 = iǫµνρσσρσ/2
implies that the couplings T ηa,ηb

1 and T ηa,ηb

4 contribute to the effective interaction only if the chiralities
ηa and ηb are opposite, ηa = −ηb, while the couplings T ηa,ηb

2 and T ηa,ηb

3 contribute only if ηa = ηb. These
conventions and remarks are also those that apply to the by now standard four-fermion parametrization
used in the µ− e sector[4].

In the case of Majorana neutrino fields, a similar parametrization is of application, namely

Leff = 4
g2

8M2

[

LM + L†
M

]

, (34)

where

LM = Sηa,ηbνaP−ηaℓi ℓjPηb
νb + V ηa,ηbνaγ

µPηaℓi ℓjγµPηb
νb +

1

2
T ηa,ηbνaσ

µνP−ηaℓi ℓjσµνPηb
νb . (35)

Compared to the definitions above, and upon using the property ψc
M = ψM characterizing Majorana

spinors, we thus have the following correspondence between the effective coupling coefficients in the
Majorana and Dirac cases,

Sηa,ηb : Sηa,ηb

1 + S−ηa,ηb

2 + Sηa,−ηb

3 + S−ηa,−ηb

4 , (36)

V ηa,ηb : V ηa,ηb

1 + V −ηa,ηb

2 + V ηa,−ηb

3 + V −ηa,−ηb

4 , (37)

T ηa,ηb : T ηa,ηb

1 + T−ηa,ηb

2 + T ηa,−ηb

3 + T−ηa,−ηb

4 . (38)

These effective Lagrangians are still not yet the most general ones possible, when either a 6= b
or i 6= j, or both. In the above, it is implicitly assumed that the flavours a and i, on the one hand,
and b and j on the other, couple to one another in the “current×current” representation of these
interactions. One could still add other similar terms in which the roles of the flavours a and b, say, are
exchanged, providing still futher interactions whenever a 6= b or i 6= j. Nonetheless, such a possibility
may easily be included in the results hereafter, since the explicit expressions for the matrix elements
M, rather than the cross sections, which are provided, are linear in the coupling coefficients.

As a final remark, let us also note that the total neutrino fermionic number is conserved in these
effective interactions only for couplings of type 1 and 4, {S, V, T}ηa ,ηb

1,4 , whereas those associated to the
couplings of type 2 and 3, {S, V, T}ηa,ηb

2,3 , violate that quantum number by two units.

It is of interest to determine the effective coupling coefficients in the specific case of the elec-
troweak Standard Model, for which the normalization factor 4g2

L/(8M
2
W ) was discussed previously

already. Due to flavour conservation rules in that instance, different situations must be distinguished,
depending on whether only W± or only Z0 exchanges are involved, or both.

Purely W± exchange processes arise when a = i and b = j but also a 6= b and i 6= j, in which
case the only nonvanishing effectif coupling is

SM : a = i ; b = j ; a 6= b ; i 6= j : V −,−
1 = −1 . (39)

In the case of purely Z0 neutral current processes, we have for the only nonvanishing couplings,

SM : (a = b) 6= (i = j) : S−,−
1 = sin2 θW , V −,−

1 =
1

4

(

1 − 2 sin2 θW

)

, (40)
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θW being the usual electroweak gauge mixing angle. Note that in this situation, the Lagrangians LD

and L†
D, or LM and L†

M , are equal.

Finally, charged and neutral exchanges both contribute only when a = b = i = j, in which case
the only nonvanishing couplings are

SM : a = b = i = j : S−,−
1 = sin2 θW , V −,−

1 = −1

2
+

1

4

(

1 − 2 sin2 θW

)

. (41)

In this case as well, the Lagrangians LD and L†
D, or LM and L†

M , are equal.

Any extra coupling coefficient introduced beyond these ones thus corresponds to some new
physics beyond the Standard Model. Any particular model beyond the Standard Model predicts
specific values for a subclass of the effective couplings parametrizing the general expression being used
here, to which the general results to be presented hereafter may thus readily be applied.

The remainder of the calculation proceeds straightforwardly. Given any choice of external states
for the in-coming and out-going particles with their specific helicities, the substitution of the effective
Lagrangian operator enables the direct evaluation of the associated matrix element M using the Fock
algebra of the creation and annihilation operators that appear in the mode expansions of the fermion
fields. Rather than working out the quantity |M|2 through the usual trace techniques, it proves
much more efficient to simply substitute for the explicit expressions of the u(~k, η) and v(~k, η) spinors
solving the free Dirac equation in the helicity basis and in the chiral representation, given in Sect.2.1.
Choosing a specific CM kinematics configuration in which only the scattering angle θ is involved for
the reasons of rotational invariance advocated previously, one then readily obtains a single complex
quantity, namely simply the value for the amplitude M as a function of θ. This is the procedure that
has been applied to each of the processes, leading to the results listed herafter.

4 Neutrino Pair Annihilation

The first general class of processes to be considered is that of neutrino annihilations into charged
lepton (or quark) pairs. In the Dirac case, these reactions are labelled as follows,

(ab)(ij) Dirac neutrino annihilations

ab1: νa + νb → ℓ−i + ℓ+j , ab2: νa + νb → ℓ+i + ℓ−j ,

ab3: νa + ν̄b → ℓ−i + ℓ+j , ab4: νa + ν̄b → ℓ+i + ℓ−j ,

ab5: ν̄a + νb → ℓ−i + ℓ+j , ab6: ν̄a + νb → ℓ+i + ℓ−j ,

ab7: ν̄a + ν̄b → ℓ−i + ℓ+j , ab8: ν̄a + ν̄b → ℓ+i + ℓ−j ,

while in the Majorana case, this list reduces to

(ab)(ij) Majorana neutrino annihilations

Mab1: νa + νb → ℓ−i + ℓ+j , Mab2: νa + νb → ℓ+i + ℓ−j .

8



Due to identical angular momentum selection rules for all these processes, the associated matrix
element M is, for all these ten processes, of the form

M(ab)(ij) = −4s
(

g2

8M2

)

N1 δij
{

δabδ
−ηa
ηi

δ−ηb
ηj

[

A11 sin2 θ/2 + 2δηa,ηb
B11(1 + cos2 θ/2)

]

+δabδ
ηa
ηi
δηb
ηj
C11

[

(1 + ηaηb) − (1 − ηaηb) cos2 θ/2
]

+δ−ηb
ηi

δ−ηa
ηj

ηaηbD1

[

A12 cos2 θ/2 + 2δηa,ηb
B12(1 + sin2 θ/2)

]

+ δηb
ηi
δηa
ηj
ηaηbD1C12

[

(1 + ηaηb) − (1 − ηaηb) sin2 θ/2
]

}

−4s
(

g2

8M2

)

N2

{

δabδ
−ηb
ηi

δ−ηa
ηj

[

A21 cos2 θ/2 + 2δηa,ηb
B21(1 + sin2 θ/2)

]

+δabδ
ηb
ηi
δηa
ηj
C21

[

(1 + ηaηb) − (1 − ηaηb) sin2 θ/2
]

+δ−ηa
ηi

δ−ηb
ηj

ηaηbD2
[

A22 sin2 θ/2 + 2δηa,ηb
B22(1 + cos2 θ/2)

]

+ δηa
ηi
δηb
ηj
ηaηbD2C22

[

(1 + ηaηb) − (1 − ηaηb) cos2 θ/2
]

}

,

(42)

where, in agreement with our conventions, θ is the scattering angle between the incoming neutrino of
flavour a and the produced charged lepton of flavour i. The particle helicities are ηa, ηb, ηi and ηj ,
respectively. Table 1 lists the values for the constant phase factors N1,2 and D1,2 and the subsets of
the scalar, tensor and vector effective couplings constants, in that order, which define the quantities
A11,12,21,22, B11,12,21,22 and C11,12,21,22, whether in the case of Dirac of Majorana neutrinos.

The overall phase and sign of this amplitude is of course irrelevant physically, and is function
of the phase convention adopted for the external |In > and |Out > states. The latter were defined by
having the associated creation operators acting on the vacuum state |0 > in the same order as that in
which the corresponding particles are given in the above lists of processes. For example in the case of
the process “ab1”, we have thus taken

|In >= b†a(
~ka, ηa) b

†
b(
~kb, ηb) |0 > , |Out >= b†i (

~ℓi, ηi) d
†
j(
~ℓj , ηj) |0 > , (43)

in a notation that should be self-explanatory. Similarly in the case “Mab2” for instance,

|In >= a†a(
~ka, ηa) a

†
b(
~kb, ηb) |0 > , |Out >= d†i (

~ℓi, ηi) b
†
j(
~ℓj, ηj) |0 > . (44)

Obviously, exactly all the same conventions have been used throughout this work.

5 Neutrino Pair Production

Although neutrino pair production processes as such pose a genuine experimental challenge for their
detection, as opposed to processes in which they are accompanied for instance by a photon in the final
state[9], ℓ−ℓ+ → νν̄γ, the corresponding list of results is provided here for completeness. All 2 → 2
neutrino pair production processes are labelled according to the following list when both neutrinos are
of the Dirac type,

(ij)(ab) Dirac processes

ij1: ℓ−i + ℓ+j → νa + νb , ij2: ℓ+i + ℓ−j → νa + νb ,

ij3: ℓ−i + ℓ+j → νa + ν̄b , ij4: ℓ+i + ℓ−j → νa + ν̄b ,

ij5: ℓ−i + ℓ+j → ν̄a + νb , ij6: ℓ+i + ℓ−j → ν̄a + νb ,

ij7: ℓ−i + ℓ+j → ν̄a + ν̄b , ij8: ℓ+i + ℓ−j → ν̄a + ν̄b ,

while in the Majorana case
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(ij)(ab) Majorana processes

Mij1: ℓ−i + ℓ+j → νa + νb , Mij2: ℓ+i + ℓ−j → νa + νb .

For all these ten processes, the amplitude M is always of the following form

M(ij)(ab) = 4s
(

g2

8M2

)

N1 δij
{

δabδ
−ηa
ηi

δ−ηb
ηj

[

A11 sin2 θ/2 + 2δηa,ηb
B11(1 + cos2 θ/2)

]

−δabδ
ηa
ηi
δηb
ηj
C11

[

(1 + ηaηb) − (1 − ηaηb) cos2 θ/2
]

+δ−ηb
ηi

δ−ηa
ηj

D1
[

A12 cos2 θ/2 + 2δηa,ηb
B12(1 + sin2 θ/2)

]

− δηb
ηi
δηa
ηj
D1C12

[

(1 + ηaηb) − (1 − ηaηb) sin2 θ/2
]

}

+4s
(

g2

8M2

)

N2

{

δabδ
−ηb
ηi

δ−ηa
ηj

[

A21 cos2 θ/2 + 2δηa,ηb
B21(1 + sin2 θ/2)

]

−δabδ
ηb
ηi
δηa
ηj
C21

[

(1 + ηaηb) − (1 − ηaηb) sin2 θ/2
]

+δ−ηa
ηi

δ−ηb
ηj

D2
[

A22 sin2 θ/2 + 2δηa,ηb
B22(1 + cos2 θ/2)

]

− δηa
ηi
δηb
ηj
D2C22

[

(1 + ηaηb) − (1 − ηaηb) cos2 θ/2
]

}

,

(45)

with the same conventions as previously, in particular that θ is the angle between the first lepton of
flavour i and the first produced neutrino of flavour a. The different factors and coefficients appearing
in this expression are detailed in Table 2, whether in the case of Dirac or Majorana neutrinos.

6 Neutrino Scattering

Even though it would suffice in the case of neutrino scattering onto a charged lepton to give only two
classes of processes, for instance (ai)(bj) and (aj)(bi), since the two other classes could be obtained
by appropriate permutations of indices and of the coupling coefficients with their complex conjugates,
the results for all four classes of processes are listed nonetheless, for ease of practical use, and for
explicit check of expressions through their symmetry properties under such permutations.

6.1 (ai)(bj) neutrino scattering processes

In the case of neutrinos of Dirac character, the list of processes is labelled according to

(ai)(bj) Dirac processes

ai1: νa + ℓ−i → νb + ℓ−j , ai2: νa + ℓ+i → νb + ℓ+j ,

ai3: νa + ℓ−i → ν̄b + ℓ−j , ai4: νa + ℓ+i → ν̄b + ℓ+j ,

ai5: ν̄a + ℓ−i → νb + ℓ−j , ai6: ν̄a + ℓ+i → νb + ℓ+j ,

ai7: ν̄a + ℓ−i → ν̄b + ℓ−j , ai8: ν̄a + ℓ+i → ν̄b + ℓ+j ,

while in the Majorana case

(ai)(bj) Majorana processes

Mai1: νa + ℓ−i → νb + ℓ−j , Mai2: νa + ℓ+i → νb + ℓ+j .
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The general amplitude M then reads in all ten cases as follows

M(ai)(bj) = 4s
(

g2

8M2

)

N1 δij
{

δabδ
ηa
ηi
δηb
ηj

[

A11 − 2δηa,−ηb
B11(cos

2 θ/2 − sin2 θ/2)
]

+δabδ
−ηa
ηi

δ−ηb
ηj

C11
[

1 + ηaηb(cos
2 θ/2 − sin2 θ/2)

]

+δ−ηb
ηi

δ−ηa
ηj

ηaηbD1
[

A12 cos2 θ/2 − 2δηa,−ηb
B12(1 + sin2 θ/2)

]

+ δηb
ηi
δηa
ηj
ηaηbD1C12

[

(1 + ηaηb) − (1 − ηaηb) sin2 θ/2)
]

}

+4s
(

g2

8M2

)

N2

{

δabδ
−ηb
ηi

δ−ηa
ηj

[

A21 cos2 θ/2 − 2δηa,−ηb
B21(1 + sin2 θ/2)

]

+δabδ
ηb
ηi
δηa
ηj
C21

[

(1 + ηaηb) − (1 − ηaηb) sin2 θ/2
]

+δηa
ηi
δηb
ηj
ηaηbD2

[

A22 − 2δηa,−ηb
B22(cos

2 θ/2 − sin2 θ/2)
]

+ δ−ηa
ηi

δ−ηb
ηj

ηaηbD2C22
[

1 + ηaηb(cos
2 θ/2 − sin2 θ/2)

]

}

,

(46)

θ being the neutrino scattering angle. The list of factors and coefficients appearing in this expression
is detailed in Table 3, both in the Dirac and in the Majorana case.

6.2 (aj)(bi) neutrino scattering processes

The list of processes in the Dirac case is labelled according to

(aj)(bi) Dirac processes

aj1: νa + ℓ−j → νb + ℓ−i , aj2: νa + ℓ+j → νb + ℓ+i ,

aj3: νa + ℓ−j → ν̄b + ℓ−i , aj4: νa + ℓ+j → ν̄b + ℓ+i ,

aj5: ν̄a + ℓ−j → νb + ℓ−i , aj6: ν̄a + ℓ+j → νb + ℓ+i ,

aj7: ν̄a + ℓ−j → ν̄b + ℓ−i , aj8: ν̄a + ℓ+j → ν̄b + ℓ+i ,

while in the Majorana case

(aj)(bi) Majorana processes

Maj1: νa + ℓ−j → νb + ℓ−i , Maj2: νa + ℓ+j → νb + ℓ+i .

The general scattering amplitude M is of the form

M(aj)(bi) = 4s
(

g2

8M2

)

N1 δij
{

δabδ
−ηa
ηi

δ−ηb
ηj

[

A11 cos2 θ/2 − 2δηa,−ηb
B11(1 + sin2 θ/2)

]

+δabδ
ηa
ηi
δηb
ηj
C11

[

(1 + ηaηb) − (1 − ηaηb) sin2 θ/2
]

+δηb
ηi
δηa
ηj
ηaηbD1

[

A12 − 2δηa,−ηb
B12(cos

2 θ/2 − sin2 θ/2)
]

+ δ−ηb
ηi

δ−ηa
ηj

ηaηbD1C12
[

1 + ηaηb(cos
2 θ/2 − sin2 θ/2)

]

}

+4s
(

g2

8M2

)

N2

{

δabδ
ηb
ηi
δηa
ηj

[

A21 − 2δηa,−ηb
B21(cos

2 θ/2 − sin2 θ/2)
]

+δabδ
−ηb
ηi

δ−ηa
ηj

C21
[

1 + ηaηb(cos
2 θ/2 − sin2 θ/2)

]

+δ−ηa
ηi

δ−ηb
ηj

ηaηbD2
[

A22 cos2 θ/2 − 2δηa,−ηb
B22(1 + sin2 θ/2)

]

+ δηa
ηi
δηb
ηj
ηaηbD2C22

[

(1 + ηaηb) − (1 − ηaηb) sin2 θ/2)
]

}

,

(47)

the angle θ being that of the scattered neutrino. Table 4 lists the relevant factors and coefficients both
in the Dirac and in the Majorana case.
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6.3 (bi)(aj) neutrino scattering processes

In the Dirac case, we have the following labelling of processes

(bi)(aj) Dirac processes

bi1: νb + ℓ−i → νa + ℓ−j , bi2: νb + ℓ+i → νa + ℓ+j ,

bi3: ν̄b + ℓ−i → νa + ℓ−j , bi4: ν̄b + ℓ+i → νa + ℓ+j ,

bi5: νb + ℓ−i → ν̄a + ℓ−j , bi6: νb + ℓ+i → ν̄a + ℓ+j ,

bi7: ν̄b + ℓ−i → ν̄a + ℓ−j , bi8: ν̄b + ℓ+i → ν̄a + ℓ+j ,

while in the Majorana case

(bi)(aj) Majorana processes

Mbi1: νb + ℓ−i → νa + ℓ−j , Mbi2: νb + ℓ+i → νa + ℓ+j .

The general scattering amplitude M reads

M(bi)(aj) = 4s
(

g2

8M2

)

N1 δij
{

δabδ
−ηa
ηi

δ−ηb
ηj

[

A11 cos2 θ/2 − 2δηa,−ηb
B11(1 + sin2 θ/2)

]

+δabδ
ηa
ηi
δηb
ηj
C11

[

(1 + ηaηb) − (1 − ηaηb) sin2 θ/2
]

+δηb
ηi
δηa
ηj
ηaηbD1

[

A12 − 2δηa,−ηb
B12(cos

2 θ/2 − sin2 θ/2)
]

+ δ−ηb
ηi

δ−ηa
ηj

ηaηbD1C12
[

1 + ηaηb(cos
2 θ/2 − sin2 θ/2)

]

}

+4s
(

g2

8M2

)

N2

{

δabδ
ηb
ηi
δηa
ηj

[

A21 − 2δηa,−ηb
B21(cos

2 θ/2 − sin2 θ/2)
]

+δabδ
−ηb
ηi

δ−ηa
ηj

C21
[

1 + ηaηb(cos
2 θ/2 − sin2 θ/2)

]

+δ−ηa
ηi

δ−ηb
ηj

ηaηbD2
[

A22 cos2 θ/2 − 2δηa,−ηb
B22(1 + sin2 θ/2)

]

+ δηa
ηi
δηb
ηj
ηaηbD2C22

[

(1 + ηaηb) − (1 − ηaηb) sin2 θ/2)
]

}

,

(48)

θ being of course the neutrino scattering angle. The factors and coefficients appearing in this repre-
sentation are detailed in Table 5.

6.4 (bj)(ai) neutrino scattering processes

Processes in the Dirac case are labelled according to

(bj)(ai) Dirac processes

bj1: νb + ℓ−j → νa + ℓ−i , bj2: νb + ℓ+j → νa + ℓ+i ,

bj3: ν̄b + ℓ−j → νa + ℓ−i , bj4: ν̄b + ℓ+j → νa + ℓ+i ,

bj5: νb + ℓ−j → ν̄a + ℓ−i , bj6: νb + ℓ+j → ν̄a + ℓ+i ,

bj7: ν̄b + ℓ−j → ν̄a + ℓ−i , bj8: ν̄b + ℓ+j → ν̄a + ℓ+i ,

while in the Majorana case

(bj)(ai) Majorana processes

Mbj1: νb + ℓ−j → νa + ℓ−i , Mbj2: νb + ℓ+j → νa + ℓ+i .
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The general scattering amplitude M is given by

M(bj)(ai) = 4s
(

g2

8M2

)

N1 δij
{

δabδ
ηa
ηi
δηb
ηj

[

A11 − 2δηa,−ηb
B11(cos

2 θ/2 − sin2 θ/2)
]

+δabδ
−ηa
ηi

δ−ηb
ηj

C11
[

1 + ηaηb(cos
2 θ/2 − sin2 θ/2)

]

+δ−ηb
ηi

δ−ηa
ηj

ηaηbD1
[

A12 cos2 θ/2 − 2δηa,−ηb
B12(1 + sin2 θ/2)

]

+ δηb
ηi
δηa
ηj
ηaηbD1C12

[

(1 + ηaηb) − (1 − ηaηb) sin2 θ/2)
]

}

+4s
(

g2

8M2

)

N2

{

δabδ
−ηb
ηi

δ−ηa
ηj

[

A21 cos2 θ/2 − 2δηa,−ηb
B21(1 + sin2 θ/2)

]

+δabδ
ηb
ηi
δηa
ηj
C21

[

(1 + ηaηb) − (1 − ηaηb) sin2 θ/2
]

+δηa
ηi
δηb
ηj
ηaηbD2

[

A22 − 2δηa,−ηb
B22(cos

2 θ/2 − sin2 θ/2)
]

+ δ−ηa
ηi

δ−ηb
ηj

ηaηbD2C22
[

1 + ηaηb(cos
2 θ/2 − sin2 θ/2)

]

}

,

(49)

with θ being the neutrino scattering angle. Table 6 lists the relevant factors and coefficients both in
the Dirac and Majorana cases.

7 Exploratory Examples

Before turning to some simple illustrative examples of the potential physics reach of these 2 → 2
processes involving neutrinos, let us point out the following simple fact. For each of the six classes
of ten processes above, when comparing the cases with Dirac or with Majorana neutrinos, one no-
tices that Dirac neutrino processes labelled “xyn” (“x” and “y” each being one of the neutrino or
lepton flavour symbols and n being an integer) must be in correspondence with the Majorana process
“Mxy1” for n = 1, 3, 5, 7, and with the Majorana process “Mxy2” for n = 2, 4, 6, 8. Namely, given the
correspondence (24), and for a specific choice of the external particle helicities, in each case the sum
of the corresponding four Dirac amplitudes M must coincide with the amplitude M for the Majorana
process through the association of coupling coefficients described in (36)-(38). It is straightforward to
check that this correspondence is indeed obtained.

This fact, with in particular an identical angular parametrization of the differential cross section
for all ten processes belonging to each one of the above six 2 → 2 classes, also implies that a model
independent discrimination between the Dirac of Majorana character of neutrinos would require strin-
gent precision requirements for systematic measurements in which different helicity combinations are
compared, in order to isolate the relevant coefficients Aαβ , Bαβ and Cαβ (α, β = 1, 2), and eventually
determine their possible relations as applicable either to the Dirac or to the Majorana case.

However, the four-fermion parametrization used is far more general than what is usually achieved
in any specific model beyond the SM, and as a general rule, couplings of type 2, 3 and 4, namely Sηa,ηb

2,3,4 ,
V ηa,ηb

2,3,4 and T ηa,ηb

2,3,4 , do not arise. Under such a situation which remains quite model independent, it
is clear that in principle there exist large classes of processes which, simply through the angular
dependency of their differential cross sections, should enable the experimental discrimination between
the Dirac or Majorana neutrino character. However, without any prior knowledge of the order of
magnitude of the coupling coefficients which determine the relative strengths of different angular
dependencies, such a discrimination in a model independent manner requires that at least one of the
flavour pairs (ab) or (ij) be identical. Indeed, one gets different angular contributions to the Dirac or
Majorana amplitudes M provided only at least one of the set of terms proportional either to δij or to
δab, or both, contributes to the differential cross section. Nevertheless, this still leaves open a priori

quite some possibilities, contingent onto the properties of the neutrino beams that would become
available in the future, in particular their flavour and helicity contents.
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In fact, in the latter respect, any helicity content of a neutrino beam other than left-handed
for what is thought to be a neutrino and right-handed for what is thought to an antineutrino in the
Dirac case, depends on possible interactions beyond the SM that might contribute to the neutrino beam
production mechanism. In any event, such a helicity “contamination” of a beam must be expected not
to exceed, say, one percent, given present limits on neutrino helicities[4]. Depending on the intensities
of beams to become available at neutrino factories, this might provide an additional aspect of physical
interest nonetheless. For the time being however, let us conservatively assume that available beams
would only be purely left-handed for would-be Dirac neutrinos and purely right-handed for would-be
Dirac antineutrinos.

The experimental possibility to eventually discriminate through neutrino annihilation and scat-
tering processes between their Dirac or Majorana character using the difference in the angular depen-
dency of the associated cross sections, is also contingent on the strength of any new interaction beyond
those of the SM—as is also the neutrinoless double β-decay process for that matter[10]—, since in
the latter model such a possibility simply evaporates in the massless limit[6]. Hence, even though the
possibility exists in principle, its actual experimental realization hinges, on the one hand, on suffi-
ciently intense beams at neutrino factories to allow for reasonably precise angular measurements, and
on the other hand, on the physical existence of a new interaction different from (V −A) that couples
sufficiently strongly to neutrinos as compared to those of the SM. Clearly, a definite assessment of the
physics potential of such an approach to the Dirac-Majorana neutrino issue requires a systematic and
dedicated analysis which is not attempted here, based on actual neutrino factory designs as presently
foreseen, and the general low-energy parametrization developed here.

Besides the potential resolution of the Dirac-Majorana neutrino issue, intense neutrino beams
should also help turn into reality the systematic determination of the neutrino electroweak interactions,
in a manner similar to what has been done in the leptonic (νµµ)(eνe) and semi-leptonic (ud)(eνe)
sectors[2, 4]. Through detailed precisions measurements in different combinations of flavour and
helicity channels, which is also part of the neutrino oscillation programmes at neutrino factories,
it should become possible to set ever more stringent experimental bounds on the different coupling
constants that parametrize the general effective four-fermion interaction, and search for a lack of
overlap with those of the SM. In the same way that Refs.[1, 3, 4] provide the expressions of all possible
observables in terms of such coupling coefficients for the above leptonic and semi-leptonic channels,
the results listed in this note provide those for all 2 → 2 processes in which two neutrinos and two
charged fermions take part, whatever their mass eigenstates.

In the remainder of this section, simple illustrative examples are briefly considered, whose sole
purpose is a first exploration of some of the above issues. The emphasis here is only on the Dirac-
Majorana neutrino issue.

First, let us consider the elastic scattering8

νµ + e− → νµ + e− , (50)

which is thus a reaction of type “ai1” belonging to the (ai)(bj) class, with a = b 6= i = j. Having
in mind for instance the left-right symmetric extensions[11] of the SM, based on the gauge group
SU(2)L × SU(2)R × U(1)B−L, let us assume for utmost simplicity that besides the S−,−

1 and V −,−
1

couplings of the SM, the only nonvanishing extra couplings are S+,+
1 and V +,+

1 . In the simplest minded
situation where the two chiral sectors are identical in as far as is possible in all their aspects and do

8The νµ component is indeed dominant in neutrino beams.
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not mix, we thus have,

S−,−
1 = sin2 θW , V −,−

1 =
1

4
[1 − 2 sin2 θW ] , S+,+

1 = δ sin2 θW , V +,+
1 = δ

1

4
[1 − 2 sin2 θW ] , (51)

where

δ =
M2

1

M2
2

, (52)

is the physical light W±
1 to heavy W±

2 squared gauge boson masses ratio, with M1 ≃ 80 GeV and
M2 > 720 GeV[4], and θW is the usual electroweak gauge mixing angle, sin2 θW ≃ 0.231[4]. As-
suming then that the in-coming νµ neutrino is necessarily left-handed, only two of the eight pos-
sible scattering amplitudes M are nonvanishing due to helicity selection rules, namely those with
(ηa, ηi; ηb, ηj) = (−,−;−,−), (−,+;−,+). Since the angular dependency of each of these two am-
plitudes is identical whether the neutrinos are Dirac or Majorana, the sole difference being in their
absolute normalization, and given the difficulty in performing absolute cross section measurements,
let us consider the summation over all processes irrespective of the particle helicities, except of course
for that of the in-coming νµ, thus corresponding to an unpolarized measurement. In the Dirac case,
one then finds

|M−,−;−,−|2 + |M−,+;−,+|2 = (4s)2
(

g2

8M2

)2
[

4ReV −,−
1

]2







1 +

[

ReS−,−
1

4ReV −,−
1

]2

(1 + cos θ)2







, (53)

while in the Majorana case,

|M−,−;−,−|2 + |M−,+;−,+|2 = (4s)2
(

g2

8M2

)2
[4ReV −,− + 2ReS+,+]

2

×
{

1 +
[

Re S−,−+2Re V +,+

4Re V −,−+2Re S+,+

]2
(1 + cos θ)2

}

.
(54)

Consequently, if there are indeed interactions whose chirality structure is different from those of the
SM, processes for Dirac or Majorana neutrinos do possess different angular properties, enabling in
principle the discrimination between the two cases through precision measurements of the angular
dependency of the cross section, in the present case by comparing the strength of the (1+cos θ)2 term
to its value predicted in the SM. Unfortunately, in this specific case and under the very restrictive form
of the coefficients S+,+

1 and V +,+
1 considered above, limits on the possible extra interaction are already

such that it is too weak to render any deviation observable, the relative variation in the relevant factor
being less than a percent given the small value for δ ≤ (80 GeV/720 GeV)2 ≃ 1.23 × 10−2.

Scalar or tensor couplings being typically less well constrained than vector ones, let us now
consider the possibility of an extra scalar interaction, for either of the following two elastic scattering
reactions,

νµ + e− → νµ + e− , νµ + µ− → νµ + µ− . (55)

Both these reactions are of the “ai1” type in the (ai)(bj) class, with a = b 6= i = j in the first case,
and a = b = i = j in the second. Within the SM, the corresponding nonvanishing couplings are thus

S−,−
1 = sin2 θW , V −,−

1 = ±1

4

[

1 ∓ 2 sin2 θW

]

, (56)

where the upper (resp. lower) sign is for the (νµe) (resp. (νµµ)) reaction. Assuming that S+,−
1 is the

sole nonvanishing extra interaction, and given a left-handed in-coming νµ, one finds that whether in
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the Dirac or Majorana case the only nonvanishing amplitudes M correspond to the following helicity
combinations: (ηa, ηi; ηb, ηj) = (−,−;−,−), (−,−; +,+), (−,+;−,+). Considering again the situation
of an unpolarized measurement, the sum over these polarization states reads,

∑

|M|2 = (4s)2
(

g2

8M2

)2 {
[

4ReV −,−
1

]2
+
[

ReS−,−
1

]2
(1 + cos θ)2 +

1

4
|S+,−

1 |2(1 ± cos θ)2
}

, (57)

where in the last term the upper sign corresponds to the Dirac case, and the lower sign to the
Majorana case. Thus once again, we see that any new interaction whose chirality structure differs
from those of the SM leads to processes in which the angular dependency discriminates between
Dirac and Majorana neutrinos. Taking as an illustration a value |S+,−

1 | = 0.10 which is a typical
upper-bound on such a coupling in the leptonic (eµ) sector[4], one finds a 10% sensitivity in the
forward-backward asymmetry. A reasonably precise measurement of the differential cross section, and
in particular a fit to the expected distributions in either case, thus offers the prospect to resolve the
Dirac-Majorana neutrino issue at neutrino factories. A dedicated study should hopefully confirm the
present exploratory assessment.

To also highlight the potentiel interest of intersecting neutrino beams, as a final example let us
consider the following two annihilation reactions,

νµ + νµ → e− + e+ , νµ + νµ → µ− + µ+ . (58)

These two processes are of the type “ab1” in the (ab)(ij) class, with a = b 6= i = j in the first case,
and a = b = i = j in the second case, and thus again with the following interactions in the SM,

S−,−
1 = sin2 θW , V −,−

1 = ±1

4

[

1 ∓ 2 sin2 θW

]

, (59)

where the upper (resp. lower) sign is associated to the first (resp. second) reaction. Assuming now
that none of the other possible coupling coefficients belongs to the classes Sηa,ηb

2,3,4 , V ηa,ηb

2,3,4 and T ηa,ηb

2,3,4 ,
one readily finds that given left-handed initial νµ neutrinos only, the amplitude M for these processes
vanishes identically in the Dirac case, but not in the Majorana case, with then a specific angular
dependency in the latter case which is function of the interactions that might contribute. Even
though the detection of the final state products should be straightforward, the difficulty lies of course
in the density of the initial neutrino beams even for very intense ones, implying thus an extremely low
rate. Nonetheless, even if only through a single event, the observation of either of the above processes,
or similar ones for other neutrino mass eigenstates, would definitely help settle the Dirac-Majorana
neutrino puzzle through accelerator experiments.

8 Conclusions

In the present work, all possible 2 → 2 processes involving definite mass eigenstates of two neutrinos
and two charged fermions have been considered in the massless limit, on the basis of the most general
four-fermion effective Lagrangian possible. All interactions, whether preserving the neutrino fermion
number or not, and for whatever helicities of the external particles, have been included. The Feynman
amplitudes in the center-of-mass frame have been listed for all these processes, from which the relevant
differential cross sections readily follow. Since any particular model for physics beyond the Standard
Model predicts specific values for the four-fermion nonderivative effective coupling coefficients, this
analysis should be of value to assess the low energy merits of any such model.
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In the same way as has been done for β- and µ-decay and µ-capture through analogous four-
fermion effective parametrizations[4, 5], the advent in the foreseeable future of neutrino factories
with their intense beams is the main motivation for the considerations developed here. Of direct
interest is the systematic study of the electroweak interactions in the neutrino sector, by setting ever
more stringent limits on the effective interactions of these particles through precision measurements.
Another physics issue of great topical interest that could be addressed through such experiments is
that of the Dirac-Majorana discrimination of the character of neutrinos. In agreement with the Dirac-
Majorana confusion theorem[6], as soon as interactions with a chirality structure different from the
(V −A) one of the Standard Model are introduced, there exist processes which in principle distinguish
between these two possible characters of the neutrino through the angular dependency of differential
cross sections, even in the massless limit. The sensitivity of such reactions however, is contingent of
course on the relative strength of these new interactions beyond the Standard Model. Nonetheless,
some simple examples of such a situation were briefly described, albeit not following any systematic
investigation.

The main purpose of this work is to provide the general results for the Feynman amplitudes for
all possible 2 → 2 processes with two neutrinos. On that basis, it should now be possible to develop
a detailed and dedicated analysis of the potential reach of different such reactions towards the above
physics issues, given a specific design both of neutrino beams and their intensities, and of detector
set-ups. Besides the great interest to be found in neutrino scattering experiments, the possibilities
offered by intersecting neutrino beams should not be dismissed offhand without first a dedicated
assessment as well, the more so since they could possibly run in parasitic mode in conjunction with
other experiments given the proper neutrino beam geometrical layout.
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ab1 ab2 ab3 ab4 ab5 ab6 ab7 ab8 Mab1 Mab2

N1 ηaλ
∗
a ηaλ

∗
b ηa ηa ηa ηa ηaλb ηaλa ηaλ

∗
a ηaλ

∗
b

A11 Sηb,ηa

2 Sηb,ηa∗
3 S−ηb,ηa

1 S−ηb,ηa∗
4 Sηb,−ηa

4 Sηb,−ηa∗
1 S−ηb,−ηa

3 S−ηb,−ηa∗
2 S−ηb,ηa Sηb,−ηa∗

B11 T ηb,ηa

2 T ηb,ηa∗
3 T−ηb,ηa

1 T−ηb,ηa∗
4 T ηb,−ηa

4 T ηb,−ηa∗
1 T−ηb,−ηa

3 T−ηb,−ηa∗
2 T−ηb,ηa T ηb,−ηa∗

C11 V ηb,ηa

2 V ηb,ηa∗
3 V −ηb,ηa

1 V −ηb,ηa∗
4 V ηb,−ηa

4 V ηb,−ηa∗
1 V −ηb,−ηa

3 V −ηb,−ηa∗
2 V −ηb,ηa V ηb,−ηa∗

D1 1 1 λ∗aλb 1 1 λaλ
∗
b 1 1 1 1

A12 Sηa,ηb

2 Sηa,ηb∗
3 Sηa,−ηb

4 Sηa,−ηb∗
1 S−ηa,ηb

1 S−ηa,ηb∗
4 S−ηa,−ηb

3 S−ηa,−ηb∗
2 S−ηa,ηb Sηa,−ηb∗

B12 T ηa,ηb

2 T ηa,ηb∗
3 T ηa,−ηb

4 T ηa,−ηb∗
1 T−ηa,ηb

1 T−ηa,ηb∗
4 T−ηa,−ηb

3 T−ηa,−ηb∗
2 T−ηa,ηb T ηa,−ηb∗

C12 V ηa,ηb

2 V ηa,ηb∗
3 V ηa,−ηb

4 V ηa,−ηb∗
1 V −ηa,ηb

1 V −ηa,ηb∗
4 V −ηa,−ηb

3 V −ηa,−ηb∗
2 V −ηa,ηb V ηa,−ηb∗

N2 ηbλ
∗
b ηbλ

∗
a ηb ηb ηb ηb ηbλa ηbλb ηbλ

∗
b ηbλ

∗
a

A21 Sηb,ηa∗
3 Sηb,ηa

2 S−ηb,ηa∗
4 S−ηb,ηa

1 Sηb,−ηa∗
1 Sηb,−ηa

4 S−ηb,−ηa∗
2 S−ηb,−ηa

3 Sηb,−ηa∗ S−ηb,ηa

B21 T ηb,ηa∗
3 T ηb,ηa

2 T−ηb,ηa∗
4 T−ηb,ηa

1 T ηb,−ηa∗
1 T ηb,−ηa

4 T−ηb,−ηa∗
2 T−ηb,−ηa

3 T ηb,−ηa∗ T−ηb,ηa

C21 V ηb,ηa∗
3 V ηb,ηa

2 V −ηb,ηa∗
4 V −ηb,ηa

1 V ηb,−ηa∗
1 V ηb,−ηa

4 V −ηb,−ηa∗
2 V −ηb,−ηa

3 V ηb,−ηa∗ V −ηb,ηa

D2 1 1 1 λ∗aλb λaλ
∗
b 1 1 1 1 1

A22 Sηa,ηb∗
3 Sηa,ηb

2 Sηa,−ηb∗
1 Sηa,−ηb

4 S−ηa,ηb∗
4 S−ηa,ηb

1 S−ηa,−ηb∗
2 S−ηa,−ηb

3 Sηa,−ηb∗ S−ηa,ηb

B22 T ηa,ηb∗
3 T ηa,ηb

2 T ηa,−ηb∗
1 T ηa,−ηb

4 T−ηa,ηb∗
4 T−ηa,ηb

1 T−ηa,−ηb∗
2 T−ηa,−ηb

3 T ηa,−ηb∗ T−ηa,ηb

C22 V ηa,ηb∗
3 V ηa,ηb

2 V ηa,−ηb∗
1 V ηa,−ηb

4 V −ηa,ηb∗
4 V −ηa,ηb

1 V −ηa,−ηb∗
2 V −ηa,−ηb

3 V ηa,−ηb∗ V −ηa,ηb

Table 1: List of the constant factors appearing in the amplitude (42) for all (ab)(ij) neutrino annihi-
lation processes according to their labelling defined in Sect.4.

ij1 ij2 ij3 ij4 ij5 ij6 ij7 ij8 Mij1 Mij2

N1 ηaλa ηaλb ηa ηa ηa ηa ηaλ
∗
b ηaλ

∗
a ηaλa ηaλb

A11 Sηb,ηa∗
2 Sηb,ηa

3 S−ηb,ηa∗
1 S−ηb,ηa

4 Sηb,−ηa∗
4 Sηb,−ηa

1 S−ηb,−ηa∗
3 S−ηb,−ηa

2 S−ηb,ηa∗ Sηb,−ηa

B11 T ηb,ηa∗
2 T ηb,ηa

3 T−ηb,ηa∗
1 T−ηb,ηa

4 T ηb,−ηa∗
4 T ηb,−ηa

1 T−ηb,−ηa∗
3 T−ηb,−ηa

2 T−ηb,ηa∗ T ηb,−ηa

C11 V ηb,ηa∗
2 V ηb,ηa

3 V −ηb,ηa∗
1 V −ηb,ηa

4 V ηb,−ηa∗
4 V ηb,−ηa

1 V −ηb,−ηa∗
3 V −ηb,−ηa

2 V −ηb,ηa∗ V ηb,−ηa

D1 1 1 λaλ
∗
b 1 1 λ∗aλb 1 1 1 1

A12 Sηa,ηb∗
2 Sηa,ηb

3 Sηa,−ηb∗
4 Sηa,−ηb

1 S−ηa,ηb∗
1 S−ηa,ηb

4 S−ηa,−ηb∗
3 S−ηa,−ηb

2 S−ηa,ηb∗ Sηa,−ηb

B12 T ηa,ηb∗
2 T ηa,ηb

3 T ηa,−ηb∗
4 T ηa,−ηb

1 T−ηa,ηb∗
1 T−ηa,ηb

4 T−ηa,−ηb∗
3 T−ηa,−ηb

2 T−ηa,ηb∗ T ηa,−ηb

C12 V ηa,ηb∗
2 V ηa,ηb

3 V ηa,−ηb∗
4 V ηa,−ηb

1 V −ηa,ηb∗
1 V −ηa,ηb

4 V −ηa,−ηb∗
3 V −ηa,−ηb

2 V −ηa,ηb∗ V ηa,−ηb

N2 ηaλb ηaλa ηa ηa ηa ηa ηaλ
∗
a ηaλ

∗
b ηaλb ηaλa

A21 Sηb,ηa

3 Sηb,ηa∗
2 S−ηb,ηa

4 S−ηb,ηa∗
1 Sηb,−ηa

1 Sηb,−ηa∗
4 S−ηb,−ηa

2 S−ηb,−ηa∗
3 Sηb,−ηa S−ηb,ηa∗

B21 T ηb,ηa

3 T ηb,ηa∗
2 T−ηb,ηa

4 T−ηb,ηa∗
1 T ηb,−ηa

1 T ηb,−ηa∗
4 T−ηb,−ηa

2 T−ηb,−ηa∗
3 T ηb,−ηa T−ηb,ηa∗

C21 V ηb,ηa

3 V ηb,ηa∗
2 V −ηb,ηa

4 V −ηb,ηa∗
1 V ηb,−ηa

1 V ηb,−ηa∗
4 V −ηb,−ηa

2 V −ηb,−ηa∗
3 V ηb,−ηa V −ηb,ηa∗

D2 1 1 1 λaλ
∗
b λ∗aλb 1 1 1 1 1

A22 Sηa,ηb

3 Sηa,ηb∗
2 Sηa,−ηb

1 Sηa,−ηb∗
4 S−ηa,ηb

4 S−ηa,ηb∗
1 S−ηa,−ηb

2 S−ηa,−ηb∗
3 Sηa,−ηb S−ηa,ηb∗

B22 T ηa,ηb

3 T ηa,ηb∗
2 T ηa,−ηb

1 T ηa,−ηb∗
4 T−ηa,ηb

4 T−ηa,ηb∗
1 T−ηa,−ηb

2 T−ηa,−ηb∗
3 T ηa,−ηb T−ηa,ηb∗

C22 V ηa,ηb

3 V ηa,ηb∗
2 V ηa,−ηb

1 V ηa,−ηb∗
4 V −ηa,ηb

4 V −ηa,ηb∗
1 V −ηa,−ηb

2 V −ηa,−ηb∗
3 V ηa,−ηb V −ηa,ηb∗

Table 2: List of the constant factors appearing in the amplitude (45) for all (ij)(ab) neutrino pair
production processes according to their labelling defined in Sect.5.
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ai1 ai2 ai3 ai4 ai5 ai6 ai7 ai8 Mai1 Mai2

N1 ηa ηa ηaλ
∗
b ηaλ

∗
a ηaλa ηaλb ηa ηa ηa ηa

A11 Sηb,ηa∗
4 Sηb,ηa

1 S−ηb,ηa∗
3 S−ηb,ηa

2 Sηb,−ηa∗
2 Sηb,−ηa

3 S−ηb,−ηa∗
1 S−ηb,−ηa

4 S−ηb,−ηa∗ Sηb,ηa

B11 T ηb,ηa∗
4 T ηb,ηa

1 T−ηb,ηa∗
3 T−ηb,ηa

2 T ηb,−ηa∗
2 T ηb,−ηa

3 T−ηb,−ηa∗
1 T−ηb,−ηa

4 T−ηb,−ηa∗ T ηb,ηa

C11 V ηb,ηa∗
4 V ηb,ηa

1 V −ηb,ηa∗
3 V −ηb,ηa

2 V ηb,−ηa∗
2 V ηb,−ηa

3 V −ηb,−ηa∗
1 V −ηb,−ηa

4 V −ηb,−ηa∗ V ηb,ηa

D1 1 λ∗aλb 1 1 1 1 λaλ
∗
b 1 1 λ∗aλb

A12 Sηa,ηb∗
1 Sηa,ηb

4 Sηa,−ηb∗
3 Sηa,−ηb

2 S−ηa,ηb∗
2 S−ηa,ηb

3 S−ηa,−ηb∗
4 S−ηa,−ηb

1 Sηa,ηb∗ S−ηa,−ηb

B12 T ηa,ηb∗
1 T ηa,ηb

4 T ηa,−ηb∗
3 T ηa,−ηb

2 T−ηa,ηb∗
2 T−ηa,ηb

3 T−ηa,−ηb∗
4 T−ηa,−ηb

1 T ηa,ηb∗ T−ηa,−ηb

C12 V ηa,ηb∗
1 V ηa,ηb

4 V ηa,−ηb∗
3 V ηa,−ηb

2 V −ηa,ηb∗
2 V −ηa,ηb

3 V −ηa,−ηb∗
4 V −ηa,−ηb

1 V ηa,ηb∗ V −ηa,−ηb

N2 ηb ηb ηbλ
∗
a ηbλ

∗
b ηbλb ηbλa ηb ηb ηb ηb

A21 Sηb,ηa

1 Sηb,ηa∗
4 S−ηb,ηa

2 S−ηb,ηa∗
3 Sηb,−ηa

3 Sηb,−ηa∗
2 S−ηb,−ηa

4 S−ηb,−ηa∗
1 Sηb,ηa S−ηb,−ηa∗

B21 T ηb,ηa

1 T ηb,ηa∗
4 T−ηb,ηa

2 T−ηb,ηa∗
3 T ηb,−ηa

3 T ηb,−ηa∗
2 T−ηb,−ηa

4 T−ηb,−ηa∗
1 T ηb,ηa T−ηb,−ηa∗

C21 V ηb,ηa

1 V ηb,ηa∗
4 V −ηb,ηa

2 V −ηb,ηa∗
3 V ηb,−ηa

3 V ηb,−ηa∗
2 V −ηb,−ηa

4 V −ηb,−ηa∗
1 V ηb,ηa V −ηb,−ηa∗

D2 λ∗aλb 1 1 1 1 1 1 λaλ
∗
b λ∗aλb 1

A22 Sηa,ηb

4 Sηa,ηb∗
1 Sηa,−ηb

2 Sηa,−ηb∗
3 S−ηa,ηb

3 S−ηa,ηb∗
2 S−ηa,−ηb

1 S−ηa,−ηb∗
4 S−ηa,−ηb Sηa,ηb

B22 T ηa,ηb

4 T ηa,ηb∗
1 T ηa,−ηb

2 T ηa,−ηb∗
3 T−ηa,ηb

3 T−ηa,ηb∗
2 T−ηa,−ηb

1 T−ηa,−ηb∗
4 T−ηa,−ηb T ηa,ηb

C22 V ηa,ηb

4 V ηa,ηb∗
1 V ηa,−ηb

2 V ηa,−ηb∗
3 V −ηa,ηb

3 V −ηa,ηb∗
2 V −ηa,−ηb

1 V −ηa,−ηb∗
4 V −ηa,−ηb V ηa,ηb

Table 3: List of the constant factors appearing in the amplitude (46) for all (ai)(bj) neutrino scattering
processes according to their labelling defined in Sect.6.1.

aj1 aj2 aj3 aj4 aj5 aj6 aj7 aj8 Maj1 Maj2

N1 ηb ηb ηbλ
∗
a ηbλ

∗
b ηbλb ηbλa ηb ηb ηb ηb

A11 Sηb,ηa

1 Sηb,ηa∗
4 S−ηb,ηa

2 S−ηb,ηa∗
3 Sηb,−ηa

3 Sηb,−ηa∗
2 S−ηb,−ηa

4 S−ηb,−ηa∗
1 Sηb,ηa S−ηb,−ηa∗

B11 T ηb,ηa

1 T ηb,ηa∗
4 T−ηb,ηa

2 T−ηb,ηa∗
3 T ηb,−ηa

3 T ηb,−ηa∗
2 T−ηb,−ηa

4 T−ηb,−ηa∗
1 T ηb,ηa T−ηb,−ηa∗

C11 V ηb,ηa

1 V ηb,ηa∗
4 V −ηb,ηa

2 V −ηb,ηa∗
3 V ηb,−ηa

3 V ηb,−ηa∗
2 V −ηb,−ηa

4 V −ηb,−ηa∗
1 V ηb,ηa V −ηb,−ηa∗

D1 λ∗aλb 1 1 1 1 1 1 λaλ
∗
b λ∗aλb 1

A12 Sηa,ηb

4 Sηa,ηb∗
1 Sηa,−ηb

2 Sηa,−ηb∗
3 S−ηa,ηb

3 S−ηa,ηb∗
2 S−ηa,−ηb

1 S−ηa,−ηb∗
4 S−ηa,−ηb Sηa,ηb∗

B12 T ηa,ηb

4 T ηa,ηb∗
1 T ηa,−ηb

2 T ηa,−ηb∗
3 T−ηa,ηb

3 T−ηa,ηb∗
2 T−ηa,−ηb

1 T−ηa,−ηb∗
4 T−ηa,−ηb T ηa,ηb∗

C12 V ηa,ηb

4 V ηa,ηb∗
1 V ηa,−ηb

2 V ηa,−ηb∗
3 V −ηa,ηb

3 V −ηa,ηb∗
2 V −ηa,−ηb

1 V −ηa,−ηb∗
4 V −ηa,−ηb V ηa,ηb∗

N2 ηa ηa ηaλ
∗
b ηaλ

∗
a ηaλa ηaλb ηa ηa ηa ηa

A21 Sηb,ηa∗
4 Sηb,ηa

1 S−ηb,ηa∗
3 S−ηb,ηa

2 Sηb,−ηa∗
2 Sηb,−ηa

3 S−ηb,−ηa∗
1 S−ηb,−ηa

4 S−ηb,−ηa∗ Sηb,ηa

B21 T ηb,ηa∗
4 T ηb,ηa

1 T−ηb,ηa∗
3 T−ηb,ηa

2 T ηb,−ηa∗
2 T ηb,−ηa

3 T−ηb,−ηa∗
1 T−ηb,−ηa

4 T−ηb,−ηa∗ T ηb,ηa

C21 V ηb,ηa∗
4 V ηb,ηa

1 V −ηb,ηa∗
3 V −ηb,ηa

2 V ηb,−ηa∗
2 V ηb,−ηa

3 V −ηb,−ηa∗
1 V −ηb,−ηa

4 V −ηb,−ηa∗ V ηb,ηa

D2 1 λ∗aλb 1 1 1 1 λaλ
∗
b 1 1 λ∗aλb

A22 Sηa,ηb∗
1 Sηa,ηb

4 Sηa,−ηb∗
3 Sηa,−ηb

2 S−ηa,ηb∗
2 S−ηa,ηb

3 S−ηa,−ηb∗
4 S−ηa,−ηb

1 Sηa,ηb∗ S−ηa,−ηb

B22 T ηa,ηb∗
1 T ηa,ηb

4 T ηa,−ηb∗
3 T ηa,−ηb

2 T−ηa,ηb∗
2 T−ηa,ηb

3 T−ηa,−ηb∗
4 T−ηa,−ηb

1 T ηa,ηb∗ T−ηa,−ηb

C22 V ηa,ηb∗
1 V ηa,ηb

4 V ηa,−ηb∗
3 V ηa,−ηb

2 V −ηa,ηb∗
2 V −ηa,ηb

3 V −ηa,−ηb∗
4 V −ηa,−ηb

1 V ηa,ηb∗ V −ηa,−ηb

Table 4: List of the constant factors appearing in the amplitude (47) for all (aj)(bi) neutrino scattering
processes according to their labelling defined in Sect.6.2.
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bi1 bi2 bi3 bi4 bi5 bi6 bi7 bi8 Mbi1 Mbi2

N1 ηa ηa ηaλa ηaλb ηaλ
∗
b ηaλ

∗
a ηa ηa ηa ηa

A11 Sηb,ηa∗
1 Sηb,ηa

4 S−ηb,ηa∗
2 S−ηb,ηa

3 Sηb,−ηa∗
3 Sηb,−ηa

2 S−ηb,−ηa∗
4 S−ηb,−ηa

1 Sηb,ηa∗ S−ηb,−ηa

B11 T ηb,ηa∗
1 T ηb,ηa

4 T−ηb,ηa∗
2 T−ηb,ηa

3 T ηb,−ηa∗
3 T ηb,−ηa

2 T−ηb,−ηa∗
4 T−ηb,−ηa

1 T ηb,ηa∗ T−ηb,−ηa

C11 V ηb,ηa∗
1 V ηb,ηa

4 V −ηb,ηa∗
2 V −ηb,ηa

3 V ηb,−ηa∗
3 V ηb,−ηa

2 V −ηb,−ηa∗
4 V −ηb,−ηa

1 V ηb,ηa∗ V −ηb,−ηa

D1 λaλ
∗
b 1 1 1 1 1 1 λ∗aλb λaλ

∗
b 1

A12 Sηa,ηb∗
4 Sηa,ηb

1 Sηa,−ηb∗
2 Sηa,−ηb

3 S−ηa,ηb∗
3 S−ηa,ηb

2 S−ηa,−ηb∗
1 S−ηa,−ηb

4 S−ηa,−ηb∗ Sηa,ηb

B12 T ηa,ηb∗
4 T ηa,ηb

1 T ηa,−ηb∗
2 T ηa,−ηb

3 T−ηa,ηb∗
3 T−ηa,ηb

2 T−ηa,−ηb∗
1 T−ηa,−ηb

4 T−ηa,−ηb∗ T ηa,ηb

C12 V ηa,ηb∗
4 V ηa,ηb

1 V ηa,−ηb∗
2 V ηa,−ηb

3 V −ηa,ηb∗
3 V −ηa,ηb

2 V −ηa,−ηb∗
1 V −ηa,−ηb

4 V −ηa,−ηb∗ V ηa,ηb

N2 ηb ηb ηbλb ηbλa ηbλ
∗
a ηbλ

∗
b ηb ηb ηb ηb

A21 Sηb,ηa

4 Sηb,ηa∗
1 S−ηb,ηa

3 S−ηb,ηa∗
2 Sηb,−ηa

2 Sηb,−ηa∗
3 S−ηb,−ηa

1 S−ηb,−ηa∗
4 S−ηb,−ηa Sηb,ηa∗

B21 T ηb,ηa

4 T ηb,ηa∗
1 T−ηb,ηa

3 T−ηb,ηa∗
2 T ηb,−ηa

2 T ηb,−ηa∗
3 T−ηb,−ηa

1 T−ηb,−ηa∗
4 T−ηb,−ηa T ηb,ηa∗

C21 V ηb,ηa

4 V ηb,ηa∗
1 V −ηb,ηa

3 V −ηb,ηa∗
2 V ηb,−ηa

2 V ηb,−ηa∗
3 V −ηb,−ηa

1 V −ηb,−ηa∗
4 V −ηb,−ηa V ηb,ηa∗

D2 1 λaλ
∗
b 1 1 1 1 λ∗aλb 1 1 λaλ

∗
b

A22 Sηa,ηb

1 Sηa,ηb∗
4 Sηa,−ηb

3 Sηa,−ηb∗
2 S−ηa,ηb

2 S−ηa,ηb∗
3 S−ηa,−ηb

4 S−ηa,−ηb∗
1 Sηa,ηb S−ηa,−ηb∗

B22 T ηa,ηb

1 T ηa,ηb∗
4 T ηa,−ηb

3 T ηa,−ηb∗
2 T−ηa,ηb

2 T−ηa,ηb∗
3 T−ηa,−ηb

4 T−ηa,−ηb∗
1 T ηa,ηb T−ηa,−ηb∗

C22 V ηa,ηb

1 V ηa,ηb∗
4 V ηa,−ηb

3 V ηa,−ηb∗
2 V −ηa,ηb

2 V −ηa,ηb∗
3 V −ηa,−ηb

4 V −ηa,−ηb∗
1 V ηa,ηb V −ηa,−ηb∗

Table 5: List of the constant factors appearing in the amplitude (48) for all (bi)(aj) neutrino scattering
processes according to their labelling defined in Sect.6.3.

bj1 bj2 bj3 bj4 bj5 bj6 bj7 bj8 Mbj1 Mbj2

N1 ηb ηb ηbλb ηbλa ηbλ
∗
a ηbλ

∗
b ηb ηb ηb ηb

A11 Sηb,ηa

4 Sηb,ηa∗
1 S−ηb,ηa

3 S−ηb,ηa∗
2 Sηb,−ηa

2 Sηb,−ηa∗
3 S−ηb,−ηa

1 S−ηb,−ηa∗
4 S−ηb,−ηa Sηb,ηa∗

B11 T ηb,ηa

4 T ηb,ηa∗
1 T−ηb,ηa

3 T−ηb,ηa∗
2 T ηb,−ηa

2 T ηb,−ηa∗
3 T−ηb,−ηa

1 T−ηb,−ηa∗
4 T−ηb,−ηa T ηb,ηa∗

C11 V ηb,ηa

4 V ηb,ηa∗
1 V −ηb,ηa

3 V −ηb,ηa∗
2 V ηb,−ηa

2 V ηb,−ηa∗
3 V −ηb,−ηa

1 V −ηb,−ηa∗
4 V −ηb,−ηa V ηb,ηa∗

D1 1 λaλ
∗
b 1 1 1 1 λ∗aλb 1 1 λaλ

∗
b

A12 Sηa,ηb

1 Sηa,ηb∗
4 Sηa,−ηb

3 Sηa,−ηb∗
2 S−ηa,ηb

2 S−ηa,ηb∗
3 S−ηa,−ηb

4 S−ηa,−ηb∗
1 Sηa,ηb S−ηa,−ηb∗

B12 T ηa,ηb

1 T ηa,ηb∗
4 T ηa,−ηb

3 T ηa,−ηb∗
2 T−ηa,ηb

2 T−ηa,ηb∗
3 T−ηa,−ηb

4 T−ηa,−ηb∗
1 T ηa,ηb T−ηa,−ηb∗

C12 V ηa,ηb

1 V ηa,ηb∗
4 V ηa,−ηb

3 V ηa,−ηb∗
2 V −ηa,ηb

2 V −ηa,ηb∗
3 V −ηa,−ηb

4 V −ηa,−ηb∗
1 V ηa,ηb V −ηa,−ηb∗

N2 ηa ηa ηaλa ηaλb ηaλ
∗
b ηaλ

∗
a ηa ηa ηa ηa

A21 Sηb,ηa∗
1 Sηb,ηa

4 S−ηb,ηa∗
2 S−ηb,ηa

3 Sηb,−ηa∗
3 Sηb,−ηa

2 S−ηb,−ηa∗
4 S−ηb,−ηa

1 Sηb,ηa∗ S−ηb,−ηa

B21 T ηb,ηa∗
1 T ηb,ηa

4 T−ηb,ηa∗
2 T−ηb,ηa

3 T ηb,−ηa∗
3 T ηb,−ηa

2 T−ηb,−ηa∗
4 T−ηb,−ηa

1 T ηb,ηa∗ T−ηb,−ηa

C21 V ηb,ηa∗
1 V ηb,ηa

4 V −ηb,ηa∗
2 V −ηb,ηa

3 V ηb,−ηa∗
3 V ηb,−ηa

2 V −ηb,−ηa∗
4 V −ηb,−ηa

1 V ηb,ηa∗ V −ηb,−ηa

D2 λaλ
∗
b 1 1 1 1 1 1 λ∗aλb λaλ

∗
b 1

A22 Sηa,ηb∗
4 Sηa,ηb

1 Sηa,−ηb∗
2 Sηa,−ηb

3 S−ηa,ηb∗
3 S−ηa,ηb

2 S−ηa,−ηb∗
1 S−ηa,−ηb

4 S−ηa,−ηb∗ Sηa,ηb

B22 T ηa,ηb∗
4 T ηa,ηb

1 T ηa,−ηb∗
2 T ηa,−ηb

3 T−ηa,ηb∗
3 T−ηa,ηb

2 T−ηa,−ηb∗
1 T−ηa,−ηb

4 T−ηa,−ηb∗ T ηa,ηb

C22 V ηa,ηb∗
4 V ηa,ηb

1 V ηa,−ηb∗
2 V ηa,−ηb

3 V −ηa,ηb∗
3 V −ηa,ηb

2 V −ηa,−ηb∗
1 V −ηa,−ηb

4 V −ηa,−ηb∗ V ηa,ηb

Table 6: List of the constant factors appearing in the amplitude (49) for all (bj)(ai) neutrino scattering
processes according to their labelling defined in Sect.6.4.
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