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ARTICLE

Sestrins are evolutionarily conserved mediators of
exercise benefits
Myungjin Kim 1,6, Alyson Sujkowski 2,6, Sim Namkoong1,4, Bondong Gu1, Tyler Cobb2, Boyoung Kim1,

Allison H. Kowalsky 1, Chun-Seok Cho1, Ian Semple1, Seung-Hyun Ro1,5, Carol Davis1, Susan V. Brooks1,

Michael Karin3, Robert J. Wessells2* & Jun Hee Lee 1*

Exercise is among the most effective interventions for age-associated mobility decline and

metabolic dysregulation. Although long-term endurance exercise promotes insulin sensitivity

and expands respiratory capacity, genetic components and pathways mediating the meta-

bolic benefits of exercise have remained elusive. Here, we show that Sestrins, a family of

evolutionarily conserved exercise-inducible proteins, are critical mediators of exercise ben-

efits. In both fly and mouse models, genetic ablation of Sestrins prevents organisms from

acquiring metabolic benefits of exercise and improving their endurance through training.

Conversely, Sestrin upregulation mimics both molecular and physiological effects of exercise,

suggesting that it could be a major effector of exercise metabolism. Among the various

targets modulated by Sestrin in response to exercise, AKT and PGC1α are critical for the

Sestrin effects in extending endurance. These results indicate that Sestrin is a key integrating

factor that drives the benefits of chronic exercise to metabolism and physical endurance.
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As the percentage of elderly members in the population
continues to increase, concerns about increased health
care responsibilities have been amplified as well. Inter-

ventions that can preserve proper body function at advanced ages
are thus of substantial importance. In repeated surveys, elderly
members of the community have mentioned preservation of
mobility as their biggest concern associated with aging1. Mobility
is important both for direct health reasons (e.g. preventing falls,
retaining access to relatives and health care providers) and for
psychological reasons, as it is highly correlated with retained
personal satisfaction and morale2,3. Identification of cost-effective
therapies that can preserve independence and healthy mobile
capacity in the elderly would therefore have a cumulatively
positive effect, influencing many other aspects of mental and
physical health in a wide population demographic.

One promising therapeutic intervention to impede age-related
functional decline is endurance exercise. Endurance training
induces remodeling in muscle tissue that alters the metabolic
health of the entire organism4–6. Evidence from humans and
model organisms strongly suggests that endurance exercise has
substantially protective effects on various indices of healthspan7. In
vertebrates, endurance training leads to increased mitochondrial
biogenesis/efficiency8, decreased triglyceride storage9, improved
insulin sensitivity10, and protection of both muscle and neural
functions11. These changes are often thought to be at least partially
mediated by exercise-induced upregulation of AMP-activated
protein kinase (AMPK) and the insulin-AKT pathway12. These
remodeling events lead to increased physiological capacity in both
cardiac and skeletal muscle. However, substantial obstacles exist
against the widespread application of endurance therapy in the
human population. Many humans are unable to reach the level of
training necessary to generate these remodeling steps for several
reasons: (1) age, (2) injury, (3) illness, or (4) social commitments
that require long sedentary periods. Therefore, generation of
therapeutic mimetics to induce the benefits of exercise could
provide broad ranging benefits to the medical community.

Sestrins are small stress-inducible proteins that are found
throughout the animal kingdom13. Mammals express three Ses-
trins (Sesn1-3), while Drosophila and C. elegans express one
Sestrin orthologue (dSesn and cSesn, respectively)14. dSesn and
mammalian Sesn1 are predominantly expressed in skeletal and
cardiac muscles14–16. Importantly, Sestrin expression is further
increased by exercise training in both humans and mice17–19.
Once induced, Sestrins coordinate metabolic homeostasis by
regulating multiple signaling pathways20. Through its intrinsic
oxidoreductase activity and by regulating autophagy, Sestrin can
function as an antioxidant to reduce oxidative damage in cells20.
In addition, through activation of AMPK21 and modulation of
GAP activity towards Rags (GATOR) protein complexes22–24,
Sestrins inhibit target of rapamycin complex 1 (TORC1)/S6
kinase (S6K) signaling. Importantly, while Sestrins downregulate
TORC1/S6K signaling, they strongly activate TORC2/AKT sig-
naling25, independently of the TORC1 regulation26. Interestingly,
exercise-inducible Sestrins activate both AMPK and AKT20,
effectors that are also upregulated by endurance exercise train-
ing12. Indeed, upregulation of AMPK signaling and insulin-
TORC2/AKT mediates the protective activities of Sestrins against
insulin resistance and diabetes25,26. However, none of the former
studies examined the actual genetic and physiological roles of
Sestrins in the response to exercise.

Here, using Sestrin-deficient fly and mouse models, we show
that Sestrins play a critical role in mediating chronic exercise
adaptations and exercise benefits. Sestrins, acting through mul-
tiple effector molecules such as AKT and PGC1α, are both
necessary and sufficient to produce exercise effects on improving
muscle metabolism, functionality, and endurance.

Results
Sestrin is required for increased performance after exercise. We
established a protocol for endurance training and measuring
physical endurance in Drosophila, which represents the first
chronic exercise model in an invertebrate system27. Three weeks
of exercise training (Fig. 1a) substantially extended running
endurance (runspan, length of time that vials of flies are able to
run in response to stimulation; Fig. 1b) and flight performance
(landing height after ejection into a space; Fig. 1c) of wild-type
(WT) flies, consistent with earlier studies27. These changes were
accompanied by a strong induction of dSesn expression and
increased TORC2-dependent AKT phosphorylation (Fig. 1d and
Supplementary Fig. 1a–c). Although exercise increased AMPK
phosphorylation, it did not significantly affect TORC1-dependent
S6K phosphorylation in muscle (Supplementary Fig. 1a, d, e). By
contrast, exercise did not increase running endurance, flight
performance and AKT phosphorylation in dSesn-null flies
(Fig. 1b–d). These results indicate that Sestrin is necessary for
improving endurance and flight performance after exercise.

Sestrin in muscle is sufficient to modify exercise outcome.
Because Sestrin expression is high and exercise-inducible in
muscle, we tested whether Sestrin functions in muscle to mediate
exercise. Muscle-specific dSesn silencing through two indepen-
dent dSesnRNAi constructs (Supplementary Fig. 1f) nullified the
exercise benefits to the same degree as complete dSesn ablation
(Fig. 1e, f). Conversely, muscle-specific transgenic dSesn over-
expression in dSesn-null flies (Supplementary Fig. 1g) was suffi-
cient to increase both runspan and flight performance, even in the
absence of exercise (Fig. 1g, h). These results indicate that (1)
Sestrin functions in muscle to mediate exercise-induced increase
of mobility and (2) Sestrin upregulation in muscle was sufficient
to induce the benefits of exercise. Indeed, muscle-specific Sestrin
overexpression in WT flies produced strong extension of running
endurance (Figs. 1i and 2a) associated with AKT activation
(Fig. 1j). Importantly, the effect of dSesn overexpression was
quantitatively greater than the effect of exercise, and exercise
training did not improve running endurance in Sestrin-
overexpressing flies (Fig. 1g–i). These results indicate that
muscle-specific Sestrin induction is both necessary and sufficient
for mediating the endurance benefit of chronic exercise.

Sestrin improves endurance through TOR modulation. We
next examined how Sestrin expression improves endurance and
flight performance mechanistically. The C86S mutation in Ses-
trin, which disrupts its oxidoreductase function20, slightly
reduced Sestrin’s capability in extending endurance (Fig. 1g, h).
In contrast, the D423A and D424A substitutions, which abolish
Sestrin’s effects on TORC1 inhibition and TORC2/AKT activa-
tion20 (Supplementary Fig. 1h–o), almost completely blocked the
Sestrin effect (Fig. 1g, h), indicating that regulation of the TOR
complexes is important for Sestrin’s beneficial effects.

The transgenic expression levels of Sestrin proteins with C86S
or D423A/D424A mutation were comparable to that of wild-type
Sestrin in immunoblotting (Supplementary Fig. 1g) and immu-
nostaining (Supplementary Fig. 1l–o) experiments. When
expressed in developing wing imaginal discs, wild-type and
C86S Sestrins reduced TORC1-dependent organ growth (Supple-
mentary Fig. 1h–m) while activating TORC2-dependent AKT
phosphorylation (Supplementary Fig. 1j–m). In contrast, D423A/
D424A mutant Sestrins did not affect organ growth or AKT
phosphorylation (Supplementary Fig. 1h–o). These results
confirm that D423 and D424 residues are indeed critical for
Sestrin-dependent modulation of TOR complexes.
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TORC2-AKT axis is required for Sestrin to extend endurance.
Like exercise, Sestrin strongly upregulated TORC2-mediated AKT
phosphorylation (Fig. 1j)20,26,28. Inhibition of TORC2 compo-
nents, such as Rictor and Sin1 or AKT, completely blocked Ses-
trin’s effect in extending endurance (Fig. 2b–d). In contrast,
inhibition of TSC2, which blocks Sestrin-mediated TORC1 inhi-
bition14, or 4E-BP knockdown, which uncouples TORC1 signaling
from translational regulation29, did not affect the ability of Sestrin
to extend endurance (Fig. 2e, f). TORC2/AKT inhibition not only
inhibited the Sestrin effect but also blocked the exercise effect
(Fig. 2g–l). Therefore, the TORC2-AKT axis appears to be a critical
effector of both exercise and Sestrin, while the traditional Sestrin
target TORC1 is less important in this context.

Exercise requires Sesn1 to improve insulin sensitivity. AKT
signaling in mammals is important for insulin sensitivity and
glucose metabolism. In mice, Sesn2 and Sesn3, which regulate
insulin signaling in the liver, were shown to be important for
glucose homeostasis25,26. But among the three mammalian Ses-
trins, Sesn1 is predominantly expressed in muscle16. Unlike
Sesn2−/− or Sesn3−/− mice25,26, Sesn1−/− mice did not show any
detectable changes in glucose homeostasis in either lean or obese
sedentary conditions (Fig. 3a and Supplementary Fig. 2a). In WT
mice, voluntary wheel running improved glucose tolerance
(Fig. 3a); however, this effect was attenuated in Sesn1−/− mice
(Fig. 3a) and exercised Sesn1−/− mice showed higher glucose

intolerance compared to the exercised WT counterparts (Fig. 3b).
Insulin-induced AKT activation in trained skeletal muscle was
also reduced in Sesn1−/− mice (Fig. 3c). These results suggest
that Sesn1 is involved in the muscle metabolic response to
exercise.

Exercise requires Sesn1 to improve running. Based on our
observations from the fly model, we wanted to know if Sesn1 is
also necessary for increasing running capacity. In WT mice,
running distance, speed, and time were gradually increased in
accordance with the duration of voluntary training (Fig. 3d–f).
Although Sesn1−/− mice initially ran at the same distance and
speed, they did not improve their running profiles as efficiently as
WT mice (Fig. 3d–f). The same effects of exercise and Sesn1 loss
were observed in an independent and older cohort of mice
(Supplementary Fig. 2b–d). Therefore, the role of Sestrin in
mediating exercise benefits of improving physical movement and
upregulating insulin-AKT signaling is conserved between mice
and flies.

Exercise requires Sesn1 to improve respiratory efficiency.
Exercise training induces metabolic changes that allow for
improved respiratory capacity12. To evaluate the effect Sestrin
may have on this, mice were subjected to incremental exercise
(forced running of increasing intensity) with respiratory
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Fig. 1 Sestrin is critical for exercise response in Drosophila. a Schematic of exercise training in Drosophila. Gray boxes indicate days with control (UN) or
exercise (EX) treatments. b–dWild-type (Con; w1118) and dSesn-null (dSesn−/−) flies were analyzed. e, f Two independent RNAi constructs targeting dSesn
were conditionally expressed in muscle tissue using myosin heavy chain-gene switch (MHC-GS) driver, controlled by mifepristone feeding (ON/OFF). g–j
Wild-type, C86S, D423A, D423A/D424A dSesn transgenes were expressed in muscle of dSesn−/− flies (g, h) or WT flies (i). C86, D423 and D424 in
dSesn correspond to C125, D406 and D407 in Sesn2. Flies were analyzed by runspan (b, e, g, i) or flight performance (c, f, h) assays. In flight performance
graphs, closed and open shapes indicate individual data from control (UN) and exercised (EX) experiments, respectively. Endogenous dSesn was
overexpressed through EP line version of UAS-dSesn (j). Leg and thoracic muscle were analyzed by immunoblotting (d, j) and band densitometry (d, right;
values relative to corresponding UN levels). Biologically independent animal groups: n= 8 (b, e, i; groups of 20 flies), n= 6, 6, 3, 3 (d, left to right; groups of
20 flies), n= 6, 6, 6, 7, 8, 8, 8, 8 (g, upper to lower; groups of 20 flies). Biologically independent animals: n= 100, 193, 141, 145 (c, left to right), n= 196,
264, 250, 233, 257, 288, 218, 234 (f, left to right), n= 149, 159, 144, 187, 223, 148, 233, 237 (h, left to right). Error bars, s.d. (flight performance) or s.e.m.
(immunoblot quantification). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 or ns, non-significant from a log-rank test (runspan) or two-tailed student’s
t test (all other assays). Molecular weight markers are indicated in kDa.
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assessment (Supplementary Fig. 3a). In untrained WT mice, there
was a gradual increase in respiratory exchange ratio (RER;
VCO2∙VO2

−1) as the exercise load became more intense, while
overall oxygen consumption rate (VO2) remained relatively
constant (Supplementary Fig. 3b, c). This was associated with a
change in energy source from fatty acids to glucose (Supple-
mentary Fig. 3d)12. In contrast, wheel-trained WT mice main-
tained low RER and high fat oxidation during heavy exercise
(Supplementary Fig. 3e–h). Notably, wheel-trained Sesn1−/− mice
did not show such metabolic improvements and exhibited a
metabolic profile similar to untrained mice (Supplementary
Fig. 3e–h). Compared to wheel-trained WT mice, RER of wheel-
trained Sesn1−/− mice was more strongly increased upon heavy
exercise (Supplementary Fig. 3i), while fat oxidation was reduced
(Supplementary Fig. 3j). Nevertheless, forced running endurance
was not strongly reduced in Sesn1−/− mice in terms of running
time and distance (Supplementary Fig. 3k, l). In addition, exercise
metabolism profiles were similar between untrained mice of WT
and Sesn1−/− (Supplementary Fig. 4a–f).

Sesn-TKO impairs exercise metabolism and endurance. The
modest decrease in exercise capacity of Sesn1−/− mice could be

due to the presence of Sesn2 and Sesn3, which are also expressed
in muscle and induced upon exercise16–19. To eliminate all Ses-
trins, we generated Sesn1/2/3 triple knockout (TKO) mice. When
placed on training wheels, TKO mice did not show any
improvements in running distance and speed (Fig. 4a–c).
Although TKO mice showed almost normal metabolic profiles
with unaltered body weight (Supplementary Fig. 5a), body com-
position (Supplementary Fig. 5b, c) and circadian rhythmicity in
energy metabolism (Supplementary Fig. 5d, e), they exhibited a
slight reduction in food consumption and physical activities
(Supplementary Fig. 5f, g). When subjected to forced treadmill
running, TKO mice performed very poorly with dramatically
reduced running time and distance (Fig. 4d, e).

This endurance phenotype was associated with strong defects
in respiratory metabolism. Rates of oxygen consumption (VO2)
remained low throughout forced running and recovery (Fig. 4f),
and maximal aerobic capacity (VO2 max) was substantially
reduced in TKO mice while basal oxygen consumption rate was
unaltered (Fig. 4g). Therefore, exercise-induced VO2 (ΔVO2) was
almost cut in half in TKO mice (Fig. 4h). As observed in Sesn1−/−

mice, TKO mice also exhibited increased respiratory inefficiency
(high RER; Fig. 4i–k) and decreased fat oxidation (Fig. 4l) during
running and recovery. Notably, RER, a marker for metabolic
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exhaustion30, was strongly elevated right around exhaustion in
both WT and TKO mice (Fig. 4i) and remained high during early
recovery period (Fig. 4i), indicating that TKO mice did not
simply choose to stop running but were metabolically exhausted.
Notably, at time points when the Sestrin TKO mice were
exhausting (around 20–25 min after running), the RER levels of
Sestrin TKO mice were significantly higher than WT mice
(Fig. 4i). Furthermore, RER induction during exercise (ΔRER)
was substantially stronger in TKO mice compared to WT mice
(Fig. 4j, k). These results indicate that defective running capacity
in TKO mice is not due to a behavioral change but a metabolic
alteration associated with respiratory defects.

Notably, TKO defects in forced running (Fig. 4d, e) and
exercise metabolism (Fig. 4f–l) were very strong and not exhibited
by any wild-type mouse cohorts. These cohorts include mice
subjected to voluntary training (Fig. 4d–l), unexercised wild-type
mice (Supplementary Fig. 3) and unexercised and aged wild-type
mice (Supplementary Fig. 4). All these wild-type mice exhibited
robust running performance and stable exercise metabolism at
the low-speed running condition (12–19 mmin−1), while TKO
mice exhibited completely penetrant metabolic and physical
exhaustion at the same condition. Therefore, the defects of TKO
mice observed during forced running (Fig. 4d–l) are not simply
because they did not get benefits from voluntary wheel training
(Fig. 4a–c).

Sesn-TKO reduces mitochondrial biogenesis in muscle. Com-
pared to other types of muscle, Sestrin expression of all three
forms, especially the muscle-specific isoform Sesn1, was higher in
the soleus muscle (SOL), which is enriched with oxidative type I
fibers (Fig. 5a). Interestingly, in SOL, type I fiber content was
significantly decreased in TKO muscle, while type II fiber content
was increased (Fig. 5b). Levels of PGC1α, an essential factor for

mitochondrial biogenesis, were also reduced in TKO muscle
(Fig. 5c). Markers for mitochondrial complexes, including SDHA,
SDHB, NDUFS3, ATP5B, and UQCRFS1, were all significantly
decreased in TKO muscle compared to WT (Fig. 5c).

These phenotypes were more pronounced in gastrocnemius
(GTN) and quadriceps (QUAD) muscles; expression levels of
PGC1α/β, PGC1 target proteins and mitochondrial enzymes were
all strongly reduced in TKO tissues (Fig. 5d, e), and the same
trend was observed in quantified mRNA levels (Supplementary
Fig. 6a) and histological assessment of mitochondrial complex
activities (Fig. 5f, g). Muscle mass was also reduced in both SOL
and GTN (Supplementary Fig. 6b–d); however, specific force
production normalized for the reduced muscle cross-sectional
area was comparable between WT and TKO muscle tissues
(Supplementary Fig. 6e), suggesting that the exercise deficits in
TKO mice are not due to the impairment of muscle contractility.
Transmission electron microscopy of GTN muscle showed that
the overall microstructure of sarcomeres and mitochondria are
not noticeably different between WT and TKO mice (Supple-
mentary Fig. 6f, g). These results suggest that TKO defects in
exercise metabolism can be primarily attributed to decreased
mitochondrial biogenesis and subsequent reduction in oxidative
capacity of muscle tissue.

Sesn1 expression is induced during myotube differentiation.
We assessed if these metabolic phenotypes of TKO mice could be
replicated in isolated myotubes. WT and TKO myoblasts were
isolated from hind limb muscles of mice that were not subjected
to voluntary wheel running, cultured, and differentiated to form
myotubes in vitro. Both WT and TKO myoblasts differentiated
well into myotubes, characterized by elongated myofiber mor-
phology, at a similar rate (Fig. 6a). Both WT and TKO myoblasts
expressed MyoD (Fig. 6b), but only differentiated myotubes

0

5

10

15

20300 30,000

25,000

25,000

150

100

50

0

20,000

15,000

10,000

20,000

15,000

10,000

5000

5000

250

200

150

100

50

0
0

B
lo

od
 g

lu
co

se
 (

m
g 

dl
–1

)

G
T

T
:A

U
C

 (
m

g 
dl

–1
m

in
)

G
T

T
:A

U
C

 (
m

g 
dl

–1
m

in
)300

250

200

150

100

50

0 0

0

B
lo

od
 g

lu
co

se
 (

m
g 

dl
–1

)

50 100

Post-EX: GTT

Post-EX: GTT

WT
Sn1KO

WT

WT

Ins:

Ins:

–

– –

– – – ++++

+ +

p-AKT

Total-AKT

Sesn1

Actin

50

50

50
50

Sn1KO

Sn1KO

WT Sn1KO

WT Sn1KO

Pre-EX: GTT

150

0 50 100

Post-EX: skeletal muscle

150

3.0

2.5

2.0

1.5

1.0

0.5

0.0R
el

at
iv

e 
p-

A
K

T
 le

ve
l

(p
-A

K
T

 o
ve

r 
to

ta
l A

K
T

)

T
im

e 
ru

n 
(m

in
 p

er
 w

ee
k)

0

100

200

300

400

500

*

* *
*

*
*

*

(Week)(Day)

WT
Sn1KO

T
im

e 
ru

n 
(m

in
 p

er
 d

ay
)

ns

ns

*
*

ns

*
*

ns

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10111213141516171819 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

*

*

*
**

**

D
is

ta
nc

e 
(k

m
 p

er
 d

ay
)

A
ve

ra
ge

 s
pe

ed
 (

km
 p

er
 h

r)

* *****
* * * * *WT

Sn1KO

A
ve

ra
ge

 s
pe

ed
 (

km
 p

er
 h

)
D

is
ta

nc
e 

(k
m

 p
er

 w
ee

k)

(Week)1 2 3

1 2 3

1 2 3

3

2

1

0

4000

3000

2000

1000

0

(Day)

(Week)(Day)

WT
Sn1KO

WT
Sn1KO

WT
Sn1KO

WT
Sn1KO

d

f

e

a

c

b

Voluntary running

Voluntary running

Voluntary running

EX: – – +

ns
ns

+

WT
#1 #2 #1 #2

Sn1KO

Fig. 3 Sesn1 is required for exercise effects on glucose tolerance and running profile. a–c 2-month-old WT and Sesn1−/− (Sn1KO) mice (C57BL/6
background) were analyzed by glucose tolerance test (GTT) with area-under-curve (AUC) analysis (a, Pre-EX). When the mice reached 6 months of age,
they were subjected to voluntary wheel running for 2 months, and analyzed by GTT (a, b; Post-EX) and acute insulin response assay (c). Post-EX data were
plotted with (a) or without (b) Pre-EX data for cleaner comparisons between groups. Insulin-induced AKT activation of skeletal muscle was analyzed by
immunoblotting and band densitometry. d–f 6-month-old WT and Sesn1−/− mice were subjected to voluntary wheel running. Daily (left panels) and weekly
(right panels) running distance (d), speed (e) and time (f) were recorded for the first three weeks of voluntary wheel running. Biologically independent
animals: n= 4 (a–c), n= 4, 5 (d–f; WT and Sesn1−/− mice, respectively). Error bars, s.e.m. *P < 0.05, **P < 0.01, ***P < 0.001 or ns, non-significant from a
two-tailed student’s t test. Molecular weight markers are indicated in kDa.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13442-5 ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:190 | https://doi.org/10.1038/s41467-019-13442-5 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


expressed skeletal muscle-specific myosin heavy chain protein
MYH (Fig. 6b). Interestingly, although Sesn1 was almost unde-
tectable in myoblasts, it was prominently expressed in differ-
entiated myotubes (Fig. 6b). Sesn2, however, was expressed more
in myoblasts and less in myotubes (Fig. 6b). Sesn3 was unde-
tectable in both myotubes and myoblasts, consistent with

previous findings that they were expressed at very low levels in
muscle (Fig. 5a). This is consistent with former findings that
Sesn1 is the predominant Sestrin isoform in muscle tissue16.

TKO myotubes have reduced mitochondrial biogenesis. As
observed in intact muscle (Fig. 5), mitochondrial biogenesis was
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also attenuated in TKO myotubes. During myotube differentiation,
WT myoblasts upregulated both PGC1α and PGC1β expression
(Fig. 6b), as well as expression of mitochondrial complex proteins
including NDUFS3 (Complex I), SDHA/B (Complex II),
UQCRFS1, UQCRC2 (Complex III), COX2 (Complex IV), and
ATP5A/B (Complex V) (Fig. 6c). This is consistent with former
findings that myotube differentiation involves extensive expansion
of mitochondrial mass and volume31,32, associated with PGC1α/β
upregulation and mitochondrial remodeling33–35. Interestingly, this
process was substantially attenuated in myoblasts isolated from
TKO mice; subsequently, TKO myotubes exhibited strongly
reduced expression of PGC1α/β proteins, as well as all mitochon-
drial complex proteins (Fig. 6b–e). Consistent with this, Mitotracker
staining of WT and TKO myotubes confirmed that mitochondrial
content was generally reduced in TKO myotubes compared to WT
(Fig. 6f). These results indicate that differentiated TKO myotubes
have decreased mitochondrial biogenesis compared to WT.

TKO myotubes have reduced AMPK activation. AMPK is one of
the most important downstream targets of Sestrins13,20,21. Because
AMPK regulates PGC1α/β both transcriptionally and post-
transcriptionally36–41 and because AMPK-mediated PGC1α/β
regulation is prominent in myotubes and muscle tissue36,41, AMPK

may provide a link between Sestrins and PGC1α/β. Consistent with
former reports33,42, activating phosphorylation of AMPK was
increased during myotube differentiation (Fig. 6b, d). However, the
differentiation-associated AMPK phosphorylation was attenuated
in TKO myotubes (Fig. 6b, d), consistent with the role of Sestrin1
in upregulating AMPK. TKO muscle tissues also exhibited lower
AMPK activation compared to WT muscle tissues (Supplementary
Fig. 7a–c), although due to substantial animal-to-animal variations,
the difference did not reach statistical significance. These results
suggest that Sestrins regulate mitochondrial biogenesis through the
AMPK-PGC1α/β axis.

TKO myotubes have reduced reserve respiratory capacity.
Through mitochondrial respirometry using Seahorse, we assessed
if the reduction of mitochondrial biogenesis in TKO myotubes
can precipitate defects in oxidative metabolism (Fig. 6g). Inter-
estingly, basal mitochondrial oxygen consumption rates, as well
as specific ATP-linked and proton leak-associated rates, were
comparable between WT and TKO myotubes (Fig. 6h). However,
the TKO myotubes exhibited strong impairments in maximal
respiratory capacity and reserve respiratory capacity (Fig. 6h),
indicating that the mitochondrial defects of TKO myotubes are
specific to the reserve respiratory capacity. These results suggest
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that mitochondrial capacity in the TKO muscle was only suffi-
cient for basal metabolism, but not robust enough to afford
extensive energy production and oxygen consumption during
heavy exercise training. This is consistent with our findings from
whole animal respirometry analyses where basal respiration rate
was relatively unchanged while exercise-induced maximum
respiration rate was severely reduced (Fig. 4). These findings
further support the mitochondrial nature of TKO phenotypes in
exercise metabolism.

Sestrin overexpression upregulates mitochondrial biogenesis.
We tested whether the benefits of Sestrins can be observed
through a gain-of-function study. Consistent with the results of
Sestrin in regulating mitochondrial metabolism, Sestrin

overexpression in cultured myotubes strongly increased expres-
sion of PGC1α/β and its target genes such as mitochondrial
enzymes (Supplementary Fig. 8a, b). This was accompanied by
corresponding signaling pathway effects such as AMPK activa-
tion, TORC1 inhibition and TORC2 upregulation (Supplemen-
tary Fig. 8a). These results confirm that Sestrin is sufficient to
upregulate mitochondrial biogenesis.

PGC1 is critical for Sestrin to produce exercise benefits. These
results indicate that the PGC1-mitochondrial biogenesis pathway
is another important downstream target of the exercise-Sestrin
axis, in addition to the TORC1/2 signaling pathway. Also in
Drosophila, Drosophila PGC1 (spargel or dPGC1) expression was
reduced in exercised dSesn−/− mutants (Supplementary Fig. 8c),
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suggesting that Sestrin regulation of PGC1 is conserved in Dro-
sophila. Furthermore, silencing dPGC1 in fly muscle almost
completely inhibited the effect of exercise and Sestrin in
extending running endurance (Fig. 7a) and flight performance
(Fig. 7b). These results confirm that PGC1, regulated through the
Sestrin-AMPK pathway, is an important effector of exercise.

Since both AKT and PGC1 were essential for the effect of
exercise and Sestrins in muscle (Figs. 2, 7a, b), we tested if
activation of these signaling components is sufficient for
mimicking the effect of exercise and Sestrin. Overexpression of
dPGC1 was sufficient to extend running endurance in both young
(Fig. 7c) and old (Fig. 7d) flies, consistent with our former
study43. The effect of dPGC1 was stronger than that of exercise;
however, weaker than that of Sestrin overexpression (Fig. 7d).
dPGC1 overexpression also improved flight performance (Fig. 7e),
indicating that PGC1 activation alone could reproduce the effect
of exercise although its effect was less pronounced when
compared to the effect of Sestrin.

Unlike PGC1, transgenic overexpression of wild-type AKT or
constitutively-active AKT, which can respectively produce weak44

and strong45 activation of the AKT pathway, did not improve
running endurance or flight performance (Fig. 7f–h). Therefore,
even though AKT signaling was essential for Sestrin-mediated
extension of running endurance and flight performance (Fig. 2),
activation of the AKT pathway may not be sufficient to mimic the
effect of exercise and Sestrin (Fig. 7f–h). However, previous
reports indicated that AKT activation in muscle could be
sufficient to improve muscle function46,47, so it is possible that
our transgenic modulation experiments somehow missed the
appropriate level of AKT activation to produce beneficial effects
and rather produced too much or too little activation.

Discussion
The current study examined the role of Sestrin in exercise
metabolism. In both mice and flies, Sestrin-family proteins were
essential for obtaining beneficial effects from exercise. Sestrin-
deficient animals did not improve their metabolism or extend
endurance even after exercise training. In contrast, Sestrin over-
expression mimicked many aspects of exercise training. Specifi-
cally, two of Sestrin’s downstream target pathways, the AKT and
PGC1 pathways were important for the beneficial effects of Ses-
trin and exercise.

Sestrin upregulates AKT by activating its upstream kinase
TORC2. Sestrin can activate TORC2 through direct
association26,28 or indirectly through AMPK21,25, which was
recently shown to phosphorylate and activate TORC248. Sestrin-
mediated AMPK activation can lead to upregulation of PGC1
through both transcriptional and post-transcriptional mechan-
isms36–41. The AKT pathway regulates insulin-dependent glucose
and fat utilization and maintenance of muscle mass49,50, while
PGC1 boosts mitochondrial biogenesis and increases oxidative
capacity for muscle metabolism51,52. Therefore, Sestrin-mediated
control of these pathways can mimic the exercise effect without
producing some side effects that can result from modulating a
single pathway. For instance, while mediating TORC2 activation,
which can lead to TORC1 upregulation, Sestrins inhibit TORC1
through AMPK21 and GATOR22–24. Therefore, some detrimental
consequences of TORC1 hyperactivation, such as autophagy
inhibition, could be prevented when Sestrin is activated. Likewise,
TORC2/AKT activation and TORC1 inhibition can both inacti-
vate PGC1 and reduce mitochondrial biogenesis53–55, which
would have negative consequences on muscle homeostasis.
However, Sestrin can upregulate AMPK signaling21, which can
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subsequently upregulate PGC1 and mitochondrial biogenesis36–
41. Therefore, Sestrin can produce beneficial effects of TORC1/2
regulation without detrimental effects on PGC1 signaling. Con-
comitant upregulation of AKT and PGC1 can also cooperate to
preserve muscle mass and functionality by inhibiting FoxO, in the
context of muscle atrophy and degeneration56. Therefore, Sestrin
seems to be uniquely poised to coordinate multiple signaling
pathways in response to exercise, which can collectively produce
many beneficial effects in muscle.

It is also interesting to note that PGC1 inhibition combined
with Sestrin overexpression led to worse endurance than PGC1
inhibition alone (Fig. 7a). Similarly, AKT inhibition combined
with Sestrin overexpression also led to reduced endurance per-
formance compared to AKT inhibition alone (Fig. 2g). It is
possible that, in PGC1- and AKT-inhibited conditions, Sestrin’s
other downstream outputs, such as TORC1 inhibition, somehow
produced unexpected side effects that interfered with endurance
and exercise effects. For instance, since balanced activities of
TORC1, PGC1, and AKT pathways are all critical for structural
and functional integrity of muscle, it is possible that concomitant
inhibition of multiple signaling components, such as TORC1 and
PGC1 (Fig. 7a) or TORC1 and AKT (Fig. 2g), produced strong
negative impacts on muscle homeostasis and functionality. These
observations further support the idea that Sestrin is an important
integrator of various signaling pathways, and its effects cannot be
fully replicated by modulation of a single downstream output.

Although the role of Sestrin in mediating exercise on health-
span was prominent and robust, the effect of Sestrin modulation
on lifespan was not so obvious. Despite strong physiological
defects and severely impaired exercise responses, the lifespan of
dSesn−/− flies was only slightly reduced compared to WT flies
(Supplementary Fig. 9a). Even though maximum lifespan was
reduced, median lifespan was comparable between WT and dSesn
−/− flies. Muscle-specific overexpression of Sestrin, which pro-
duced robust extension of endurance and muscle AKT signaling,
also did not significantly affect lifespan and rather slightly
reduced median lifespan (Supplementary Fig. 9b). It should be
noted that, in both humans and mice, endurance exercise training
improves healthspan but is not effective for extending maximal
lifespan57,58. Also in flies, exercise training improved running
capacity and flight performance27, but did not increase long-
evity59. These results indicate that Sestrin is a specific regulator of
healthspan, not longevity.

Considering that Sestrins are induced by a wide variety of
stresses15, including mechanical and oxidative stresses60,61 that
are associated with exercise training, it is plausible that exercise
induces mild stresses that upregulate Sestrins. Indeed, former
studies17–19 as well as the current work showed that chronic
exercise upregulated Sestrin expression. A number of stress-
inducible transcription factors, such as p53, FoxO, ATF4, XBP1,
c/EBPβ, HIFα, AP-1, and Nrf2, are involved in Sestrin
regulation;15,62–66 therefore, it is possible that one or more of
these factors are involved in exercise-induced Sestrin upregula-
tion. Interestingly, we found that expression of Sestrin1, the
predominant Sestrin isoform in muscle tissue16, was almost
undetectable in myoblasts but strongly induced during myotube
differentiation. Expression of Sestrin2, which shows a more ubi-
quitous expression pattern across tissues16, was slightly decreased
during myotube differentiation. Therefore, it is also possible that
Sestrin expression is regulated through a stress-independent
mechanism in this context.

In summary, our current study highlights the role of Sestrin in
mediating the metabolic benefits of exercise. Using mice and
Drosophila, phylogenetically distant species, we showed that
Sestrin’s role in mediating exercise, increasing physical endur-
ance, and improving metabolism is highly conserved across the

animal kingdom. Therefore, Sestrin may serve as a promising
therapeutic molecule for obtaining exercise-like benefits such as
improving mobility and metabolism.

Methods
Drosophila strains and culture conditions. WT, dSesnXP4 (UAS-dSesn) and
dSesn8A11 (dSesn−/−) were previously produced in Exelixis w1118 background14.
Mef2-Gal4 (#27390), MHC-GS-Gal4 (#43641), ap-Gal4 (#3041), UAS-dAKT
(#8191), UAS-dAKTRNAi (#33615), UAS-dRictorRNAi (#36699), UAS-dSin1RNAi

(#32371), UAS-4E-BPRNAi (#36667), UAS-dTSC2RNAi (#34737), UAS-dPGC1RNAi

(#33915), and fly lines with an attP landing platform were obtained from the
Bloomington Drosophila Stock Center (BDSC). UAS-dSesnRNAi-A (#38481) and
UAS-dSesnRNAi-B (#104365) were obtained from the Vienna Drosophila RNAi
Center (VDRC). UAS-dPGC1 is a kind gift from Dr. David Walker (UCLA), and
UAS-myr-dAKT (constitutive active AKT) is from Dr. Michelle Bland (University
of Virginia). dSesn cDNA14 of wild-type (dSesnWT) and C86S (dSesnCS)-, D424A
(dSesnDA)- or D423A/D424A (dSesnDDAA)-mutated forms were attached to an N-
terminal 3 × -FLAG tag, and cloned into a pUAST-attB vector. C86, D423 and
D424 in dSesn correspond to C125, D406 and D407 in Sesn2. The constructs were
microinjected into embryos of the attP (#24486 from BDSC) strain, which has a
PhiC31 integrase insertion on the X chromosome and an attP landing platform on
the second chromosome. The transgene insertion was identified by presence of the
mini-white marker. The flies were cultured on standard cornmeal-agar medium
(for strain maintenance and breeding) or 10% sugar-yeast medium (for post-
development husbandry, exercise training and lifespan assay) with humidity (70%),
temperature (25oC) and light (12/12 h light/dark cycle) control.

Exercise training in Drosophila. Cohorts of at least 680 flies were collected under
light CO2 anesthesia within 2 h of adult eclosion and separated into vials con-
taining 20 flies. Flies were then separated into two groups of more than 340 flies:
exercised and unexercised groups. Both unexercised and exercised groups of flies
were placed on the exercise training device at the same time to control for exercise-
independent environmental factors. Every 15 s, the exercise device drops the vials
of flies to induce an innate negative geotaxis response in a repetitive manner.
Although exercised flies can run to the top of the vial, unexercised flies were
prevented from running by a foam stopper placed low in the vial. Daily exercise
time was gradually increased to generate a ramped program that can improve
mobility in flies. For all experiments in this study, males were used for all analyses
as they are more responsive to exercise training compared to females.

The exercise training was performed at the same time of day each day shortly
after lights-on and did not exceed more than 3 h. Sleep is disturbed during the
period of training, but the chosen period typically consists of the lowest amount of
sleep to minimize the sleep disruption. Any effects seen from the minimal
disruption will also be found in the unexercised controls, because they are also
placed on the machine at the same time; therefore, sleep deprivation likely does not
account for any of the differences seen. More complete description of the exercise
protocol, as well as detailed protocols for other analyses such as runspan and flight
performance assays, can be found in our recent publication67. All biochemical
analyses, including western blot and quantitative RT-PCR were performed on flies
after more than 24 h of rest after a final exercise bout. Therefore, the observed
molecular changes are not from acute effects but from chronic and long-term
effects of exercise.

Running endurance analysis in Drosophila. Eight vials of flies from each cohort
were subjected to the runspan analysis at two time points: once on day 5 and once
on day 25 of adulthood. For each session, the flies were placed on the Power Tower
exercise machine27 and made to climb until they no longer responded to the
negative geotaxis stimulus. Monitored at 15 min intervals, a vial of flies was visually
determined to be fatigued when five or fewer flies could climb higher than 1 cm
after three consecutive drops. Runspans used a minimum of 8 vials containing 20
flies each. Each vial was plotted as a single datum. Runspan graphs with fewer data
points indicate that two or more vials were scored as fatigued at the same time.
Each experiment was performed in duplicate or triplicate, and runspans were
scored blindly when possible. The time from the start of the assay to the time of
fatigue was recorded for each vial, and the data analyzed using log-rank analysis in
GraphPad Prism (San Diego, CA, USA).

Flight performance assays in Drosophila. Duplicate or triplicate cohorts of at
least 120 flies were aged and/or exercise trained in narrow vials housing groups of
20 age-matched siblings. Acrylic sheeting with paintable adhesive was placed in the
flight tube, and fly cohorts were ejected into the apparatus to record flight per-
formance and subsequent landing height after release. Fly cohorts were introduced
to the flight tester one vial at a time using a gravity-dependent drop tube in order to
reduce variability. After a full cohort of flies was captured on the adhesive, the
sheeting was removed to a white surface in order to digitally record the landing
height of each fly. Flies with damaged wings were censored from final analysis to
control for mechanical stress not related to training performance. Images were
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analyzed using ImageJ. Landing height was averaged and compared in Prism using
a two-tailed student t test.

Controls for genetic and environmental factors in Drosophila. For dSesn
knockout experiments, dSesn8A11/8A11 flies were compared to Exelixis w1118 flies,
from which the mutant allele was generated14. For dSesn RNAi experiments, adult
progeny was collected from the same vial over a 72-h time period, and randomly
split into control (OFF) and experimental (ON) groups. ON group received 100
μM mifepristone (Cayman Chemical, Ann Arbor, MI), which activates gene switch
(GS) driver, while OFF group received same trace amount of vehicle solution (70%
ethanol) until the experimental endpoint. For dSesn overexpression experiments,
the attP (#24486 from BDSC) strain, which was used for generating UAS-dSesnWT

and mutant dSesn strains, were instead crossed to Mef2-Gal4 and used as a genetic
background control. These flies were used for both exercise and lifespan assays.

Exercise-independent environmental factors were controlled for by exposing
unexercised flies to the same environment in all respects except that unexercised
flies were prevented from running as described above.

Mouse strains and rearing conditions. All mice used in this study are in the
C57BL/6 background. Sesn1−/− mice68 and Sesn2−/−/Sesn3−/− mice25, both in the
C57BL/6 background, were interbred to produce TKO mice. As formerly repor-
ted69, the TKO mice showed reduced viability and semi-sterility, but considerable
number of mice survived up to adulthood without any gross developmental
abnormalities. Mice were maintained in filter-topped cages and were given free
access to autoclaved regular chow diet (LFD; 5L0D, Lab Diet) or HFD (S3282, Bio-
Serv, when indicated) and water at the University of Michigan according to
National Institutes of Health (NIH) and institutional guidelines. We complied with
all relevant ethical regulations for animal testing and research. All experiments
were approved by the University of Michigan Institutional Animal Care & Use
Committee (Protocol numbers: PRO00007710, PRO00006772, PRO00006689,
PRO00006206, and PRO00005712).

Voluntary wheel running. Voluntary running experiments were performed at the
University of Michigan Frankel Cardiovascular Center – Physiology Phenotyping
Core, according to their established protocols. In brief, running wheels (Comfort
Wheel; Central Garden and Pet) were introduced to allow mice to voluntarily
exercise. 6-month-old WT (n= 4) and Sesn1−/− (n= 5) male mice (Fig. 3), 1-year
old WT (n= 3; Sesn1+/− littermate control) and Sesn1−/− (n= 4) male mice
(Supplementary Fig. 2), and 5-month-old WT (n= 5) and Sesn1−/−/Sesn2−/−/
Sesn3−/− (TKO, n= 4) mice (Fig. 4) were subjected to voluntary wheel running.
Running wheel activity was monitored daily through cyclocomputer (Cateye) for
3 weeks. After the period, mice were kept on the wheels for 4–6 additional weeks
until additional metabolic analyses including glucose tolerance tests, respirometry
and insulin response studies were completed.

Glucose tolerance test and insulin response studies. For glucose tolerance tests,
mice were starved for 6 h, and blood was drawn from a tail nick at the indicated
time points after i.p. injection of glucose (1 g kg−1 body weight), and blood glucose
was instantly measured with a one-touch ultra glucose meter (Lifescan, Inc.). For
an acute insulin response study, mice were kept under surgical-plane anesthesia
using isoflurane, and skeletal muscle was harvested from each leg before and after
injection of insulin (0.8 U kg−1 body weight). The tissues were snap frozen and
used for subsequent analyses such as immunoblotting.

Metabolic cage. Metabolic cage, body composition, and exercise respirometry
experiments were performed at the Michigan Mouse Metabolic Phenotyping
Center Core, according to their established protocols. In brief, oxygen consumption
(VO2), carbon dioxide production (VCO2), spontaneous movements, and food
intake were measured using the Comprehensive Laboratory Monitoring System
(CLAMS, Columbus Instruments). After measuring body weight, each mouse was
placed into the sealed chambers (7.9″ × 4″ × 5″) individually. The study was carried
out continuously for 96 h, in an environmental room set at 20–23 °C with 12–12 h
(6:00PM–6:00AM) dark-light cycles. During this time, food and water were pro-
vided to the animals through the feeding and drinking devices equipped inside the
chamber. The amount of food consumed by each animal was monitored through a
precision balance installed under the chamber. A standard gas (20.5% O2 and 0.5%
CO2 in N2) was used to calibrate the system before each experiment. VO2 and
VCO2 samplings were done sequentially for 5 s in a 10 min interval. Spontaneous
activity was recorded every second in X and Z dimensions. The air flow rate was
adjusted to keep the oxygen differential around 0.3% at resting conditions. RER
was calculated as VCO2∙VO2

−1.

Body composition. Body weight, fat mass, and lean body mass were measured
using an NMR analyzer (Minispec LF90II, Bruker Optics), maintained according to
the manufacturer’s recommendation. Conscious mice were put into the measuring
tube with minimal restraint, and the individual measurements took less than 2 min.

Exercise respirometry. VO2 and VCO2 were measured using the CLAMS
instrument described above. Before the study, the mice were each placed into the
treadmill chambers to acclimate them to the treadmill environment. For two days
prior to the study, the mice were individually put into the same treadmill for 30
min each day. Mice were weighed prior to the running test. They were then
individually placed into the sealed treadmill chambers (305 × 51 × 44 mm3). The
slope of the treadmill was set at 25° to the horizontal. The measurements were only
carried out between 9:00AM and 3:00PM on each day. During this time, the
animals were run on the treadmills one at a time and the treadmill was wiped clean
between each test. As described above, the CLAMS system was routinely calibrated
before the experiment using the standard gas. VO2 and VCO2 in each chamber
were sampled continuously every 5 s. The air flow rate through the chambers was
set at 0.50 LPM. RER was calculated as VCO2∙VO2

−1. Total glucose oxidation and
fatty acid oxidation are calculated, respectively, based on the values of VO2 and
VCO2 using equations 1.69∙VO2 - 1.69∙VCO2 and 4.57∙VCO2 - 3.23∙VO2, respec-
tively. The mice were all ran under the same standard treadmill schedule, which
was: 30 min baseline recording, 5 min at 5 mmin−1, 9 mmin−1, 12 mmin−1 and
15 mmin−1, and then 2 min at 17–47 mmin−1 increasing by 2 mmin−1. Mice
were run until they are exhausted. Exhaustion was qualified by a mouse sitting on
the shocker (1.60 mA, 120 V, 3 Hz) for five consecutive seconds, at which point the
shocker was shut off and treadmill schedule stopped. Then, 15–20 min of recovery
data were recorded.

Primary myoblast culture and differentiation. Primary myoblasts were isolated
from hind limb muscles of 2 month-old WT and TKO male mice. The isolated
myoblasts were cultured in myoblast growth media (F-10 media, 20% FBS, 10 ng
ml−1 basic fibroblast growth factor, Penicillin-Streptomycin). For differentiation
into myotubes, when primary myoblasts were around 95% confluency, differ-
entiation media (DMEM, 2% horse serum) was treated for 5 days. Phase contrast
microscope images were taken under an inverted microscope attached to a digital
camera during the course of differentiation. For fluorescent imaging, fully differ-
entiated myotubes were incubated with 100 nM Mitotracker CMX-ROS (M7512,
Invitrogen) for 30 min at 37 °C. After fixation with 4% paraformaldehyde and
permeabilization with 0.2% Triton X-100, the cells were treated with 6.6 µM Alexa
Fluor 488-conjugated phalloidin (A12379, Invitrogen) for 45 min and 1 μg mL−1

DAPI for 10 s at room temperature then imaged under Leica SP5 confocal
microscope.

Measurements of mitochondrial oxygen consumption. Mitochondrial oxygen
consumption rate was measured through the XFe96 Extracellular Flux Analyzer
(Seahorse Biosciences) according to the manufacturer’s recommendation. Oxygen
consumption rate (OCR, moles min−1) was measured as an index of mitochondrial
function. Initially, baseline rates were measured, and then, 1 μM oligomycin, 0.25
μM FCCP and 0.5 μM rotenone/antimycin A (XF cell mito stress test kit from
Agilent Technologies, 103015-100) were injected sequentially through the ports of
the Seahorse flux assay kit cartridge. The rates were measured at three consecutive
time points. A line diagram of the OCR measurements was shown after normal-
ization with baseline rates. Mitochondria-specific respiration rates were also cal-
culated. Basal mitochondrial respiration was derived by subtracting the rotenone
rate from the baseline rate, ATP-linked respiration by subtracting the oligomycin
rate from the baseline rate, proton leak respiration by subtracting the rotenone rate
from the oligomycin rate, maximal mitochondrial respiration by subtracting the
rotenone rate from the FCCP rate, and reserve mitochondrial respiration by sub-
tracting the baseline rate from the FCCP rate. All these mitochondrial respiration
values were normalized by non-mitochondrial respiration, which is same as the
rotenone rate.

C2C12 myoblast culture and differentiation. C2C12 cells were originated from
ATCC (CRL-1772) and cultured in DMEM supplemented with 10% FBS and
Penicillin-Streptomycin. Cells were tested negative for Mycoplasma contamination
in PCR-based analysis using these primers: F: GTGGGGAGCAAA(C/T)
AGGATTAGA, and R: GGCATGATGATTTGACGTC(A/G)T. For differentiation,
when cells were at 80–90% confluence, growth media was replaced with differ-
entiation media (DMEM, 2% horse serum) for 5 days. Differentiated C2C12 cells
were verified through their myotube morphology, and subjected to adenoviral
infection.

Adenoviral procedures. Flag-tagged full-length human Sesn2 was cloned into
pACCMV-I shuttle vector, and then assembled into the adenoviral backbone at the
University of Michigan Vector Core (Ad-SESN2). GFP-expressing adenoviruses
(Ad-GFP), constructed in the same way, were used as a negative control. For dose-
dependent infection experiments for C2C12 myotubes, total amount of viral par-
ticles used for infection was kept constant, and the ratio between Ad-SESN2 and
Ad-GFP was proportionally changed according to the infection scheme. At 36 h
after infection, harvested cells were subsequently utilized for immunoblotting or
quantitative RT-PCR.

Antibodies. dSesn, Sesn1, and Sesn2 antibodies were generated from rabbits and
guinea pigs using GST-fusion proteins14,25. All in-house antibodies were affinity
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purified using PVDF-immobilized target proteins and confirmed through knockout
tissue lysates. Commercial Sesn3 antibodies (Abcam, ab97792) were also used to
detect Sestrins. Tubulin (T5168) antibodies are from Sigma. Actin (JLA20),
Wingless (4D4), type I MHC (BA-D5), type IIA MHC (SC-71) and type IIB MHC
(BF-F3) antibodies are from Developmental Studies Hybridoma Bank (DSHB).
Phospho-Thr398 Drosophila S6k (9209), phospho-Thr389 S6k (9234), phosphor-
Thr172 AMPKα (phospho-Thr184 Drosophila AMPK; 2535), AMPKα (2532),
phospho-Ser79 ACC (3661), ACC (3676), Flag (2368), phospho-Ser505 Drosophila
Akt1 (4054), phospho-Ser473 mouse Akt1 (9271) and mouse/Drosophila Akt
antibodies (4691) are from Cell Signaling Technology. PGC1α (sc-517380), PGC1β
(sc-373771), MYH (skeletal muscle myosin heavy chain; sc-32732), MyoD (sc-
377460), NDUFS3 (sc-374282), SDHA (sc-390381), SDHB (sc-271548), COX2 (sc-
514489), UQCRFS1 (sc-271609), UQCRC2 (sc-390378), ATP5A (sc-136178),
ATP5B (sc-55597) and S6K (sc-8418) antibodies are from Santa Cruz Bio-
technology. For immunoblotting, antibodies were diluted at 1:200 for Santa Cruz
antibodies and at 1:1,000 for all other antibodies. For immunostaining, antibodies
were diluted at 1:500 (type IIA MHC antibody) or 1:100 (all other antibodies).

Muscle histology. Whole mouse soleus and gastrocnemius muscles were snap
frozen in O.C.T compound (Tissue-Tek) using isopentane-cooled in liquid nitro-
gen, and cut into 10-µm-thick cryosections. To determine muscle fiber type, muscle
cryosections were permeabilized in 0.5% Triton X-100 in PBS, treated in MOM
blocking solution (Vector laboratories, BMK-2202), according to the manu-
facturer’s instructions. The sections were incubated overnight at 4 °C with primary
monoclonal antibodies against type I myosin heavy chain (MHC) (BA-D5, mouse
IgG2b), type IIA MHC (SC-71, mouse IgG1) and type IIB MHC (BF-F3, mouse
IgM). The primary monoclonal antibodies were detected with goat anti-mouse
secondary antibodies against IgG2b (Alexa 350, A-21140), IgG1 (Alexa 555, A-
21127), and IgM (Alexa 647, A-21238), obtained from Invitrogen. To visualize
extracellular matrix, wheat germ agglutin (WGA) lectin conjugated to AlexaFluor
488 (Life Technologies, W11261) was used. Type IIX muscle fibers were detected
by the absence of immunofluorescent signal. Fluorescence images were obtained
through Nikon A1 confocal microscope. The sections of gastrocnemius were
stained for NADH-TR (complex I) and succinate dehydrogenase (SDH, complex
II) through the following method. For histochemical detection of mitochondrial
complex I activity, sections were incubated for 30 min at 37 °C in freshly prepared
1 mgml−1 nitroblue tetrazolium and 1 mgml−1 NADH in 100 mM Tris (pH 7.6)
solution. For detecting mitochondrial complex II activity, the sections were dried at
the room temperature for 10 min and were rehydrated with PBS (pH 7.2), and then
incubated in a complex II assay solution containing 50 mM phosphate buffer (pH
7.4), 50 mM succinic acid, and 0.5 mgmL−1 nitroblue tetrazolium (NBT) at 37 °C
in a humidity chamber for 30 min. The sections were washed in distilled water,
dried, and then mounted in glycergel mounting medium (Dako). All histological
sections were imaged under a light microscope (Meiji).

Transmission electron microscopy. For transmission electron microscopy,
samples were fixed in 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer, pH 7.4,
overnight at 4 °C. The next day, samples were rinsed twice in Sorensen’s, fixed in
1% osmium tetroxide in Sorensen’s for 1 h, and rinsed in double distilled water.
The samples were then dehydrated in ascending concentrations of ethanol, 10 min
each, rinsed twice in acetone, and embedded in epoxy resin. Resin blocks were cut
to 70 nm ultra-thin sections and stained with uranyl acetate and lead citrate.
Sections were imaged on a JEOL 1400+ electron microscope at 80 keV with
Hamamatsu ORCA-HR digital camera system.

Contractile force. Contractile properties of skeletal muscle were examined through
the following method70. Intraperitoneal injection of tribromoethanol (400 mg kg
−1) was used to anesthetize the mice, and anesthesia was maintained by supple-
mental injections of tribromoethanol throughout the procedure. Contractile
properties of gastrocnemius (GTN) muscle were measured in situ. The whole GTN
muscle was isolated from surrounding muscle and connective tissue of anesthetized
mice, and the distal tendon was severed and secured to the lever arm of a servo-
motor (model 305B, Aurora Scientific). Muscles were activated via stimulation of
the tibial nerve by platinum wire electrodes. Stimulation voltage was adjusted to
produce maximum force, typically between 5 and 10 V. With muscles held at
optimum length for force production, trains of 0.2 ms stimulus pulses were applied.
Pulse frequency was increased until a maximum force was reached. Contractile
properties of soleus (SOL) muscles were measured in vitro. Each SOL muscle was
removed from the animal and placed in a horizontal bath containing buffered
mammalian Ringer solution (137 mM NaCl, 24 mM NaHCO3, 11 mM glucose, 5
mM KCl, 2 mM CaCl2, 1 mM MgSO4, 1 mM NaH2PO4, and 0.025 mM turbo-
curarine chloride) maintained at 25 °C. The solution was bubbled with 95% O2/5%
CO2 to maintain pH 7.4. One tendon was tied to a force transducer (model BG-50,
Kulite Semiconductor Products Inc.) and the other tendon was tied to a fixed post.
Muscles were stimulated between two platinum plate electrodes, and a maximum
force was measured as described above for GTN muscles. After all force mea-
surements, muscle mass was measured and total fiber cross-sectional area (CSA)
was calculated by dividing the muscle mass by the product of fiber length
(determined from previously established ratios of optimum muscle length to fiber

length) and muscle density, 1.06 g per cm2. Maximum specific force (SOL, kN per
m2; GTN, N per cm2) was calculated for each muscle by dividing maximum force
by CSA.

Immunoblotting. For immunoblotting, tissue lysates were boiled in 1X SDS sample
buffer for 5 min, separated by SDS-PAGE, transferred to PVDF membranes and
probed with primary antibodies and then with horseradish peroxidase-conjugated
secondary antibodies. Chemiluminescence was detected using LAS4000 (GE) sys-
tems. Uncropped immunoblot images were provided as a Source Data file.

Immunostaining of imaginal discs. Third instar wandering-stage larvae of the
indicated genotypes were collected, rinsed and dissected in phosphate-buffered
saline (PBS) for immunostaining14. Imaginal disc complexes were fixed in Brower
Fix (0.15 M PIPES pH 6.9, 3 mM MgSO4, 1.5 mM EGTA, 1.5% NP-40) mixed with
one-third volume of 8% methanol-free formaldehyde for 3 h at 4 °C. After washing
in PBT (PBS with 0.1% Tween-20), the tissues were incubated in 1X Western
blocking reagent (Roche) diluted in PBT for 1 h at room temperature. The tissues
were then incubated overnight at 4 °C with primary antibodies in 1X Western
blocking reagent. The tissues were then washed with PBT, and incubated for 3 h at
room temperature with fluorophore-conjugated secondary antibodies (Invitrogen)
in 1X Western blocking reagent. After washing with PBT, the tissues were rinsed
with PBS and mounted in ProLong Gold anti-fade reagent (Invitrogen). Samples
were examined under a Nikon A1 confocal microscope.

Quantitative RT-PCR. Total RNA was extracted using the Trizol system (Invi-
trogen). RNA was treated with DNase I (Thermo Fisher, 18068015) and reverse
transcribed using MMLV reverse transcriptase (Thermo Fisher, 28025013) with
random hexamers (Thermo Fisher, N8080127). Relative transcript amounts were
measured by the StepOnePlus Real Time PCR system (Applied Biosystems), using
iQ SYBR Green Supermix (Bio-rad, 1708884). All mRNA expression data were
normalized to the Actb level (mouse) or the rp49 level (Drosophila). Following
primer pairs were used.

Myod1 F, CCACTCCGGGACATAGACTTG
Myod1 R, AAAAGCGCAGGTCTGGTGAG
Myog F, GAGACATCCCCCTATTTCTACCA
Myog R, GCTCAGTCCGCTCATAGCC
Myf5 F, AAGGCTCCTGTATCCCCTCAC
Myf5 R, TGACCTTCTTCAGGCGTCTAC
Myh7 (Mhc-I) F, ACTGTCAACACTAAGAGGGTCA
Myh7 (Mhc-I) R, TTGGATGATTTGATCTTCCAGGG
Myh2 (Mhc-IIa) F, AAGTGACTGTGAAAACAGAAGCA
Myh2 (Mhc-IIa) R, GCAGCCATTTGTAAGGGTTGAC
Myh1 (Mhc-IIx) F, GCGAATCGAGGCTCAGAACAA
Myh1 (Mhc-IIx) R, GTAGTTCCGCCTTCGGTCTTG
Myh4 (Mhc-IIb) F, TTGAAAAGACGAAGCAGCGAC
Myh4 (Mhc-IIb) R, AGAGAGCGGGACTCCTTCTG
Pgc1a F, TATGGAGTGACATAGAGTGTGCT
Pgc1a R, CCACTTCAATCCACCCAGAAAG
Pgc1b F, TCCTGTAAAAGCCCGGAGTAT
Pgc1b R, GCTCTGGTAGGGGCAGTGA
Ppara F, AGAGCCCCATCTGTCCTCTC
Ppara R, ACTGGTAGTCTGCAAAACCAAA
Esrra F, CTCAGCTCTCTACCCAAACGC
Esrra R, CCGCTTGGTGATCTCACACTC
Tfam F, ATTCCGAAGTGTTTTTCCAGCA
Tfam R, TCTGAAAGTTTTGCATCTGGGT
Cytc F, CAGCTTCCATTGCGGACAC
Cytc R, GGCACTCACGGCAGAATGAA
Ckmt F, ACACCCAGTGGCTATACCCTG
Ckmt R, CCGTAGGATGCTTCATCACCC
Cox5a F, GCCGCTGTCTGTTCCATTC
Cox5a R, GCATCAATGTCTGGCTTGTTGAA
Mtco2 F, AATTGCTCTCCCCTCTCTACG
Mtco2 R, GGTTTTAGGTCGTTTGTTGGGAT
Cpt1b F, GCACACCAGGCAGTAGCTTT
Cpt1b R, CAGGAGTTGATTCCAGACAGGTA
Oxct1 F, CATAAGGGGTGTGTCTGCTACT
Oxct1 R, GCAAGGTTGCACCATTAGGAAT
Mdh1 F, TTCTGGACGGTGTCCTGATG
Mdh1 R, TTTCACATTGGCTTTCAGTAGGT
Idh3a F, TGGGTGTCCAAGGTCTCTC
Idh3a R, CTCCCACTGAATAGGTGCTTTG
Actb F, CAAAAGCCACCCCCACTCCTAAGA
Actb R, GCCCTGGCTGCCTCAACACCTC
dPGC1 F, GGATTCACGAATGCTAAATGTGTTCC
dPGC1 R, GATGGGTAGGATGCCGCTCAG
rp49 F, ACGTTGTGCACCAGGAACTT
rp49 R, CCAGTCGGATCGATATGCTAA
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Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated and analyzed during the current study, as well as materials unique
to this study, are available from the corresponding authors on reasonable request. The
source data underlying Figs. 1b–j, 2a–l, 3a–f, 4a–l, 5a–e, 6b–e, g, h, 7a–h and
Supplementary Figs. 1a–f, i, j, 2a–d, 3–9 are provided as a Source Data file.
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