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WITHIN-FIELD VARIABILITY IN GRANULAR MATRIX SENSOR DATA 

AND ITS IMPLICATIONS FOR IRRIGATION SCHEDULING 

T. Lo, H. C. Pringle, III, D. R. Rudnick, G. Bai, L. J. Krutz, D. M. Gholson, X. Qiao 

 

HIGHLIGHTS 

• Within-field variability was larger for individual depths than for the profile average across multiple depths. 

• Distributions of the profile average were approximately normal, with increasing variances as the soil was drying. 

• Probability theory was applied to quantify the effect of sensor set number on irrigation scheduling. 

• The benefit of additional sensors sets may decrease for longer irrigation cycles and for more heterogeneous fields. 

ABSTRACT. Even when located within the same field, multiple units of the same soil moisture sensor 

rarely report identical values.  Such within-field variability in soil moisture sensor data is caused by 

natural and manmade spatial heterogeneity and by inconsistencies in sensor construction and 

installation.  To better describe this variability, daily soil water tension values from 14-23 sets of 

granular matrix sensors during the middle part of four soybean site-years in the Mississippi Delta were 

analyzed.  The soil water tension data were found to follow approximately normal distributions, to 

exhibit moderately high temporal rank stability, and to show strong positive correlation between mean 

and variance.  Based on these observations and the existing literature, a probabilistic conceptual 

framework was proposed for interpreting within-field variability in granular matrix sensor data.  This 

framework was then applied to investigate the impact of sensor set number (i.e., number of replicates) 

and irrigation triggering threshold on the scheduling of single-day and multi-day irrigation cycles.  If a 

producer’s primary goal of irrigation scheduling is to keep soil water adequate in a particular fraction 

of land on average, the potential benefit from increasing sensor set number may be smaller than 
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traditionally expected.  Improvement, expansion, and validation of this probabilistic framework are 

welcomed for developing a practical and robust approach to selecting the sensor set number and the 

irrigation triggering threshold for diverse soil moisture sensor types in diverse contexts. 

Keywords.Keywords.Keywords.Keywords.    Irrigation scheduling, Probability, Sensors, Soil moisture, Soil water tension, Variability, 

Watermark. 

INTRODUCTION 

Much of the soil moisture sensor literature has been dedicated to evaluating and improving sensor 

calibrations (e.g., Thomson and Armstrong, 1987; Eldredge et al., 1993; Thomson et al., 1996; Irmak 

and Haman, 2001; Leib et al., 2003; Varble and Chávez, 2011; Rudnick et al., 2015; Singh et al., 2019; 

Chen et al., 2019).  However, the elusive nature of universally accurate calibrations and of practical site-

specific calibration methods is not the sole remaining technical challenge for the successful use of soil 

moisture sensors. 

Soil moisture sensor data are known to be spatially variable (Hupet and Vanclooster, 2002; Wilson et 

al., 2004).  Predictable patterns governed by soil forming factors (Lo et al., 2017), unpredictable 

deviations arising from microscale phenomena (e.g., preferential flow, root distribution; Logsdon, 2009), 

and disparities imposed intentionally or unintentionally by management (Coelho and Or, 1996) can all 

contribute to the spatial variability of true soil water status.  Moreover, multiple units of the same soil 

moisture sensor can report unequal values given equal true soil water status because the physical and 

electrical properties of the sensor hardware (Kelleners et al., 2005) or the soil disturbance from sensor 

installation (Rothe et al., 1997) is not identical.  If the variability in soil moisture sensor data is too large 

within a supposedly uniform field, the difficulty of precisely estimating mean true soil water status can 

be a major obstacle to the successful use of soil moisture sensors.  This problem can hinder researchers 

from discerning differences between treatments and can hinder practitioners from making informed 
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decisions. 

The magnitude of variability in soil moisture sensor data within macroscopically homogeneous 

environments has been found to vary jointly with the sensor model and with the surrounding 

environment (Schmitz and Sourell, 2000; Evett et al., 2009; Rosenbaum et al., 2010; Lo et al., 2020).  

The limitations in design and manufacturing can differ among sensor models, whereas the prominence 

of microscale phenomena can change with the surrounding environment.  In turn, the interaction of both 

factors can dictate the susceptibility of a sensor model to the influence of microscale phenomena.  

Therefore, each model—or at least each type—of soil moisture sensor should be examined specifically 

to characterize its data variability in an appropriate range of field conditions. 

Granular matrix sensors (GMS) can be used to estimate soil water tension by measuring the moisture-

dependent electrical resistance of the encased porous material because this material is hydraulically 

connected to and thus exchanges moisture with the surrounding soil (Scanlon et al., 2002).  Previous 

research has investigated the data variability among multiple units of the same GMS model in several 

macroscopically homogeneous environments—in a temperature-controlled pressure plate apparatus 

(McCann et al., 1992), in repacked soil tanks (Sui et al., 2019), in a repacked and grassed soil tank 

(Shock et al., 1998), under outdoor turf in a loamy sand (Schmitz and Sourell, 2000), and under 

greenhouse vegetables in a layered and medium textured soil (Thompson et al., 2006).  However, in 

macroscopically homogeneous environments involving agronomic crop production, the data variability 

among multiple units of the same GMS model has not been commonly reported. 

For agronomic crops, GMS are typically installed in sets, each of which consists of multiple sensors 

that are in close horizontal proximity but are distributed at different depths within the managed root zone 

profile.  Producers are often recommended to schedule irrigation by delaying water application until the 

GMS set(s) reported a profile average soil water tension value that is drier than a predetermined 
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threshold (Irmak et al., 2016; Henry et al., 2018). Yet, some studies such as Tollner et al. (1991) and 

Schmitz and Sourell (2000) have claimed based on probability theory that a large number of sensor sets 

is necessary for successful irrigation scheduling.  Notwithstanding, irrigation scheduling with just one 

sensor set has been reported to reduce applied irrigation while maintaining or even improving crop yield 

relative to producer practice (Bryant et al., 2017; Spencer et al., 2019).  Such results are partly attributed 

to the vast disparity between optimal management and the current practice of some producers.  

Nonetheless, the experimental evidence motivates a revisit of the pertinent probability theory. 

The first objective of this paper is to describe the variability in GMS data within two macroscopically 

homogeneous, fine textured soybean fields.  The second and more important objective of this paper is to 

delve into the implications of within-field variability in GMS data for irrigation scheduling.  

Specifically, traditional and alternate assumptions in the interpretation of this variability are elucidated 

and then are compared in terms of effect on the choice of sensor set number and irrigation triggering 

threshold for achieving a target level of irrigation adequacy. 

FIELD STUDY 

DATA COLLECTION 

Research Sites 

This paper relied on GMS data from a field study at the Mississippi State University Delta Research 

and Extension Center.  This field study was conducted in 2018 and 2019 on two contiguous rectangular 

fields (33.403° N, 90.935° W), each with a cropped area of 6 ha.  Both fields were mapped as a Sharkey 

soil (Very-fine, smectitic, thermic Chromic Epiaquerts) by the Natural Resources Conservation Service 

soil survey (Soil Survey Staff, 2020).  Analysis by Mississippi State University Extension Service Soil 

Testing Laboratory (Starkville, MS) reported a textural composition of 2% sand, 47% silt, and 51% clay 

for the top 0.76 m of soil.  Other soil physical properties have not been measured. 
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Both fields had been precision graded to a 0.1% slope back in 2009.  Since then, the fields have been 

furrow irrigated and have received tillage by a disk harrow and/or by an integral disk bedder whenever 

deemed beneficial.  In both years and on both fields, soybeans were planted at a rate of 346000 seeds ha-

1 in a twin row configuration following soybeans. The row spacing was 0.18 m within each pair of twin 

rows and 0.84 m between pairs.  The planting dates were 18 May 2018 and 24 May 2019 on the eastern 

field (hereafter “A”) and were 2 May 2018 and 30 April 2019 on the western field (hereafter “B”). 

Granular Matrix Sensors 

Usually around three or four weeks after planting each year (with the exception of field B in 2019 

because of delays by flooding), a set of Watermark Model 200SS (Irrometer Company, Riverside, CA) 

GMS was installed halfway between a pair of interior twin rows in each of 24 plots per field (figure 1).  

Along the crop row direction, the distance from the higher end of a field to each of its 24 sensor set 

locations was ½- ⅔ of the 150-m total crop row length.  The sensor set at each location consisted of 

three individual sensors—one at a depth of 0.20 m, one at a depth of 0.40 m, and one at a depth of 0.60 

m—that were also 0.2 m apart from each other along the crop row direction.  For installing each sensor 

after it had been glued to a section of polyvinyl chloride (PVC) pipe, an electrically powered auger was 

first used to create a vertical hole with the same diameter as the sensor-PVC assembly.  A slurry of local 

soil was then poured into the hole, and the sensor-PVC assembly was finally inserted to place the center 

of the sensor at the desired depth.  Several days after installation, all sensors were connected to a non-

commercial wireless datalogger network (Fisher and Gould, 2012).  The dataloggers converted sensor 

electrical resistance to soil water tension according to the Shock et al. (1998) calibration equation for the 

Watermark Model 200SS while assuming a constant sensor temperature of 25°C.  At the start of each 

hour, the base station retrieved and recorded the instantaneous soil water tension value from each sensor.  

Throughout this paper, tension refers to the additive inverse of soil water pressure, so tension increases 
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from low to high as a soil dries. 

  

Figure 1. Diagram of sensor set locations in the field study; each rectangular cell represents an 8.1 m wide by 150 m 

long plot, and sensor sets that were included and excluded from analysis were indicated with “Y” and “N”, 

respectively. 

Only a subset of the original dataset in each site-year was appropriate for analyzing within-field 

variability in GMS data (table 1).  This subset began at least a week after sensor installation to allow 
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sensors to equilibrate with surrounding soil.  This subset ended the day before the first irrigation of that 

site-year because the various sensor sets received different irrigation treatments in the field study.  

Carryover of irrigation treatment effects between years was not a concern because rainfall was abundant 

during the off-season and the early season.  A sensor set was omitted entirely if its data were determined 

to be blatantly unrealistic or contained multi-day gaps owing to problems in the wireless datalogger 

network.  To simplify comparisons amidst sub-day data gaps, the remainder of the paper focused on the 

maximum tension value of each sensor on each calendar date, noting that the daily maximum is typically 

the most important value for irrigation scheduling.  Throughout this paper, the profile average tension of 

a sensor set was calculated as the unweighted arithmetic mean of the tension values reported by its three 

sensors (at 0.20, 0.40, and 0.60 m, respectively).  All computations were performed in Excel 2010 

(Microsoft Corporation, Redmond, WA). 

Table 1. The subset of granular matrix data from each site-year that was used in this paper. 
Site-Year Field A in 2018 Field A in 2019 Field B in 2018 Field B in 2019 

First Day 16 June 22 June 5 June 21 June 

Last Day 3 July 25 July 12 June 9 July 

Total Sensor Sets 14 15 23 16 

Average ETo (mm d-1) 5.2 5.1 5.5 5.1 

Dates With Rainfall > 2.5 mm 19 June (16 mm) 24 June (119 mm) None 24 June (119 mm) 

 21 June (18 mm) 29 June (4 mm)  29 June (4 mm) 

 29 June (6 mm) 4 July (5 mm)  4 July (5 mm) 

  7 July (7 mm)  7 July (7 mm) 

  14-16 July (114 mm)   

Weather Conditions 

Weather conditions during the analyzed part of each site-year are summarized in table 1.  Daily 

rainfall was measured by a manual rain gauge at the northwest corner of field B.  Daily short reference 

evapotranspiration (ETo; Allen et al., 1998) was calculated by the Mississippi State University Delta 

Agricultural Weather Center (http://deltaweather.extension.msstate.edu) from its Stoneville manual 

weather station located 4 km northeast of the two fields.  In both 2018 and 2019, the GMS data from 

field A could be divided into two distinct drying periods.  The rain events on 19 and 21 June separated 

the two periods in 2018, whereas the rain events on 14-16 July separated the two periods in 2019.  In 

both years, the GMS data from field B consisted of essentially one drying period. 
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DATA DESCRIPTION 

Temporal Trends 

The temporal trends in the GMS data matched the expectations that tension should decrease with 

rainfall and increase with crop water use (figures 2-3).  Light rains decelerated the rate of tension 

increase, whereas heavy rains decreased tension sharply.  More frequently at shallower depths, tension at 

all locations would fall within a narrow tension range between 8 and 12 kPa in response to a heavy rain, 

resulting in very low within-field variability.  As drying resumed, the tension differences among 

locations began to expand.  The daily rate of tension increase at some locations deviated drastically from 

the field average daily rate, sometimes even by a factor of two (faster or slower), which caused within-

field variability to widen. 
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Field A in 2018 Field A in 2019 

  

  

  

  

Figure 2. Soil water tension at the three sensor depths individually (subfigures a-f) and averaged (subfigures g-h) 

within field A among 14 locations in 2018 and among 15 locations in 2019; lower tension values are wetter, and higher 

tension values are drier. 
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Field B in 2018 Field B in 2019 

  

  

  

  

Figure 3. Soil water tension at the three sensor depths individually (subfigures a-f) and averaged (subfigures g-h) 

within field B among 23 locations in 2018 and among 16 locations in 2019; lower tension values are wetter, and higher 

tension values are drier. 

Temporal Stability 

To examine the temporal stability of the within-field variability in GMS data, Spearman’s rank 
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correlation coefficient was calculated between the location rankings by depth-specific tension on each 

date and the location rankings by depth-specific tension on the date with the highest profile average 

tension.  This driest date was the final date of the dataset in all site-years except field A in 2019, when it 

occurred on 14 July at the end of the first drying period.  If tension tended to be higher at some 

particular locations and lower at some other particular locations, then the rankings on most dates would 

be similar to the rankings on the driest date, which would result in rank correlation coefficient values 

approaching 1.  

Except within several days after a heavy rain, Spearman’s rank correlation coefficient was generally 

above 0.5 for all depths (figure 4).  The coefficient was especially high within a few days before the 

driest date but was increasing over time even during drying periods that did not culminate in the driest 

date.  The depth exhibiting the highest temporal stability was inconsistent among the four site-years.  

Overall, the results suggest that deviations from the field mean by sensor locations were moderately 

systematic within a site-year.  Further research could explore whether the tendency for above/below 

average tension at a sensor location carries over between years (Van Pelt and Wierenga, 2001). 
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Figure 4. Spearman’s rank correlation coefficient between the location rankings by soil water tension on each 

measurement date and the location rankings by soil water tension on the driest date (marked by the vertical dashed 

line) in a site-year; the coefficient approaches 1 as the two sets of rankings become more similar. 

Probability Distribution 

Fitting the within-field variability in GMS data to a known type of probability distribution would 

benefit the description of this variability.  As the variability on the driest date is expected to be most 

similar to the variability on an actual irrigation decision date, a quantile-quantile plot was constructed to 

evaluate the normality of the GMS data on the driest date of each site-year (figure 5).  For field A in 

2018 and 2019, the fit was generally satisfactory (R2 > 0.95), with the largest discrepancies occurring at 

intermediate values of cumulative probability (i.e., near the field mean).  For field B in 2018 and 2019, 

the fit was quite good (R2 > 0.98).  Overall, within-field variability in GMS data appeared to be 

approximately normal.  Approximate normality of tension data was reported by Schmitz and Sourell 

(2000) on most measurement dates and by Van Pelt and Wierenga (2001) on some measurement dates. 
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Figure 5. Scatterplot of expected cumulative distribution (assuming normality) versus observed cumulative 

distribution (according to Weibull plotting position) for profile average soil water tension among sensor set locations 

on the driest date in each site-year; datasets that follow closely the dashed 1:1 line appear to be normally distributed. 

Mean-Variance Relationship 

A normal distribution can be specified using just two parameters—its mean and its variance.  If a 

relationship was found between the mean and the variance of GMS data, then the normal distribution of 

GMS data could be predicted from the mean alone.  Indeed, sample variance in tension increased with 

increasing sample mean tension for every depth and for the profile average in every site-year (figure 6).  

This observation agrees with figures 2-3, where the spread in tension data widened as drying progressed.  

Positive association between mean and variance in tension was also reported by Schmitz and Sourell 

(2000), Van Pelt and Wierenga (2001), and Thompson et al. (2006).  In the present field study, the 

relationship was generally linear, but the exact slope and intercept differed among depths and among 

site-years.  The magnitude of the regression slope in figure 6d is about ⅓-½ the magnitude of the 

regression slopes in figures 6a-c, so the within-field variability in profile average tension was clearly 

smaller than the within-field variability in tension at individual depths. 
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Figure 6. Within-field variance versus within-field mean of soil water tension for the three sensor depths individually 

(subfigures a-c) and for the profile average (subfigure d). 

To obtain a preliminary idea of whether the regression equations that were fitted to pooled data across 

site-years were valid, literature values of standard deviation in tension were used for comparison.  At a 

mean tension of 30-40 kPa at a depth of 0.30 m, Hendrickx et al. (1994) reported standard deviation 

values of 4.3-12.3 kPa among 15-34 locations.  The regression equations in figure 6a and 6b for depths 

of 0.20 and 0.40 m predict standard deviation values of 12.2 and 17.6 kPa given a mean of 35 kPa.  At a 

mean profile average tension of 45-55 kPa across three depths, Van Pelt and Wierenga (2001) reported 
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standard deviation values of 10.1-12.9 among 52-57 locations.  The regression equation in figure 6d for 

the profile average across three depths predicts a standard deviation of 12.2 kPa given a mean of 50 kPa.  

Although such checks could not be performed at higher mean tension because the pertinent previous 

studies were conducted using tensiometers, the regression equations seem to provide reasonable 

estimates of variance in tension for macroscopically homogeneous fields. 

IMPLICATIONS FOR IRRIGATION SCHEDULING 

CONCEPTUAL FRAMEWORK 

Relevant and Irrelevant Variability 

The implications of within-field variability in soil moisture sensor data for irrigation scheduling hinge 

on the interpretation of this variability.  Evett et al. (2009) explained and demonstrated how this 

variability consists of 1) variability that is relevant to the purpose of measurement and 2) variability that 

is irrelevant to this purpose.  This concept is highlighted in equation 1.  For the purpose of irrigation 

scheduling, relevant variability refers to variability at the spatial scale where nonuniformity in soil water 

status affects crop yield.  Relevant variability is a property of the environment being measured and is 

thus independent of the sensor model being used.  Lumping together all remaining variability—

regardless of attribution to phenomena at finer spatial scales, to intrinsic issues of a sensor model, and/or 

to any interactions between the two factors—irrelevant variability is dependent on both the environment 

being measured and the sensor model being used. 

 Within-Field Variability in Sensor Data = Relevant Variability + Irrelevant Variability (1) 

Simplifications 

Regrettably, it is infeasible in practice to partition sensor data variability into relevant and irrelevant 

variability for each sensor model in each environment through thorough experimentation.  Without prior 

knowledge, a user might adopt one of two simplifying assumptions.  The traditional view on sensor data 
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variability is exemplified by the discussion in Schmitz and Sourell (2000).  It assumes relevant 

variability to be negligible and treats all sensor data variability as irrelevant variability.  Thus, this view 

concludes that there is one relevant profile average tension value (or volumetric water content) in a field 

at a given time, which can be more precisely estimated by using a larger number of sensor sets.  An 

alternate view is completely the opposite.  It assumes irrelevant variability to be negligible and treats all 

sensor data variability as relevant variability.  Thus, this view concludes that relevant profile average 

tension (or volumetric water content) is a spatial distribution (rather than a single value), which itself is 

uninfluenced by sensor set number but whose mean can be more precisely estimated by using a larger 

number of sensor sets. 

General Case 

The chosen interpretation, in turn, dictates how sensor set number and irrigation triggering threshold 

are thought to affect irrigation adequacy when scheduling irrigation.  The general case, described by 

equation 2 and figure 7a, covers the full range of possibilities spanned by the traditional view on one 

extreme and the alternate view on the opposite extreme.  Readers should note that this paper adheres to 

the convention that uppercase symbols represent random variables whereas lowercase symbols represent 

specific values.  In the conceptual framework of this paper, the magnitude by which the irrigation 

triggering threshold xn is lower than the critical water stress threshold c acts as insurance against within-

field variability in sensor data and serves as the crop water supply during multi-day irrigation cycles. 
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where 

A = expected probability distribution of the area fraction (unitless) with adequate soil water under the 

irrigation system 
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F(x|y,z) = function returning the cumulative probability (unitless) of a random variable being less than 

the value x if this variable follows a normal distribution with mean y and variance z 

c = critical water stress threshold (kPa) 

F-1(p|y,z) = function returning the value (same units as y) corresponding to a cumulative probability p 

for a normal distribution with mean y and variance z 

P = a random variable (unitless) that follows a uniform distribution bounded between 0 and 1 

n = total number (unitless) of sensor sets 

xn = sample mean profile average tension (kPa) among n sensor sets, at which irrigation is triggered 

σ
2

sensor = within-field variance in profile average tension (kPa2) as reported by sensor data 

σ
2

relevant = within-field variance in profile average tension (kPa2) at the relevant spatial scale (i.e., the 

scale at which tension nonuniformity affects crop yield) 

 

Figure 7. Conceptual diagrams for a) the general case and b) the traditional view of within-field variability in soil 

water tension data; subfigure a also describes the alternate view. 

Traditional and Alternate Views 

With the traditional view, the assumption of σ2
relevant = 0 transforms equation 2 and figure 7a into 

equation 3 and figure 7b, respectively.  Mathematically, A in equation 2 becomes a discrete distribution 

where the probability of A = 1 equals a in equation 3 and where the probability of A = 0 equals 1 – a.  

The expected value of A is then equal to a in equation 3.  Conceptually, the traditional view allows only 
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two possible scenarios at a given point in time.  In the absence of relevant variability, the land under an 

irrigation system is either entirely adequate in soil water (i.e., all below the critical water stress threshold 

c) or entirely inadequate in soil water (i.e., all above the critical water stress threshold c).  Therefore, a 

in equation 3 represents the likelihood of adequacy and is increased by increasing sensor set number if 

xn < c and by lowering the irrigation triggering threshold xn.  

 







=

n
xcFa sensor

n

2

,|
σ

 (3) 

where a = likelihood (unitless) of the adequate area fraction equaling 1 under the irrigation system 

The alternate view shares figure 7a with the general case.  Substituting the assumption of σ2
relevant = 

σ
2

sensor into equation 2, equation 4 is obtained for the alternate case.  Lowering the irrigation triggering 

threshold shifts the curve and the grey band all to the left, which shifts the distribution A higher.  

Increasing sensor set number reduces uncertainty in mean relevant tension and thus shrinks the width of 

the grey band and the spread in A.  However, the shape of the curve and of the grey band is controlled by 

relevant variability and cannot be modified by sensor set number. 
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Additional Assumptions 

The present analysis assumed that within-field variability in tension sensor data follows normal 

distributions.  As reviewed in the previous section, approximate normality in tension sensor data is 

commonly reported in the literature.  This assumption also removes the need to check for normality 

using the small number of sensors that are prevalent in practice.  The overall conceptual framework is 

compatible with any type of probability distribution, but the specific equations would obviously need to 

be modified if within-field variability in tension sensor data followed non-normal distributions. 
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The present analysis also assumed that the relevant within-field variance in tension sensor data can be 

predicted, which is like power analysis in experimental design.  This assumption is especially 

convenient because it avoids the problem of estimating variances using a small number of sensors and 

also allows the use of the normal (i.e., z) distribution rather than the Student’s t distribution.  Preliminary 

results in the previous section suggest that predicting variances might be feasible.  Nevertheless, further 

research on the within-field variance in tension sensor data—with different combinations of sensor 

models and environments—would be required to support fully the operational prediction of these 

variances. 

APPLICATION 

Procedures 

Equations 3 and 4 were applied to assess the quantitative impact of sensor set number and irrigation 

triggering threshold on irrigation adequacy when scheduling irrigation using GMS.  The value a in 

equation 3 was computed directly, while the distribution A in equation 4 was computed using a 10000-

point approximation for the distribution P.  The value of σ2
sensor was estimated using the regression 

equation in figure 6d, which is reproduced below as equation 5.  For σ2
sensor in equation 3 and for the 

first instance of σ2
sensor in equation 4, the sample mean tension xn was plugged into equation 5.  Yet for 

the second instance of σ2
sensor in equation 4, each result of the inverse cumulative distribution function F-

1—representing a possible relevant mean tension value—was plugged into equation 5.  Extrapolating 

equation 5 beyond the range of tension from which it was developed (< 84 kPa) could be risky.  

However, figure 6a, which witnessed a wider range of tension (< 131 kPa), suggests that the linear 

relationship between mean and variance should continue at higher tension values.  The critical water 

stress threshold was assumed to be 100 kPa loosely based on Bryant et al. (2017). 

 4792.32
−= x

sensor
σ  (5) 
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where x = mean profile average tension (kPa) 

Traditional View of Variability 

Figure 8a illustrates the impact of sensor set number and irrigation triggering threshold on irrigation 

adequacy assuming single-day irrigation cycles and the traditional view of GMS data variability.  

Adequacy likelihood increases at a decreasing rate as the irrigation triggering threshold decreases away 

from the critical water stress threshold.  Adequacy likelihood increases most with increasing sensor set 

number when sensor set number equals 1 and irrigation triggering threshold is moderately below the 

critical water stress threshold.  The curves in figure 8a are slightly asymmetrical because the variance 

was modeled to increase with the mean (equation 5). 

 
single-day irrigation cycles 14-day irrigation cycles 

 

Figure 8. Adequacy likelihood for different numbers of sensor sets (n) assuming a critical water stress threshold of 

100 kPa and the traditional view of within-field variability in granular matrix sensor data. 

Alternate View of Variability 

Figures 9a-c illustrate the impact of sensor set number and irrigation triggering threshold on irrigation 

adequacy assuming single-day irrigation cycles and the alternate view of GMS data variability.  

Expected mean adequacy increases at a decreasing rate as the irrigation triggering threshold decreases 

away from the critical water stress threshold.  The expected adequacy distribution is widest when sensor 

set number equals 1 and irrigation triggering threshold is near the critical water stress threshold.  Sensor 

set number exerts a slight increasing effect on expected mean adequacy when the irrigation triggering 
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threshold is moderately below the critical water stress threshold.  This effect is attributed to the strong 

left skew of the expected adequacy distribution within this range of irrigation triggering thresholds.  As 

sensor set number increases, expected mean adequacy is consequently influenced more dramatically by 

the reduction in the long tail of low adequacy values than by the reduction in the short tail of high 

adequacy values.  Expected mean adequacy is up to 0.07 higher for 10 sensor sets than for 1 sensor set 

within this range of irrigation triggering thresholds. 

 
single-day irrigation cycles 

  
14-day irrigation cycles 

 

Figure 9. Expected mean and middle 80% of irrigation adequacy for different numbers of sensor sets (n) assuming a 

critical water stress threshold of 100 kPa and the alternate view of within-field variability in granular matrix sensor 

data. 

Single-Day Comparisons 

The two opposing views of within-field variability in GMS data could be compared in terms of how 

sensor set number (n) changes the irrigation triggering threshold for achieving a target value of irrigation 
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adequacy.  A higher irrigation triggering threshold for the same irrigation adequacy is desirable because 

irrigation costs and overirrigation risks are reduced when depleting more stored soil water and leaving 

more capacity for holding future rainfall.  Assuming the traditional view, increasing sensor set number 

from 1 to 10 increases the irrigation triggering threshold from 86 to 95 kPa for an adequacy likelihood of 

0.80, from 79 to 93 kPa for an adequacy likelihood of 0.90, and from 66 to 87 kPa for an adequacy 

likelihood of 0.99 (figure 8a).  Assuming the alternate view, increasing sensor set number from 1 to 10 

increases the irrigation triggering threshold from 81 to 85 kPa for an expected mean adequacy of 0.80, 

from 72 to 78 kPa for an expected mean adequacy of 0.90, and from 54 to 64 kPa for an expected mean 

adequacy of 0.99 (figures 9a and 9c).  The increases in irrigation triggering threshold from increasing 

sensor set number are roughly twice as large assuming the traditional view than assuming the alternate 

view.  This finding may seem counterintuitive initially but can be explained as follows.  According to the 

traditional view that there is only one relevant tension value, a large sensor set number provides an 

accurate estimate of this particular value and enables near-perfect irrigation scheduling.  Yet according 

to the alternate view that there is a spatial distribution of relevant tension values, increasing sensor set 

number provides an accurate estimate of the mean but never eliminates the presence of high relevant 

tension values that always drag down expected mean adequacy. 

Multi-Day Comparisons  

In production settings, multi-day irrigation cycles are common.  The graphs representing single-day 

irrigation cycles (figures 8a and 9a-c) can be used to develop graphs representing multi-day irrigation 

cycles.  Given an irrigation triggering threshold at the start of the multi-day cycle and an expected daily 

rate of tension increase over the k days of the cycle, a series of k relevant tension values (traditional 

view) or mean relevant tension values (alternate view) can be generated, each of which is the effective 

irrigation triggering threshold on its corresponding day.  By superimposing the single-day adequacy 
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likelihood (traditional view) or expected adequacy distribution (alternate view) for each of the k 

irrigation triggering thresholds, the cycle-wide likelihood or distribution can be calculated.  Here, the 

length of the irrigation cycle was assumed to be 14 days, and the expected daily rate of tension increase 

was assumed to be 5 kPa d-1 loosely based on the field study.  If the irrigation triggering threshold at the 

start of the cycle was 20 kPa, for example, the 14 associated daily irrigation thresholds were 20, 25, 30, 

35, 40, 45, 50, 55, 60, 65, 70, 75, 80, and 85 kPa. 

Figures 8b (traditional view) and 9d-f (alternate view) illustrate the impact of sensor set number and 

irrigation triggering threshold on irrigation adequacy assuming 14-day irrigation cycles.  Assuming the 

traditional view, increasing sensor set number from 1 to 10 increases the irrigation triggering threshold 

from 45 to 47 kPa for an adequacy likelihood of 0.80 and from 33 to 39 kPa for an adequacy likelihood 

of 0.90.  Assuming the alternate view, increasing sensor set number from 1 to 10 increases the irrigation 

triggering threshold from 42 to 44 kPa for an expected mean adequacy of 0.80 and from 28 to 32 kPa for 

an expected mean adequacy of 0.90.  The increases in irrigation triggering threshold from increasing 

sensor set number are smaller for 14-day cycles than for single-day cycles, especially if assuming the 

traditional view.  Because a long cycle is typically paired with a low irrigation triggering threshold, a 

substantial portion of a long cycle is associated with relatively low variability (equation 5) and relatively 

high adequacy likelihood (traditional view) or expected mean adequacy (alternate view) regardless of 

sensor set number.  By including such days when the impact of sensor set number on adequacy is 

minimal, the cycle-wide adequacy likelihood or expected mean adequacy becomes relatively insensitive 

to sensor set number.  Interestingly, the differences in irrigation triggering threshold between the 

traditional and alternate views are also smaller for 14-day cycles than for single-day cycles.  

Expected 10th Percentile Adequacy 

Thus far, target irrigation adequacy had been specified in terms of expected mean adequacy when 
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assuming the alternate view.  Because some users may be most concerned about the potential for low 

adequacy when scheduling irrigation, specifying target adequacy in terms of expected 10th percentile 

adequacy was also explored.  For single-day cycles, increasing sensor set number from 1 to 10 increases 

the irrigation triggering threshold from 75 to 88 kPa for an expected 10th percentile adequacy of 0.60 

and from 61 to 73 kPa for an expected 10th percentile adequacy of 0.80 (figures 9a and 9c).  For 14-day 

cycles, increasing sensor set number from 1 to 10 increases the irrigation triggering threshold from 41 to 

54 kPa for an expected 10th percentile adequacy of 0.60 and from 25 to 38 kPa for an expected 10th 

percentile adequacy of 0.80 (figures 9d and 9f).  Here, the increases in irrigation triggering threshold 

from increasing sensor set number were similar between single-day cycles and 14-day cycles.  

Additionally, these increases based on expected 10th percentile adequacy are distinctly larger than the 

increases based on expected mean adequacy.  Increasing sensor set number reduces the spread of the 

expected adequacy distribution regardless of irrigation cycle length, which explains the consistent 

benefit of larger sensor set numbers to irrigation scheduling based on expected 10th percentile adequacy. 

Final Thoughts on the Two Views 

The paper has not championed either the traditional view or the alternate view of within-field 

variability in GMS data.  Instead, it has faithfully clarified both views and the respective implications on 

irrigation scheduling.  Proving the irrelevance of all sensor data variability is just as difficult as proving 

the relevance of all sensor data variability.  Data variability among GMS has been reported to be similar 

to data variability among tensiometers (Thompson et al., 2006), and doubling the surface area of regular 

tensiometer cups decreased the standard deviation in single-depth tension by less than 0.5 kPa on 

average (Hendrickx et al., 1994).  The scarce evidence suggests that at least some of the GMS data 

variability within macroscopically homogeneous fields is relevant for irrigation scheduling, so the 

reality is most likely partway between the two extreme views. 
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CONCLUSION 

This paper reported a few key findings regarding the implications of within-field variability in GMS 

data for irrigation scheduling.  If all sensor data variability is assumed to be irrelevant for irrigation 

scheduling, the benefit of additional sensor sets decreases dramatically as irrigation cycles lengthen (see 

sub-subsection “Multi-Day Comparisons”).  For shorter irrigation cycles and adequacy targets based on 

averages, the benefit of additional sensor sets is smaller if all sensor data variability is assumed to be 

relevant rather than irrelevant for irrigation scheduling (see sub-subsection “Single-Day Comparisons”).  

If all sensor data variability is assumed to be relevant for irrigation scheduling, the benefit of additional 

sensor sets does not decrease with lengthening irrigation cycles when adequacy targets are based on 

possible lows rather than averages (see sub-subsection “Expected 10th Percentile Adequacy”). 

While a large number of sensor sets is certainly helpful to provide redundancy and enhance precision, 

just one sensor set per irrigation system can still be an extremely worthwhile initial step for irrigation 

scheduling in many contexts.  A significant portion of irrigated agronomic crops are grown in medium to 

fine textured soils (i.e., lower water stress sensitivity per unit of tension) and under irrigation systems 

with multi-day cycles.  Assuming multiple measurement depths and partial relevance of sensor data 

variability, the irrigation triggering threshold to achieve an expected mean adequacy target might be just 

slightly lower for one sensor set than for a large number of sensor sets.  Therefore, on-farm investments 

in the purchase, installation, and maintenance of numerous sensor sets might be difficult to justify for 

resource conservation alone in the absence of substantial financial and/or legal penalties for 

overirrigation.  Because many producers do not yet use any irrigation scheduling tool, promoting the 

adoption of the first set of soil moisture sensors per irrigation system may be a higher priority than 

promoting the adoption of additional sensor sets. 

There is an important caveat though.  In this paper, data from all suspicious sensor sets in the field 

study were carefully eliminated.  In practice, such quality control requires the user and/or service 
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provider to possess sufficient expertise and to pay sufficient attention.  Problems can generally be caught 

long before the irrigation season if installations are permanent or occur shortly after crop emergence.  

Without timely assessment and corrective action (e.g., repair, replacement, relocation), the resulting data 

will be misleading rather than beneficial for irrigation scheduling. 

Extra considerations would be needed to construct a comprehensive decision support tool to inform 

the selection of an appropriate sensor set number and an appropriate irrigation triggering threshold for a 

specific situation.  First, the within-field variability of soil moisture sensor data should be evaluated for 

more sensor models in more environments (Lo et al., 2020).  Second, how the method and 

nonuniformity of irrigation applications alter this variability (Saddiq et al., 1985; Clemmens, 1991) 

should be better understood.  Third, any significant temporal changes in the critical water stress 

threshold as a result of weather and/or growth stage (Sadras and Milroy, 1996; Thompson et al., 2007; 

Pringle et al., 2019) should be modeled.  Fourth, a profit response curve that includes irrigation costs 

and both underirrigation and overirrigation yield losses should be incorporated.  All colleagues are 

invited to build on the probabilistic conceptual framework in this paper to advance practical irrigation 

scheduling. 
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