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ARTICLE

Representation of features as images with
neighborhood dependencies for compatibility
with convolutional neural networks
Omid Bazgir1, Ruibo Zhang1, Saugato Rahman Dhruba1, Raziur Rahman1, Souparno Ghosh2,3 & Ranadip Pal 1✉

Deep learning with Convolutional Neural Networks has shown great promise in image-based

classification and enhancement but is often unsuitable for predictive modeling using features

without spatial correlations. We present a feature representation approach termed REFINED

(REpresentation of Features as Images with NEighborhood Dependencies) to arrange high-

dimensional vectors in a compact image form conducible for CNN-based deep learning. We

consider the similarities between features to generate a concise feature map in the form of a

two-dimensional image by minimizing the pairwise distance values following a Bayesian

Metric Multidimensional Scaling Approach. We hypothesize that this approach enables

embedded feature extraction and, integrated with CNN-based deep learning, can boost the

predictive accuracy. We illustrate the superior predictive capabilities of the proposed fra-

mework as compared to state-of-the-art methodologies in drug sensitivity prediction sce-

narios using synthetic datasets, drug chemical descriptors as predictors from NCI60, and

both transcriptomic information and drug descriptors as predictors from GDSC.
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In recent years, machine learning (ML) has produced numer-
ous insights from the surge of data generated in diverse areas.
For instance, bioinformatics and computational biology have

benefited from the availability of high-throughput information
from different genomic characterization levels, such as genome,
transcriptome, proteome, and metabolome. These large datasets
often have the issue of numerous features with limited samples
that necessitates the use of feature selection prior to modeling. A
predictive modeling framework with high predictive accuracy and
inbuilt feature engineering mechanism can be highly useful in
such circumstances. In large pharmacogenomic studies, in order
to predict drug efficacy based on genomic characterizations,
various ML approaches, such as elastic net (EN), random forest
(RF), support vector machine (SVM), kernelized Bayesian mul-
titask learning, and so on have been proposed1–4, where an initial
feature selection/extraction step is paramount before model
building. Although, sparse linear regression approaches, such as
LASSO and EN do offer embedded feature selection, but the
accuracy of the models are significantly lower than the ensemble,
kernel, and nonlinear regression approaches under model mis-
specification1. In contrast, deep convolutional neural network
(CNN) has the potential to provide high-accuracy prediction,
while automatically discovering multiple levels of joint repre-
sentation of the data, and thus eliminating the need for feature
engineering5. CNN bypasses the a priori manual extraction of
features by learning them from data6. Furthermore, their repre-
sentational richness often allows capturing nonlinear dependen-
cies at multiple scales7 and minimizing generalization error rather
than the training error8.

CNN-based deep learning methods have shown improved
performance in various applications, such as speech recognition,
object recognition9, natural language processing10, genomics, and
cancer therapy11,12. Deep (multilayered) neural networks are
especially well-suited for learning representations of data that are
hierarchical in nature, such as images or videos13. CNN-based
methods have achieved close to human-level performance in
object classification, where a CNN learns to classify the object
contained in an image14. In the field of computational biology,
Alipanahi et al.11 used a 1D CNN architecture to predict speci-
ficities of DNA and RNA-binding proteins by directly training on
the raw sequence data. Note that 1D CNN can be directly applied
to scenarios where the features have relationships with neighbors
like DNA or RNA sequences. However, a 1D CNN will not be
highly effective in scenarios where ordering of features does not
describe the dependencies among features. For instance, gene
expression values for biological samples or molecular descriptors
for chemical compounds, in their raw form, do not exhibit any
form of ordering, and therefore, not amenable to a 1D CNN.

On the other hand, if the predictors are presented in 2D form,
i.e., images, a CNN is often effective due to leveraging the spatial
correlation among the neighbors to reduce the number of model
parameters compared to a fully connected network, by utilizing
the convolution operation and parameter sharing. In classifica-
tion setup, Coudray et al.12 demonstrated the efficiency of this
approach to distinguish the most prevalent lung tumor subtype
from normal lung tissues by using whole slide images from The
Cancer Genome Atlas and validating on independent histo-
pathology images. Thus, the ability to represent a collection of
potentially high-dimensional scalar features as images, with cor-
related neighborhoods, has the potential of benefiting from the
automated feature extraction and high-accuracy prediction of
CNN-based deep learning. To our knowledge, the only other
approach for representing data as images is OmicsMapNet15 that
was proposed at the same time we were developing our REFINED
idea. OmicsMapNet uses TreeMap16 to rearrange omics data into
2D images that requires preliminary knowledge extracted from

Kyoto Encyclopedia of Genes and Genomes, and therefore, can-
not be used in absence of ontology knowledge, or in cases of non-
omics features such as drug descriptors17–19.

In this paper, we present a methodology termed REFINED
(REpresentation of Features as Images with NEighborhood
Dependencies), for representing high-dimensional feature vectors
as mathematically justifiable 2D images that can be processed by
standard CNN-based deep learning methodologies. We illustrate
the advantages of our proposed framework in terms of accuracy
and Bias characteristics on both synthetic and pharmacological
datasets from public repositories, such as NCI60 Human Cancer
Cell Lines Screen20 and Genomics of Drug Sensitivity in Cancer
(GDSC)21.

Results
In this section, we report the performance of our REFINED-CNN
methodology on the three different scenarios using a synthetic
dataset, NCI60, and GDSC. We compare these performances with
the performances for standard ML approaches, such as EN,
logistic regression (LR), RF, SVM classifier or as regressor (SVR),
and deep artificial neural network (ANN). The detailed descrip-
tion of the datasets along with the model specifications and
architectures are provided in the “Methods” section. Moreover,
for NCI60 and GDSC scenarios, we also compare REFINED-
CNN performances with two other CNN-based approaches—
Random-CNN and principal component analysis (PCA)-CNN—
with input images being generated by random permutation and
PCA on the features, respectively, as elaborated below in the
“Alternative image generation approaches” section.

Evaluation metrics. We used two sets of performance evaluation
metrics to asses the results for scenarios in two modeling para-
digms—regression and classification.

Metrics for regression: We used normalized root mean square
error (NRMSE), and Pearson correlation coefficient (PCC)
between the predicted and observed values along with the
reduction in Bias in prediction for evaluation. NRMSE is the ratio
of the root mean square error (RMSE) for a given model over the
error for the observed mean as prediction, and gives an estimate
of the capabilities of the given model in minimizing the
generalization error normalized to the variance in the observed
response. PCC gives the degree of collinearity between the
observed and predicted responses, and a high value is desired
since a lower PCC value implies a lack of collinearity often
indicative of model misspecification and poor predictive
capability. We represent the Bias in prediction as the slope of
the best-fitted line through the prediction residuals, where x-axis
represents the observed response, or in other words, the tangent
of the bias angle, θ in degrees, between the best-fitted line and the
observed values. This ensures that the bias is in [0, 1] where a
smaller angle is desired, since an unbiased model is expected to
produce θunbiased= 0∘ or bias= 0. We also used the normalized
mean absolute error (NMAE) metric for a few comparisons that
is defined similiarly to NRMSE except for using MAE instead of
RMSE. Representing the observation, prediction and residual
vectors as y; ŷ, and ϵ, the corresponding mean values as �y; �̂y, and
∥ ⋅ ∥, ∣ ⋅ ∣ as Euclidean norm and absolute value operations, these
metrics are defined as

NRMSE ¼ RMSE for given model
RMSE for intercept-only model

¼ k y � ŷ k
k y � �y k ; ð1Þ

PCC ¼ cov y; ŷð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ðyÞ var ŷð Þp ¼ ðy � �yÞT ðŷ � �̂yÞ

k y � �y kk ŷ � �̂y k ; ð2Þ
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Bias ¼ tan θ; θ ¼ ffðy; ϵÞ ¼ ffðy; y � ŷÞ

¼ cos�1ð yTðy � ŷÞ
k y kk y � ŷ kÞ;

ð3Þ

NMAE ¼ MAE for given model
MAE for intercept-only model

¼ y � ŷj j
y � �yj j : ð4Þ

Metrics for classification: The discriminative models for the
sensitive and resistant drugs in NCI60 were evaluated using
accuracy, precision, recall, F1-score, and the area under the
receiver operating characteristics (AUROC) metrics. Accuracy is
defined as the fraction of correctly identified sensitive (true
positive) and resistant (true negative) drugs in the total set of
drugs. Precision is the model capability of predicting the positive
instances, i.e., the fraction of correctly identified sensitive drugs in
all drugs identified as sensitive. Recall or true positive rate (TPR)
is the model sensitivity to identifying the positive instances, i.e.,
the ratio of two numbers—correctly identified sensitive drugs and
actual sensitive drugs. F1-score is a measure of binary classifica-
tion accuracy and defined as the harmonic mean of the precision
and recall of the classifier. Finally, AUROC is the highest AUROC
curve in a plot containing multiple ROC curves, and thus,
multiple potential candidate models. Note that, a ROC curve
displays the model TPR and FPR (false positive rate; the fraction
of false positives in all positive identification, i.e., the fraction of
sensitive drugs misidentified as resistant in all drugs identified as
sensitive) values at various threshold levels. Representing the total
count of true positive, true negative, false positive, and false
negative (sensitive drugs misidentified as resistant) in prediction
as TP, TN, FP, and FN, these metrics are defined as

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

; ð5Þ

Precision ¼ TP
TPþ FP

; ð6Þ

Recall ¼ TP
TPþ FN

; ð7Þ

F1-score ¼ Precision�1 þ Recall�1� ��1 ¼ 2TP
2TPþ FPþ FN

;

ð8Þ

FPR ¼ FP
FPþ TN

: ð9Þ
Robustness metrics: Besides these paradigm-specific metrics for

each task, we also calculated the 95% confidence interval (95%
CI) for each individual metric to asses the prediction robustness.
For regression tasks, we applied a pseudo jackknife-after-
bootstrap3,22 approach, where multiple bootstrap sets are selected
from the complete set of test samples and a corresponding error
metric distribution is used to calculate the 95% CI for a given
sample (i.e., a cell line in NCI60 or a cell line–drug combination
in GDSC). For classification tasks, we used the binomial
proportion confidence interval23,24.

Furthermore, for regression tasks, we used Gap statistics25 to
report the significance of the difference in performance across
methods. We paired each individual model with a null model1

through bootstrap sampling on the dose–response values of the
test set along with the corresponding predicted values. The null
model randomly predicted dose–response values for test set using
the distribution of the training set dose–responses, and this
process is repeated for 10,000 times to generate individual pairs of
distributions for NRMSE, PCC, and bias metrics for each

regression model–null model pair. Finally, we used k-means
clustering (k= 2) to generate two cluster centroids for each pair
of distributions and the difference between these centroids
represents the performance difference. In addition, all models
were subjected to a robustness analysis1 through calculating the
number of times REFINED-CNN outperformed the competing
models in those 10,000 repetitions.

Alternative image generation approaches. For comparison
purposes, we consider two alternative image generation methods
based on (i) random projections and (ii) PCA representation. In
the random projection approach, we assume each image is a
matrix and the location of each entry in the vector is randomly
mapped to a location in the matrix. Hence, we placed each ele-
ment of the drug descriptors or gene expression values on the
image coordinates one after another. In the PCA-based approach,
we employed PCA26 that is used extensively for data visualization
or dimensionality reduction (DR). In PCA, each sample could be
represented on a 2D plane aligned with the first two major
eigenvectors (or principal components; PCs) of the data covar-
iance matrix. We used the sets of first two PCs from the covar-
iance matrices of our datasets, as feature coordinate sets for PCA-
based image generation. Some example images from the random
projection and PCA-based procedures are shown in Fig. 1, which
afterward, are used to train individual CNNs, dubbing the com-
plete methodologies as Random-CNN and PCA-CNN,
respectively.

Synthetic data. We offer comparative performances of the can-
didate models on a simulated dataset. First, we generate a lex-
icographic ordering of P features. The features are generated from
a zero-mean Gaussian process with covariance depending only on
the lexicographic distance between the features. In each case, a
subset of features were randomly selected as spurious. Subse-
quently, random weights generated fo non-spurious features were
used to generate the target values. The generated target values
were normalized in [0, 1]. We have used REFINED to generate
images for different N and/or P scenarios and then trained a CNN
for each. In each case, the same dataset was used to train RF, SVR,
and ANN for comparison, and performances were evaluated via
fivefold cross-validation. The results are summarized in Fig. 2 as
heatmaps, where the green regions represent the cases where the
REFINED-CNN NRMSE is less than the competing models. The
separate heatmaps for all model results are provided in Supple-
mentary Figs. 1–4. The heatmaps clearly show that the
REFINED-CNN methodology outperforms others when the fea-
ture and sample sizes are relatively large (P > 100, N > 600),
regardless of the amount of spurious features present in the
dataset. Furthermore, we observe that the performance of the
posited methodology improves as N increases. Chen et al.27 also
reported that the performance of their unidimensional scaling
(UDS)-based projection improved with increase in both N and P,
and therefore, our findings suggest that our second-order
REFINED approximation is in agreement with their first-order
stringing approximation27. Moreover, as the ratio of spurious
features increases, we observe REFINED-CNN to increasingly
outperform the competing models even without any feature
preselection step. This exercise demonstrates the ability of our
approach to automatically remove spurious features without
performing an explicit feature selection a priori. Also, by com-
paring the REFINED-CNN vs. ANN heatmaps, we observe that
increasing the sample size reduces the gap between their perfor-
mance, as more samples are available to train the large number of
ANN parameters.
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We next investigated the effect of the REFINED-CNN
approach on the bias characteristics of the prediction. Supple-
mentary Fig. 5 shows the scatter plot of prediction vs. observed
responses for the four models when 80 and 20% of the features
are spurious. Clearly, the scatter plot for REFINED-CNN closely
follows a straight line with unit slope indicating the predictive
accuracy of our approach. RF and SVR reveal their well-known
tendency to underpredict the higher values and overpredict the
lower values in observation28. REFINED-CNN bias is also lower
than the bias observed for the ANN scenario. Thus, it appears
that REFINED-CNN approach can automatically improve the
bias in prediction that some of the existing models are known to
suffer from.

NCI60 classification tasks. We investigated the discriminative
power of REFINED-CNN approach to identify the resistant and
sensitive (nonresistant) drugs on different NCI60 cell lines, as
compared to the other models. The threshold for defining resistant
and sensitive classes was selected based on the drug sensitivity
distribution shown in Supplementary Fig. 6. A drug is considered
resistant if the corresponding normalized GI50 (NLOGGI50)
values are <4.25 and sensitive otherwise. Since each unique drug
for a particular cell line is a sample in this scenario, and we have
sufficiently large number of drugs for each cell line. We randomly
considered 80% of the drugs for training, 10% for validation, and
10% for testing. As shown in the Fig. 3a, the REFINED-CNN
outperforms other classifiers for all 17 cell lines. The mean

1.0

Random

N
S

C
 =

 1
94

5
N

S
C

 =
 2

05
2

PCA REFINED

0.8

0.6

0.4

0.2

0.0

Fig. 1 Examples of image generation through different approaches. Illustration of some example images for NCI60 drug descriptors, where each title
denotes the associated image generation method, and each drug is denoted by a unique NSC ID54 assigned by the Development Therapeutic Program
(DTP) of National Cancer Institute (NCI) to a chemical agent or product ranging from small molecules to compounds.

Fig. 2 Performance comparison for varying sample and feature sizes. Differences in NRMSE values for REFINED-CNN with three competing models (RF,
SVR, and ANN) for different sample sizes and feature sizes containing varying degrees of spuriosity. Each green heatmap region denotes a case where
REFINED-CNN outperforms the other models.
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classification accuracy of REFINED-CNN, ACCREFINED-CNN=
75.4% is considerably higher than the mean accuracy obtained for
the other six models: ACCRandom-CNN= 71.6%, ACCPCA-CNN=
71.7%, ACCANN= 70.3%, ACCRF= 70.0%, ACCSVM= 69.0%, and
ACCLR= 67.9%. For each model, we also report the precision,
recall, F1-score, and AUROC values, all of which demonstrate the
superior discriminative capabilities of REFINED-CNN. The
detailed classification results along with 95% CI values are pro-
vided in Supplementary Tables 1–2.

To compare the statistical significance of the difference in
performance of the competing classifiers with REFINED-CNN,
we used McNemar’s test, a paired nonparametric statistical
hypothesis test, that evaluates whether two models disagree in the
same way or not29. We performed a pairwise comparison of each
classifier with REFINED-CNN by forming a contingency table
and using the null hypothesis that both models disagree by the
same amount with a p-value cutoff of 0.05. The complete results
for these comparisons are provided in Supplementary Table 3.

a

b

c

Fig. 3 Comparative performance of REFINED-CNN for the NCI60 dataset. The predictive model associated with each bar is defined under it. a Summary
of REFINED-CNN classifier performance compared to six other classifiers for all 17 cell lines. b Summary of REFINED-CNN performance compared to six
other regression models for all 17 cell lines. c Summary of REFINED ablation study results on the regression task where REFINED_MDS represents our
proposed approach.
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We observe that the REFINED-CNN classifier performance is
significantly different from the other six classifiers—LR, RF, SVM,
ANN, Random-CNN, and PCA-CNN.

NCI60 regression tasks. The NCI60 dataset was randomly par-
titioned into 80, 10, and 10% segments for training, validation,
and test, and the same sets were used for model comparison. The
performance of each model was evaluated using NRMSE, PCC,
and bias. Figure 3b provides a bar plot summary of the perfor-
mance of each model (the detailed performance is provided in
Supplementary Table 4 along with the corresponding 95% CI
values in Supplementary Fig. 7). We note that CNN again out-
performs all the competing models in all 17 cell lines with an
average improvement of 6–20% in NRMSE, 8–36% in PCC, and
12–38% in bias. To explore the performance variations with
different random projections, we tried different projections and
the corresponding results in Supplementary Table 5 bolster the
notion that there exists no random feature map that can poten-
tially outperform REFINED as feature representation.

We used Gap statistics and robustness analysis as described in
the “Evaluation metrics” section to compare the REFINED-CNN
prediction with other competing models. The robustness analysis
results in Supplementary Table 6a indicate that REFINED-CNN
has better performance in terms of NRMSE for 89.5–100% of the
times, PCC for 94.4–100% of the times, and bias for 91.1–100% of
the times on average. The Gap statistics results in Supplementary
Table 6b strengthens this conclusion for both average and per cell
line scenarios. The NRMSE and PCC distributions for all seven
models along with the null models are displayed for three NCI60
cell lines in Supplementary Fig. 8.

Data augmentation. We analyzed the effect of data augmentation
on the performance of REFINED-CNN, using samples from the
less represented regions in the sensitivity distribution displayed in
Supplementary Fig. 6. The massive point mass associated with the
nonsensitive (resistant) drugs severely impacts a global regression
model for modeling NLOGGI50. This problem is analogous to
the zero-inflation problem in classical statistical literature, where
the discrete point mass is modeled separately from the con-
tinuous part (see refs. 30,31 and references therein). In our
situation, it boils down to a classification into sensitive/resistant
category followed by a regression for the sensitive category. We
have already demonstrated superiority of REFINED-CNN in both
scenarios in Supplementary Tables 1 and 4. Now, we explore if
the REFINED-CNN performances could be improved by over-
sampling the sensitive category to arrive at a more balanced
dataset. To that end, we used a version of Synthetic Minority
Oversampling Technique (SMOTE)32 to generate bootstrap
replicates from the sensitive category. The NRMSE and NMAE
improvements of REFINED-CNN on five different cell lines are
illustrated in Table 1. The bootstrap data augmentation system-
atically decreases the NRMSE and NMAE for the cell lines,
indicating the negative impact of the point mass in the response
distribution.

Sample size analysis. Deep CNN models are expected to perform
better with larger number of samples, as compared to smaller
number of samples. Therefore, we trained our model on different
portions of training sets for randomly selected cell lines to test this
hypothesis. We trained our model on 20, 40, 60, and 80% of the
available drugs applied on the selected cell lines, and kept the rest of
the data for testing, considering NRMSE as a comparison metric.
The results of five cell lines are summarized in Supplementary Fig. 9
and Supplementary Table 7 that illustrates that REFINED-CNN
outperforms the other models as sample size increases. This trend
was also observed for the synthetic data in Fig. 2.

Model stacking analysis. To explore whether stacking of multiple
models can improve prediction performance, we used linear
stacking to combine various models and predict the test set
sensitivity values, while using the validation set predictions to
calculate stacking weights for each model. We used three different
combinations of models—(i) non-CNN stacking using RF, SVR,
ANN, and EN, (ii) CNN-based stacking using PCA-CNN, Ran-
dom-CNN, and REFINED-CNN, and (iii) all model stacking.
Supplementary Fig. 10 shows the performances of these three
stacked models with the following mean NRMSE values:
NRMSEall= 0.738, NRMSECNN= 0.744, and NRMSEnonCNN=
0.837. Comparing these results with the mean NRMSE of each
model in Supplementary Fig. 10 reveals a significant improve-
ment in performance for stacked models compared to the indi-
vidual non-CNN models. Note that, the mean NRMSE for
REFINED-CNN in Fig. 3b is also significantly lower than the
NRMSE for the non-CNN stacked model.

Bias analysis. We reinvestigate the effect of the REFINED-CNN
approach on the bias characteristics of the prediction using the
NCI60 dataset. Supplementary Fig. 11 displays the residual vs.
observed plots for all seven models. Similar to the synthetic data
scenario described above, Supplementary Fig. 11: first row shows that
REFINED-CNN has the lowest bias (i.e., the smallest bias angle):
θREFINED-CNN= 20.2∘ compared to the rest: θRandom-CNN=
32.8∘, θPCA-CNN= 23.8∘, θANN= 29.2∘, θRF= 34.6∘, θSVR= 33.5∘, and
θEN= 43.1∘. To investigate whether bias correction erodes the
advantage of REFINED-CNN in terms of bias, we considered the
BC1 bias correction algorithm proposed by Zhang et al.33, where we
fit a linear regression model on the residuals. The results shown in
Supplementary Fig. 11: second row illustrates the superiority of
REFINED-CNN in terms of bias reduction even after additional bias
correction is applied to the competing models.

GDSC sensitivity prediction. We consider the application of
REFINED-CNN in integrating of two types of heterogeneous
datasets. Our predictors consist of (i) PaDEL descriptors34

representing the chemical compounds, and (ii) gene expression
representing genetic characterization profiles. The response con-
sists of the IC50 values for a particular drug–cell line combination.
We used the REFINED approach to generate the images

Table 1 Effect of bootstrap data augmentation on REFINED-CNN performance.

Cell line Sample size (O) Sample size (B) NRMSE (O) NRMSE (B) NMAE (O) NMAE (B)

SNB_78 13940 19613 0.784 0.744 0.713 0.688
MDA_MB_435 36868 59570 0.787 0.762 0.739 0.729
NCI_ADR_RES 37156 59250 0.798 0.755 0.745 0.717
786_0 49344 76908 0.752 0.713 0.688 0.663
COLO_205 48946 75158 0.741 0.722 0.664 0.660

O original dataset, B bootstrap-augmented dataset.
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corresponding to the gene expressions for each cell line and drug
descriptors for each drug compound in the GDSC dataset.

Considering 222 drugs and around 972 cell lines for each drug,
the total number of samples in the dataset is close to 177 K. We
randomly divided the dataset into 80% training, 10% validation,
and 10% test sets, where each set covariates contains 1211 genes
and 992 chemical drug descriptors. Supplementary Fig. 12a
represents the scatter plot of the log IC50 prediction (top row)
using REFINED-CNN, Random-CNN, PCA-CNN, ANN, RF,
SVR, and EN along with the corresponding residual plots (bottom
row). Table 2 provides a performance summary for each model
using NRMSE, PCC, and bias. Similar to NCI60, we used Gap
statistics and robustness analysis to further compare the models
in Supplementary Table 8. The Gap statistics distribution plots
per metric per model-pair with corresponding cluster centroids
are provided in Supplementary Figs. 13–15.

As shown in Table 2, REFINED-CNN model achieves
improvement compared to other models in the range of 3–47%
for NRMSE, and 1–42% for PCC. We also train REFINED-CNN
on 50 and 20% of the available samples, and compared the
performance with the competing models. Since the CNN
architecture (see Supplementary Fig. 16) trained on the 80%
REFINED images was too complex to be trained on the 20%
REFINED images, we sought to reduce the network complexity
for both REFINED-CNN and ANN models by removing certain
layers (namely the last convolution layer and the following
dense layer for CNN and the first two dense layers for ANN). The
detailed results are provided in Supplementary Table 9, while the
corresponding prediction and residual scatter plots are in
Supplementary Fig. 12b, c.

We also incorporated a larger feature size (i.e., number of
genes) to assess the effect of input image size. We selected
feature subsets of size, P= 2147, 2985, 4271, 8048
(≈2000, 3000, 4000, 8000) and created corresponding REFINED
images to train the same CNN architecture that we used with 1211
genes, and the other competing models with same hyperparameter
sets. However, the SVR model crashed after several hours due to
large memory requirement during kernel estimation via pairwise
distance computation, and therefore, we resorted to use a bag of
SVRs with selected subsets of 400 features (appended gene
expression and drug descriptors) to train 100 models in parallel.
The complete results are provided in Supplementary Fig. 17 and
Supplementary Table 9 along with the 95% CI values for 80%
REFINED images in Supplementary Fig. 18. We observed that the
trend of REFINED-CNN outperforming other models is main-
tained irrespective of the training feature size.

Comparison with state-of-the-art. We have compared
REFINED-CNN with two state-of-the-art approaches. The first

one is the Deep-Resp-Fores (DRF) proposed by Su et al.35. DRF is
a deep cascaded forest designed to classify anticancer drug
response as sensitive or resistant, using heterogeneous input sets
of gene expression and copy number alteration (CNA) from
GDSC. We switched the RF classifier in DRF to a RF regressor for
our application and used drug descriptors in place of CNA for
training. The second approach is the heterogeneous graph neural
networks (HGNN) proposed by Lim et al.36. HGNN automates
the feature engineering task by aggregating feature information of
neighborhood nodes, where the input data of the network are
from different sources37, and embeds the 3D structural infor-
mation of protein–ligand complexes in distance matrix to predict
drug–target interactions. We trained their network by encom-
passing gene–drug information in distance matrix to predict drug
sensitivity for GDSC. The comparative performance for DRF and
HGNN with REFINED-CNN is provided in Table 3 along with
the corresponding robustness analyses in Supplementary Table 8.
As the results indicate, REFINED-CNN outperforms both DRF
and HGNN for GDSC drug sensitivity prediction.

Ablation study. The main components of REFINED are a DR
followed by a search optimization algorithm. We used Bayesian
multidimensional scaling (BMDS) as a global distortion mini-
mizer and hill climbing as local adjustment to reach a locally
optimal configuration among multiple automorphs. To investi-
gate the contribution of each component to REFINED, we have
evaluated the effect of using different approaches in each step. For
the first step, we replaced BMDS with different DR techniques,
such as isomap38, linear local embedding (LLE)39, and Laplacian
eigenmaps (LE)40. Isomap generalizes multidimensional scaling
(MDS) with using geodesic distance (GD) in nonlinear manifolds
rather than Euclidean distance (ED), where GD is approximated
as a sum of ED values. LLE is a local technique that tries to
reconstruct each sample based on the k-nearest samples in a
lower dimension locally. LE is similar to LLE except it uses
Laplacian graph to reconstruct the k-nearest neighbors, where k
eigenvectors corresponding to the k smallest eigenvalues are

Table 2 REFINED-CNN performance comparison with competing models for the GDSC dataset.

Model NRMSE
(20%)

NRMSE
(50%)

NRMSE
(80%)

PCC
(20%)

PCC
(50%)

PCC
(80%)

Bias
(20%)

Bias
(50%)

Bias
(80%)

EN 0.890 0.889 0.887 0.488 0.484 0.486 0.848 0.849 0.840
RF 0.609 0.620 0.569 0.797 0.785 0.821 0.433 0.417 0.337
SVR 0.750 0.742 0.525 0.847 0.845 0.853 0.257 0.273 0.241
ANN 1.407 0.475 0.435 0.519 0.883 0.901 0.784 0.153 0.233
Random-CNN 0.579 0.456 0.441 0.836 0.892 0.903 0.215 0.193 0.222
PCA-CNN 0.612 0.461 0.443 0.820 0.891 0.901 0.201 0.228 0.179
REFINED-CNN 0.541 0.439 0.414 0.845 0.899 0.911 0.255 0.173 0.197

The numbers in parentheses indicate the percentages of the available data used for training.
EN elastic net, RF random forest, SVR support vector regression, ANN artificial neural networks, Random-CNN random mapping based convolutional neural network, PCA-CNN principal component
analysis based convolutional neural networks, REFINED-CNN proposed REFINED approach-based convolutional neural networks. Bold values indicate the best performances.

Table 3 Comparison of REFINED-CNN with DRF and HGNN
for GDSC dataset.

Model NRMSE PCC Bias

REFINED-CNN 0.414 0.911 0.197
DRF 0.986 0.169 0.976
HGNN 0.637 0.805 0.446

REFINED-CNN proposed REFINED approach-based convolutional neural networks, DRF Deep-
Resp-Forest, HGNN heterogeneous graph neural networks. Bold values indicate the best
performances.
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preserved for embedding41. To investigate the contribution of the
search optimization, we initialized each feature location randomly
and applied the hill climbing methodology with the objective of
minimizing the difference between feature distance matrix (ED)
in the initial domain and the created REFINED image. We gen-
erated images using all the abovementioned methods and then
trained CNNs with the architecture used for NCI60 regression
task on the same cell lines. Figure 4 shows the images created
using each described method for an example drug from NCI60,
while Supplementary Figs. 19 and 20 provides the images for five
more drugs.

The mean performances are presented in Table 4 and as bar
plots in Fig. 3c. The results demonstrate that REFINED initialized
with BMDS provides the smallest NRMSE values compared to the
other DR approaches. We also observed that both global and local
embeddings do better than random initialization followed by hill
climbing. Furthermore, the idea of nonoverlapping pixel locations
for the features borne out of the hill climbing step improves the
performance of the individual DR approaches. The detailed
results are provided in Supplementary Table 10.

Discussion
This paper presents an approach of converting high-dimensional
vectors into images with spatial neighborhood dependency that
can be used as input to a traditional CNN architecture. The
proposed methodology was conceived from the observation that
CNN-based deep learning has increased the prediction accuracy
in many scenarios especially when the input are images, but is not
usually appropriate when high-dimensional vectors with limited
neighborhood correlations are available as input. Our REFINED
approach produces a mapping of the input features such that the

spatial neighbors are close by and distant points in the initial
feature space are represented by faraway points in the map.
Several advantages of the proposed REFINED methodology can
be outlined as—the REFINED mapping to a compact image space
appears to allow for automated feature extraction using deep
CNN architecture. Using a synthetic dataset and varying the
amount of spurious features, we observed that REFIEND-CNN is
able to significantly outperform other approaches even for sce-
narios involving larger percentages of spurious features as shown
in Fig. 2. The REFINED-CNN methodology provides a gain in
predictive accuracy compared to other commonly used approa-
ches, such as ANN, RF, SVM, EN, and LR. We have validated the
performance of REFINED-CNN using a synthetic dataset, NCI60
drug response dataset, and GDSC heterogeneous dataset con-
taining molecular descriptors of drugs with transcriptomic
expressions of cell lines. REFINED-CNN also outperforms state-
of-the-art methods such, as Deep-Resp-Forest35 and hetero-
geneous graph networks36 for the heterogeneous input scenario.
REFINED-CNN also outperforms the existing approaches in
statistical significance and robustness. REFINED-CNN metho-
dology can also be used to seamlessly combine heterogeneous
predictors where each predictor can be mapped to an image, as
demonstrated for the GDSC prediction scenario. Perhaps the
biggest advantage of REFINED-CNN is that it has the potential to
combine multi-type predictors, where some predictors are images,
some can be high-dimensional vectors, and others can have
functional forms. In principle, each type of predictor can be
individually mapped to images and the corresponding images can
be used as input in a multi-arm CNN architecture. We observe
that REFINED-CNN has better ability to automatically perform
bias correction as compared to ANN, RF, and SVR as shown in all
three application scenarios (see Supplementary Figs. 5, 11 and 12).

MDS

REFINED MDS REFINED isomap REFINED LLE REFINED LE REFINED random

Isomap LLE LE Random
NSC = 3069

Fig. 4 Example of REFINED images created through different 2D mappings. Illustration of images generated for an example drug from NCI60 using the
REFINED approach initialized with different dimensionality reduction techniques, and before (top row) and after (bottom row) applying hill climbing to
eliminate feature overlapping.

Table 4 Ablation study for REFINED using regression on NCI60 dataset.

Mapping NRMSE (N) NRMSE (HC) PCC (N) PCC (HC) Bias (N) Bias (HC)

BMDS 0.858 0.776 0.582 0.647 0.616 0.481
Isomap 0.900 0.783 0.551 0.649 0.608 0.496
LLE 0.956 0.802 0.424 0.632 0.780 0.512
LE 0.829 0.781 0.603 0.645 0.558 0.514
Random 0.884 0.849 0.554 0.578 0.659 0.605

N no search optimization, HC hill climbing, BMDS Bayesian multidimensional scaling, LLE linear local embedding, LE Laplacian eigenmaps. Bold values indicate the best performances.
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The proposed REFINED approach can also be used for data
augmentation by using different realizations of the mapping
function as discussed in “Theoretical basis” in the “Methods”
section. We have provided a theoretical justification to motivate
how the proposed approach can map to an ordering of features if
such an ordering exists.

In terms of applications, REFINED can be applied to any
predictive modeling scenario where the predictors are high-
dimensional vectors without an explicit neighborhood-based
dependency structure. We motivated the application scenario
through the problem of predicting drug efficacy in cell lines based
on genetic characterizations and/or molecular descriptors, where
neither input is necessarily ordered based on correlation. Lim-
itations of the approach will include scenarios where the covar-
iance structure of the features is primarily diagonal with limited
correlations between variables. Furthermore, the REFINED
approach is expected to benefit from the traditional CNN
architecture, and thus the performance boost will require a large
number of samples typical to a CNN. Also note that, REFINED is
a second-order approximation under the Euclidean norm, and
therefore, if the predictor space is non-Euclidean, the current
form of REFINED will not be suitable.

To summarize, the paper presents an effective tool for feature
representation and multi-object regression and classification.

Methods
In this section, we elaborate on our proposed REFINED algorithm for mapping
high-dimensional feature vectors to images, as well as describe the datasets used for
performance evaluation followed by the CNN architectures used as the
predictive model.

REFINED. As mentioned earlier, the main idea of the REFINED-CNN approach is
to map high-dimensional vectors to mathematically justifiable images for training
by traditional CNN architectures. Evidently, a mapping of features from the high-
dimensional vector to a 2D image matrix serially in a row-by-row or column-by-
column manner will not guarantee any spatial correlations in the image. Instead,
we first obtain the ED matrix of the features and use it as a distance measure to
generate a compact 2D feature representation, where neighborhood features are
closely related. A potential solution to achieve this 2D projection is to apply DR
approach, such as MDS42 on a distance measure, e.g., ED. However, that will not
guarantee that each mapped point will have a unique pixel representation in the
image and might result in sparse images due to the overlap43. For instance, if we
have 900 features, the features can potentially be represented by a 30 × 30 matrix
and a direct MDS-like approach on a 30 × 30 space might not spread out each
feature in such a manner that each pixel contains at most one feature. To ensure
that the features are spaced out in a discrete grid and to incorporate the discrete
nature of the image pixels, we apply a Bayesian version of metric MDS (BMDS).
First, we start with the MDS algorithm to create an initial feature map (a 2D space
with feature coordinates) that preserves the feature distances in the 2D space with
minor computational cost. Next, we apply BMDS to estimate the feature locations
on a bounded domain with the constraint that each pixel can at most contain one
feature. However, the locations of the features are estimated up to an auto-
morphism, and therefore, we apply a hill climbing algorithm with a cost function
that measures the absolute difference in the ED values among the new feature
locations (as represented by the 2D image map) to the estimated true distances
(δ̂, anticipating the following section) among the features to arrive at an optimal
configuration.

More specifically, starting from the BMDS location estimates, we considered all
the configurations in the map sequentially in row order. For each feature, we tried
different permutations of the features by interchanging the position of the central
feature position with its neighboring features, and selected the permutation that
minimizes the abovementioned cost function. Once the cost function is minimized,
a set of unique coordinates in a 2D space was produced for each feature. Using
those coordinates, we mapped the features into a 2D space and create an image per
sample. The created images were then used to train a suitable CNN architecture.

The general idea of the REFINED-CNN methodology is shown pictorially in
Fig. 5 for the application case of predicting drug efficacy over a cell line, using
genetic characteristics of cell lines and molecular descriptors of the drug as
predictors. Here, we use the PaDEL software34 to get the as drug descriptors. In
Fig. 5, an example case is shown where F12 has been interchanged with its
neighboring features, and after each exchange, we checked the similarities (i.e.,
correlation) among the distances of features from the map and estimated distance
matrix of descriptors. If we can find a better exchange case in the feature map, we
exchange that feature pair and arrive at a new feature map. The entire process was

repeated iteratively until we reached the optimized feature map that has a distance
matrix close to the benchmark distance matrix, δ̂ of the initial features. At the
conclusion of this iterative algorithm, we arrive at a REFINED feature map with all
features having a unique position in a bounded 2D space, and similar features are
placed close by and dissimilar features are placed apart. Without loss of generality,
we have considered feature maps on unit square and the BMDS specification
induced sparsity in the image.

Figure 1 shows some REFINED images generated for different drugs
(represented by distinct NSC IDs). Each image varies from another depending on
the values of the PaDEL descriptors of the drug, but the descriptor coordinates are
same for all the cases.

Theoretical basis. Consider the predictor matrix X= {xij}, i= 1, 2, ⋯ , n; j=
1, 2, ⋯ , p with xij being the value of the jth predictor for the ith subject. Suppose,
the predictors are generated from a latent zero mean, square integrable stochastic
process {Z(s)} where the index s belongs to a compact subset of Rm . Let sj denote
the original position of the jth predictor produced by Z(s) and the observed data is

randomly permuted version of the original data, i.e., xij ¼ Zi sj
� �

.

Case 1 There is a underlying true ordering of the predictors, i.e., there exists a
permutation {π(1), ⋯ , π(p)} of {1, 2, ⋯ , p} such that sπ(1) < sπ(2) <⋯ < sπ(p) is the
true, but unknown, ordering of the predictors. If such ordering exists, we can take
m= 1 and the predictors can be projected on [0, 1] via UDS. Let f̂s1; � � � ; ŝpg be
the estimated locations of the p predictors on [0, 1] obtained via UDS. Let {ψ
(1), ⋯ , ψ(p)} be the permutation of {1, 2, ⋯ , p} that orders f̂s1; � � � ; ŝpg. Then,
under some regularity conditions ψ(j)= π(j), 1 ≤ j ≤ p, ∀p. Thus, UDS can correctly
identify the true relative pairwise distances among the predictors. For proof, see
ref. 27.

Case 2 Suppose the ordering does not exist, e.g., suppose multiple predictors are
equidistant from one another. Clearly, m= 1 may not be a valid assumption and
results corresponding to Case 1 become untenable in this situation. For the second-
order approximation, we start with m= 2, i.e., we would like to obtain the location
of the predictors in a compact subset of R2. Without loss of generality, we project
the locations on unit square ([0, 1]2). Let djk be the observed distance between the
jth and the kth predictor in the higher dimension and δjk be their true, but
unobserved, distances in the 2D plane. Under the assumption of Euclidean metric,

δjk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

lðsj;l � sk;lÞ2
q

, where s is now 2D coordinate system denoting the true

location of the predictors j and k in unit square. As in Case 1, we can assume that
π( ⋅ ) is the underlying true permutation of 2D configurations of the p predictors.
Our goal is to draw inference on the locations of each predictor, i.e., estimate sj∈
[0, 1]2.

Oh et al.44 developed a Bayesian estimation procedure to estimate s, based on
observed distance by assuming djk � Nðδjk; σ2ÞIðdjk > 0Þ at the data level. For the
location process, we specify a spatial homogeneous Poisson process (HPP) with
constant intensity λ= p/[0, 1]2 that essentially distributes locations of p predictors
randomly in an unit square. Since this corresponds to complete spatial
randomness, an alternative specification of location process is given by
s ¼ fs1; s2; � � � ; spg � U ½0; 1�2� �

, U denoting the uniform distribution45. Note
that, the properties of HPP guarantee that the HPP operating on the unit square
can be further partitioned into disjoint cells and the entire location process can be
expressed as the superposition of the HPPs operating on these disjoint cells.
Furthermore, as the volume of each cell (within the unit square) goes to zero, so
does the probability of observing more than one event in that cell46. We also note
that, we do not assume that the location process shows any clustering tendency a
priori; however, the uniform specification is flexible enough to capture clustering a
posteriori45. Let us denote the set of observed and true distances by d and δ,
respectively. Our data model is then given by

f djs; σ2� � / σ2
� ��q

2 exp � 1
2σ2

X
j > k

djk � δjk

� �2
�
X
j > k

logΦ
δjk
σ

� �2
4

3
5; ð10Þ

where q ¼ p
2

� �
is the total number of distances in the dataset and Φ( ⋅ ) is the usual

standard normal CDF. At the process level, we have

sjp � U ½0; 1�2� �
: ð11Þ

Finally, the prior is given by σ2 ~ IG(a, b) with a > 2, b > 0, and IG denoting
the inverse gamma distribution. Consequently, the full posterior distribution is
given by

½s; σ2jd� / σ2
� �� q

2þaþ1ð Þ exp � 1
2σ2

X
j > k

djk � δjk

� �2
�
X
j > k

logΦ
δjk
σ

� �
� b
σ2

2
4

3
5:
ð12Þ

When q is large,
P

logΦð�Þ � 0, the full conditional posterior of σ2 ∣ ⋅ is
approximated by IGðq2 þ a; 1

2

P
j > k ðdjk � δjkÞ2 þ bÞ. However, the conditional

posterior of s is not available in closed form, a Metropolis-in-Gibbs sampler is used
to obtain posterior realizations of the locations. Since s are identifiable only up
to an automorphism, convergence of the Markov Chain Monte Carlo is assessed on
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δ and σ2. Furthermore, following the recommendation of ref. 44, we used the
posterior mode of s as the point estimate of the predictor location.

Once these locations are estimated, we have a set of point-referenced predictor
location in the domain of interest. The domain is then subjected to regular square
tessellation such that each pixel contains at most one location—essentially
rewriting the point process a posteriori as superposition of constant intensity local
point processes operating on disjoint cells that the unit square in partitioned into.
In addition, the constraint of allowing at most one predictor location per-pixel
implies that the posterior location process is approximated by a Non-HPP46. The
foregoing hill climbing algorithm is then applied to arrive at locally optimal
configuration (the location process is not uniquely identifiable. Local adjustment
via hill climbing is done to mimic the swapping step of the partition-around-
medoid algorithm).

Once the tiled surface associated with the feature space is obtained, we have the
observed value, xðsjÞ, for each row of X. The intensity at each pixel is, therefore,
determined by xðsjÞ. Pixels that do not contain any predictor location are assigned
null values. This pixelated image on unit square is our second-order approximation
of the random functions developed in ref. 27. We can then deploy any suitable
smoothing operation (for example, autoregressive spatial smoothing47) to generate
the corresponding predictor images (such as shown in Fig. 1). Furthermore, each
posterior realization of s can be used for data augmentation purpose in CNN
architecture. Also, since Euclidean metric is invariant under translation, rotation,

and reflection about the origin, any such perturbation will not affect the
relationship between the response and predictors.

Note that, even if there exists ordering among the covariates, we can still generate
these images in the following way. Since27 guarantees that the relative pairwise
distances among the predictors, estimated from UDS, are consistent estimators of the
true relative distances, we can posit a calibration model for these estimates d̂jk to

connect with the true distance, i.e., d̂jk � Nðα0 þ α1δjk; σ
2ÞIðdjk > 0Þ.

Datasets and preprocessing. To evaluate our framework, we considered three
datasets: (a) a synthetically generated dataset, (b) NCI60 dataset consisting of drug
responses following application of >52,000 unique compounds on 60 human
cancer cell lines20, and (c) GDSC dataset that contains responses to 222 anticancer
drugs across ~972 cancer cell lines with known genomic information from
GDSC21. In scenario (b), we use the chemical descriptors of drugs to predict drug
responses in a specific cell line. In scenario (c), we consider two heterogeneous
predictor set—(i) gene expressions for cancer cell lines and (ii) chemical descriptors
for applied drugs, and use both these type of predictors to predict drug responses.

We simulated a synthetic dataset with P correlated features for N samples,
where for each simulation 20, 50, and 80% of the features were spurious. The
features were simulated from a zero-mean Gaussian process with stationary
isotropic covariance matrix whose (i, j)th element is given by γ i�jj j . We define

STAGE I
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STAGE III

REFINED image

CNN

VectorizationConvolution + pooling layers

Fully connected layers

Prediction

R (k ) < Rmax

R (k ) = Rmax

Permutation

REFINED core

Step (k-1): feature map 

Step (k): feature map

Optimal feature map

Initial image 
step (0) : feature map
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Molecular descriptors 

Distance stru
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Fig. 5 Pictorial representation of the REFINED approach. Overview of REFINED-CNN methodology for a representative application of drug sensitivity
prediction using high-dimensional input features, such as molecular descriptors of drugs or genomic profiles of cell lines. STAGE I, calculate the pairwise
dissimilarity matrix for the input features (672 × 672 Euclidean distance matrix for PaDEL descriptors of ~52,000 unique drugs in NCI60 here). STAGE II,
apply BMDS on this distance matrix to generate an initial image (of size 26 × 26 here) and apply hill climbing to arrive at an optimal configuration, i.e., the
REFINED image, by maximizing the similarity between initial and final dissimilarity matrices. STAGE III, train a suitable CNN architecture with the REFINED
images and predict sensitivity for a new sample (a given drug here).
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P= 20, 50, 100, 400, 800, 1000, 2000, 4000 and for each P, the number of simulated
samples is, N= 50, 200, 600, 1000, 2000, 5000, 10000. We simulated the target
values by simply multiplying random weights to the features. For example, N target
values with 100 features (XN × 100) with 20% spurious features were generated using
the relation X wr;w0½ �T , where wrð Þ80 ´ 1 are nonzero random weights and w0ð Þ20 ´ 1
are zeros.

The US National Cancer Institute (NCI) screened >52,000 unique chemicals on
~60 human cancer cell lines. The chemical (drug) response is reported as GI50 (in
molar, M) that is the concentration required to achieve 50% of maximal inhibition
of cell proliferation20. All the chemicals have an associated unique NSC identifier
number that is assigned to identify agents when they are submitted for clinical
trials to the Cancer Therapy Evaluation Program. We used the NSC identifiers to
obtain the chemical descriptor features and then used PaDEL software34 to extract
these features for each one of the chemicals. The descriptors with >10% zero or
missing values were discarded. The final dataset consists of 52,126 chemicals, each
with 672 descriptor features and 59 cancer cell lines. To incorporate the
logarithmic nature of dose administration protocol, we calculated the negative-log
concentration of GI50 values, termed as NLOGGI50 (for instance, NLOGGI50= 8
represents GI50= 10−8 M or 10 nM). The drug response distribution for two
illustrative cell lines are shown in Supplementary Fig. 6a, b. We selected 17 cell
lines with >10,000 drugs, to ensure availability of enough data points for training
deep learning models. The number of drugs applied on each selected cell line are
provided in Supplementary Table 11. All these preprocessing steps were conducted
in the training phase.

The GDSC project is a collaborative effort between the Cancer Genome Project
at the Wellcome Sanger Institute (UK) and the Center for Molecular Therapeutics
at the Massachusetts General Hospital Cancer Center (USA). According to the
GDSC website, this collaboration aims to incorporate the expertise at both sites for
discovering biomarkers that can be used to identify the most suitable candidates for
potential anticancer therapies. We have two different sets of input for GDSC v7.0—
(i) PaDEL descriptors for the 222 available drugs applied on ~972 cancer cell lines,
and (ii) microarray gene expression data for those 972 cell lines before drug
application. The response consists of experimentally obtained IC50 values for a
particular drug applied on a particular cell line, therefore, each sample now is a
unique drug–cell line combination. Considering 222 drugs applied on almost 972
cell lines, the total number of available samples becomes ~177,000.

Since in prior studies1,4,48, an initial feature selection was used to reduce the
feature size before training the predictive model, we also used an a priori RELIEF-F
feature selection49 in scenario (c) for easier comparison with earlier studies. Since
multiple drugs were tested on each cell line, a common subset of 1211 genes in the
top 8048(≈8000) genes for all 222 drugs were selected for each drug. Similar to (b),
we once again used PaDEL to obtain the initial chemical descriptor set, and the
descriptors with >10% zero or missing values were discarded resulting in a final set
of 992 descriptors for each drug. All gene expression and drug descriptor values
were normalized in [0, 1].

Predictive models. We used the REFINED images to train a CNN for drug
sensitivity prediction purposes in the three abovementioned scenarios. We com-
pared the performance of the REFINED-CNN with various standard ML models,
such as EN, RF, SVR, and deep ANN in the regression cases. For the classification
case involving NCI60, we also trained a LR model along with the abovementioned
model classifiers. In addition, for the scenarios (b) and (c), we also trained two
other CNNs with images created by random 2D projection matrix (Random-
CNN), and images created using PCA coordinates (PCA-CNN). The details of
these approaches are described in “Alternative image generation approaches” in the
“Results” section.

Note that for the synthetic dataset and NCI60, the predictors are a vector of real
values (chemical descriptor values for NCI60) being converted to images. For the
GDSC dataset, we have two types of input features—chemical descriptors
describing the drugs and gene expression describing the cell lines. We generated
individual images for each feature type and used both of them as input to the
CNNs. For the RF, SVR, ANN, and EN, these two types of features were appended
and used as the predictors. We trained REFINED-CNN and the other competing
models on same set of samples, where each sample is a combination of one drug
tested on one cell line. All the models were tested on a separate set of the same
samples.

The distribution of NLOGGI50 shows a massive point mass (Supplementary
Fig. 6), indicating that an overwhelming majority of drugs are not sensitive for
majority of the NCI60 cell lines. Thus, we considered a classification problem to
identify whether a drug is sensitive or resistant for the NCI60 cell lines. For
selecting the sensitivity threshold, we used the observed normalized logGI50
(NLOGGI50) distribution for different cell lines and empirically located the
threshold at 4.25. All the drugs with NLOGGI50 < 4.25 were considered resistant
and the rest are considered as sensitive.

Convolutional neural network. CNNs are designed to model multidimensional
arrays, where convolutional layers along with pooling layers are adaptive feature
extractors connected to sequential fully connected (dense) layers6. A convolutional

layer consists of multiple kernels connected to a local path of neurons in the
previous layer, where all neurons share same parameters to generate a feature map.
Thus, all neurons within the feature map scan same features in different locations
of the previous layer. The pooling layer summarizes the feature map by finding the
maximum or mean of each adjacent kernel that reduces the number of model
parameters5. We used two different CNN architectures—a sequential CNN for
modeling the NCI60 and synthetic dataset, and a hybrid CNN that can accom-
modate drug and genetic characterization images for the GDSC datasets.

The sequential CNN regressor contains six learned layers: one input layer, two
convolutional layer, two dense layer, and one output layer. The CNN input
dimension is same as the input image dimension, 26 × 26. The convolutional layer
contains 64 7 × 7 kernels convolving with valid border mode and stride= 2,
followed by batch normalization and rectified linear unit (ReLU) activation layer50.
Each dense layer is followed by a batch normalization layer and ReLU activation
layer. Number of neurons of the dense layers are 256 and 64, respectively. A
dropout layer with retaining probability of 0.7 was added before the output layer.
The above architecture remains same for Random-CNN, PCA-CNN, and
REFINED-CNN.

The sequential CNN classifier contains input layer with the same size as the
CNN regressor, three convolutional layer with 16 7 × 7 kernels, 32 7 × 7 kernels,
and 64 3 × 3 kernels, respectively. Each convolutional layer is followed by a batch
normalization51 and a ReLU layer. The third ReLU layer is followed by two dense
layers with 256 and 64 neurons, respectively. Same as the CNN regressor, each
dense layer is followed by a batch normalization, ReLU and a dropout layer. The
CNN classifier architecture remains same for Random-CNN, PCA-CNN, and
REFINED-CNN. We used Adam optimizer to train both CNN regressor and
classifier. The CNN regressor and classifier architecture is shown in Supplementary
Fig. 21.

We used hybrid CNNs with two input sets to model GDSC dataset, where two
separate sets of images are used as input to the two arms of the CNN. Each arm
contains three convolutional layers where the last convolutional layers are
concatenated, and followed by two sequential dense layers. The two input layers
represent the cell lines and drug images that defines each convolutional layer
dimension. The three convolutional layer of each arm have 60 5 × 5 kernels with
stride= 1, 72 6 × 6 kernels with stride= 2, and 72 5 × 5 kernels, respectively. The
last convolutional layer of the arm that takes drug images as input has stride= 1
and the other arm that takes cell line images as input has stride= 2. Each
convolutional layer is followed by batch normalization and ReLU activation layers.
The last two convolutional arms of the CNN are concatenated and connected to
two sequential dense layers with 305 and 175 neurons, respectively. A batch
normalization and a ReLU activation layer is included after each dense layer. A
dropout layer with retaining probability of 0.7 is placed before the output layer. The
CNN model architecture is shown in Supplementary Fig. 16. The hybrid CNN was
again trained by an Adam optimizer, and the same architecture was utilized for
Random-CNN, PCA-CNN, and REFINED-CNN. There are some variations in the
architecture depending on the training set size that are explained in “GDSC
sensitivity prediction”. All tuning parameters were chosen via a comprehensive
search described next.

Hyperparameter selection. To tune the competitive models, we did a grid search on
the following hyperparameters for each model using hold out for partitioning the
data. We randomly partition both NCI60 and GDSC data to 80% training, 10%
validation, and 10% test. The same training, validation, and test sets were used for all
models. The hyperparameters were tuned using the training and validation sets. The
test sets were held out for evaluating the final performance of each tuned model.

● RF: the number of decision trees, Ntrees∈ (100, 700). For the optimal feature
size for the best split at each node, we tried all the options provided by scikit-
learn52, including p;

ffiffiffi
p

p
, and log 2p where p denotes feature size.

● SVM: radial basis function kernel parameter, γ set by scale and auto options of
scikit-learn and the regularization parameter, C∈ (0.01, 100).

● EN/LR: the regularization term, α ∈ (0.3, 0.7) and L1 ratio 2 10�6; 10�4ð Þ.
● ANN: number of hidden layers ∈ (3, 6), number of neurons per hidden layer,

and learning rate of the Adam optimizer.

– Hidden layer 1: #neurons ∈ (800, 1200).
– Hidden layer 2: #neurons ∈ (600, 1000).
– Hidden layer 3: #neurons ∈ (400, 700).
– Hidden layer 4: #neurons ∈ (200, 500).
– Hidden layer 5: #neurons ∈ (50, 250).
– Hidden layer 6: #neurons ∈ (20, 80).
– Learning rate: ρ 2 10�6; 10�3ð Þ.

● CNN: as we did not have access to GPUs, we did not do comprehensive
hyperparameter grid search for the CNNs. The current parameters were
chosen over about hundreds of run. The hyperparameter space that we
searched was number of convolutional layers, number of dense layers, and the
learning rate of the Adam optimizer. In each convolutional layer, we seek
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optimum number of kernels, kernel size, and stride. For each dense layer, we
checked multiple numbers of neurons. The insights that we gained from
thousands of runs are as follows:

– 7 × 7 kernels were better than smaller kernels of size 3 × 3 for the
convolutional operator. For larger number of features, larger kernels
might be desirable.

– Using stride > 1 is more effective in embedded dimensionality reduction
than the pooling layer.

– Using two or more sequential convolution layers with kernel size= 7 × 7
and stride= 2 reduces the feature map dimension considerably compared
to the input image. Therefore, large number of kernels is recommended,
at least for the last convolution layer, to provide sufficient number of
extracted features for the dense layer.

– The width of network is as important as the depth of the network.
– The Adam optimizer is recommended.

For unbiased evaluation of models, nested cross-validation (NCV)53 is often
considered where an inner CV is used for model selection (hyperparameter
selection) and an outer CV is used for evaluating the model tuned by the inner CV.
However, NCV is often extremely computationally intensive, and thus we
considered a training-validation-test (hold out), where the hyperparameters are
tested on the validation set and the selected model is evaluated based on the
separate test set. We used this hold-out approach as the sample size is relatively
large and thus, both hold out and NCV are expected to provide similar results for
comparing different modeling approaches. To illustrate the similar behavior, we
compared the results of NCV and hold out using three randomly selected NCI60
cell lines. As the results provided in Supplementary Fig. 22 indicates, the difference
in the results are minimal. On the other hand, to compare the time complexity of
the two approaches, we selected one cell line with a fixed CNN architecture and
defined a grid for hyperparameters search. Within a single run spanning ~48 h on
Texas Tech University high performance computing cluster, 50 different models
can be tried using hold out, while only four models can be tried using NCV. Given
the time complexity and similar performance of the two approaches, we decided to
use the three-set hold-out approach for hyperparameter selection and model
evaluation, as we could search considerably larger space of hyperparameters while
gaining reliable estimate for model performance.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
NCI60: the GI50 data and associated drug chemical information that support the results
of this study are available in the Development Therapeutic Program (DTP) repository
(https://dtp.cancer.gov/databases_tools/bulk_data.htm) at NCI and the PubChem
database (https://pubchem.ncbi.nlm.nih.gov/) at National Library of Medicine (NLM).
GDSC: the IC50 data and cell line screening data that support the results of this study are
available at the GDSC repository (https://www.cancerrxgene.org/downloads/
bulk_download) and drug chemical information are available in the PubChem database
(https://pubchem.ncbi.nlm.nih.gov/) at NLM. PaDEL: the PaDEL software that was used
to convert the drug chemical information to molecular descriptors is available at http://
www.yapcwsoft.com/dd/padeldescriptor/.

Code availability
The source code and scripts used in the paper have been deposited in GitHub (https://
github.com/omidbazgirTTU/REFINED).
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