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Abstract: 18 

The thermodynamic availability of water (water activity) strictly limits microbial propagation on Earth, 19 

particularly in hypersaline environments. A considerable body of evidence indicates the existence of 20 

hypersaline surface waters throughout the history of Mars, therefore it is assumed that, as on Earth, 21 

water activity is a major limiting factor for martian habitability. However, the differing geologic 22 

histories of the Earth and Mars have driven variations in their respective aqueous geochemistry, with 23 

as-yet-unknown implications for habitability. Using a microbial community enrichment approach, we 24 

investigated microbial habitability for a suite of simulated martian brines. Whilst the habitability of 25 

some martian brines was consistent with predictions made from water activity, others were 26 

uninhabitable even when the water activity was biologically permissive. We provide evidence that high 27 

ionic strength, driven to extremes on Mars by the ubiquitous occurrence of divalent ions, renders these 28 

environments uninhabitable despite the presence of biologically available water. These findings show 29 

how the respective geological histories of Earth and Mars, which have produced differences in the 30 

planets’ dominant water chemistries, have resulted in different physicochemical extremes which define 31 

the boundary space for microbial habitability. 32 

 33 

 34 

  35 



1. Introduction:  36 

All known life requires liquid water, thus the discovery of water on other planetary bodies is central to 37 

assessing their habitability (Hubbard et al., 2002). Of the planets in our solar system, Mars has received 38 

a great deal of attention regarding its potential habitability since it is known to have hosted sustained 39 

bodies of liquid water on its surface during its history (Fairen et al., 2003; Achille and Hynek, 2010; 40 

Carr and Head, 2010; Krasnopolsky, 2015). Furthermore, some environments are thought to have been 41 

habitable in the planet’s ancient past, based on direct in-situ measurements (Grotzinger et al., 2014). It 42 

is now widely accepted that hypersaline surface waters (brines) have been pervasive on Mars, at least 43 

periodically, throughout the last 3.5 billion years, and may be present today (Vaniman et al., 2004; 44 

Gendrin et al., 2005; Carr and Head, 2010; Martinez and Renno, 2013; Karunatillake et al., 2014; Ojha 45 

et al., 2015). Evidence for saline waters can be found in large-scale evaporite mineral sequences (Knoll 46 

et al., 2005) in the globally distributed martian soil (Karunatillake et al., 2014), putatively in Recurring 47 

Slope Lineae features (Ojha et al., 2015), and in martian meteorites (Bridges and Schwenzer, 2012). 48 

Investigating the habitability of these brines is therefore crucial to understanding past and present 49 

martian habitability.  50 

Historically, our knowledge of life in brines (where salinities exceed that found in seawater) has been 51 

derived from studies of terrestrial sodium- and chloride-rich environments which, even at saturation, 52 

are permissive for the biotic activity of some halophiles and are accordingly populated by dense 53 

microbial communities (Oren, 2008). In brine environments on Earth, microbial life is primarily limited 54 

by the thermodynamic availability of water (water activity) (Stevenson et al., 2015a; 2015b). The 55 

currently accepted limit to life in high salt environments is reached at a water activity of 0.611 56 

(Stevenson et al., 2015b), close to the absolute limit for any cellular growth at a water activity of 57 

approximately 0.605 (Williams and Hallsworth 2009). By extrapolation, this parameter has been 58 

considered to be the major limiting factor for habitability in martian brines (Tosca et al., 2008). Water 59 

activity is considered by the Committee on Space Research (COSPAR) and NASA Mars Exploration 60 

Program Analysis Group (MEPAG) as a defining parameter for ‘Special Regions’ on Mars (those 61 



regions where multiplication of known microbes could plausibly take place) (Rummel et al., 2014), and 62 

thus plays a central role in shaping planetary protection policy and solar system exploration missions. 63 

Planetary geologic evolution can, however, result in different water chemistries, with undetermined 64 

implications for habitability. Investigations of terrestrial brine environments with chemistries that differ 65 

significantly from the dominant brine type on Earth are relatively few, but often reveal salt-induced 66 

stresses that are otherwise lacking in NaCl brines. For example, MgCl2-rich brine lakes in the deep 67 

Mediterranean exhibit high chaotropicity (macromolecule-disordering activity) alongside extremely 68 

low water activity, exacerbating their hostility and defining the limits of colonisation in the brine-69 

seawater interface (Hallsworth et al., 2007; Yakimov et al., 2015). Chaotropicity and kosmotropicity 70 

(macromolecule-ordering/-stabilizing activity) are measurable entropic phenomena exerted on 71 

macromolecular systems by solutes, including salts, that can significantly, and often detrimentally, 72 

affect living systems (Ball and Hallsworth, 2015). Furthermore, previous studies on salt stress have 73 

highlighted adverse effects caused by salt ions that cannot be explained by osmotic stress or low water 74 

activity (Lloret et al., 1995; Alves et al. 2015). 75 

The surface evolution of Mars has given rise to significantly different water chemistries; notably the 76 

widespread production of waters with high Mg2+, Fe2/3+ and SO4
2- contents (Catling, 1999; Bullock et 77 

al., 2004; Knoll et al., 2005; Carr and Head, 2010; Tosca et al., 2011). Due to high divalent : monovalent 78 

ratios (Fig. 1), such waters form brines with a high charge density (ionic strength) even at relatively 79 

clement water activities. Brine environments on Earth that contain elevated levels of divalent ions, such 80 

as the Mg2+ - rich Dead Sea, and MgCl2 brines in the deep Mediterranean, commonly contain Cl- as the 81 

dominant anion (Grant et al., 1999; Wallmann et al., 2002), and therefore their divalent : monovalent 82 

ratios rarely exceed 1 (Fig. 1). A notable exception is the Basque Lakes, in British Columbia, which are 83 

rich in magnesium sulfate salts (Eugster and Hardie, 1978). Here, the divalent content far exceeds that 84 

found in the Dead Sea and other brines considered as divalent-rich, and it approaches those of some 85 

martian brines (Fig. 1). 86 



Due to a complex dependency on charge interactions in biological molecules, high ionic strength can 87 

perturb native structure and function. High charge density is capable of inducing deformations in 88 

molecules such as nucleic acids and proteins (Baldwin, 1996; Kunz et al., 2004). Many adverse ion–89 

biomolecule interactions are exacerbated in the presence of di- or multivalent ions, including water-90 

activity reduction, chaotropicity and kosmotropicity as well as associated aggregating/ denaturing 91 

phenomena (Hofmeister effects), protein and nucleic acid destabilisation and lipid bilayer disruption 92 

(Kirkwood 1943; Green 1955; Baumann et al., 1997; Dominy et al., 2002; Collins, 2004; Cray et al. 93 

2013; Ball and Hallsworth, 2015). We therefore hypothesized that the elevated divalent : monovalent 94 

ratios in martian waters, compared to the majority of waters on Earth (Fig. 1), causes ionic strength to 95 

play a role in defining the window for habitability, even when water activity is permissive.  96 

As well as containing high levels of divalent ions, martian brines exert multiple physicochemical 97 

extremes, including low pH, low water activity, elevated divalent ion content and high levels of 98 

dissolved iron (depending on brine composition). The primary aim of the current study was to 99 

systematically assess the physicochemical parameters which define the habitability of typical martian 100 

brines, by seeding with natural microbial communities. In contrast to chloride-dominated brines on the 101 

Earth in which microbial propagation is primarily limited by water activity, the results presented here 102 

show that high ionic strength in martian brines constrains their habitability to a smaller window than 103 

current paradigms predict. 104 

2. Materials and methods 105 

2.1 Simulated martian brines 106 

Naturally-occurring saline environments on Earth with compositions matching those modelled for 107 

martian environments have not been reported (Fig. 1). Therefore we synthesized martian brines based 108 

on computational reconstructions of evaporative brine formation on the martian surface (Tosca et al., 109 

2011). Brine compositions are known to change significantly as evaporation proceeds (Eugster and 110 

Hardie, 1978), and the computational approach employed by these authors produced two stages of 111 

concentration for each brine (Stages [a] and [b]), allowing us to probe the effects that natural evaporative 112 



concentration can have on habitability. For information on the computational approach used to predict 113 

this evaporation and generate these two stages see Tosca et al. (2011). 114 

The martian brines considered for this work were grouped into three types/classes, representative of 115 

diverse saline environments on Mars. These were: alkaline carbonate-chloride brines (Type I), which 116 

during their more dilute phase are analogous to brackish fluids that persisted at the Curiosity Rover’s 117 

landing site in Gale Crater approximately 3.7 billion years ago (Léveillé et al., 2014). Upon simulated 118 

concentration, Type I brines evolved a concentrated K-Na-HCO3-Cl composition similar to fluids that 119 

interacted with the Nakhla martian meteorite (Bridges and Schwenzer, 2012). Type II brines were Mg-120 

SO4-Cl dominated, with comparatively low Na and K concentrations, and are characteristic of 121 

widespread large-scale Hesperian-aged salt (evaporite) deposits on Mars, such as those investigated by 122 

the Mars Exploration Rover Opportunity at Meridiani Planum (Knoll et al., 2005). Type III brines were 123 

similar in composition to Type II brines, but contained higher levels of dissolved iron, resulting in brines 124 

which were extremely acidic at both stages of simulated concentration. In both Types II and III martian 125 

brines, initially high divalent : monovalent ion ratios decreased dramatically following simulated 126 

evapoconcentration due to the relative solubility of chlorides (Fig. 1). Both Type II and Type III brines 127 

were characterised by high levels of sulfates; which as well as forming the dominant salt type in many 128 

evaporite deposits on Mars, is the most abundant soluble component in the globally distributed martian 129 

dust (Vaniman et al., 2004; Karunatillake 2014). Type I and II brines were each represented by one 130 

evaporation pathway, whereas two evaporation pathways were investigated for Type III brines to 131 

capture the compositional and physicochemical diversity possible in their evolution.  132 

Brine compositions for both stages of concentration were taken from Tosca et al. (2011) (Table 1). Salts 133 

were dissolved in deionised water, supplemented with 4 g L-1 yeast extract (Oxoid), and the solutions 134 

were stirred continuously for approximately 3 hours to ensure maximum dissolution. Yeast extract was 135 

selected as a carbon source as it provides an extensive inventory of proteins, amino acids and sugars. 136 

Preliminary enrichments in Type I and Type II Stage [a] brines supplemented with peptone, casamino 137 

acids and glucose generally yielded less biomass than did yeast-extract enrichments (data not shown). 138 

Due to saturating concentrations of salts in some solutions, brines were left at 30oC for five days to 139 



allow full equilibration of solid and liquid phases. Simulated martian brine solutions were not buffered; 140 

pH was left to vary with the salt component to simulate natural brine conditions. Solutions were then 141 

split into equal volumes for aerobic and anaerobic culture and filter-sterilised (0.22 µm diameter pores) 142 

into pre-autoclaved culture vessels; anaerobic brines were purged with N2 to remove oxygen and sealed 143 

in sterilised 100 ml serum bottles with butyl rubber stoppers to maintain anaerobic conditions. L-144 

cysteine-HCl was added to the anaerobic brines to a final concentration of 0.8 mM from sterile anoxic 145 

stocks. An equivalent volume (0.1% v/v) of sterile distilled water was added to aerobic brines. Finally, 146 

samples were taken for quantification of water activity, pH, chao/kosmotropic activity and ionic 147 

analyses (see below). Analysis of a pure 4 gL-1 yeast extract solution revealed that ionic strength was 148 

increased in all fluids in the current study by <0.004 mol litre-1 as a consequence of yeast extract 149 

supplementation. 150 

2.2 Environmental inoculum sources 151 

To maximise our chances of obtaining organisms capable of colonising the brines, we sampled a range 152 

of environmental microbial habitats. All sampling was carried out using pre-sterilised sample bags 153 

and/or centrifuge tubes. Where possible, samples were obtained from ≥ 5 cm sediment depths to 154 

increase chances of sampling anaerobic organisms as well as aerobes. Samples were stored at 4o C until 155 

use. A composite inoculum, made up of two environmental samples that were each added at 156 

approximately 1 % (v/v) to prepared volumes of brine, was used to screen all brines for evidence of 157 

microbial growth. The first – local soil in Edinburgh (UK) – was selected because it has been previously 158 

shown that the physicochemical, temporal and spatial variability within top soils have selected for 159 

organisms that are tolerant of a range of extremes (Young et al., 2008). Preliminary community analysis 160 

via 454 pyrosequencing of the Edinburgh soil revealed a typically high diversity of metabolically 161 

diverse taxa (Shannon’s H = 6.007 ± 0.044, Good’s coverage = 92.65% at 97% OTU similarity). The 162 

top layers (approximately 5 cm) of this soil cycle between hydration and complete desiccation,  driving 163 

extreme transitions in solute concentration(s) on a sub-millimetre scale. As such these soils represented 164 

a source of both high microbial diversity and physicochemical heterogeneity. A sample comprised of a 165 

mixture of brine and brine-saturated sediment from a 1.1 km-deep subsurface evaporite deposit (Boulby 166 



International Subsurface Astrobiology Laboratory, Boulby Mine, Whitby, North Yorkshire, UK) 167 

formed the other half of the composite inoculum. Water pH at time of sampling was approximately 7 168 

(Payler, unpublished). Chemical analyses showed this brine to be dominated by NaCl close to 169 

saturation, and it is known to support an active community of halophilic microorganisms (Payler, 170 

unpublished).  171 

Where the composite inoculum failed to produce growth, additional inoculum sources were: 1) marginal 172 

mud from an acidic hydrothermal pool at Kverkjöll Volcano, Iceland (N 64o 41.205’ W 16o 40.502’) 173 

(Cousins et al., 2013). The pool water contained high levels of dissolved iron (130 mM), sulfate (19.3 174 

g litre-1) and extremely low pH (1.75) at the time of sampling, values typical of those found in acid mine 175 

drainage sites such as Rio Tinto (Fernández-Remolar et al., 2004). 2) Brine and sediments from the 176 

MgSO4-brine Basque Lakes on the Cariboo Plateau, British Columbia (N 50o 35.596’ W 121o 20.934’). 177 

These are some of the only known hypersaline environments on Earth where sulfate forms the dominant 178 

anion (Nesbitt, 1990), and divalent : monovalent ratios reach values much greater than 1. As such, they 179 

represent perhaps the best terrestrial analogue for divalent-rich martian brines. Lake waters are known 180 

to fluctuate in concentration dramatically depending on season (Nesbitt, 1990), and at time of sampling 181 

(February 2015), the lake water was in a relatively dilute phase, containing 252 mM Mg, 243 mM 182 

sulfate, 71 mM Na and <5 mM Cl. Lake water pH was 5.80, the sulfate : chloride ratio was 33.3, and 183 

the divalent : monovalent ratio was 5.56 (Fig. 1).  184 

Any environmental inoculum contains a finite number of organisms. Thus for any brine that failed to 185 

support colonisation by the environmental inocula and based on the rationale that ‘everything is 186 

everywhere, but the environment selects’ (Baas Becking, 1934), we also placed 100 ml volumes 187 

outdoors, open to the atmosphere under a rain cover for one month to allow colonisation by airborne 188 

microbes. The rain cover was a slanted plastic ceiling placed approximately 30 cm above the vessels’ 189 

openings.  190 

Together, these samples provided a high probability of enriching for organisms that tolerate the unique 191 

combination of stresses present in martian brines. To confirm this, we designed a suite of control brines 192 



(Control-1 to Control-6) that systematically validated the tolerance of these inocula to physicochemical 193 

extremes of relevance to our experiments (Table 2, 3). These were prepared and inoculated with the 194 

environmental samples (2 % v/v) in triplicate both aerobically and anaerobically in an identical manner 195 

to the Mars-relevant brines described above, and were designed to exhibit low water activity (Control-196 

1), low pH (Control-2), combined low pH/low water activity (Control-3) and high levels of dissolved 197 

iron (Control-4). Control-5 and Control-6 were designed to exhibit high ionic strength, neutral pH and 198 

permissive water activity (Table 3). 199 

2.3 Incubation 200 

Coping with osmotic stress induced by high levels of salts is energetically expensive (Oren, 2011). 201 

Previous analyses of growth data for 241 isolated strains revealed that aerobic organisms and anaerobic 202 

organisms which use organics as a terminal electron acceptor were tolerant of a broader range of 203 

extremes, including salinity, than anaerobic organisms that utilise inorganic electron acceptors 204 

(Harrison et al., 2015). By supplying a rich, complex source of organic carbon (4 gL-1 yeast extract) 205 

and a temperature of 30o C, we therefore expected to increase the energetic favourability of respiratory 206 

metabolisms, and thus the capabilities of microorganisms to deal with the stresses induced by our brines 207 

(Oren, 2011). This ensured that apart from the extremes of the brines, the organisms had optimum 208 

growth conditions with respect to temperature, energy and nutrient availability. Our experiment was 209 

focused on determining whether the Martian brine chemistries alone are limiting to life.  210 

All brines were inoculated in triplicate (2 % v/v) and incubated at 30o C for 60 days, then transferred 211 

(1% v/v) to fresh, sterile brine media. Further transfers were carried out at appropriate time points, 212 

which differed by brine and community. Brines that had been exposed to the atmosphere for one month 213 

were incubated at 30o C for a further 30 days before also being transferred (1% v/v) to fresh, sterile 214 

brine media. For brines that did not contain solid salt precipitate or dissolved iron, growth was 215 

quantified as an increase in optical density at 600 nm. In saturated brines and those containing dissolved 216 

iron, cells were enumerated by direct counts following SYBR gold or DAPI staining (see below). After 217 

three transfers, when cell densities reached approximate maxima, cells were harvested by filtration onto 218 



sterile 25 mm polycarbonate filters (Merck Millipore) for DNA extraction. Initial enrichment-stage 219 

brines that did not support growth after 60 days were incubated alongside the transfers and monitored 220 

at regular intervals for the remainder of the experiment (>300 days). 221 

2.4 Assays for microbial growth  222 

The ability of the martian and control brines to support microbial growth was assayed via three 223 

independent methods. Firstly, samples of brines (approx. 20 µl) were mounted on microscope slides 224 

and examined under phase contrast microscopy (Leica DM4000B). Secondly, brine samples (200 µl) 225 

were stained with 1x SYBR gold (Life Technologies) for 15 minutes in the dark, mounted on black 25 226 

mm diameter polycarbonate filters (Merck Millipore), excited at 450-490 nm and imaged at 1000x 227 

magnification using a Leica DM4000B digital microscope and a Leica DFC 450 C microscope-mounted 228 

camera. For iron-rich brines, 1x DAPI (4',6-Diamidino-2-phenylindole) (Sigma) was found to be more 229 

reliable. For DAPI staining, samples were prepared in an identical way to SYBR-stained samples, and 230 

excited at 358 nm. Where applicable, cells were enumerated by counting 20 randomly selected fields 231 

of view and averaging over triplicate samples.  232 

To validate microscopic approaches, we enriched communities from our composite inoculum in nutrient 233 

broth media (Oxoid), harvested aliquots by centrifugation, suspended them in samples of each brine, 234 

and subjected them to identical staining and imaging protocols as those used for the brine enrichments. 235 

Imaging of the organisms was possible in all brines (data not shown). 236 

Thirdly, DNA was extracted from 2-10 ml of brine from the final transfer stage using a modified 237 

phenol:chloroform:isoamyl alcohol and isopropanol precipitation protocol as detailed by Urakawa et 238 

al. (2010). Briefly, samples were passed through 0.22 µm, 25 mm diameter polycarbonate filters. Filters 239 

were treated with proteinase K (2mg/ml) and TENS buffer (50 mM Tris-HCl; pH 8.0, 20mM EDTA, 240 

100 mM NaCl, 1% w/v SDS) at 50oC for 1 hour. DNA, if present, was then extracted with 241 

phenol:chloroform:isoamyl alcohol (25:24:1) and precipitated with isopropanol. DNA extracts were 242 

quantified by spectrophotometric absorbance at 280 nm (NanoDrop Lite, BioRad), visualised in 1% 243 



agarose gels with a SynGene G-Box UV transilluminator, and further interrogated by polymerase chain 244 

reaction (PCR) (see below).  245 

This third approach was validated by adding communities enriched from our composite inoculum in 246 

nutrient broth media (Oxoid) to quantities of all brines, at cell densities approximately equivalent to the 247 

lowest obtained in our experiments (Type I Stage [b]), and subjecting them to identical extraction and 248 

DNA detection procedures. Positive extraction and domain-specific PCR amplification were achieved 249 

from all brines. For a brine to be labelled ‘uninhabitable’ in the context of the current study required 250 

concurrent negative results from both microscopic methods at all transfer stages as well as negative 251 

DNA-based detection. 252 

2.5 Ionic strength, pH, water activity and chaotropic/kosmotropic activity quantification 253 

Ionic strength was calculated using the following equation: 254 

25.0 ii zcI =  255 

 where ci = the concentration of ion i (in mol litre-1), and zi = the charge of ion i. pH was measured in 256 

triplicate using an Omega PHH-37 pH meter with Omega PHE 1335 probe set-up calibrated to three 257 

points (pH 4.0, 7.0 and 10.0) with standard solutions supplied by the manufacturer. Water activity was 258 

quantified using 5 ml samples at 30oC in a Rotronic HP23-AW water activity meter, calibrated to five 259 

points (aw = 0.325, 0.595, 0.755, 0.845, and 0.935) using saturated calibration standards (MgCl2, 260 

NH4NO3, NaCl, KCl and KH2PO4, respectively) prepared as described by Winston and Bates (1960). 261 

Each brine was measured three times and results were found to be within ± 0.002 aw (data not shown). 262 

During incubation, water activity was quantified at approximately two week (14 day) intervals and 263 

found to vary by ≤ 0.008 aw over the course of 60 day incubation periods (data not shown).  264 

Chaotropic/kosmotropic activities of the eight brines were quantified by measuring the increase or 265 

decrease in gelation temperature of a brine/agar solution relative to a pure agar solution as described 266 

previously (Hallsworth et al., 2003; Cray et al., 2013). An increase in agar-gelation temperature relative 267 

to that of pure agar was indicative of kosmotropicity, whereas a decrease in gelation temperature was 268 



indicative of chaotropicity. Where brines caused precipitation of agar, a dilution series was made in 269 

order to construct curves that were used to derive extrapolated values (see Cray et al., 2013). 270 

2.6 Ionic composition analysis 271 

Magnesium, potassium, sodium, chloride and sulfate ions were analysed at the University of Edinburgh, 272 

UK via ion chromatography using a Dionex DX-120 system fitted with a conductivity detector, 273 

according to manufacturer’s instructions., Total iron concentrations were quantified via atomic 274 

absorption spectroscopy using a Perkin Elmer AAnalyst 200 spectrometer. Radiation was provided at 275 

248.3 nm by an iron hollow cathode lamp (slit 1.8/1.35), and measurements were integrated over 5 276 

seconds and performed in triplicate.  277 

Changes in ferrous and ferric iron concentrations in Control-4 were monitored colourimetrically 278 

throughout incubation periods using the ferrozine assay as previously described (Stookey, 1970). 279 

Briefly, samples were digested in 0.5 M HCl for 1 hour and added to HEPES-buffered ferrozine 280 

solution. Absorbance was measured at 562 nm in a Helios Alpha spectrophotometer (Thermo Fischer 281 

Scientific). 282 

Bicarbonate concentrations in Type I martian brines were quantified by titrimetric determination of 283 

alkalinity. Samples were titrated with HCl until pH 4.5 was reached, indicating all bicarbonate had been 284 

neutralised. HCO3 concentration was then determined using the equation: 285 

1000*
*)(

2

1

v

vHClc
A =  286 

where A is the total alkalinity (in mg/l), c(HCl) is the concentration (mol/litre) of the HCl solution used,  287 

v1 is the volume of HCl titrated and v2 is the volume of sample used.  288 

2.7 Comparison with physicochemical data from terrestrial brines 289 

For comparisons of martian brines and terrestrial brine environments, physicochemical data was derived 290 

from sites summarised in Table 5. When not reported in the source publications, pH and water activity 291 



of natural terrestrial brines were calculated from ionic composition using the thermodynamic model 292 

FREZCHEM version 16 (Marion and Kargel, 2008). FREZCHEM v. 16 employs Pitzer equations for 293 

calculating ion interactions at high ionic strength. Ion compositions were converted from units reported 294 

in source publications to moles kg(water)-1 and calculations were performed at 30o C, with pH controlled 295 

through equilibrium between H+ and CO2 (gaseous) at approximately terrestrial atmospheric partial 296 

pressure (0.04 atm). For more information, see Marion and Kargel (2008). 297 

2.8 PCR amplification 298 

Community DNA was interrogated by bacterial, archaeal and eukaryotic domain-specific primers 299 

targeting ribosomal small sub-unit (SSU) RNA. For oligomer sequences used as primers in the current 300 

study, see Table 4. Each individual 25 µl PCR reaction contained 1 µl template, 0.4 µM of the relevant 301 

forward and reverse primer, 200 µM dNTPs, 1.5 mM MgCl2, 1x PCR buffer and 1 unit Taq polymerase 302 

(Invitrogen). PCR conditions were as follows: for 28F-519R, reactions were subjected to denaturation 303 

at 95oC for 5 minutes, followed by 30 cycles of 94oC for 30 seconds, annealing at 60oC for 40 seconds 304 

and extension at 72oC for 60 seconds, and finished with a final extension step at 72oC for 10 minutes. 305 

For 341F-958R, reactions were subjected to denaturation at 95oC for 5 minutes, followed by 35 cycles 306 

of denaturation at 95oC for 30 seconds, annealing at 54oC and extension at 72oC, and finished with a 307 

final extension step at 72oC for 10 minutes. For Euk1A-516R, reactions were subjected to denaturation 308 

at 94oC for 5 minutes, followed by 35 cycles of denaturation at 94oC for 30 seconds, annealing at 56oC 309 

for 45 seconds and extension at 72oC for 60 seconds, and finished with a final extension step at 72oC 310 

for 5 minutes. Positive PCR amplification was confirmed by electrophoresis in 1% agarose gels made 311 

up in TAE buffer (40 mM Tris base, 20 mM acetic acid, 1.5 mM EDTA) and visualised using a SynGene 312 

G-Box UV transilluminator. 313 

2.9 16S rRNA 454 pyrosequencing and bionformatic analyses 314 

Martian brine enrichments originating from the composite inoculum that yielded positive DNA 315 

extractions and either bacteria or archaea domain-specific PCR amplification were pyrosequenced using 316 

the Roche 454 platform (Research and Testing Laboratory of the South Plains, Lubbock, Texas, USA). 317 



A composite inoculum-derived Control-1 enrichment community was also sequenced for comparison. 318 

Initial trimming, denoising and chimera checking was carried out by Research and Testing (Edgar, 319 

2010; Edgar, 2011; Edgar et al., 2013). OTU clustering and taxonomic identification was performed in 320 

the MOTHUR programme using previously described standard operating procedures (Schloss et al., 321 

2009; Schloss et al., 2011; Quast et al., 2013). Pyrosequencing datasets were deposited with the 322 

Sequence Read Archive (NCBI) under the accession number SRP052574. 323 

 324 

3. Results  325 

3.1 Habitability of martian brines 326 

Only three of the eight simulated martian brines supported microbial growth, despite several brines 327 

exhibiting permissive water activities and regardless of inoculum source or oxygen availability (Table 328 

6). Amongst simulated martian brines, there were no differences in colonisation when diverse inoculum 329 

sources were used: those brines that were colonised were colonised by all environmental inocula tested, 330 

and those that remained uninhabited were consistently prohibitive across all inoculum sources (Table 331 

6). Furthermore, initial enrichment stages of uninhabited brines did not yield any evidence of growth 332 

after incubation for more than 300 days. 333 

Type I brines, similar to the composition of Na-K-Cl-HCO3 hydrothermal brines that likely chemically 334 

altered the Nakhla martian meteorite (Bridges and Schwenzer, 2012), were colonised at both stages of 335 

concentration (Table 6).  Type II brines, relevant to large areas of martian layered sulfate terrains 336 

including those in Valles Marineris, Margaritifer Sinus and Terra Meridiani (Gendrin et al., 2005), were 337 

inhabited at the initial dilute Stage [a], but evaporative Stage [b] was hostile to all sources of inoculum 338 

under all conditions (Table 6). Type III brines, which resemble an ancient Meridiani Planum and other 339 

Fe-Mg-SO4-Cl Hesperian environments (Knoll et al., 2005), were not colonised at either stage of 340 

concentration. Consistently, exposure to the atmosphere for one month did not result in successful 341 

colonisation of Type II Stage [b] or Type III brines. 342 



3.2 Microbial communities in martian and control brines 343 

Amongst those brines that were colonised, biodiversity, cellular morphologies and growth dynamics 344 

varied substantially between brine types and evaporitic stages (Figs. S1, S2).  Furthermore, DNA-based 345 

growth-detection procedures revealed domain-level differences between the inhabited brines (Table 7). 346 

From all inoculum sources, each of the inhabited brines contained populations of Bacteria. However, 347 

archaea were restricted to Type I Stage [a], Type II Stage [a] and the NaCl-dominated Control-1 (Table 348 

7). Eukaryotes (fungi) were conspicuous members of the communities in low pH brines, Control-2 and 349 

Control-3 (Table 7). 350 

In brine enrichments that originated from the composite inoculum, archaeal and bacterial 16S rRNA 351 

pyrosequencing revealed distinct prokaryotic communities which varied depending on the presence or 352 

absence of oxygen (Fig. 2). The highest bacterial diversity was recorded in the anaerobic treatment of 353 

the most dilute of all simulated martian brines: Type I Stage [a] (Shannon’s H’ = 3.500 ± 0.051; Good’s 354 

Coverage = 96.8 % at 97% OTU similarity; Fig. 2, S3). This community was dominated by members 355 

of the Firmicutes; notably the genus Anaerobranca and an unclassified genus within 356 

Peptostreptococcaceae (Fig. 2, S3). The aerobic treatment of this brine supported a lower-diversity 357 

community in which the genera Brevundimonas and Achromobacter, Alpha- and Beta-proteobacteria 358 

respectively, were dominant members (Shannon’s H’ = 1.445 ± 0.026; Good’s Coverage = 99.1 % at 359 

97% OTU similarity; Fig. 2, S3). Type I Stage [b], a later evaporative stage of Type I brines rich in 360 

chloride salts supported a moderately diverse, mixed population of Firmicutes and Gamma-361 

proteobacteria including Oceanobacillus and Halovibrio, both genera known to exhibit halotolerance 362 

(Takami et al., 2002; Sorokin et al., 2006) (Shannon’s H’ = 1.800 ± 0.081; Good’s Coverage = 97.8 % 363 

at 97 % OTU similarity; Fig. 2, S3).  364 

Type II Stage [a], a magnesium- and sulfate-dominated brine with the highest divalent ion content of 365 

any inhabited Mars-relevant brines supported a moderately diverse community of Firmicutes (including 366 

Bacillus) and Actinobacteria (including Arthrobacter) under aerobic conditions (Shannon’s H’ = 1.731 367 

± 0.038; Good’s Coverage = 98.5 % at 97 % OTU similarity; Fig. 2, S3), and a marginally more diverse 368 



anaerobic community consisting mainly of facultatively anaerobic Firmicutes such as Virgibacillus 369 

(Shannon’s H’ = 2.507 ± 0.087; Good’s Coverage = 95.9 % at 97% OTU similarity; Fig. 2, S3).  370 

Amongst the sequenced communities found to contain archaea, the archaeal diversity was typically low. 371 

The anaerobic Type I Stage [a] (Shannon’s H’ = 0.841 ± 0.024; Good’s Coverage = 99.3 % at 97 % 372 

OTU similarity) was dominated by methanogenic genus Methanoculleus, as well as an unclassified 373 

genus within the Thermoplasmata (Figs. 2, S3). Type II Stage [a], by contrast, was colonised by archaea 374 

only under aerobic conditions, and the community was entirely dominated by the Nitrososphaera genus 375 

within the Crenarchaeota (Shannon’s H’ = 0.614 ± 0.035; Good’s Coverage = 99.4 % at 97 % OTU 376 

similiarity; Fig. 2, S3).  377 

Control-1 exhibited a similar bacterial community to Type I brine Stage [b], including the Firmicutes 378 

Oceanobacillus and the Gammaproteobacteria Halovibrio (Shannon’s H’ = 1.466 ± 0.034; Good’s 379 

Coverage = 98.9 % at 97 % OTU similarity). However, despite the similarities in bacterial community, 380 

the archaeal community in Control-1 (Shannon’s H’ = 0.959 ± 0.046; Good’s Coverage = 98.8. % at 97 381 

% OTU similarity) was markedly different from any simulated martian brine, being dominated by a 382 

single class of extremely halophilic archaea; the Halobacteria (Figs. 2, S3).  383 

3.3 Physicochemical controls on martian brine habitability 384 

3.3.1 Water activity 385 

The currently accepted limit to life in high salt is reached at aw = 0.611, and terrestrial environments 386 

that fall below this value are widely considered to be functionally sterile (Fig. 3a) (Stevenson et al., 387 

2015a; 2015b). Whilst the terrestrial brines with the lowest water activities, including the deep-sea 388 

Lakes Discovery and Kryos (located in the Mediterranean Sea) and Don Juan Pond in the McMurdo 389 

Dry Valleys, Antarctica, exhibit other biologically hostile physicochemical traits, their water activities 390 

fall below the minimum required for cellular division (Hallsworth et al., 2007; Samarkin et al., 2010; 391 

Yakimov et al., 2015). Apart from in some localised environments, such as the brine/seawater interface 392 

in Lakes Kryos and Discovery, where chaotropicity defines microbial habitability (Hallsworth et al., 393 



2007; Yakimov et al., 2015), water-activity sufficiently delineates the habitability of terrestrial saline 394 

environments (Fig. 3a).  395 

The water activity of Type II Stage [b] (0.633 aw) was close to the biophysical limit for proliferation of 396 

extreme halophiles (Stevenson et al., 2015b), and lower than the water activity of any of the brines 397 

identified as habitable in the current study (Fig. 3a). By contrast, martian brine Type III Stage [a] 398 

exhibited permissive water activity (0.894 and 0.885) but did not allow growth of any microorganisms 399 

(Fig. 3a.). This was despite the inoculum communities’ ability to tolerate lower water activities: Type I 400 

Stage [b] (0.789 aw) and Control-1 (0.764 aw) were successfully colonized. Control-3 (0.889 aw), which 401 

was designed to directly simulate the water-activity of Type III Stage [a], also supported a community 402 

of organisms (Fig. 3a).  403 

3.3.2 pH 404 

Low pH can be ruled out as the sole inhibitory factor in Type III Stage [a] due to the colonisation by 405 

several inoculum sources of Control-2, which exhibited an equivalent pH to Type III Stage [a] (Fig. 3a; 406 

Tables 3, 6). However, combined stresses of low pH and low water-activity equivalent to those found 407 

in Type III Stage [a] restricted colonisation to just one inoculum source, under aerobic conditions only 408 

(Control-3; pH 2.5, aw = 0.889) (Fig. 3a; Table 6). The community from Control-3 was not able to grow 409 

in Type III Stage [a]. 410 

3.3.3 Kosmotropicity 411 

All of the simulated martian brines investigated were found to be kosmotropic (macromolecule-412 

rigidifying) (Fig. 3b). Type III Stage [b] exhibited a kosmotropic activity approximately equivalent to 413 

a solution of 5.5 M ammonium sulfate (Fig. 3b). This is despite Type III brines possessing high 414 

concentrations of ions including Mg2+, Fe2+ and Cl-, the salts of which are strong chaotropes when 415 

measured as solutions made up from pure salts (Cray et al., 2013). Although Type III martian brines 416 

exhibit extreme kosmotropic activities, the MgSO4-rich Type II Stage [a] was densely colonized by all 417 

inoculum sources and under both aerobic and anaerobic conditions, despite imposing a kosmotropic 418 

activity higher than the uninhabited Type III Stage [a] brines (Fig. 3b). 419 



3.3.4 Iron toxicity 420 

Despite the presence of high levels of iron in Type III brines, iron-induced oxidative stress can be 421 

eliminated as the sole determinant of their habitability. An aerobic community of bacteria from a single 422 

inoculum source (the acidic hydrothermal pool inoculum; see Materials and Methods) became 423 

established and grew successfully at pH 1.95 in the presence of approximately 600 mM dissolved iron 424 

in Control-4 (Fig. S2; Tables 6, 7). This result is significant; no other inoculum source yielded 425 

organisms capable of growing in Control-4. Type III Stage [a] brines, which contained 597 and 628 426 

mM Fe, did not support the growth of these organisms.  427 

3.3.5 Ionic strength 428 

All uninhabited brines, including both Type III Stage [a] brines were characterized by extremely high 429 

ionic strength (>10 mol litre-1) (Fig. 3). Control-5 and Control-6 were designed to exhibit high ionic 430 

strength but otherwise permissive physicochemical parameters. When all other stresses were 431 

minimised, high ionic strength dramatically restricted habitability. Only the MgSO4-rich Basque Lakes, 432 

British Columbia, which possess one of the highest divalent : monovalent ratios known in terrestrial 433 

brines (see Fig. 1, Materials and Methods), contained organisms capable of growth in Control-5 (ionic 434 

strength = 12.141 mol litre-1; 0.821 aw; pH 7.0), and these only grew in the presence of oxygen (see 435 

Figs. 3c-d, S1, S2). Domain-specific PCR revealed that the colonising population consisted solely of 436 

bacteria (Table 7). Although they were tolerant of ionic strength higher than that found in Type III Stage 437 

[a] brines, the bacteria that colonised Control-5 were not capable of growth in Type III Stage [a]. 438 

The level at which ionic strength becomes inhibitory was influenced by water activity. At moderate 439 

ionic strength (5 mol litre-1) and 0.764 aw in Control-1, rapid and extensive growth was observed (Figs. 440 

3d, S1). However, at a slightly higher water activity (0.801) but greatly increased ionic strength 441 

(Control-6; 10.131 mol litre-1), growth was inhibited under both oxygenated and anoxic conditions, 442 

regardless of inoculum source (Table 6). The Control-6 brine was the only control to remain uninhabited 443 

after inoculation across all inoculum sources. This was despite Control-6 exhibiting permissive water 444 

activity (0.801), pH (7.1), kosmotropicity (-76.42 kJ mol-1) and iron concentration (approximately 50 445 



µM), levels which were directly demonstrated to be habitable by other control and martian brines (Fig. 446 

3). Initial enrichments of Control-6 were also devoid of growth after incubation for a period of >300 447 

days. 448 

 449 

4. Discussion 450 

4.1 Microbial communities in martian brines  451 

Brines relevant to saline environments on Mars supported distinct, complex active microbial 452 

communities following inoculation by a variety of environmental sources. Variations in microbial 453 

community structure revealed by molecular analyses on the domain (Table 7), phylum and class (Fig. 454 

2) and genus levels (Fig. S3), as well as different growth dynamics and cell densities (Fig. S1, S2) 455 

demonstrated that differing ionic compositions can have an important influence in defining community 456 

structure. The notable detection of methanogenic Archaea in anaerobic treatments of Type I Stage [a], 457 

which was the most dilute Mars-relevant brine and most closely aligned with the Gale Crater 458 

paleoenvironment (Léveillé et al., 2014) shows that biological methanogenesis is possible in ancient 459 

Mars-relevant fluids. One plausible explanation for methanogenic growth is the production of hydrogen 460 

through fermentation driven by the bacterial community in this brine.  461 

One notable finding from the microbial community composition data was that in all cases, martian brine 462 

microbial communities were distinct from that of Control-1, which represents the typical composition 463 

of NaCl-rich terrestrial environments. The high abundance of one particular archaeal genus 464 

(Haloarcula) in Control-1 is typical of NaCl brine lakes, which during blooms can become dominated 465 

by relatively few microbial taxa (in comparison to lower salinity lakes) (Benlloch et al., 2002; Oren and 466 

Hallsworth, 2015). Despite some martian brines supporting colonisation by known NaCl-tolerant 467 

bacteria, they all lacked halophilic Archaea and other common inhabitants of NaCl-dominated brines 468 

(Fig. 2, S3). Instead, they supported a diverse community of primarily non-halophilic organisms. This 469 

observation provides a direct demonstration that Martian brine environments are distinct from terrestrial 470 

brines and that the different geochemical histories of brines have implications for the types of 471 



communities that they can potentially support. These data also show that the use of terrestrial brines as 472 

analogues for brines found on Mars cannot necessarily reveal the microbial habitability of the latter; 473 

instead it is important to augment field studies with the synthesis of martian brines in the laboratory to 474 

understand more empirically the factors that define microbial habitability.  475 

4.2 Factors that influence the habitability of martian brines 476 

We systematically investigated the factors that influence habitability in extreme martian brines. This 477 

revealed that the habitability of Type I and II brines was consistent with predictions made from water 478 

activity. These relatively dilute brines supported growth at water activities above the currently accepted 479 

limit for life (0.611), except for Type II Stage [b] which was close to this limit (0.633). There have thus 480 

far been only three halophilic bacteria or Archaea reported to grow at < 0.700 water activity, according 481 

to empirical determinations (Stevenson et al. 2015a; 2015b). However, Type III Fe-Mg-SO4 brines were 482 

not habitable, even when possessing biologically permissive water activity (Fig. 3; Table 6).  483 

The control solutions that we synthesised allowed us to identify the different physical and chemical 484 

extremes associated with the brines and to determine whether they, alone, can explain the habitability 485 

of the Type III brines. Low water activity (down to 0.764 aw), low pH (down to 1.95)  and high 486 

kosmotropic activity (up to -324.35 kJ kg-1)  were ruled out as sole inhibitory factors in Type III Stage 487 

[a] brines due to the colonisation of control solutions possessing these extremes (Fig. 3; Table 6). 488 

Colonisation of these control brines also rules out osmotic changes experienced by the inoculum 489 

communities during transfer from their source environment as the determinant of ability to grow in 490 

Type III Stage [a]. Organisms would have experienced equivalent or greater osmotic changes in the 491 

control solutions, and growth was not precluded. 492 

High kosmotropocity in martian brines is notable; whilst chaotropicity can be a life-limiting parameter 493 

in diverse types of natural environments (e.g., Hallsworth et al., 2007; Cray et al., 2015; Yakimov et 494 

al., 2015), the level of kosmotropicity encountered in Type III martian brines (Fig. 3b) is rarely, if ever, 495 

encountered on Earth (Williams and Hallsworth, 2009; Lievens et al., 2015). The biophysical 496 

mechanisms which give rise to chaotropic/kosmotropic activities of solutes are extremely complex and 497 



not fully understood (Ball and Hallsworth, 2015). Such a high kosmotropic activity as that found in 498 

Type III martian brines, despite the presence of chaotropic salts (such as MgCl2 and FeCl2) highlights 499 

the need for empirical determinations of these activities in studies of natural environments, as 500 

kosmotropicity of complex mixtures cannot be predicted from those of pure salt values (Alves et al., 501 

2015; Yakimov et al., 2015). Nevertheless, the establishment of microbial communities in Type II Stage 502 

[a] (-270.69 kJ kg-1) and Control-5 (-324.35 kJ kg-1), brines with higher kosmotropicity than Type III 503 

Stage [a], demonstrates that kosmotropicity at these levels alone does not limit microbial growth (Fig. 504 

3b).  505 

If we consider the number of environmental inocula established in each brine to be a crude proxy of its 506 

habitability, the data also allow us to extract generalisations regarding the biological hostility of single 507 

and combined extremes (Table 6). Combined low pH/low water activity (Control-3), iron toxicity 508 

(Control-4) and high ionic strength (Control-5) all only allowed growth from one inoculum source, 509 

which differed for each of these controls. This shows that although these extremes in isolation do not 510 

prevent growth from all of the inocula used, they do restrict colonisation to organisms from only one 511 

environment, suggesting that these extremes contribute to the limits of habitability of the most extreme 512 

martian brines (Fig. 3; Table 6).  513 

This finding is consistent with previous observations. Coping with co-occurring extremes of low pH 514 

and low water activity demands energetically expensive homeostasis strategies, and this combination is 515 

known to restrict the growth of terrestrial microorganisms (Harrison et al., 2013; 2015). Iron toxicity is 516 

caused primarily by the generation of oxidative hydroxide radicals through Fenton’s reaction series 517 

(Gutteridge and Halliwell, 1989), and the hostility of this process toward biologically-important organic 518 

molecules has previously been demonstrated in simulated martian brines (Johnson and Pratt, 2010). 519 

Ionic strength, a measure of charge density, is capable of inducing structural deformities and inhibition 520 

of biological molecules (Baldwin, 1996; Kohn et al., 1997; Kunz et al., 2004; Cray et al., 2013). At 521 

high ionic strength, therefore, the magnitude and extent of ion-biomolecule interactions may function 522 

as a stressor on microbial cells. 523 

4.3 Ionic strength is a novel factor that limits the habitability of martian aqueous environments 524 



Ionic strength was found to limit the habitability of control brines. Colonisation was restricted to only 525 

one inoculum source in Control-5 (ionic strength = 12.141 mol litre-1), which possessed a relatively 526 

clement water activity (0.821 aw). Furthermore, growth was inhibited entirely in Control-6 (ionic 527 

strength = 10.131 mol litre-1), which exhibited a lower, but still demonstrably permissive, water activity 528 

(0.801 aw) (Table 3).  Given the effects that low water activity has on habitability when exerted in 529 

conjunction with other extremes, such as low pH in Control-3, the difference in water activity between 530 

Control-5 (0.821 aw) and Control-6 (0.801 aw) likely explains the capacity of the former to support some 531 

restricted growth. These data indicate that in martian brines with high divalent ion content, particularly 532 

the Type III brines, ionic strength can act as a barrier to habitability. 533 

Ionic strength per se has not previously been considered as an important parameter in restricting 534 

microbial growth in natural environments. This is likely due to the dearth of large-scale environments 535 

on Earth with sufficient divalent ion content. Terrestrial saline waters, which typically exhibit low 536 

divalent : monovalent ratios (Fig. 1) (Eugster and Hardie, 1978), only develop high ionic strength in 537 

extremely concentrated brines that also impose hostile water activities (Fig. 3d). Indeed, even Mg2+-538 

rich bittern brines commonly contain chloride as the dominant anion, ensuring that the divalent : 539 

monovalent ratio does not exceed 1 (Fig. 1). By contrast, throughout large periods of Mars’s surface 540 

evolution, high divalent : monovalent ion ratios were common (Catling, 1999; Vaniman et al., 2004; 541 

Knoll et al., 2005; Tosca et al., 2011), allowing the formation of brines with high ionic strength, even 542 

at moderate, biologically permissive water activities (Figs. 1, 3d). 543 

It is thought that more than 99% of microorganisms on Earth resist cultivation using current techniques 544 

(Amann et al., 1995). Therefore, it cannot be ruled out that organisms currently resistant to cultivation 545 

exist which are capable of growth under the conditions found to be uninhabitable in this study. This 546 

potential bias was mitigated here by studying a wide range of inocula and using enrichment 547 

communities. Cultured communities simulate the complex interdependences of organisms in the natural 548 

environment and thus capture a more representative snapshot of natural microbial assemblages (Alain 549 

and Querellou, 2009).  550 



The data obtained in the current study demonstrate that a sampling or experimental bias does not explain 551 

our results: many organisms were successfully enriched under single or combined conditions found in 552 

Type III martian brines, and yet were not capable of growth in Type III Stage [a], even after incubation 553 

for > 300 days. This lack of growth, observed across all inoculum sources and independent of the 554 

presence or absence of oxygen, must therefore be attributable to conditions present in the Type III 555 

martian brines but which are not present in the habitable martian and control brines. Based on the 556 

elimination of other possible explanations, ionic strength must be one of these conditions that limits 557 

habitability in martian brines. 558 

4.3 Conclusions and implications 559 

Martian brines are complex, multi-stress environments that present significant challenges to biology. 560 

The results presented here support the hypothesis that high ionic strength can restrict habitability in 561 

high salt environments, even if water activity is permissive. In combination with other restrictive 562 

extremes such as high iron concentration and combined low pH/low water activity, high ionic strength 563 

explained the lack of colonisation in Type III martian brines. Ionic strength can therefore act as a barrier 564 

to martian habitability.  565 

We note that our results are conservative, since when combined with other multiple stressors such as 566 

low temperature, low energy availability and high radiation flux, as might be expected on Mars, the 567 

brines would likely be even more hostile than under the conditions investigated hereAs brines with 568 

extremely high divalent ion content have formed on Mars but do not commonly form on the Earth, these 569 

findings are an example of how differing planetary-scale geochemistries, themselves dictated by 570 

geologic evolution, can drive fundamental differences in habitability. On Earth, a chloride and 571 

monovalent ion-rich aqueous chemistry permits the microbial colonisation of brines with exceptionally 572 

low water availability; indeed close to the absolute limit for life. By contrast, on Mars a chemistry 573 

dominated by divalent ions such as sulfates means that high ionic strength constrains habitability to a 574 

smaller window. An enrichment of divalent ions relative to the Earth may not be limited to Martian 575 

aqueous geochemistry. There is evidence that the putative subsurface ocean on Europa may contain 576 



significant amounts of Mg2+ and SO4
2- ions (Orlando et al., 2005). Constraints placed on this 577 

composition by future missions will allow for a prediction of the habitability of this Jovian satellite. 578 

Whereas brines are considered a reservoir of possibly habitable liquid water on present-day Mars, their 579 

prohibitively high ionic strength now casts doubt on this assumption. We question whether the 580 

definition of Mars Special Regions based on temperature and water activity alone (Rummel et al., 2014) 581 

is sufficiently conservative for the purpose of planetary protection. High ionic strength may render an 582 

environment uninhabitable even if temperature and water activity (currently used to define Special 583 

Regions) are permissive. Meaningful assessments of biological permissibility for such brines is critical, 584 

both in considerations for extant or historical martian biota and in considering regions at risk from 585 

contamination with terrestrial microbes. These data also challenge the paradigm of ‘Follow the Water’ 586 

in Mars exploration (Hubbard et al., 2002), demonstrating experimentally that aqueous environments 587 

need not be habitable. Indeed, martian brines may be some of the least promising places to search for 588 

life. 589 
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Figure Legends 810 

 811 

FIG. 1; Divalent : monovalent ratios plotted against water activity of modelled martian brines (circles) 812 

and terrestrial brine environments (squares) (Tosca et al., 2011). For details of terrestrial brine 813 

calculations and sources, see Materials and Methods and Table 5. 814 

 815 

FIG. 2; Relative abundances of bacterial phyla (a) and archaeal classes (b) in inhabited martian (Type 816 

I and II) brines and a typical terrestrial brine (Control-1), as detected by 16S pyrosequencing. 817 

Communities represented are those that originated from the composite inoculum. Legend indicates 818 

whether clades were detected in aerobic brines (A), anaerobic brines (An) or both (A/An). Shannon’s 819 

H’ is displayed to the right of each bar. 820 

 821 

FIG. 3; Habitability of simulated martian brines (Type I-III, Stages [a] and  [b]), control brines (C-1 to 822 

C-6) and terrestrial examples plotted as a function of water activity and pH (a), water activity and chao-823 

/kosmotropicity (b), ionic strength and pH (c), or water activity and ionic strength (d). Categories 824 

represented are: habitable, this study (green-filled circles), restricted habitability (colonisation by only 825 

one inoculum source), this study (blue hashed triangles), uninhabitable, this study (empty circles), 826 

terrestrial, inhabited (green-filled squares) and terrestrial, uninhabited (empty squares). Red line in (a), 827 

(b) and (d) indicates the currently acknowledged limit to life in high salt described by water activity at 828 

a
w
 = 0.611 (Stevenson et al., 2015b). Grey dotted line in (b) indicates

 
the chaotropic activity of a 2.3 M 829 

pure MgCl
2
 solution; a level which is thought to be inhibitory to life (Hallsworth et al., 2007). Orange 830 

shaded area in (c) and (d) indicates conditions at which ionic strength acts as a mediator of habitability. 831 

Arrows indicate direction of modelled evapoconcentration (Tosca et al., 2011). For details of terrestrial 832 

brine calculations and sources, see Materials and Methods and Table 5. 833 
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 842 

Table 1; Salts added during synthesis of martian brines. Concentrations are in moles litre
-1

. All brines 843 

were also supplemented with 4 g L
-1

 yeast extract. Values calculated from Table 5 in Tosca et al., 844 

(2011). 845 

 846 

 847 

  848 

  
Type I 
 Stage [a] 

Type II 
 Stage [a] 

Type III
1
  

Stage [a] 
Type III

2
 

 Stage [a] 
Type I 
Stage [b] 

Type II 
Stage [b] 

Type III
1
 

Stage [b] 
Type III

2
 

Stage [b] 
Designation  
in Tosca et al. 
2011 

 Brine 1,  
Stage 1 

Brine 2, 
Stage 1 

Brine 4, 

Stage 1 
Brine 5, 
Stage 1 

Brine 1, 
Stage 2 

Brine 2,  
Stage 2 

Brine 4, 
Stage 2 

Brine 5, 
Stage 2 

NaHCO
3
 0.126 - - - - - - - 

KHCO
3
 0.028 0.041 - - 2.237 - - - 

KCl 0.022 0.020 0.075 0.086 3.776 1.033 1.142 0.583 
MgCl

2
.6H2O 0.001 0.056 - - - 1.154 3.007 1.895 

NaCl - 0.154 0.189 0.215 1.266 2.265 1.036 1.458 
MgSO

4
.7H2O - 2.068 3.066 3.016 - 2.550 - 0.407 

FeSO
4

.7H2O - - 1.225 1.282 - - 2.313 1.987 
FeCl

2
.4H2O - - 0.208 0.153 - - 0.985 - 

HCl - - - 0.254 - 0.038 0.113 - 
H

2
SO

4
 - - - - - - - 0.860 



Table 2; Salts added during synthesis of control brines. These were designed to test the tolerance of 849 

our inoculum communities to low water activity (Control-1), low pH (Control-2), combined low water 850 

activity/low pH (Control-3), combined high iron concentration/low pH (Control-4) and high ionic 851 

strength (Control-5 and Control-6). Concentrations are in moles litre
-1

. All brines were also 852 

supplemented with 4 g L
-1

 yeast extract. 853 

 Control-1 Control-2 Control-3 Control-4 Control-5 Control-6 
KCl 0.094 0.010 0.010 0.010 0.010 0.010 
MgCl

2
.6H2O 0.143 - - - 0.333 1.500 

NaCl 4.107 0.086 2.995 - - - 
MgSO

4
.7H2O 0.142 0.002 - - 1.75 1.75 

FeSO
4
.7H2O - - - 0.620 - - 

(NH
4
)
2
SO

4 - 0.023 0.023 0.023 - - 
K

2
HPO

4 - 0.002 0.002 0.002 - - 
Na

2
SO

4 - - - - 1.500 - 
 854 

  855 



 856 

Table 3; Ionic composition, pH, water activity (a
w
), ionic strength and kosmotropic activity of all 857 

experimental brines used in the current study. Concentrations are in mol litre-1 858 

Brine Na Mg K Fe SO4 Cl HCO3 HPO4 NH4 pH aw 

Io
n

ic
 s

tr
e
n

g
th

/ 

m
o

l 
li

tr
e

-1
 

K
o

sm
o

tr
o

p
ic

it
y

/ 

k
J

 k
g

-1
 

Type I Stage [a] 0.126 0.001 0.05 - - 0.025 0.154 - - 8.860 0.984 0.180 -27.05 

Type II Stage [a] 0.154 2.124 0.061 - 2.068 0.307 0.041 - - 6.860 0.929 8.667 -270.69 

Type III1 Stage [a] 0.162 2.354 0.064 0.628 2.549 0.56 - - - 2.580 0.885 11.456 -163.57 

Type III2 Stage [a] 0.18 2.425 0.069 0.597 2.751 0.49 - - - 1.96 0.894 11.916 -183.30 

Type I Stage [b] 0.761 - 4.702 - - 3.255 2.086 - - 9.100 0.789 5.402 -101.75 

Type II Stage [b] 1.631 2.974 0.664 - 1.273 4.53 - - - 2.090 0.633 11.906 -148.97 

Type III1 Stage [b] 0.491 2.238 0.327 2.131 0.528 7.864 - - - 1.020 0.507 14.133  -828.04 

Type III2 Stage [b] 1.285 1.729 0.505 1.482 1.42 5.131 - - - 0.5 0.563 12.722 -360.47  

Control-1 4.107 0.285 0.094 - 0.142 4.201 - - - 7.000 0.764 5.055 -59.28 

Control-2 0.086 0.002 0.006 - 0.025 0.087 - 0.002 0.045 2.500 0.991 0.166 -12.33  

Control-3 2.995 - 0.012 - 0.023 3.005 - 0.002 0.046 2.500 0.889 3.077 -59.74  

Control-4 0.002- - 0.015 0.618 * 0.610 0.002 - 0.002 0.046 1.950 0.969 2.558* -45.32 

Control-5 2.669 2.369 0.036 - 2.840 0.739 - - - 7.050 0.821 12.141 -324.35 

Control-6 0.013 3.104 0.028 - 1.087 3.420 - - - 7.080 0.801 10.113 -160.73 

 859 

*Iron concentration and resulting ionic strength taken as average measured iron concentration 860 

over incubation period. See Materials and Methods and Fig. S1. 861 

  862 



 863 

Table 4; Primers used in this study. 864 

 865 

Primer Sequence (5'-3') Specificity Product size/ bp Reference 
28F GAGTTTGATCNTGGCTCAG 

 Bacteria 16S rRNA 491 La Duc et al., 

2012 519R GTNTTACNGCGGCKGCTG 
341F GYGCASCAGKCGMGAAW 

Archaea 16S rRNA 617 La Duc et al., 

2012 958R GGACTACVSGGGTATCTAAT 
Euk1A CTGGTTGATCCTGCCAG 

Eukarya 18S rRNA 560 Diez et al., 

2001 Euk516R ACCAGACTTGCCCTCC 
 866 

 867 



Table 5; Sources of composition and physicochemical parameters for terrestrial brine examples. aw = water activity. 868 

 Location Ionic composition aw pH Ionic strength 

    Source Value Source Value Source Value Source 

Acid Playas Western Australia 
Bowen and Benison, 

2009 

0.834, 0.816, 

0.806, 0.860 
calculated 

1.90, 2.50, 

2.80, 2.60 

Conner and 

Benison,  2013 

6.727, 5.488, 

4.260, 5.131 
calculated 

Seawater 
Southern Ocean, Pacific 

Ocean, Arctic Ocean 

Bowen and  Benison, 

2009 
0.981, 0.981 calculated 7.92, 6.99 

Bowen and 

Benison, 2009 
0.721, 0.713 calculated 

Hot Lake Washington, USA 
Lindermman et al., 

2013 
0.932 calculated 8.15 

Lindermman et al., 

2013 
6.914 calculated 

Mono Lake California, USA 
Eugster and Hardie, 

1978 
0.950 calculated 8.70 

Eugster and Hardie, 

1978 
1.217 calculated 

Lake 

Magadi 
Kenya Grant et al., 1999 0.819 calculated 10.13 Grant et al., 1999 7.280 calculated 

Great Salt 

Lake 
Utah, USA 

Eugster and Hardie, 

1978 
0.776 calculated 8.10 

Eugster and Hardie  

1978 
6.000 calculated 

Dead Sea Israel 
Krumgalz and 

Millero, 1982 

0.752, 0.760, 
0.751, 0.732, 

0.706, 0.688  

Krumgalz and 

Millero, 1982 

5.80, 5.90, 
6.00, 5.95, 

5.86, 6.00 

Krumgalz and 

Millero, 1982 

7.505, 8.079, 
8.536, 8.520, 

8.668, 8.709 

calculated 

Don Juan 

Pond 

McMurdo Dry Valleys, 

Antarctica 
Siegel et al., 1983 

0.562, 0.483, 

0.396, 0.445, 

0.402 

calculated 

5.52, 5.24, 

4.80, 4.72, 

5.00 

calculated 

11.990, 13.590, 

14.796, 15.579, 

14.319 

calculated 

Lake 

Discovery 
Deep Mediterranean Wallman et al., 2002 0.382 

Hallsworth et 

al., 2007 
4.50 

Wallman et al., 

2002 
13.796 calculated 

Lake Kryos Deep Mediterranean Yakimov et al., 2015 0.399 
Yakimov et al., 

2015 
5.40 

Yakimov et al., 

2015 
15.000 calculated 

869 



Table 6; Habitability of simulated martian brines and control brines. Columns correspond to the 870 

different inoculum sources used, and to oxygen status (whether aerobic or anaerobic conditions). The 871 

+ indicates successful colonisation and the – indicates lack of growth. nd = not determined. 872 

 873 

  874   Composite Kverkfjöll Basque Lakes 
 Aerobic Anaerobic Aerobic Anaerobic Aerobic Anaerobic 
Type I Stage [a] + + + + + + 
Type I Stage [b] + + nd nd nd nd 
Type II Stage [a] + + + + + + 
Type II Stage [b] - - - - - - 
Type III1 Stage [a] - - - - - - 
Type III2 Stage [a] - - - - - - 
Type III1 Stage [b] - - - - - - 
Type III2 Stage [b] - - - - - - 
Control-1 + + + - nd nd 

Control-2 + - + - nd nd 

Control-3 + - - - nd nd 
Control-4 - - + - nd nd 

Control-5 - - - - + - 

Control-6 - - - - - - 



Table 7; Domain-level diversity in all inhabited brines, across all inoculum sources, as revealed by 875 

domain-specific PCR. The + and – indicate presence or absence (respectively) of domain. Oxygen status 876 

is indicated by an A (aerobic conditions) or An (anaerobic conditions).  877 

 878 
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Oxygen 
status A An A An A An A An* A An A An A An A An A A A A A A 
Bacteria + + + + + + + -* + + + + + + + + + + + + + + 
Archaea - + - - - - - -* + - + - + - + + - - - - - - 
Eukarya + - + - + - - -* + - + - - - - - - + + + - - 
 879 

*Growth demonstrated by direct cell counts only (DNA was not successfully extracted) 880 
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