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Abstract 

Plastic pollution is ubiquitous in the world’s oceans and is predicted to increase by an order 

of magnitude by 2025. The environmental impacts of plastic pollution are well documented 

in terms of its effects on marine animals however, the impact plastic has on the natural 

physicochemical characteristics of seawater and the microbial composition of the world’s 

oceans remains largely unknown. In particular, the role that microbial communities play in 

the early stages of colonisation and decomposition requires more attention. In response to 

this knowledge gap, both laboratory-based and field work experiments were undertaken in 

order to gain further insights. A microcosm experiment using natural seawater amended with 

range of plastics, both synthetic and biodegradable, was carried out to evaluate the impact 

of these plastics on the marine microbial communities. To complement this, a one-year field 

exposure trial was undertaken to measure biofilm formation and growth, as well as changes 

in polymer characteristics resulting from degradation. Finally, a biodegradation study was 

undertaken to identify bacteria within seawater that may degrade plastic. 

The characterisation of marine bacterial communities revealed major shifts in composition 

when plastics were introduced into seawater. These microbiological shifts were due to 

changes in the concentration of dissolved organic carbon, pH and total nitrogen due to the 

degradation of plastic materials. Furthermore, the long-term field work exposure experiment 

showed that different plastic substrates selected for distinct colonising communities on their 

surfaces. The analysis of the biofilm communities revealed the presence of bacteria that 

could possibly be involved in the degradation of plastics. However, no significant 

degradation was measured for the in situ tested plastics, suggesting that biofilm formation 

may have limited degradation. An exploration of plastic degradation using distinct bacterial 

consortia isolated from seawater resulted in biodegradation (mineralisation) figures of 16, 9 

and 7 % for polyvinyl chloride, high-density polyethylene and polyethylene terephthalate 

respectively. 

In summary, results from this thesis suggest that the presence of plastic in seawater affects 

the microbial community by changing the inherent chemical and biological properties of the 

water. In addition, plastics were shown to select for distinct colonising communities, which 

did not contribute to the plastic degradation. However, enriched marine bacterial 

communities demonstrated biodegradation ability that could be explored further in the future 

to gain additional insights into underlying biodegradation mechanisms.   
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Chapter 1: Introduction 

 

 

1.1 Importance of the Research Area 

1.1.1 Plastic Entanglement and Ingestion 

Marine plastic debris is the cause of numerous ecologically damaging and hazardous effects 

(Derraik, 2002). It poses a direct threat either through entanglement, which leads to trapping, 

injury, restrictions to feeding and growth of marine wildlife, or by ingestion; causing 

clogging of gills, gastrointestinal blockage, reduced secretions of gastric enzymes and 

steroid hormones (Azzarello and Van Vleet, 1987, Beck and Barros, 1991, Campagna et al., 

2007, Dau et al., 2009, Cedervall et al., 2012, Vélez-Rubio et al., 2013, Browne et al., 2013, 

Oliveira et al., 2013, Wright et al., 2013a). These hazards may ultimately result in body 

deformations, starvation, drowning, and an inability to escape predators. 

Entanglement has been known to affect 344 species to date and often results in the death of 

the affected animal (Kühn et al., 2015, Gall and Thompson, 2015). Research by Kühn et al., 

(2015) found affected species included 100 % of marine turtles, 67 % of seals, 31 % of 

whales and 25 % of seabirds sampled. In addition, 92 species of invertebrates and 89 fish 

species have also become entangled with marine plastic debris (Kühn et al., 2015). 

Entanglements usually occur with discarded or derelict plastic ropes and fishing nets, 

commonly known as “ghost” nets. It has been demonstrated that 5000 to 15000 turtles were 

caught by these ghost nets on Australia’s northern shore within one year  (Wilcox et al., 

2015a). Similarly, another study along the north-western coast of the United States estimated 

that a single discarded net or plastic rope caught one fish and a seabird in every three and 

five days respectively, as well as two invertebrates per day (Gilardi et al., 2010). 

Entanglement can also be caused by strapping, packaging bands or balloon strings and the 

other parts of debris forming entangling loops (Fowler, 1987, Gall and Thompson, 2015). 

Plastic ingestion is a widespread phenomenon and reported across various marine habitats, 

trophic levels and geographic regions (Provencher et al., 2017). Data on plastic debris 

ingestion is increasing due to recent close tracking of plastic pollution and the investigation 

of wide-ranging marine organisms (van Sebille et al., 2015). The most recent estimates show 
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that 233 marine species are affected by plastic debris due to ingestion, which includes sea 

turtles, seabirds, cetaceans and manatees (Kühn et al., 2015, Gall and Thompson, 2015, 

Ryan, 2015). Species in these studies with the highest number of individuals ingesting plastic 

debris were sea turtles (100 %), whales and seabirds (59 % each), and seals (36 %) (Kühn et 

al., 2015). Moreover, ingestion of plastics has also been reported in 92 fish and 6 

invertebrates (Kühn et al., 2015, Wilcox et al., 2015b). These marine species ingest plastics 

through either opportunistic feeding or mistaking plastic for food/prey, following visual or 

olfactory signals (Law, 2017). For instance, sea turtles mistake clear plastic bags for 

jellyfish, which results in the obstruction of their gut and internal injury after ingestion 

(Schuyler et al., 2014) and reproductive impairments (Plot and Georges, 2010). Some 

seabirds that have evolved olfaction are attracted towards the infochemicals produced by 

their phytoplankton prey. These chemicals are easily absorbed by floating plastics and 

therefore mistakenly consumed by seabirds (Savoca et al., 2016). 

In contrast to entanglement, no specific form or plastic material is generally associated with 

ingestion, however, the size of the ingested items is limited by the size of the ingesting 

organism. For example, small plastic particles and fibres have been detected in small filter-

feeders such as mussels and oysters (Van Cauwenberghe et al., 2013) and suspension-

feeding barnacles (Goldstein and Goodwin, 2013). Larger debris items (e.g. cigarette box 

wrapping and potato chip bags) have been found in the stomachs of large pelagic fish 

(Jackson et al., 2000) and very large items including: 4.5 m of hose; 9 m of rope; two 

flowerpots and large amounts of plastic sheeting were found to be ingested by sperm whale 

(de Stephanis et al., 2013).  

1.1.2 Plastic Toxicity 

During the production of plastics, various chemicals are added to polymer resins which alter 

the physical properties of the product (Kitada et al., 2008). These additives include 

plasticisers to promote material flexibility, inorganic fillers (e.g. carbon and silica fillers) 

that strengthen the material, as well as chemicals that act as flame retardants and 

thermal/ultraviolet stabilizers. These additives are of environmental concern as they are not 

chemically bound to the plastics and therefore they leach into water, sediments and even into 

an organism (Teuten et al., 2009, Barnes et al., 2009, Lithner et al., 2011). Though many 

additives have been phased out of plastic production, their legacy remains in landfills and 

on sea beds (Worm et al., 2017). Frequently used additives including bisphenol A (BPA); 

phthalates; polybrominated diphenyl ethers; and alkylphenols, which are hazardous to biota. 
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They can act as endocrine-disrupting chemicals which can compete with, or disrupt the 

synthesis of endogenous hormones (Talsness et al., 2009). High concentrations of these 

additives have been found in plastic fragments sampled both at remote and urban beaches, 

as well as in those floating in the open ocean (Hirai et al., 2011). 

Marine plastic debris not only carries hazardous additives, but can also act as a vector for 

hydrophobic contaminants (e.g. polycyclic aromatic hydrocarbons (PAHs) and 

dichlorodiphenyltrichloroethane (DDT)) which are adsorbed from the surrounding water 

(Frias et al., 2010). These contaminants belong to a group of chemicals known as persistent 

organic pollutants (POPs) that are resistant to environmental degradation. DDT previously 

isolated from marine plastics is known to have a range of impacts on marine animals and its 

accumulation has been observed in many marine organisms (de Azevedo e Silva et al., 2007). 

Polychlorinated biphenyls (PCBs) is a PAH that contains chlorine and a bisphenol (a pair of 

benzene rings) and has been observed in a variety of marine fauna (Besseling et al., 2013). 

Various PCBs differ in toxicity but have been observed to result in high mortality even after 

a single exposure (Faroon and Ruiz, 2016). The adsorption of POPs to plastic particles has 

been widely reported (Karapanagioti and Klontza, 2007, Hirai et al., 2011, Rochman et al., 

2013a, Koelmans et al., 2013), with the adsorption rate dependent upon the type of plastic, 

its chemical and physical properties, surface area and the chemical exposure throughout the 

particle’s drift history (Rochman, 2015).  

Adsorbed chemicals on plastic pollution can transfer to marine organisms via leaching and 

ingestion and cause reduced feeding, reproductively, as well as changes in enzyme and 

immune functions (Tanaka et al., 2013, Rochman et al., 2013b, Avio et al., 2015, Bejgarn et 

al., 2015). Moreover, the transfer of these environmental pollutants to marine organisms can 

lead to significant bioaccumulation and thus potentially pose a direct threat to human health 

(Hirai et al., 2011). 

1.1.3 Economic Effects 

One of the repercussions of marine plastic debris is the economic impact which increases 

the costs of coastal and maritime activities (Newman et al., 2015).. Economic costs of marine 

plastic debris cannot be easily measured as most of the environmental and economic impacts 

are intertwined (McIlgorm et al., 2011, Niaounakis, 2017). However, some of the impacts 

are direct and easier to measure in economic terms, for instance, the costs associated with 

the vessel downtime due to its propeller becoming entangled with plastic debris. Others 



 
4 

indirect effects can be more complex, such as the costs arising from ecosystem deterioration 

and human food chain contaminations (McIlgorm et al., 2011, Newman et al., 2015).  

The main sectors which are affected by marine plastic pollution are fisheries, transportation, 

coastal local authorities and tourism (Newman et al., 2015). The fishing industry is usually 

considered a source of marine plastic, but it is also the most affected sector (economically) 

by plastic pollution in the oceans. The economic losses within this industry are associated 

with the repairing and cleaning of plastic entangled vessels and replacing the damaged or 

torn nets. In Britain, these losses cost the local fishing industry between $15.5 million to 

$17.2 million every year, equivalent to 5 % of the total revenue of affected fisheries (Mouat 

et al., 2010). Similarly, the shipping industry also faces economic impacts due to either 

entrapment or collision with bulky marine debris, thus results in high repair and labour costs 

at marinas and harbours. It has been estimated that it costs $3.1 million per year to remove 

marine debris at the ports of the UK (Mouat et al., 2010). 

Coastal local authorities are affected economically by marine debris mainly due to the 

clean-up costs of beaches and waterways (Newman et al., 2015). The annual clean-up cost 

for all the coastal authorities in the UK was estimated to be between $24 million to 

$25.3 million in 2010, equivalent to $189,800 per local authority (Mouat et al., 2010). 

Moreover, the marine debris wash-ups and lack of cleanliness decrease beach attendance 

and revenue from tourism. For example, a study in South Korea calculated the annual loss 

of $40-$51 million due to decreased beach attendance by 63 % in 2011 (Jang et al., 2014). 

The overall economic damages due to marine plastic pollution reduce 1-5 % of the benefits 

derived from maritime activities which are valued to be up to $2.5tn a year (Beaumont et 

al., 2019). 

There are clear economic and environmental consequences of plastic pollution in the 

World’s Oceans. Further investigating the consequences of plastic, therefore, warrants 

scientific attention. In particular, the role microbes play in the colonisation and the ultimate 

breakdown of plastics has only recently been explored (Zettler et al., 2013). This research 

area will, therefore, form the basis of this thesis.  

1.2 Objectives 

The benefits of plastic and the exponential increase in production indicates that polymers 

will continue to play an integral part in human society. An unfortunate consequence of this 

trend, however, is that large quantities of plastic material will continue, often inadvertently, 
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to enter the World’s Oceans. The primary objective of this research is to understand what 

happens to this pollution in terms of microbial colonisation and to what extent plastic in the 

World’s oceans is being broken down (physically and biologically). Moreover, this research 

investigates the impact that plastic pollution can have on the inherent chemical and 

biological characteristics of seawater, and whether any subsequent changes could have 

implications for ocean biogeochemical cycling. To address these questions a combination of 

laboratory simulations and natural fieldwork experiments were undertaken. 

The structure of this thesis is as follows: 

Chapter 1: This Chapter provides justification of the research area and question. It contains 

a scientific literature review that focuses on the interactions between marine microorganisms 

and plastics, and the degradation of plastics in the marine environment. 

Chapter 2: This Chapter is a laboratory time-series investigation into the effects of plastic 

pollution on the microbial community structure and diversity within seawater. It details the 

changes in microbial and physio-chemical properties of seawater that occur when plastic is 

added to it.   

Chapter 3: This Chapter investigates microbial community (biofilm formation and 

progression) succession on plastic surfaces suspended in natural seawater over a one-year 

period. It details temporal variations and identifies common genera within the plastic 

colonising bacterial assemblages. 

Chapter 4: This Chapter is the physical sciences companion to Chapter 3: and investigates 

the mechanic stability and chemical composition of plastic from a long-term in situ exposure 

study. 

Chapter 5: This Chapter isolates bacterial consortia from seawater based on the ability to 

utilise plastics as a carbon source. The bacteria are further enriched and used to investigate 

the degradation of plastics in a simulated seawater environment, as well as reporting any 

resulting changes in the physicochemical properties of test plastics.   

Chapter 6: This Chapter provides a synthesis of all the results and provides a critical 

assessment of the experimental limitations. It also provides suggestions for future work.  
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The following section (1.3) details the scientific concepts and background literature that 

underpins the data Chapters (Chapter 2: p27, Chapter 3: p60, Chapter 4: p86, Chapter 5: 

p111, of this thesis.  

1.3 Literature Review  

1.3.1 Production 

Plastics are long-chain synthetic polymers that have a high molecular mass and primarily 

consist of carbon, hydrogen and oxygen atoms. The term plastic is derived from the Greek 

word “plastikos” meaning mouldable into any shape (Fried, 1995). Plastics were developed 

in the early twentieth century to replace depleted natural resources. The world’s first 

commercially important synthetic plastic, Bakelite, was invented by Leo Baekeland in 1907 

(Baekeland, 1909). It was formed by mixing two common chemicals, phenol and 

formaldehyde, under high pressure and temperature (Baekeland, 1909). The resulting plastic 

material opened the door to the modern “Plastic Age” and spurred the growth of a worldwide 

multi-billion industry that set out to transform every aspect of human material consumption 

(Worm et al., 2017). 

Plastics are mainly derived from petrochemicals and are formed by a range of chemical 

processes (Shimao, 2001). They are produced by the polymerisation reaction, a process of 

chemically joining the monomer units to form long-chain molecules (McKeen, 2008). There 

are two mechanisms for polymerisation; addition and condensation. During addition 

polymerisation reactions, the monomers adhere to each other in the presence of a catalyst, 

peroxide or other initiator molecule. This reaction usually begins with the breakdown of 

double bonds between the carbon atoms of unsaturated monomers which forms a free 

radical. The radical then causes one monomer to bond with the adjacent monomer and 

creates new radicals. The repetitive formation of free radicals and joining of monomers 

creates long-chain polymers, with no by-products formed during this reaction (Jenkins and 

Mills, 2005). By contrast, condensation polymerisation – a process of joining monomers 

through reactive or functional groups – results in the formation of a by-product, such as 

water. This reaction requires two chemically distinct monomers to join alternatively. The 

subsequent addition of monomers to the reactive group is known as step-growth, which 

results in the formation of dimers, tetramers and other oligomers (Jenkins and Mills, 2005). 

Examples of the most common plastics along with their chemical structure and functional 

groups are shown in Figure 1.3.1. These functional groups define the overall strength and 

ease at which the polymers can be degraded (Jenkins and Mills, 2005). 
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Figure 1.3.1 Chemical structures of some common plastics and their functional groups 
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Plastics are low-cost, lightweight, durable materials, with high electrical and thermal 

insulation properties. The diversity of plastics and their versatile properties have made them 

ubiquitous in all aspects of modern daily life including: packaging; clothing; transportation; 

buildings; energy savings and various other societal benefits (Andrady and Neal, 2009). 

Every year new applications are developed and the substitution of other materials with 

plastic is still expanding in many sectors (e.g. drug carriers, engineering tissues) (Worm et 

al., 2017). The worldwide production of plastics has increased from 0.5 million metric tons 

per year (Mt year -1) in 1950 to 348 Mt year -1 in 2017 (Figure 1.3.2 a) (Plastics Europe, 

2018). The production of plastics in 2017 was centred in Asia (50.1 % of the global output), 

with China being the world’s largest producer (29.4 %), followed by Europe and North 

America, each contributing 18.5 and 17.7 %, respectively (Plastics Europe, 2018). Single-

use packaging sector utilises about 40 % of the total plastic produced in Europe, followed 

by consumer items (22 %); building and construction materials (20 %), automotive (10 %), 

electronics (6 %), and the agriculture sector (3 %) (Figure 1.3.2 b). 

 

Figure 1.3.2 Trends of global plastics production. (a) Worldwide and European plastics production in million 

metric tons per year (Mt year -1) from 1950 to 2017. (b) Plastic applications patterns in percent during 2017. 

Data compiled from Geyer et al. (2017) and Plastics Europe (2018). 

1.3.2 Origin and Levels of Plastic Pollution in the Marine Environment  

A substantial quantity of plastic waste ends up as litter in the marine environments and can 

be categorised according to its origin, either from the sea- or land-based sources. (Depledge 

et al., 2013, Brouwer et al., 2017, Hahladakis et al., 2018). Plastic waste from land-based 
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sources accounts for 80 % of the total marine plastic debris and enters the world’s oceans 

via wastewater drainage, river systems, terrestrial winds, catastrophic events (tsunami and 

flooding) and human negligence (Derraik, 2002, Hammer et al., 2012). The remaining 20 % 

of marine plastic debris comes from ocean-based sources, which includes ships, offshore 

facilities, fishing, recreational and research vessels (Li et al., 2016, Law, 2017). 

Figure 1.3.3 shows the potential pathways and sources of plastics into the marine 

environment. The first entry point of plastic waste into the marine environment is the 

accidental spillage or mishandling of resin pellets which are used as feedstock for the 

manufacturing of plastic products. These spilt pellets may directly enter the oceans through 

rivers and coastlines or be washed into wastewater drains or storm-water (US-EPA, 1992). 

Resin pellets were among the first items of plasticdebris reported in the ocean (Carpenter et 

al., 1972) and have been discovered on beaches and at sea all over the world (Hirai et al., 

2011). The abundance of pellets has steeply declined since the 1980s (Van Franeker et al., 

2011), which was attributed to the prevention measures recommended to the plastics 

industries by Governments (e.g. US-EPA, 1992). These measures included: instalment of 

pellet containment systems; improved clean up procedures, employee training and 

inspection of containers before loading and after offloading of pellets (US-EPA, 1992).  

 

Figure 1.3.3 The pathways of plastic waste into the marine environment. The direct sources of plastic waste 

from sea-based activities are shown in green shading, from land-based activities in purple, and from either 

maritime or land activities in orange. Redrawn and adapted from (Hammer et al., 2012, Law, 2017). 

Once the resin pellets are converted into plastic products, they can enter the environment 

either accidentally during use or upon disposal as waste. Discarded plastic products are either 

managed through waste management infrastructure or dumped in uncontained/open landfills 

(poorly managed waste). Similarly, treated wastewater discharge is also classified as 

managed waste; however, plastic microbeads (commonly known as microplastics, size < 5 
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mm) which are used as irregular abrasives in many cosmetics, as well as fibres released from 

synthetic clothing upon washing (Browne et al., 2011, Napper and Thompson, 2016), can 

enter household wastewater. The capture of these particles in wastewater treatment plants 

(i.e. before the effluent is discharged to the environment) depends on the specific treatment 

process. High capture rates (> 95 %) of plastic particles were found by previous studies of 

wastewater treatment plants (Magnusson and Norén, 2014, Carr et al., 2016). However, there 

are large quantities of effluents processed through such treatment plants every day, therefore 

even a low loss rate results in detectable concentrations in the environment (Browne et al., 

2011, Eriksen et al., 2013). In addition, catastrophic events such as floods, hurricanes and 

tsunamis result in the unintentional loss of in-service plastic products in the marine 

environment. Such losses also occur when cargo or gear is lost during marine transportation 

or use (Figure 1.3.3). Presently, the total amount of plastics entering the world’s oceans due 

to the catastrophic events or  the marine activities is not known (Law, 2017). 

Improperly managed plastic waste on land is the only major source of ocean plastics that 

have been estimated globally (Jambeck et al., 2015). The analyses by Jambeck et al. (2015)  

used global data on solid waste generation, population density, waste composition, disposal 

and economic status in 192 coastal countries to calculate the amount of plastic waste 

produced. It also included the amount that is uncontained due to open dumping and littering. 

The calculation of annual input of plastic waste into the oceans was based on the inland 

waste generation by the population living within 50 kilometres of the coast which could be 

transported to the oceans. It has been estimated that 275 Mt of plastic waste was generated 

in 2010 by these coastal countries, of which 4.8–12.7 Mt ended up in the oceans, equivalent 

to the 1.7–4.6 % of the total plastic waste produced by these countries. Furthermore, 

Jambeck et al. (2015) also estimated that the amounts of plastic waste entering the marine 

environments from the land would increase by an order of magnitude by 2025 if there are 

no improvements to current waste management infrastructure. 

1.3.3 Degradation of Plastics in the Marine Environment 

In the natural environment, carbon-based materials (such as plastic) are broken down by 

physicochemical processes and biological organisms to produce gas (carbon dioxide (CO2) 

in aerobic and methane (CH4) in anaerobic environments), water and biomass. Degradation 

is a chemical or physical change in the plastics exposed to environmental factors, such as 

sunlight, temperature, moisture, mechanical processes or microorganisms (Shah et al., 

2008). It is a partial or complete breakdown of polymers under the influence of one or more 
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such environmental factors. These factors either accelerate or decelerate the degradation 

process within diverse marine environments, including beaches, water surface, the water 

column and seafloor (Niaounakis, 2017). There are five degradation processes by which 

plastics can degrade in marine environments.  

1.3.3.1 Photodegradation 

Photodegradation is a process that causes the molecular weight of polymers to reduce when 

exposed to sunlight, resulting in embrittlement and degradation of the polymers (Singh and 

Sharma, 2008). At ambient conditions, this is considered as one of the primary sources of 

polymer degradation (Gijsman et al., 1999). Photodegradation occurs through the absorption 

of ultraviolet (UV) rays by the units or groups that form the chemical structure of polymers, 

or through coloured impurities called chromophores. These radiations include UV-A (~315–

400 nm) and UV-B rays (~280–315 nm), and when plastic is exposed to them it reduces the 

molecular weight of the material (Shah et al., 2008). 

Photodegradation is induced by two distinctive processes which rely on absorption of UV 

radiations. (1) Photolysis of UV susceptible groups within plastic materials, (2) the 

utilisation of photo-initiators for the oxidation of the plastic substrate (Scott, 1976, 

Nakamura et al., 2006). When exposed to sunlight as an initiator, free radicals are formed 

within the polymer via C-H bond dissociation in the polymer chain (Equation 1.3.3.1). 

 

Equation 

1.3.3.1 

The extent of this chemical reaction relies on the amount of ultraviolet rays (<350nm) to 

which plastic is exposed. However, once the reaction is triggered and the free radicals have 

been produced, hydroperoxides (ROOH) are generated due to the presence of oxygen 

(Equation 1.3.3.2) (Wypych, 2013). 
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Equation 

1.3.3.2 

Various decomposition products including ketones and aldehydes are produced by the 

dissociation of hydroperoxides. The occurrence of carbonyl groups can be utilised as a 

degradation chemical index in a degraded polymer (Oliani et al., 2007). Although the 

reaction is initiated by UV exposure, once free radicals are formed, they continue to react 

through propagation reactions long after the initial UV exposure has ended. However, the 

reaction between free radicals results in the termination of the propagating free radicals 

(Equation 1.3.3.3). 

 

Equation 

1.3.3.3 

The development of free radicals and propagation reactions do not have deleterious effects 

on polymer properties, as they do not cause significant alterations in the long-chain 

molecular structure of the polymer. Photodegradation of the polymer properties occurs due 

to the production of highly unstable free radicals, which readily undergo chain scission 

reactions (i.e. the random breaking of the carbon backbone of the polymer into fragments). 

This process eventually results in the creation of two smaller chains of polymers, one of 

which acts as free radical and have the ability to conduct further reactions (Wypych, 2013). 

Degradation rates of plastics within marine environments are different due to variances in 

solar irradiation and temperature. Plastics materials lying on beaches go through rapid 

photodegradation as they are subjected to direct sunlight that results in UV-B exposure in 

combination with higher temperatures (Andrady, 2011). Plastics also tend to absorb infrared 

radiations, especially darker coloured polymers, which causes their surface temperature to 

rise. This “heat build-up” phenomenon promotes faster photodegradation of plastic materials 

(François-Heude et al., 2014). The photodegradation of polyethylene netting and twine 

(Meenakumari et al., 1995), fishing gear (Al-Oufi et al., 2004) and nylon monofilament 
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(Thomas and Hridayanathan, 2006) in supralittoral and intertidal zones have been previously 

reported. 

The photodegradation of plastic materials floating in the surface water of the world’s oceans 

is distinctly lower when compared to plastic pollution from coastal and terrestrial 

environments (Andrady, 2015b). There are two main reasons for this measured difference: 

1. Lower (seawater temperature) plastic surface temperatures reduce the photo-

oxidative degradation process.      

2. Various marine species are involved in the fouling of plastics surfaces which makes 

them opaque. The thick foulant opaque layer guards the plastics against solar 

irradiation especially UV-B and thus prevents the oxidation process (Andrady, 

2011). 

Photodegradation is not measured beyond the photic zone in the oceans due to the limitation 

of light penetration. Moreover, the cold, deep anoxic water has little to no potential of 

oxidative plastic degradation. This is also true for marine sediments where plastics can 

accumulate (Thompson et al., 2004, Browne et al., 2010, Cole et al., 2011).    

1.3.3.2 Thermal degradation 

Thermal degradation causes changes in the chemical structure of plastics (Pielichowski and 

Njuguna, 2005). This degradation process alters the entire plastic structure rather than just 

the surface and results in the loss of tensile strength, molecular weight changes, reduced 

durability, embrittlement, changes in crystallinity, modification in colour, chalking and 

cracking (Singh and Sharma, 2008, Olayan et al., 1996). Under ambient conditions, photo- 

and thermal degradations are similar and are classified as oxidative degradation. The main 

difference between the two is the sequence of initiation steps which leads to the auto-

oxidation of plastics. Also, thermal reactions occur throughout the bulk of the polymer 

sample, whereas photodegradation reactions occur only on the surface (Tyler, 2004).  

Thermal degradation of polymers occurs through random and chain degradation 

(depolymerisation reaction) initiated by thermal and UV light. When the temperature is high 

enough to cause bond cleavage, plastic degradation follows three key pathways: (1) side-

group elimination, (2) random scission and (3) depolymerisation (Cooper, 2012). The side-

group elimination pathway takes place in two stages. The initial step involves the omission 

of side groups that are attached to the backbone of the polymer and thus results in the 

formation of unsaturated chain structure. This unstable poly-unsaturated macromolecule 
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then goes through further degradation reactions such as scission process and turns into 

smaller fragments (Pielichowski and Njuguna, 2005). 

Random scission of polymers occurs through the formation of free radicals alongside the 

polymer structure resulting in fragmentation. This mechanism results in the production of 

small repeating oligomers of varying chain length depending upon the number of carbons in 

the chain and the presence of a terminal free radical (Figure 1.3.4) (Webb et al., 2013). 

Furthermore, the depolymerisation pathway utilises the free radicals which are formed along 

the backbone of the polymer during the scission mechanism to produce small unsaturated 

molecules (Beyler and Hirschler, 2002). These unsaturated molecules undergo further 

breakage to monomers or co-monomers by continuous formation of free radicals. 

Depolymerisation of plastics occurs under elevated temperature condition which does not 

need to be started at the terminal end of the polymer, instead, it initiates at the weak links 

within the polymer structure (Singh and Sharma, 2008). Polymers that do not undergo 

depolymerisation are generally broken down into fragments by thermal stresses (Villetti et 

al., 2002).  

 

Figure 1.3.4 Random Scission mechanism for thermal degradation of plastics 

In this section, the focus is on thermal degradation of plastics in the marine environment. 

Although plastics can undergo thermal degradation during product use and mechanisms for 

such polymer degradation has been reviewed elsewhere (Singh and Sharma, 2008, Ray and 

Cooney, 2018). In the natural environment, thermal degradation of plastics can occur, but 

photo-oxidation initiated by UV radiations and hydrolysis are more common under ambient 

conditions. In particular, the low temperatures typical of the marine environment mean that 

plastics degrade primarily by slow, photo-oxidative degradation (Andrady, 2011, Chamas et 

al., 2020). When a polymer sinks below the upper regions of the ocean with limited sunlight, 

it obviously cannot undergo photodegradation. Under such conditions, slow thermal 

oxidative degradation and hydrolysis may occur together, or sequentially (Chamas et al., 

2020). 
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In a marine environment, the thermal degradation of plastics occurs along with 

photodegradation, hydrolysis, and biodegradation (Andrady, 2011). The plastic materials 

with carbon-carbon backbone (e.g. PE, PP, PVC) are potentially susceptible to thermal 

oxidation while plastics with heteroatoms in their main chain (e.g. PET, PU) are primarily 

degraded by slow photo-oxidation in low temperature marine environment (Venkatachalam 

et al., 2012, Gewert et al., 2015). In seawater, due to naturally occurring temperature 

gradients, thermal degradation is highest nearer coastal areas and is lowest in the open seas 

and at the bottom of the ocean (Andrady, 2011, Andrady, 2015b). The “heat build-up” 

phenomenon (see Section 1.3.3.1) can aid the thermal degradation process of plastics in the 

marine environment, consequently, plastic on beaches degrades at higher speeds (Cooper, 

2012). The “heat build-up” phenomenon, however, is negated in seawater (François-Heude 

et al., 2014). Moreover, the lower temperatures of world’s oceans (average maximum 

temperature 17 °C) along with decreased oxygen and UV levels, reduces the degradation of 

plastics in seawater considerably (Webb et al., 2013, Gewert et al., 2015).  

1.3.3.3 Hydrolysis  

Hydrolysis is the cleavage of chemical bonds within the polymer structure by reaction with 

water (He et al., 2004, Tsuji and Miyauchi, 2001). This reaction occurs essentially in 

polymers that absorb moisture and have water-sensitive functional groups in their structural 

backbone. Polymers that have hydrolysable covalent bonds are more susceptible to 

hydrolysis; this includes polyethers, polyesters, polyamides, polycarbonates, and 

polyanhydride. The rate of hydrolysis can vary and is dependent upon water activity, which 

is the measure of free water and is defined as the ratio between the water vapour pressure 

of the solution and of free water under the same conditions (Koop et al., 2000). Moreover, 

pH, temperature, type of functional group and time are the other parameters that contribute 

to the hydrolysis of plastics in the marine environment (Le Digabel and Avérous, 2006).  

The hydrolytic degradation of polymers takes place in the presence of water containing 

an acid or a base as a catalyst (Venkatachalam et al., 2012). In an acidic environment, the 

main mechanism of polymer hydrolysis is different from that operating in an alkaline 

environment (Figure 1.3.5 a, b) (Xia et al., 2014). However, the product of both of these 

reactions creates one carboxyl and one hydroxyl end-group. Therefore, the reaction can be 

followed by measuring the increase in the number of carboxyl ends with time (Al‐

AbdulRazzak and Jabarin, 2002). 



 
16 

 

Figure 1.3.5  The hydrolytic cleavage of an ester bond under (a) Acidic and (b) Alkaline conditions. 

The hydrolysis of semi-crystalline polymers such as anhydrides, amides and esters occur 

usually in two stages. In the first stage, water diffusion occurs in the amorphous region of 

plastics, which results in the random hydrolytic cleavage of the polymer and subsequent 

changes in morphological and mechanical properties. In the second stage, water penetrates 

the crystalline region and eventually degrades the crystalline region (Kint and Muñoz-

Guerra, 1999). This stage involves measurable weight loss in addition to further chain 

cleavage. Moreover, the erosion rate usually increases over time after the onset of the second 

stage due to decreased crystallinity and molecular weight, as well as increased water 

solubility which turns the polymer into a sponge-like porous body (Pirzadeh et al., 2007).  

The hydrophilic and hydrophobic nature of polymeric materials influences their degradation 

rate, and the susceptibility to hydrolysis follows this order: (1) hydrophilic polymers with 

hydrolysable bonds (e.g. PVOH, cellulose), (2) hydrophobic polymers with hydrolysable 

bonds (PET, PU), and (4) hydrophobic with no hydrolysable bonds (PE, PVC, PP) (Williams 

and Zhong, 1994, Azevedo and Reis, 2005, Min et al., 2020).There are also several factors 

that affect hydrolytic cleavage of the plastics which include pH, temperature, degree of 

crystallinity, morphology and porosity of the material. These factors influence the water 

permeability and therefore the erosion rates. Additionally, enzymes (e.g. lipase, protease, 

esterase) also play vital role in the hydrolytic degradation of plastics as they act as catalysts 

in these reactions (Shah et al., 2008, Donelli et al., 2009, Sangale et al., 2012, Tribedi et al., 

2012, Hung et al., 2016, Wilkes and Aristilde, 2017). Such enzymatic hydrolysis of plastics 

is influenced by various physicochemical properties including molecular weight, degree of 

crystallinity, surface area, crosslinking, porosity and chemical composition of the plastics. 

Moreover, inherent properties of the enzymes such as solubility, activity and 3-D 

conformation along with extrinsic factors including pH, oxygen, temperature, and nutrient 
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availability also affect the enzyme catalysed hydrolytic degradation of plastics (Azevedo and 

Reis, 2005).  

1.3.3.4 Mechanical Degradation 

Mechanical shearing is an important degradation process of plastics within marine 

environments. It involves the degradation of plastics under mechanical stress, compression 

and/or tension and usually occurs due to combined actions of waves and tides (Corcoran et 

al., 2009). Sediment particles can also scratch the surface of plastics which causes an 

increase in the rate of fragmentation (Fotopoulou and Karapanagioti, 2012). The weathering 

of plastic by various environmental factors often changes their properties which leads to 

embrittlement (Duwez and Nysten, 2001). When brittle, plastic is then fragmented into 

microplastics due to the mechanical forces exerted during the movement through various 

marine habitats (Kooi et al., 2018). This mechanical degradation can further shred the 

microplastics into nano-plastics (size 1-1000 nm) (Lambert and Wagner, 2016, Gigault et 

al., 2018). However, in both cases, mechanical degradation decreases the polymer particle 

size and thus increases the surface area and polarity of the plastic fragments (Klein et al., 

2018). These surface alterations can also lead to faster degradation of plastic particles due to 

higher reactivity and facilitate the adsorption of persistent organic pollutants (POPs) to the 

plastics (Fotopoulou and Karapanagioti, 2012, Fotopoulou and Karapanagioti, 2015). 

Mechanical degradation of plastic debris may occur offshore, onshore or when plastic is 

deposited on a beach. At sea, there may be collisions in areas of high shipping traffic and in 

areas where debris density is high (Cooper and Corcoran, 2010). In addition, the mechanical 

degradation of plastic debris is higher on a beach than at sea because of higher mechanical 

forces presented by the former (Corcoran et al., 2009). The plastic debris samples collected 

from the beaches of Kauai, Hawaii, were observed to have crack, notches, pits, flakes and 

grooves on their surfaces. These mechanically produced surface textures provide the sites 

for oxidative processes to occur, which further weakens polymer surfaces leading to 

embrittlement. Fourier transform infrared spectroscopy (FTIR) results suggest that 

polyethylene is more liable to such oxidation compared to polypropylene and it occurs along 

the cracks and in the pits, created during collisions (Cooper and Corcoran, 2010). 

1.3.3.5 Biodegradation  

Biodegradation of plastics is a mineralisation process which results in the partial or total 

conversion of plastics into biogas and biomass by the activity of microorganisms (e.g. 
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bacteria, fungi) (Shah et al., 2008). Depending on the microbes and the respiratory 

conditions, the end product of the biodegradation process is either carbon dioxide (CO2) and 

water (H2O) under aerobic conditions, or CO2 and methane (CH4) under anaerobic 

conditions (Mohan, 2011). Generally, biodegradation is considered to occur after or with 

physical and chemical degradation (abiotic degradation), which weakens the structure of 

polymers as revealed by morphological and molecular changes (Reisser et al., 2014). The 

alteration of plastic properties due to abiotic degradation is called “ageing” and depends on 

several factors such as temperature, sunlight and chemicals that enhance the degradation rate 

by oxidizing or disrupting the length of the polymer chain. Abiotic degradation only lowers 

the molecular weight of the material by breaking bonds and increasing the surface area 

whereas biodegradation, involving microorganisms and their enzymes, results in the 

complete degradation of plastics into CO2 and H2O (Shah et al., 2008). 

There are four steps that summarise the biodegradation process, which have been described 

in detail in a review by Dussud and Ghiglione (2014): 

• Bio-deterioration – This is the first step of the biodegradation process which involves 

the development of a biofilm on the surface and inside the plastic. The biofilm 

formation increases the pore size and provokes cracks that weaken the physical 

properties of the plastic (physical deterioration). It also releases acidic compounds 

which modify the pH inside the pores and results in changes in the molecular 

structure of plastics (chemical deterioration) (Figure 1.3.6). 

• Bio-fragmentation – A process where extracellular enzymes (e.g. esterases, lipases, 

peroxidases and depolymerases) are released by bacteria colonizing a polymer 

surface. These enzymes reduce the molecular weight by breaking the plastic into 

smaller units, oligomers, and then into monomers that are assimilated by 

microorganisms. 

• Assimilation –Oligomers of less than 600 Daltons are transported inside microbial 

cells to be used as a carbon source. This increases the microbial biomass and 

produces various metabolites. 

• Mineralization – The ultimate step of plastic biodegradation which results in the 

excretion of simple (e.g. CH4) and completely oxidized metabolites (e.g. CO2, H2O) 

to the extracellular surroundings (Figure 1.3.6). 
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Figure 1.3.6 Various steps of plastic biodegradation in the marine environment. Original diagram by (Wei and 

Zimmermann, 2017)  

1.4 Interactions Between Marine Microorganisms and Plastics 

1.4.1 Potential Impacts of Plastics on Marine Microorganisms  

Microorganisms dominate every corner of the biosphere, especially in the oceans where a 

single drop of seawater contains approximately 2 million microbes (Amaral-Zettler et al., 

2010).  Marine microbes, including auto- and heterotrophic bacteria, marine fungi, archaea, 

and single-celled eukaryotes called protists, are metabolically versatile and account for 

approximately 90 % of the total biomass of the oceans (Fuhrman et al., 1989, Whitman et 

al., 1998, Kirchman, 2008). They feed on carbon sources including detritus, phytoplankton 

exudates, and organic material released by protozoan or zooplankton grazing and carry out 

half of the oceanic primary productivity (Legendre and Le Fèvre, 1995, Amaral-Zettler et 

al., 2010). They also play a key role in maintaining biogeochemical cycles and functioning 

of the marine food web by decomposing and assimilating the marine dissolved organic 

matter (DOM) and particulate organic matter (POM) (Falkowski et al., 2008, Pomeroy et al., 

2007, Kujawinski, 2011). Assimilated DOM/POM is returned to higher trophic levels 

through a microbial loop, a depiction of the microbial food web can be seen in Figure 1.4.1 

(Azam et al., 1983, Pomeroy et al., 2007). The microbial loop is complex due to many 

interactions between organisms and the involvement of marine viruses, which can prevent 

the POM from migrating up trophic levels via a viral shunt pathway (Weinbauer et al., 2007).  
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Figure 1.4.1 Overview of the potential impact of plastic on the regulation of carbon and other nutrient cycles. 

Dissolve (DOM) and particulate (POM) organic matter originated from the linear trophic chain is returned to 

higher trophic levels via its incorporation in bacterial biomass. Original diagram by Jacquin et al. (2019). 

The ecological impacts of marine plastic debris are well documented for marine fauna 

ranging from small crustaceans to large marine animals (Andrady, 2011, Gall and 

Thompson, 2015) (see Section1.1.1). However, the potential impacts of plastics on marine 

microorganisms are largely unknown. Only one recent study relating to plastic leachate 

effects on marine bacteria reported short-term growth stimulation of marine heterotrophic 

bacterioplankton and suggested potential consequences for marine microbial activity and 

carbon cycling in the oceans (Romera-Castillo et al., 2018). However, this study did not 

address the effects on marine primary producers. In contrast, Dussud et al. (2018) 

compared the heterotrophic production of bacteria living on plastic and in seawater. This 

study reported that heterotrophic bacteria living on plastics were particularly active, with a 

cell-specific activity of 43- to 88-fold higher than that of the free-living fraction. Dussud et 

al. (2018) focused on the microbial colonisation of plastic surfaces and therefore did not 

further explore the potential consequences of plastics on marine microbial ecology. 

Determining the impacts of plastics on marine microorganisms that support the functioning 

of the marine ecosystems represent a significant research gap (Harrison et al., 2011). Apart 

from controlling the marine ecosystem functioning, marine microbes also serve as sensitive 
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indicators of ecosystem health because of their ability to modulate the metabolism in 

response to environmental changes (Chiu et al., 2008, Mojtahid et al., 2008, Harrison et al., 

2011). In this respect, it is pertinent to study the interaction of marine microbes with plastic 

pollution, which may have potential consequences on marine microbial communities and 

microbially mediated biogeochemical processes (Hutchins and Fu, 2017).  

1.4.2 Microbial Attachment and Biofilm Formation on Marine Plastics 

Once in the marine environment microbes can readily colonise plastic debris (Zettler et al., 

2013). As with any hard surface in the marine environment, plastics offer an ideal 

environment for colonisation of marine biota, which includes bacteria, fungi, diatoms, 

unicellular eukaryotes, and invertebrate species (Zettler et al., 2013, Harrison et al., 2014, 

Oberbeckmann et al., 2014, Reisser et al., 2014, Bryant et al., 2016, De Tender et al., 2017a, 

Kettner et al., 2019). The presence of microorganisms on marine plastic was first reported 

in 1972 when diatoms and rod-shaped Gram-negative bacteria were observed on plastic 

fragments collected from the Sargasso Sea (Carpenter and Smith, 1972, Carpenter et al., 

1972). Similarly, a few years later, microbial colonisation was also identified on various 

anthropogenic materials, which included high-density polyethylene plastic (HDPE) bottles 

using Scanning Electron Microscopy (SEM) (Sieburth, 1975). After these initial 

observations of diatoms and bacterial colonisations, the topic did not receive much attention 

until recently (Harrison et al., 2011), with Zettler et al. (2013) reporting the first 

comprehensive characterisation of microbial communities on marine plastic debris using a 

culture-independent and next-generation sequencing (NGS) approach. The study showed 

that physically and chemically distinct man-made plastic materials supported and selected 

for distinct microbial communities which were referred to as the “Plastisphere”. These 

“Plastisphere” communities were also different from surrounding seawater communities 

(Zettler et al., 2013). The term “Plastisphere” was initially assigned to the assemblage of 

taxa inhabiting on the surface of marine plastic debris but is now generally referred to the 

biota living on the surface of the plastic debris (De Tender et al., 2017a)  

The colonisation of microbial communities on plastic surfaces occurs through the formation 

of a biofilm. The marine microorganisms undergo remarkable changes during the biofilm 

formation, i.e. from planktonic (free-living) to complex, surface-attached communities 

(Figure 1.4.2). The formation of a biofilm generally starts with the preconditioning of the 

polymer with inorganic and organic substances which are adsorbed immediately onto the 

surface after first contact with seawater (Loeb and Neihof, 1975). Once the microorganisms 



 
22 

attach to a polymer surface they then start to colonise. The initial attachment is reversible, 

however at this point microorganisms will begin to form microcolonies and produce an 

extracellular matrix. This matrix consists of extracellular polysaccharides, cell debris, 

structural proteins and nucleic acids and is usually referred to as extracellular polymeric 

substances (EPS) (Flemming and Wingender, 2010). The EPS act as an adhesive and 

supports the irreversible attachment of microcolonies. The biofilm further grows through 

cell-to-cell communications (quorum sensing) which play a key role in the biofilm 

maturation (Waters and Bassler, 2005). At the end of the biofilm growth cycle, microbial 

cells begin to disperse as plankton cells start a new cycle of biofilm formation (Rendueles 

and Ghigo, 2012) (Figure 1.4.2). 

Formation of a microbial biofilm on marine plastic materials occurs very quickly (e.g. after 

one week) (Lobelle and Cunliffe, 2011). Similarly, bacterial colonisation of low-density 

polyethylene (LDPE) occurred after 7 days of exposure in marine sediments (Harrison et al., 

2011). In both cases the biofilms were mainly dominated by bacteria and diatoms, along 

with marine invertebrates (Carson et al., 2013, Reisser et al., 2014). To date, most of the 

plastic biofilm studies have focused on comparing the colonising communities to that of 

seawater and have reported striking differences between the “Plastisphere” and surrounding 

seawater communities (Zettler et al., 2013, Amaral-Zettler et al., 2015, De Tender et al., 

2015, Bryant et al., 2016). From the composition perspective, spatial and seasonal effects 

(Amaral-Zettler et al., 2015, Oberbeckmann et al., 2016), geographical location (De Tender 

et al., 2017a), substrate type (Oberbeckmann et al., 2014, Martin et al., 2018) and polymer 

surface properties (e.g. roughness, free energy and hydrophobicity) (Carson et al., 2013, 

Rummel et al., 2017) are known to be the controlling parameters for the development of 

distinct marine plastic biofilms. It is, however, well established that marine plastic biofilms 

contain various general bacterial families including primary colonisers of family  

Rhodobacteracea,  Hyphomonadaceae, Erythrobacteraceae, and Pelagibacteraceae (Dang 

et al., 2008, Zettler et al., 2013, Bryant et al., 2016, Oberbeckmann et al., 2018). Members 

of Flavobacteriaceae, Cytophagaceae and Sphingobacteriaceae appear as secondary 

colonizers (Dang and Lovell, 2000, Lee et al., 2008) on mature marine plastic biofilms 

(Bryant et al., 2016, De Tender et al., 2017a). 
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Figure 1.4.2 Stages of biofilm formation and development. Redrawn and adapted from (Flemming, 1998, 

Rendueles and Ghigo, 2012) 

Despite the fact that microorganisms can colonise all plastics that are introduced into the 

marine environment (De Tender et al., 2015, Eich et al., 2015, Rummel et al., 2017), the 

investigations of biofilm formation on plastic surfaces are scarce (De Tender et al., 2017a). 

Only a few studies have so far described either the early (< 4 weeks) (Lobelle and Cunliffe, 

2011, Harrison et al., 2014, Eich et al., 2015, Oberbeckmann et al., 2016) or the long term 

(> 6 months) biofilm formation (Webb et al., 2009, De Tender et al., 2017a) onto a limited 

number of plastic materials. These studies were focused on either one plastic-type or they 

compared it with the communities of other non-plastic substrates e.g. wood and glass. Some 

studies have however analysed the biofilm communities on randomly collected plastic debris 

(Oberbeckmann et al., 2014, Bryant et al., 2016, Debroas et al., 2017). The biofilm 

development process on these randomly sampled plastics is not clear due to their unknown 

source, exposure period and travel history (De Tender et al., 2017a). Consequently, there is 

a lack of ecological information about the specificity and temporal dynamics of biofilm 

formation on chemically distinct synthetic plastics such as polyesters and polyolefins under 

comparable marine environments. Addressing this research gap forms one of the aims of this 

thesis.   

1.4.3 Plastic Degradation by Marine Microbes  

Plastics are potential substrates for heterotrophic marine microorganisms including bacteria 

and fungi. The biodegradability of plastics depends on the physical state, crystallinity, 

molecular weight and the metabolic interactions within plastic-attached biofilms (Gu, 2003, 
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Artham et al., 2009b, Harrison et al., 2011). Generally, the biodegradation of plastics within 

marine environments involves various steps during which plastics are cleaved into smaller 

units (e.g. oligomers and monomers) that can further be assimilated by microbes (Lucas et 

al., 2008, Dussud and Ghiglione, 2014) (Section 1.3.3.5, Figure 1.3.6). Moreover, the 

formation of biofilms on a plastic surface is very crucial in their biodegradation (Flemming, 

1998, Orr et al., 2004b), which can result in different mechanisms of polymer degradation 

as shown in Figure 1.4.2 (Section 1.4.2). However, the durability of recalcitrant plastic 

materials and their lower bioavailability to microbes are the main obstacles to biodegradation 

in the marine environment (Lucas et al., 2008, Gewert et al., 2015). 

The ability of microorganisms to degrade plastics have been known for several decades, with 

the first study in 1968 identifying bacterial isolates with the potential to degrade plastic 

(Booth et al., 1968). However, the biodegradation process of plastics within the marine 

environment became a focus of research a couple of decades later (Palmisano and Pettigrew, 

1992). So far, there are only a few studies that have analysed the biodegradation potential of 

a wide range of plastics in the marine environment (Table 1.4.1). These studies are mostly 

based on the isolation and in vitro biodegradability testing of microbial strains isolated from 

marine environments. The isolated microorganisms, including marine bacteria and fungi, 

showed the biodegradation potential of plastics (Urbanek et al., 2018) which was assessed 

based on weight loss. For example, Balasubramanian et al. (2010) isolated bacterial strains 

belonging to genera Pseudomonas and Arthrobacter from the Gulf of Mannar, India and 

measured a 15 % decrease in HDPE weight. Similarly, bacteria genera such as Bacillus and 

Rhodococcus were reported to reduce the weight of polyethylene by 7.4 % (Auta et al., 2017, 

Auta et al., 2018). In contrast, some marine fungi have also been identified as plastic 

degraders, e.g. Aspergillus sp. which degraded HDPE by 8.5 % (weight loss) after a 30 day 

incubation (Devi et al., 2015) and Zalerion maritimum which caused microplastics of 

polyethylene to lose 43% of its weight after 14 days (Paço et al., 2017). The other microbial 

taxa isolated from marine environments with the ability to utilise plastic materials as a source 

of carbon and energy are listed in Table 1.4.1. Whilst marine microbes have demonstrated 

the capabilities to degrade plastics, the rate of biodegradation is slow, even in optimised 

laboratory conditions (Krueger et al., 2015, Debroas et al., 2017). This has been attributed 

to the large size of plastic molecules, higher chemical stability and lower bioavailability of 

plastic materials to microbial cells (Alexander, 1975, Andrady, 1994). Additionally, low 

levels of oxygen, light and nutrients within the marine environment may also limit the plastic 

biodegradation process (Barnes et al., 2009, Jacquin et al., 2019).  
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Although existing studies provide the evidence for microbial degradation of plastics in 

marine environments (Table 1.4.1), little is known about the complete assimilation and 

mineralisation of plastics by marine microbes. Recently, a bacterial strain, Ideonella 

sakaiensis, was isolated from sediment of a plastic recycling facility in Japan, which 

demonstrated the complete assimilation and mineralisation of PET using two enzymes 

(Yoshida et al., 2016). This indicated that high concentration of plastics can induce evolution 

in bacteria for plastic biodegradation. With the increasing amounts of plastic debris in the 

oceans this might also be true for marine bacteria, Moreover, the colonisation of potential 

biodegraders on plastics has also been observed in marine habitats (Zettler et al., 2013, 

Harrison et al., 2014) and recently Bryant et al. (2016) reported the presence of xenobiotic 

biodegradation genes in relation to the attached microbes on marine plastic surfaces. The 

processes underlying the attachment of these biodegraders onto marine plastics and their 

ability to degrade are largely unknown (Harrison et al., 2018b), but these findings imply that 

biodegradation potential of marine microorganisms is ubiquitously present in the world’s 

oceans. Taking into consideration that most marine microorganisms potentially 

participating in the degradation of plastic debris remain undiscovered, this thesis aimed, in 

part, to isolate and characterise indigenous marine species with the potential to degrade 

plastics.  
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Table 1.4.1 List of microorganisms isolated from the marine environment with the capability of degrading 

various plastics 

Microorganisms Sources Plastics References 

Bacteria    

Bacillus sphericus and 

Bacillus cereus 
Indian Ocean 

LDPE, HDPE and 

starch-blended 

LDPE 

(Sudhakar et al., 

2008) 

Pseudomonas sp. 

 

Deep seawater 

 

Polycaprolactone 

(PCL) 

(Sekiguchi et al., 

2009) 

Arthrobacter sp. And 

Pseudomonas sp. 
Gulf of Mannar, India HDPE 

(Balasubramanian 

et al., 2010) 

Alcanivorax sp., 

Pseudomonas sp. and 

Tenacibaculum sp. 

Deep seawater 

PCL, 

PHB/V and 

Polybutylene 

succinate 
 (PBS) 

(Sekiguchi et al., 

2011a) 

Shewanella sp., Moritella 

sp., Psychrobacter sp. and 

Pseudomonas sp. 

Deep-sea sediments PCL 
(Sekiguchi et al., 

2011b) 

Kocuria palustris M16, 

Bacillus pumilus M27 and 

Bacillus subtilis H1584 

Pelagic zone, Arabian 

Sea, India 
LDPE 

(Harshvardhan 

and Jha, 2013) 

Vibrio alginolyticus and 

Vibrio parahemolyticus 

Benthic zones of 

marine environments 

Polyvinyl alcohol 

(PVA) blended low 

LDPE 

(Raghul et al., 

2014) 

Lysinibacillus sp. 

and Salinibacterium sp. 

Plastic samples from 

the North Sea 
Weathered LDPE 

(Syranidou et al., 

2017) 

Pseudomonas sp. and 

Rhodococcus sp.  
Arctic soil 

PCL, 

potato and corn 

starch based 

commercial bag 

(Urbanek et al., 

2017) 

Bacillus gottheilii and 

Bacillus cereus 

Mangrove ecosystems 

in Peninsular Malaysia 

PE, Polypropylene 
(PP), PS 

(Auta et al., 2017) 

Brevibacillus borstelensis Marine sediment HDPE 
(Mohanrasu et al., 

2018) 

Bacillus sp. strain 27 

and Rhodococcus sp. strain 

36 

Mangrove ecosystems 

in Peninsular Malaysia 
PP (Auta et al., 2018) 

Bacillus flexus and 

Pseudomonas citronellolis 
Marine environment PVC 

(Giacomucci et 

al., 2019) 

Bacillus sp. and 

Pseudomonas sp. 

Coast of Tamil Nadu, 

India 
HDPE 

(Sangeetha Devi 

et al., 2019) 

Fungi    

Aspergillus versicolor, and 

Aspergillus sp. 
Bay of Bengal, India LDPE 

(Pramila and 

Ramesh, 2011) 

Aspergillus tubingensis 

VRKPT1 and Aspergillus 

flavus VRKPT2. 

Gulf of Mannar, India HDPE (Devi et al., 2015) 

Trichoderma sp. and 

Clonostachys Rosea, 
Arctic soil 

PCL, 

potato and corn 

starch based 

commercial bag 

(Urbanek et al., 

2017) 

Zalerion maritimum Marine environment PE (Paço et al., 2017) 
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Chapter 2: A Time-Series Investigation into the Effects of 

Plastic Pollution on Microbial Community Structure and 

Diversity in Seawater: A Microcosm Study   

 

 

2.1 Introduction  

Marine microbial communities, encompassing single-cell bacteria, fungi, archaea and 

eukaryotes, dominate the World’s oceans due to their overwhelming abundance and 

metabolic versatility within marine ecosystems (Kirchman, 2008, Amaral-Zettler et al., 

2010). They carry out approximately half of the primary production and play an important 

part in nutrient cycling (Arrigo, 2004). More than 95 % of respiration in the oceans is 

attributed to microbial activity (Del Giorgio and Duarte, 2002). Marine microbes are also 

the driving force behind biogeochemical cycling including iron, sulphur and manganese, and 

govern nitrogen utilisation through nitrogen fixation (Kirchman, 2008). Moreover, 

heterotrophic marine bacteria support the lower level of marine food webs by decomposing 

organic carbon and re-mineralising inorganic nutrients (Pomeroy et al., 2007). The 

assimilated carbon and energy from bacteria are transferred to larger zooplankton through 

protozoan grazing. The resulting microbial loop creates a link between marine bacteria and 

higher trophic levels (Azam et al., 1983, Pomeroy et al., 2007). 

Human activities resulting from dumping or incidental release of pollutants, coastal 

engineering, fishing, tourism, maritime transport and mining are constantly exerting pressure 

on the marine ecosystem (Nogales et al., 2011). Despite their enormous functional resilience, 

the prokaryotic and eukaryotic marine microorganisms are also facing these unprecedented 

challenges (Hutchins and Fu, 2017). These anthropogenic perturbations are altering almost 

all physical, chemical and biological properties in the ocean which could affect the growth 

of marine microorganisms. Nevertheless, it is unclear how these anthropogenic activities 

will reshape the abundance and diversity of marine microbial communities, which form the 

base of the ocean’s life support system (Hutchins and Fu, 2017). 

One of the most direct human impacts on present-day oceans is pollution from plastic waste. 

It is ubiquitous within marine ecosystems and has become a global concern due to its 
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detrimental effects on aquatic wildlife (Thompson et al., 2009). The majority of the waste 

enters the world’s oceans from terrestrial sources (Wright et al., 2013b) and accumulates in 

gyres due to ocean circulation patterns (Eriksen et al., 2013, Cózar et al., 2014). It is 

estimated that 275 million metric tons (MMT) of plastic waste was generated in 2010, with 

4.8 to 12.7 MMT entering the ocean. By 2025, it is predicted that an increase by one order 

of magnitude is predicted for the cumulative quantity of plastic waste entering the oceans 

from land (Jambeck et al., 2015), with potentially large implications for marine life. 

As comparatively new to the marine environment, plastic debris serves as a substrate for 

microbes, which lasts longer than other naturally occurring substrates in the marine 

ecosystem (Zettler et al., 2013). The surface of plastics provides a suitable environment for 

microbial colonization, with several marine physicochemical factors, e.g. climate, light, and 

nutrient loading, influencing the microbial community succession (De Tender et al., 2017b, 

Bunse and Pinhassi, 2017). Microbial colonisation of the plastics occurs relatively fast 

(Lobelle and Cunliffe, 2011, Harrison et al., 2014) similar to other artificial surfaces (glass, 

steel and acryl) (Salta et al., 2013) and colonising communities are taxonomically distinct 

from those in the surrounding water column (Zettler et al., 2013). However, little is known 

about the nature of plastic-microbe interactions and the effect plastic has on marine microbial 

communities. More importantly, it is also needed to study the effects of substrate type 

(synthetic and bio-based/degradable plastics) on marine microbial diversity as the nature of 

litter is likely to evolve in the future with the advent of new biodegradable plastics.  

This chapter focuses on the changes in the diversity and composition of marine bacterial 

communities caused by the addition of various chemically distinct natural and synthetic 

plastics. The effects of plastics on marine microbes could be subtle and observed only after 

the resultant changes have become noticeable through higher trophic levels. Therefore, the 

characterisation of microbial communities within seawater containing plastics is paramount 

as it would allow to identification of the factors contributing to the impacts on the lower 

level of marine food webs.  

The two aims of this chapter are:  

(1) to assess the variation in the community structure and diversity of marine bacterial 

community due to the presence of various plastics over time; and  

(2) to identify the main physio-chemical properties of plastics and seawater driving the 

resultant variation. 
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2.2 Materials and Methods 

2.2.1 Seawater Sampling 

A stimulated marine environment was developed to investigate the effect of various plastics 

on diversity and structure of marine bacterial communities using freshly collected seawater. 

The natural seawater (NSW) samples were collected from Skegness beach (53.137844 ºN; 

0.351808 ºE), the UK on 20 April 2017 (Figure 2.2.1). Samples were obtained prior to high 

tide from the top 1 m water column in 10 L capacity containers for transit. Samples were 

stored either overnight in darkness at 4 ºC for use in laboratory microcosms, or at -20 ºC for 

DNA extraction. The water was pre-filtered using Whatman® quantitative filter paper, Grade 

40 (pore size 8 µm) to remove large organisms that may feed on bacteria during the 

experiment. In addition, temperature (12.8 ºC), salinity (38.2) and dissolved oxygen (9.36 

mg/L) was determined at the time of sampling, using a 395 handheld refractometer (Test 

Products Intl. Ltd, Sussex, UK ) and portable HI98193 DO meter (HANNA instruments, 

UK) respectively. The pH of the samples (7.5 ± 1) was also measured upon arrival to the lab 

using Thermo ScientificTM OrionTM Versa Star ProTM (Fisher Scientific, Loughborough, 

UK). 

 

Figure 2.2.1 Location of the seawater sampling site. The small black box denotes the regional location of the 

sampling sites within the UK. Location of field site used for seawater sampling at Skegness, Lincolnshire, UK 

is shown in the magnified box. Circular marker denotes the sampling site. 
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2.2.2 Seawater-Plastics Microcosms Setup  

Seven different plastic materials (referred to as treatments) were selected ranging from 

environmentally persistent fossil fuel-derived synthetic polymers to naturally produced 

biodegradables (Table 2.2.1). Each plastic along with the freshly collected NSW was added 

to a 500 mL autoclaved Erlenmeyer flask to create a microcosm. Eight sets of microcosms, 

one for each test plastic and for the control (with no plastic) were set up in triplicate. Each 

microcosm contained 300 mL of NSW spiked with 100 mg of plastics (sterilised with 70 % 

ethanol). The flasks were incubated in a Microclima 1750 climate cabinet (Snijders Labs, 

Tilburg, The Netherlands) at 15 ºC, 80 % relative humidity, in the dark at 400 ppm CO2 

atmospheric concentration for 512 hrs. These conditions were based on in situ measurements 

of the NSW sample site and representative of marine environments. The flasks were also 

rotated at the speed of 50 rpm to facilitate aeration during the experiment. A sacrificial 

sampling of 20 mL seawater from all microcosms was performed aseptically in triplicate 

(totalling 24 per time point) at 10 intervals (1, 2, 4, 8, 16, 32, 64, 128, 256 and 512 hrs). The 

samples were filtered through Whatman® quantitative filter paper, Grade 42 (pore size 2.5 

µm) to remove plastic fragments from the water. Sub-samples of seawater after filtration 

was also withdrawn for molecular analysis at each time intervals and stored at -80 ºC.  

Table 2.2.1 Name and properties of the plastics used in the Study 

Polymer type* Abbreviation 
Particle 

size 
Form Colour Manufacturer 

Synthetic (fossil-based, non-biodegradable) 

Polyethylene 

terephthalate 
PET 3 mm Pellet White 

Goodfellow 

Cambridge, UK 

High-density 

Polyethylene 
HDPE 2-4 mm Pellet Natural 

Goodfellow 

Cambridge, UK 

Low-density 

Polyethylene 
LDPE 1 mm Pellet Natural 

Goodfellow 

Cambridge, UK 

Polyvinyl chloride PVC 0.25 mm Pellet Light Gray 
Goodfellow 

Cambridge, UK 

Biodegradable (fossil-based) 

Poly (vinyl alcohol) PVOH 
Refined 

particles 
Powder White 

Sigma Aldrich, 

Germany 

Biodegradable (bio-based) 

Polylactic acid PLA 3 mm Pellet White 
Goodfellow 

Cambridge, UK 

Polyhydroxybutyrate

/Polyhydroxyvalerate 
PHB/PHV 5 mm Pellet White 

Goodfellow 

Cambridge, UK 
*All plastics were of research grade and contains no additives or stabilisers. 
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2.2.3 Physico-Chemical Characterisation of Seawater  

The physicochemical parameters of the seawater were characterised during the experiment 

using the following methods: 

• pH measurement; 

• Dissolved inorganic carbon (DIC), dissolved organic carbon (DOC) and total 

nitrogen (TN) determination. 

2.2.3.1 Seawater pH Measurements 

Variation in pH is indicative of microbial growth due to the production of various 

metabolites as by-products of microbial metabolism (Sumbali and Mehrotra, 2009). The pH 

of NSW (control and plastic-treated) was monitored aseptically throughout the experiment 

using a Thermo ScientificTM OrionTM Versa Star ProTM (Fisher Scientific, Loughborough, 

UK) with a three-point calibration using Omega Buffer solutions at pH 4, 7 and 10. 

2.2.3.2 Dissolved Inorganic Carbon (DIC), Dissolved Organic Carbon (DOC) and Total 

Nitrogen (TN) Determination 

The dissolved inorganic and organic carbon content of NSW (control and plastic treatment) 

were analysed using a Shimadzu Total Carbon analyser (TOC-V CSN) instrument. DIC was 

measured by acidifying 10 ml of sample with 2 M hydrochloric acid (HCl). The addition of 

acid converted all the carbonates and dissolved CO2 in the sample to gaseous carbon dioxide, 

which was subsequently measured by an infra-red detector. Dissolved organic carbon 

analysis used a non-purgeable organic carbon (NPOC) method. After eliminating the IC 

component by acidifying and purging with CO2 free gas, the remaining sample was injected 

into a combustion tube (680 ºC) containing a platinum catalyst. The resulting CO2 was 

measured by an infra-red detector.  

The instrument was calibrated using various concentrations (0-100 mg L-1) of pre-dried 

reagent grade sodium hydrogen carbonate (NaHCO3) and sodium carbonate (Na2CO3) for 

DIC analysis. Potassium hydrogen phthalate certified standards (Sigma-Aldrich®) were 

used to calibrate for DOC analysis. The detection limit of the instrument for DOC analysis 

was below 0.1 mg L-1 carbon and below 0.3 mg L-1 for DIC analysis.  

For total nitrogen (TN) analysis, the sample was heated at 680 ºC to decompose the TN in 

the sample to nitrogen monoxide (NO). The resultant NO was then measured by a 
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Chemiluminescence gas detector. Quantitation was achieved by calibrating the TOC-V 

instrument with potassium nitrate (KNO3) standard.   

2.2.4 Microbial Community Analysis   

The seawater microbial community was characterised by using the following molecular 

methods: 

• Cell enumerations 

• Terminal restriction fragment length polymorphism (T-RFLP) 

• Illumina MiSeq Barcoded Amplicon Sequencing  

• In silico digestion of MiSeq sequences 

2.2.4.1 Seawater Cell Enumerations  

To determine the total cell number in the control and plastic treated NSW, 1 mL of sample 

was taken from each microcosm aseptically. The cells in NSW were stained with nucleic 

acid binding dye SYBRTM Green I DNA (Invitrogen TM, UK) to visualise under ultra-violet 

light. Ten µL of samples were stained with 0.2 % solution of SYBRTM Green I DNA in 1:1 

ratio on a microscopic slide and incubated in the dark for 20 min at room temperature. The 

brightly stained cells were visualised by epifluorescence microscopy and enumerated under 

a Leica DM 4000 B microscope (Leica Microsystems, UK), using 485nm wavelength blue 

excitation filter (Marie et al., 1997). To calculate the number of cells per mL of sample, the 

visible cells within twenty frames of view were counted for each of the samples.  

2.2.4.2 Terminal Restriction Fragment Length Polymorphism (T-RFLP) 

T-RFLP is a low cost, high throughput molecular fingerprinting method, which is used to 

measure and compare microbial diversity within a sample. It is based on polymerase chain 

reaction (PCR) amplification of the target nucleic acid sequence (e.g. 16S rRNA gene) with 

fluorescently labelled primers (Liu et al., 1997). The resultant PCR amplicons are then 

cleaved using restriction endonuclease enzymes to produce terminal restriction fragments 

(T-RFs) of different lengths. Each T-RF can then be assigned to a relevant microbial group 

according to the size and the the intensity of each T-RF is proportional to the abundance of 

the population within a sample. Following methods were used for T-RFLP analysis. 
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2.2.4.3 Genomic DNA Extraction  

The total genomic DNA extraction was performed on the original NSW and subsamples 

from each of the plastic treated microcosms and controls,  using the bead-beating method as 

described by Griffiths et al. (2000) with slight modifications. At first, 10 mL of sample was 

centrifuged at 12000 × g for 15 min at 4 ºC to concentrate the microbial biomass. The pellet 

was then transferred into 2 mL Lysing Matrix E tube (MP Biomedicals, OH, USA) along 

with 0.5 mL of 5 % hexadecyltrimethylammonium bromide (CTAB) solution (5 g CTAB in 

100 ml 120 mM K2HPO4 buffer of pH8.0) in 120 mM phosphate buffer (pH 8.0) and 0.5 

mL of phenol:chloroform:isoamyl alcohol in the ratio of 25:24:1. The tube was shaken at 

the speed setting of m.s-1 for 40 secs using an MP Fastprep-24 homogeniser (MP 

Biomedicals, OH, USA) and then centrifuged at 16,000 × g for 15 min at 4 ºC. The aqueous 

phase (supernatant) was then removed and an equal volume of chloroform: isoamyl alcohol 

(24:1) was added to remove residual phenol, followed by centrifugation at 10,000 × g for 10 

min at 4 ºC. The total genomic DNA was subsequently precipitated overnight at 4 ºC using 

2 × volume of polyethelene glycol solution (30 % PEG 6000 in 1.6 M NaCl solution), 

followed by centrifugation at 14,000 × g for 15 min at 4 ºC. The pelleted DNA was then 

washed with ice-cold ethanol (70 %), air dried and re-suspended in 50 µL of nuclease-free 

water (Invitrogen TM, UK). Subsequent purification was conducted using GeneMATRIX 

universal DNA purification kit (EURx, Gdansk, Poland). DNA extraction yields were 

measured with a NanoDrop spectrophotometer (Thermo Scientific, Wilmington, DE). 

2.2.4.4 PCR Amplification and Product Digestion  

For T-RFLP analysis, the hypervariable V1-V3 region of 16S rRNA gene within extracted 

genomic DNA was partially amplified using dye-labelled (6FAM) 63F (5′- CAG GCC TAA 

CAC ATG CAA GTC -3′) (Marchesi et al., 1998) and 530R (5′- GTA TTA CCG CGG CTG 

CTG-3′) (Muyzer et al., 1993) primers. Amplification was carried out using 1 µL of template 

DNA in a 50 µL reaction mixture containing 250 nM of each primer, 5 µL of 5× Taq buffer, 

2 mM MgCl2, 0.1 mM of each dNTP, 5 µg bovine serum albumin (BSA; New England 

Biolabs, MA) and 1.75 U of Taq (New England Biolabs, MA). PCR conditions were as 

follows: initial denaturation for 10 min at 94 ºC followed by 35 cycles of denaturation at 94 

ºC for 1 min, annealing at 55 ºC for 1 min, extension at 72 ºC for 1 min and a final extension 

at 72 ºC for 10 min. All PCR products were verified on a 1.25 % (w/v) agarose gel (Sigma, 

Aldrich, Germany) by electrophoresis with a DNA marker, 2-Log DNA Ladder (New 

England Biolabs, MA). 
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PCR products were purified using GeneMATRIX Basic DNA Purification Kit (EURx, 

Gdansk, Poland) according to the manufacturer’s guidelines. Purified PCR products were 

quantified using a Nanodrop spectrophotometer (Thermo Scientific, Wilimington, DE). 250 

ng of PCR products were digested in a 25 μL reaction mixture containing 20 U MspI 

restriction endonuclease (New England Biolabs, MA), and 2.5 μL of enzyme buffer. 

Digestion was carried out for 4 h at 37 ºC. The digested product (2 μL) was added to 9 μL 

of Hi-Di formamide (highly deionized formamide; Applied Biosystems, CA) and 0.35 μL of 

GeneScanTM 600 LIZ size standard (Applied Biosystems, CA). The mixture was incubated 

at 95 ºC for 5 min, followed by 5 min on ice and then analysed on a 3730XL DNA sequencer 

(Applied Biosystems, CA) with the injection voltage of 1.6kV. Capillary electrophoresis was 

conducted at 15kV for 1600 sec.  

2.2.4.5 TRFs Data Processing  

The T-RFLP profiles were analysed using GeneMarker® software (V2.7.0 SoftGenetics, 

PA), using manually created bins. The terminal restriction fragments (T-RFs) presenting 

between 50-500 nucleotides in length and having fluorescence intensities of > 100 units were 

included in subsequent analysis. T-RFLP profiles were aligned using the software T-Align 

(http://inismor.ucd.ie/~talign/index.html) (Smith et al., 2005). Initially, T-align compared 

the replicate profiles within one sample and removed the pseudo peaks. It then generated a 

single consensus profile from the replicates and displayed T-RFs with average peak areas  

(Smith et al., 2005). To analyse the aligned T-RFLP profiles, the total peak area of each T-

RF was normalised within each profile (i.e. the area under each peak was divided by the total 

peak area of each sample). Peaks with areas of < 0.5 % were excluded to remove the 

background noise of sequencer data. 

2.2.4.6 Illumina MiSeq Barcoded Amplicon Sequencing  

To facilitate the identification of the T-RFLP fragments, barcoded 16S rRNA gene amplicon 

sequencing, targeting the V1- V3 hypervariable region was used to analyse the DNA from 

the NSW collected for this study. Sequencing was performed using Illumina Miseq platform 

with the pair-end protocol at Research and Testing Laboratories (Lubbock, TX, US) using a 

600 cycle (2×300 bp) v3 MiSeq reagent kit. The NSW sample was amplified with 63F-530R 

primers for the sequencing process. Primers also contained the Illumina sequencing adapter 

sequence and a unique barcode index. Resulting amplicons were paired-end sequenced 

which were further processed using the MiSeq SOP 

(https://www.mothur.org/wiki/MiSeq_SOP) cited within the MOTHUR program (Kozich et 

https://www.mothur.org/wiki/MiSeq_SOP
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al., 2013). Contiguous sequences were constructed from paired-end sample reads using 

MOTHUR (v1.39.5). All sequences, with any ambiguities or homopolymers longer than 

eight bases, were excluded from further analysis. All remaining sequences were aligned 

against a non-redundant SILVA compatible database (v.128). All sequences were trimmed 

to a maximum length of 478 bases before chimeric sequences were identified and removed 

using VSEARCH (Rognes et al., 2016). The taxonomic classification of sequences was 

determined by comparing with the MOTHUR formatted ribosomal database project (RDP) 

database (v.16). Any sequence returned as unknown, chloroplast or mitochondrial were 

removed from further downstream analysis. All the sequences obtained in this study are 

available within the NCBI Short Read Archive (SRA) database (BioProject: PRJNA454558; 

BioSample: SAMN09010416) 

2.2.4.7 In Silico Digestion of MiSeq Sequences  

Individual T-RF peaks can be used to differentiate between the taxonomic groups, but to 

provide taxonomic identification, these peaks need to be assigned a taxonomic identity. For 

this, in silico digestion of MiSeq sequences was carried out using Restriction Map 

(http://www.bioinformatics.org/sms2/rest_map). All sequences were analysed using the 

restriction endonuclease MspI cleavage site. As some T-RFs can represent various taxa, 

sequences which had the same cleavage site were grouped and an approximate taxon that 

matched at least 75 % of the sequences was assigned to that T-RF. 

2.2.5 Statistical Analysis  

All statistical analyses were carried out using multivariate routines in the statistical software 

package PRIMER 7 (v7.0.13)  with PERMANOVA+ package (Clarke and Gorley, 2015). 

Prior to the analysis, the normalised T-RFs data were log transformed, as it down-weighted 

the effect of abundant T-RFs for enhancing the influence of less abundant T-RFs on the 

outcome of analyses, whilst still allowing the relative differences of T-RFs abundances to 

influence the patterns in community structure. Similarity matrices of transformed T-RFs 

data were constructed using the Bray-Curtis method (Clarke et al., 2006). 

A visual evaluation of the similarities among treated samples was conducted using principal 

coordinates analyses  (PCO) (Gower, 1966, Ramette, 2007). To indicate a percentage of 

similarity between samples on the PCO, a similarity profile test (SIMPROF) was performed 

on group average cluster analysis and then overlaid onto the PCO. Shannon-Weiner diversity 

indices of H’ were generated to estimate the alpha diversity and compared using an analysis 

http://www.bioinformatics.org/sms2/rest_map
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of variance to determine significant differences between the diversity of treatments and time 

points sampled. 

A two-factorial Permutational Multivariate Analysis of Variance (PERMANOVA) 

(Anderson and Walsh, 2013) analysis was conducted using transformed T-RFs abundance 

counts to test for significant differences between treatments. The test design was based on 

Bray-Curtis similarities, the partial sum of squares type III, 999 permutations under a 

reduced model of raw data using Monte-Carlo simulations, and followed by pair-wise tests. 

Type III (partial) sums of squares were chosen as the most conservative model in which the 

order that terms are fitted is not important (Anderson et al., 2008). Permutations under a 

reduced model were selected as plastic treatment and time were the two factors. Moreover, 

Permutational analysis of multivariate dispersions (PERMDISP) (Anderson, 2006) was used 

to test for heterogeneity of community structure in a priori groups.  

The effect of environmental parameters on the NSW community structure was assessed 

within all treatments using distance-based linear models (DISTLM). DISTLM procedure 

was used to identify the contribution of individual variables to explain variation in bacterial 

community datasets. The DISTLM routine was based on the Akaike Information Criterion 

(AIC) using stepwise selection procedure and 999 permutations. Step-wise selection was 

chosen as it allows for both the addition and removal of a term to the model at each step 

(Anderson et al., 2008). AIC selection was chosen as the method to create the most 

parsimonious model to determine the relative importance of all variables in explaining 

community variation that explained the most variations in community data. Furthermore, the 

‘Best’ model-building approach was employed to examine the value (R2) of all possible 

combination of variables that resulted in the strongest correlation with the patterns of the 

bacterial community in all treatments. Distance-based redundancy analysis (dbRDA) plot 

was used to investigate the relationship between the best-correlated variables among all the 

plastic treatment communities. The vectors in the dbRDA plot are proportional to their 

contribution to the total variation. Each vector begins at the centre of the circle (the origin) 

and ends in the coordinates (x and y). The length and direction of each vector indicate the 

strength and sign of the relationship between the given variable and the dbRDA axes. 
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2.3 Results  

2.3.1 Physico-Chemical Characterisation of Seawater  

2.3.1.1 Seawater pH  

Figure 2.3.1a shows that the pH of the control, PET and PVC treated NSW demonstrated no 

difference in pH throughout this study and stayed at 7.5 ± 0.1. However, an increase in the 

pH to 8.05 and 8.28 for HDPE and LDPE treated experiments was observed at 512 hr after 

a decrease to 7.13 and 7.29 at 64 and 32 hrs, respectively. Similarly, the addition of PLA 

showed no change to the pH except for a small decrease to 7.23 at 64 hr, which then increased 

to 8.2 at 512 hr. In the PVOH treatment, the pH started to decrease at 16 hr point and 

gradually dropped to 6.3 till 128 hr. It was then increased to 7.0 when measured at 256 hr 

and peaked at 512 hr with a maximum of 7.45. The most notable change in the pH was 

observed in the PHB/PHV treatment. The pH dropped to 5.7 by 512 hr after initially started 

to decrease from 7.17 at 32 hr (Figure 2.3.1a). A repeated measures ANOVA of pH showed 

that it changed within the sampling intervals (F(9, 20) = 31.49, p < 0.05). Posthoc Fisher’s 

LSD test showed significant differences between the control and all the biodegradable plastic 

(PVOH, PLA and PHB/PHV) treatments (p<0.05). However, the pH only changed 

significantly between control and LDPE treatment (p=0.036) among the synthetic plastics.   

2.3.1.2 DOC, DIC and TN Determination 

Figure 2.3.1b illustrates the seawater DOC values for each NSW treatment during the time 

course of the experiment. The DOC concentration of synthetic plastic (PET, LDPE, HDPE 

and PVC) treatments increased initially when plastics were added to the seawater. The 

highest DOC concentrations for PET (23.26 mg/L) and LDPE (14.63 mg/L) were measured 

at 4 hr; whilst the maximum DOC for HDPE (9.16 mg/L) and PVC (19.17 mg/L) treatments 

was observed at 2 and 8 hr respectively. Thereafter, the concentration gradually decreased 

until the end of the experiment shown in Figure 2.3.1b. Similarly, among the biodegradable 

plastics, PLA and PHB/PHV treated NSW showed an initial gradual increase in DOC 

concentrations.  However, the DOC measurements for these plastic treatments continued to 

increase over time till the end of experiment and the DOC concentration was 18.22 and 

118.98 mg/L, respectively at 512 hrs. The maximum increase in the DOC concentration was 

measured for PVOH treatment as it reached to 158.71 mg/L at 512 hr (Figure 2.3.1b). A 

repeated measures ANOVA of the DOC showed that the concentration changed within the 
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sampling intervals (F(9, 20) = 942.36, p<0.05). Posthoc Fisher’s LSD test showed significant 

differences between the control and all the plastic (p<0.05) 

 

Figure 2.3.1 Profiles of physico-chemical parameters of NSW during plastic treatments: (a) pH, (b) DOC, (c) 

DIC and (d) TN. Each parameter plotted over sampling time for three replicates. Error bars represent the 

standard deviation for the average measurement at each sampling point. 

The DIC and TN concentrations were also analysed at each sampling point (Figure 2.3.1 

c,d). Initially, the DIC concentration in the PVOH treated seawater was higher than the 

control and peaked at 2 hr with a maximum of 76.66 mg/L. The concentration then gradually 

dropped by the end of the experiment to 55.93 mg/L at 512 hr (Figure 2.3.1c). There were 

evidently some variations among all other treatments and the control but the DIC 

concentration remained between 47.17 to 51.83 mg/L. A repeated measures ANOVA of the 

DIC showed that the concentration changed within the sampling intervals (F(9, 20) = 45.54, p 

< 0.05). Posthoc Fisher’s LSD test showed significant differences between the control and 

the PET, HDPE, LDPE, PVOH and PLA treatments (p < 0.05) 

The TN concentration of the synthetic plastic (PET, LDPE and HDPE) treated experiments 

showed a similar trend except for PVC treatment (Figure 2.3.1d). The TN concentration in 

PET, HDPE and LDPE treatments fluctuated slightly during the first 4 hrs, but a gradual 
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increase in the concentration was observed between 64 and 512 hrs. Conversely, the TN of 

PVC treated NSW decreased between 4 and 64 hrs then rapidly increased to 43.61 mg/L at 

128 hr. This eventually decreased to 40.52 mg/L at 512 hr.  

In the biodegradable plastic treatments, relatively lower TN concentrations were observed 

initially (29.98, 30.66 and 17.92 mg/L for PLA, PHB/PHV and PVOH respectively at 1 hr).  

The TN concentration of PLA treatment remained steady to 32 hr, where it then 

progressively increased to 36.35 mg/L at 512 hr. However, the PHB/PHV treatment showed 

a maximum increase to 42.32 mg/L between 2 and 8 hrs. The TN then dropped to 6.96 mg/L 

at 64 hr and maintained between 5.7 to 6.62 mg/L till 256 hr and then slowly increased to 

13.7 mg/L by the end of the experiment. In contrast, an opposite trend was observed in 

PVOH treatment where the TN concentration began to increase at 256 hr and reached to 

maximum 32.01 mg/L at 512 hr after gradually decreasing to 8.02 mg/L till 128 hr (Figure 

2.3.1d). A repeated measures ANOVA of the TN showed that the concentration changed 

within the sampling intervals (F(9, 20) = 61.66, p < 0.05). Posthoc Fisher’s LSD test showed 

significant differences between the control and the LDPE, PVC, PVOH, PLA and PHB/PHV 

treatments (p < 0.05). 

2.3.2 Microbial Community Analysis   

2.3.2.1 Seawater Cell Enumerations  

Total cell counts within the control and treated seawater microcosms were measured during 

the sampling period to further assess the influence of plastics on the microbial community. 

As shown in  

Figure 2.3.2, the microbial cell density across all the treatments was between 4.3 and 5.2 × 

106 cells per mL after 1 hr of exposure to plastic. The cell counts in the untreated control 

seawater were comparatively low to all the treated samples throughout the duration of the 

experiment. A repeated measure analysis showed that the difference of the cell abundances 

between all plastic treatments and the control were significant (F(7,16) = 50.92 p < 0.05) except 

PET (p = 0.056). The maximum cell abundances measured within PET and PVC treatment 

were 8.9 × 106 and 1 × 107 cells per mL respectively, with no clear trend.  In the LDPE and 

HDPE treatments, the cell counts showed increases at 16 and 32 hr (6.9 and 8.3 × 106 cells 

per mL respectively), followed by a steady increase until 64 hr and then a gradual decrease 

in cell density. However, an increase in cell number to 9.7× 106 cells per mL was observed 

at 512 hr in the HDPE treatment. In general, cell abundances were higher in biodegradable 
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plastic compared to synthetic plastic treatment and the control. The PVOH and PHB/PHV 

treatments showed the most significant cells increase (Posthoc Fisher’s LSD tests, p < 0.05). 

The cell abundances reached maximum values of 1.4 × 107 (at 256 hr) and 2.1 × 108 (at 512 

h) cells per mL for PVOH and PHB/PHV treatments after the initial increase at 8 and 16 hrs 

respectively. However, the lowest cell counts were measured (1 × 107 cells per mL) for PLA 

treatment as compared to other biodegradable plastics at the end of the experiment. 

 

Figure 2.3.2 Bacterial cell numbers during plastic treatments. Bacterial cells (mL-1) plotted over sampling time 

for three replicates in seawater-plastic treatments. Error bars represent the standard deviation for the average 

cell count at each sampling point. 

2.3.2.2 Microbial Diversity and Community Structuring based on T-RFLP Profiles  

Overall, the α-diversity indices (Shannon-Weiner H’) for each treatment indicated that PET, 

HDPE, PVC and PLA treated NSW had the same diversity as the control. However, the 

diversity increased in LDPE and PVOH treatments whereas it decreased within PHB/PHV 

treated NSW (Figure 2.3.3 a; ANOVA, F (8, 81) = 3.6319, p < 0.001). Moreover, for all of the 

treatments, the diversity declined initially (4-128 hrs) and then increased during the later 

period (from 256 to 512 hrs) (Figure 2.3.3 b; ANOVA, F (9, 70) = 1.1994, p > 0.001).  

 
Figure 2.3.3 The Shannon-Weiner diversity indices are presented here as a boxplot comparing the α-diversity 

between NSW and plastic treatments (a) and time points (b) measured in this study. 
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The bacterial communities identified in the controls (n = 3) showed grouping among initial 

sampling points (1-64 hrs) in PCO ordination (Figure 2.3.4 a). However, variation between 

sampling points increased over time and at 512 hr, the community differed significantly 

(SIMPROF test, p < 0.05). Similarly, for the PET treatment, the initial seawater bacterial 

community (1-4 hrs) clustered together but there was a shift in community structure at 8 hr. 

Subsequently, the communities between 16 and 512 hrs were maintained in a distinct cluster 

with an overall 60 % similarity (Figure 2.3.4 b). The PCO analysis of the HDPE treated 

bacterial community showed a clear separation between early (1-32 hrs) and late (64-512 

hrs) sampling points (Figure 2.3.4 c). The differences in the bacterial composition were 

highly significant between these groupings (SIMPROF test, p < 0.05). The LDPE treatment 

also showed a similar community structuring throughout the sampling periods (Figure 2.3.4 

d). However, the variation was more significant (SIMPROF test, p < 0.05) at 4 and 32 hr 

compared to HDPE treatment. For the PVC treated NSW, there was a greater dispersion of 

bacterial communities between 1-4 hrs indicating that the PVC addition affected their 

structuring process initially (Figure 2.3.4 e). However, the PCO then did not show 

pronounced separation among the rest of sampling communities (8-256 hrs) with the 

exception at 512 hr, which demonstrated a significant variation in the community 

(SIMPROF test, p < 0.05).  

The bacterial communities sampled between 1 and 128 hr showed clusters for the PVOH 

treatment (Figure 2.3.4 f), with an overlap in groupings indicating similarity between 

communities. However, the bacterial communities differed significantly (SIMPROF test, p 

< 0.05) at both 256 and 512 hrs. The PCO ordination for the PLA treatment revealed that 

there were early shifts (2-4 hrs) in the communities (Figure 2.3.4 g) but the significant 

(SIMPROF test, p < 0.05) variation was observed at 128 hrs. Moreover, the bacterial 

communities within PLA treatment further shifted away at 512 hr, indicating the gradual 

change in community composition at the end of the experiment. In the PHB/PHV treated 

experiments, the bacterial communities sampled during 16 to 256 hrs were distinct from 

those in the early (1-8 hrs) sampling period (Figure 2.3.4 h). However, further significant 

(SIMPROF test, p < 0.05) variations in bacterial communities were also observed at 512 hr. 

SIMPER analysis showed that bacterial biofilm communities within the plastic treated 

seawater differed between 33.23 to 47.86 from each other, and between 30.45 to 41.84 % 

from the control seawater communities (Table. Appendix A.1). The overall similarity within 

all sampling point for each sample type (control and plastic treated seawater) remained 

between 75.39 to 88.36 % (Table. Appendix A.1). 
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Figure 2.3.4 Principle Coordinate Ordinations (PCO) indicating variation in the bacterial community 

composition at ten sampling points. PCOs representing the similarity of the bacterial communities across all 

plastic treatments and the control, based on Bray-Curtis resemblance matrix. Circles indicate the percentage 

of similarity between samples based on cluster analysis and labels correspond to sampling time points in hours. 

2.3.2.3 Substrate Specificity of the Seawater Microbiome 

The control bacterial communities were compared with all the treatments to determine 

whether the plastic had a distinct effect on the seawater microbial community. 

PERMANOVA analysis of T-RFLP data revealed a significant difference in the treatments, 

a significant difference in the sampling time and a significant interaction between the control 

and the HDPE, LDPE, PVC, PVOH, PLA and PHB/PHV treated seawater communities  

(PERMANOVA, p < 0.05, Table 2.3.1). PERMANOVA test also revealed that the bacterial 

communities of the control and PET treated NSW were at the border of significance 

(PERMANOVA, p = 0.05) when compared at the treatment level, indicating that the 
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difference in the average community compositions among these treatments were marginally 

equivalent. However, the communities significantly differed at sampling time and 

interaction between treatment and time (PERMANOVA, p < 0.05 Table 2.3.1). Significant 

differences were also observed in possible-pair combinations, between control and the 

polymer-treated communities (Table. Appendix B.1). A separate test of dispersion using 

PERMDISP revealed that the differences among the plastic treated seawater bacterial 

communities to control were not driven by different within-system heterogeneities except for 

PLA and PHB/PHV treatments (Table. Appendix C.1). 

Table 2.3.1 PERMANOVA test results of Bray-Curtis dissimilarities of bacterial community structure in 

relation to control vs plastic treated NSW. Tr = Treatment; Ti = Time; df = degree of freedom; SS = sum of 

squares; Pseudo-F = F value by permutation, boldface indicates statistical significance at P (perm) < 0.05, p-

values based on 999 permutations, P (MC) = p-values using Monte-Carlo tests, P (PERMDIP) = p-values 

from PERMDISP tests, calculated to centroids. 

Treatments 
Source of 

variation 
df SS 

Pseudo-

F 

P 

(perm) 
perms 

P 

(MC) 

P (PERM-

DISP) 

Control × 

PET 

Tr 1 1399 2.0155 0.051 999 0.058 0.092 

Ti 9 20879 6.8023 0.001 995 0.001 0.011 

TrxTi 9 16957 10.086 0.001 998 0.001 - 

Control × 

LDPE 

Tr 1 1433.8 2.2785 0.031 998 0.048 0.531 

Ti 9 20879 6.8023 0.001 995 0.001 0.009 

TrxTi 9 10440 8.9615 0.001 997 0.001 - 

Control × 

HDPE 

Tr 1 1792.7 3.0049 0.012 999 0.011 0.998 

Ti 9 17693 5.2561 0.001 998 0.001 0.181 

TrxTi 9 10036 6.49 0.001 998 0.001 - 

Control × 

PVC 

Tr 1 2677.1 3.6676 0.003 999 0.003 0.085 

Ti 9 17876 3.6596 0.001 997 0.001 0.009 

TrxTi 9 16008 8.4183 0.001 995 0.001 - 

Control × 

PVOH 

Tr 1 3786.8 5.1705 0.001 998 0.001 0.079 

Ti 9 22136 5.0965 0.001 995 0.001 0.001 

TrxTi 9 14108 10.057 0.001 999 0.001 - 

Control × 

PLA 

Tr 1 1851.1 2.2229 0.018 998 0.032 0.012 

Ti 9 23073 4.7341 0.001 996 0.001 0.005 

TrxTi 9 15444 7.0169 0.001 997 0.001 - 

Control × 

PHB/PHV 

Tr 1 5530 6.267 0.001 999 0.002 0.003 

Ti 9 21451 3.3799 0.001 996 0.001 0.001 

TrxTi 9 20041 9.1941 0.001 997 0.001 - 

To facilitate the labelling of T-RFLP fragments, MiSeq analysis was carried out on the 

initially collected NSW sample using Illumina MiSeq technology. The dominated phyla in 

the initial NSW sample were Proteobacteria (90 %), Bacteroidetes (5.4 %) and 

Actinobacteria (1.5%). The NSW communities were further analysed at Family level and 

revealed that the seawater bacterial communities were dominated (relative abundance >1% 

in each sample at each sampling point) by 15 Families (Figure 2.3.5). MiSeq sequences with 

a minimum of 80 % confidence at the family level (Wang et al., 2007) were chosen to 
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provide reliable identification of the bacterial community within the NSW sample. MiSeq 

analysis of the NSW sample showed that at the family level the bacterial community 

consisted of Rhodobacteraceae, Gammaproteobacteria, Vibrionaceae and 

Alphaproteobacteria making up 70 % of NSW bacterial community (Figure 2.3.5).  

For identifying the taxonomic groups, in silico digestion of the MiSeq sequences was carried 

out to match the T-RFLP fragments. To account for any potential errors in the T-RFLP 

sequencing data, fragments representing the same taxon detected within approximately 4 

base pairs of each other were grouped as the same bacterial species. Due to the variation in 

confidence levels provided by the MiSeq sequencing, the resolution of identification for each 

fragment varied, however resolution to family level was achieved for most fragments (Table 

2.3.2. 

 

Figure 2.3.5 Bacterial community composition at the family-level classification of NSW sample collected for 

the study. Only families that represented at least 1% of the community are shown. 
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Table 2.3.2 Identification of T-RFLP fragments using MiSeq sequencing.  

Fragment 

Size 
Family 

Fragment 

Size 
Family 

Fragment 

Size 
Family 

51-52 Rhodobacteraceae 108 Desulfobulbaceae 402-404 Peptostreptococcaceae 

53-54 Proteobacteria-unclaasified 109 Rhodobacteraceae 409 Cytophagales-unclaasified 

55-56 Rhodobacteraceae 111 Intrasporangiaceae 411 Bacteria-unclassified 

58-60 Gammaproteobacteria 112 Actinobacteria-unclaasified 412 Cytophagaceae 

61-63 Rhodobacteraceae 113-114 Bacillaceae_1 415 Proteobacteria-unclaasified 

65-68 Deltaproteobacteria-unclaasified 117 Hyphomonadaceae 416-417 Proteobacteria-unclaasified 

69 Alteromonadales_incertae_sedis 118-119 Cytophagales-unclaasified 418 Campylobacteraceae 

72-73 Rhizobiales 120-121 Bacteria-unclassified 422-424 Alteromonadaceae 

74 Rhodobacteraceae 122 

Alphaproteobacteria-

unclaasified 426 Alteromonadaceae 

75 Bacteria-unclassified 123 Rhodobacteraceae 428 

Gammaproteobacteria-

unclaasified 

76 Reyranella 125 

Gammaproteobacteria-

unclaasified 429 Flavobacteriaceae 

77 Desulfuromonadales-unclaasified 126-127 Flavobacteriaceae 431 Halioglobus 

78 Actinobacteria-unclaasified 129 Proteobacteria-unclaasified 432 

Pseudo 

alteromonadaceae 

79 Actinobacteria-unclaasified 130-132 Bacteroidetes-unclaasified 433 Rhodothermaceae 

81-83 Iamiaceae 133 Bacteria-unclassified 434 Pseudoalteromonadaceae 

84 Chromatiaceae 135-136 

Gammaproteobacteria-

unclaasified 435 

Gammaproteobacteria-

unclaasified 

86 Cytophagaceae 138-139 Peptostreptococcaceae 436 Pseudomonadaceae 

87 Thiotrichaceae 140 Alteromonadaceae 437 Colwelliaceae 

88 Oceanospirillaceae 142-144 Clostridiaceae_1 439 Chromatiales 

89 Alteromonadaceae 163-165 Chloroflexi-unclaasified 440 Shewanellaceae 

90 Flammeovirgaceae 168-170 Vibrionaceae 442 Moritellaceae 

91 Marinicella 243-244 

Gammaproteobacteria-

unclaasified 443 Vibrionaceae 

93-94 Erythrobacteraceae 247 Pseudoalteromonadaceae 445-446 Deltaproteobacteria-unclaasified 
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97 Erysipelotrichaceae 253-255 Oceanospirillaceae 448-450 Vibrionaceae 

99-100 Microbacteriaceae 365-367 

Alphaproteobacteria-

unclaasified 452-456 

Gammaproteobacteria-

unclaasified 

101-103 Nocardiaceae 391 

Alphaproteobacteria-

unclaasified 459-462 

Gammaproteobacteria-

unclaasified 

104 Rhodobiaceae 395 Rhodobiaceae 465-468 Vibrionaceae 

105 Alphaproteobacteria-unclaasified 399 Rhizobiales-unclaasified 486-489 Flavobacteriaceae 

106-107 Bacteria-unclassified 401 Ectothiorhodospiraceae 
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The diversity of the bacterial communities in control NSW and their response to various 

plastic treatments (PET, HDPE, LDPE, PVC, PHOH, PLA and PHB/PHV) was assessed 

based on TRFs taxonomic identification (Figure 2.3.6). The bacterial community of the 

untreated control maintained a relatively consistent structure until 256 hr. The community 

was dominated by Vibrionacea and Gammaproteobacteria, which accounted for > 60 % of 

the total abundance. Between 256 and 512 hrs, the microbial diversity decreased and the 

families, such as Ectothiorhodospiraceae and Rhizobiales, were not detected at 512 hr. At 

the end of the experiment, the major bacterial groups within the control NSW were 

Flavobacteriaceae (16 %), Vibrionacea (15 %), Gammaproteobacteria (14 %), 

Rhodobacteraceae (9 %) along with unclassified Proteobacteria (8 %) and 

Deltaproteobacteria (5 %).  

The bacterial communities in the PET treated microcosms showed an initial (1-8 hrs) 

increase within the families of Flavobacteriaceae and Ectothiorhodospiraceae and 

unclassified Gammaproteobacteria (collectively > 50 %). Moreover, members of the 

Vibrionacea family increased between 8-16 hrs from approximately 2 to 60 % and 

subsequently remained dominant until the termination of the experiment. To a lesser extent, 

Rhizobiales and Rhodobacteraceae displayed a gradual change between 8 hr and 256 hr; an 

increase in the relative abundance of Rhizobiales (2 to 17 %) and a decrease in the relative 

abundance of Rhodobacteraceae (22 to 4 %). 

In the HDPE and LDPE treatments, members of the families Vibrionacea and 

Gammaproteobacteria dominated the community throughout the experiment. However, 

within the HDPE treatment, Flavobacteriaceae and Rhizobiales families gradually increased 

between 16 to 512 hr, from approximately 8 to 19% and 8% to 21 %, respectively. In 

contrast, the higher percentage of Flammeovirgaceae (15 %) and unclassified bacteria (24 

%) was observed initially (4 hr) in LDPE treatment. Moreover, the members of the family 

Ectothiorhodospiraceae proliferated between 32 and 128 hr from approximately 3 to 21 % 

and then persisted for the duration of the experiment.  

The microbial community structure of the PVC treated NSW was initially (1-4 hr) dominated 

by Vibrionacea, Gammaproteobacteria, Flavobacteriaceae and Flammeovirgaceae – on 

average 28, 31, 17 and 16 % respectively. At 8 hr, the diversity decreased and several groups 

e.g. Rhodobacteraceae, Flammeovirgaceae, Proteobacteria and Deltaproteobacteria were 

not detected. Between the time points of 16-512 hrs, the members of family 
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Flavobacteriaceae bloomed from 10 to 41 % and a relative decrease was also observed 

within members of Rhizobiales and Vibrionacea until the termination of incubations. 

 

Figure 2.3.6 Bacterial community composition of NSW at family-level classification for each of the treatments 

over the 512 hrs experiment run. Only families representing at least 1% of the community are shown. 

The marine bacterial community response in the biodegradable plastic treatments (PVOH, 

PLA and PHB/PHV) was different compared to the control and synthetic plastic treatments. 

Within 4 hrs of PVOH treatment, the community became strongly dominated by 
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Gammaproteobacteria (59 %), which subsequently prevailed as the key group for the 

duration of the experiment. Other notable bacterial groups included members of the family 

Rhodobacteraceae and Ectothiorhodospiraceae that proliferated to 13 and 12 % respectively 

at 128 hr. A short-lived increase in Pseudomonadaceae also occurred between 4 to 16 hr (2 

to 16 %) and then progressively decreased thereafter. However, the most apparent shift in 

the bacterial diversity was observed at 512 hr, caused by an increase in Alphaproteobacteria 

(18 %), Flammeovirgaceae (4 %), Deltaproteobacteria (3 %) and unclassified bacteria (9 

%). 

Overall bacterial communities exhibited relatively low diversity in PLA treatment. 

Immediately after addition of PLA (1-16 hr), Gammaproteobacteria, 

Ectothiorhodospiraceae and Vibrionacea were overwhelmingly the most abundant groups 

with approximate abundances of 45, 17 (at 8 hr) and 50 % (at 16 hr) respectively. The relative 

abundances of family Vibrionacea further increased to 68 % at 64 hr then gradually 

decreased to 12 % until the until the end of incubation period. The members of 

Flavobacteriaceae and Rhizobiales also contributed to the diversity by constituting 10 % 

and 6 % and further increased to 25 % and 19 % respectively at the end of the experiment. 

Similarly, the Ectothiorhodospiraceae family increased to 31 % from the initial 8 % at 128 

hr and the trend continued till 512 hr with the final value measured at 42 %. The members 

of Rhizobiales had also shown an increase in their abundance, constituting 11 % and 20 % 

respectively at 256 and 512 hr.  

In PHB/PHV treatment, the bacterial community displayed a gradual change in taxonomic 

composition during the period of the experiment. The bacterial community of PHB/PHV 

treatment was initially (1-4 hrs) dominated by Vibrionacea (40 %) and 

Gammaproteobacteria (31 %) as similarly observed in the PLA treatment. However, the 

members of Gammaproteobacteria progressively increased to 43 % at 16 hr and remained 

at relatively high abundance thereafter (66 %) till 256 hr. The members of family 

Alteromonadaceae were the other phyla that dominated within PHB/PHV treatment from 16 

to128 hr (approximately 9%). However, a more complex pattern of bacterial composition 

was observed at 512 hr as members within the family Flammeovirgaceae proliferated to 30 

% with minor representation by Alteromonadaceae and Proteobacteria (3 and 4 % 

respectively) (Figure 2.3.6). 
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2.3.2.4 Relationship of the microbial communities with environmental variables 

The environmental drivers of differences in marine bacterial community structure amongst 

plastic-treated seawater were identified using DISTLM procedure. The contribution of 

individual variables (DIC, DOC, TN, pH) was assessed by running a DISTLM routine, 

where the marginal tests in the DISTLM analysis (Table 2.3.3) report the proportion of the 

variation explained by each variable in each dataset, independent of other explanatory 

variables.  

Table 2.3.3 Results of DISTLM marginal tests. Results of marginal tests using a distance-based linear model 

(DISTLM) quantifying the relative contribution of chemical variables (DIC, DOC, TN and pH) on seawater 

bacterial community in all plastic treatments. Variables with significant values (P) were listed in bold. 

Prop.Var. the proportion of explained variance of corresponding seawater variable. 

 Control PET LDPE HDPE 

Variables P Prop.Var. P Prop.Var P Prop.Var P Prop.Var 

DIC 0.742 0.0775 0.569 0.0914 0.604 0.0938 0.409 0.1059 

DOC 0.02 0.2302 0.005 0.2993 0.499 0.1073 0.004 0.4221 

TN 0.044 0.2013 0.007 0.2934 0.081 0.1830 0.004 0.41 

pH 0.595 0.0940 0.164 0.1709 0.003 0.2932 0.265 0.1317 
 PVC PVOH PLA PHB/PHV 

Variables P Prop.Var. P Prop.Var P Prop.Var P Prop.Var 

DIC 0.73 0.0735 0.276 0.1389 0.223 0.1398 0.277 0.1440 

DOC 0.004 0.3215 0.214 0.1470 0.125 0.1752 0.043 0.2501 

TN 0.025 0.2648 0.012 0.2202 0.078 0.2010 0.54 0.0927 

pH 0.647 0.0799 0.019 0.2088 0.001 0.3131 0.039 0.2584 

Amongst the investigated physico-chemical variables, DOC and TN exhibited a significant 

effect on the bacterial community structures of the control, PET, HDPE and PVC treated 

seawater (p < 0.05). Together these two variables explained 43 %, 59 %, 83 % and 58 % of 

total variations in the bacterial community datasets of each treatment, respectively. Whilst 

in the LDPE treatment, only pH was identified as a significant variable (p < 0.05), which 

contributed alone to explain 29 % of the community variation. Similarly, in the 

biodegradable plastic treatments, the bacterial community was significantly influenced by 

pH (p < 0.05), defining 20 %, 31 % and 25 % of the total variation within the PVOH, PLA 

and PHB/PHV treatments, respectively. However, the communities of PVOH and PHB/PHV 

treatments were also influenced by the individual effects of TN and DOC (p < 0.05), 

contributing 22 % and 25 % of the variation respectively (Table 2.3.3). 

The DISTLM ‘Best’ selection procedure was used for multivariate analyses to further 

narrow down the parameters that are most correlated with the community structures within 

all the treatments (Table 2.3.4). The overall fit for the model selecting all the variables for 

the control seawater was 0.53 (overall R2), with the Best procedure identifying DOC as the 
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variable that strongly correlated (R2 = 0.23) with the pattern of the bacterial community. 

Whilst a combination of all variables was identified as the Best solution for PET treated 

seawater bacterial community structuring (R2 = 0.70). For LDPE and HDPE treatment, the 

model selected pH as the strongly correlated (LDPE R2 = 0.29) variable but DOC and TN 

were also correlated with the community in the HDPE treatment (HDPE R2 = 0.61). Within 

the PVC treatment, DOC was the only variable that was significantly correlated with change 

(R2 = 0.32). The model selected DIC, DOC and TN as the strongly correlated three variables 

for PVOH treated community change (R2 = 0.54). Moreover, the pH was the most significant 

variable within PLA and PHB/PHV treatments that strongly correlated with the community 

however the Best model also included DIC and TN for PLA treatment (PLA R2 = 0.57; 

PHB/PHV R2 = 0.26). 

Table 2.3.4 Results of the DISTLM using ‘Best’ selection procedure showing the correlation coefficients 

between the Best all possible combinations of chemical parameters (marked by ‘✓’) and the variability of 

seawater bacterial community in all plastic treatments. R2 values reported for corresponding significant 

variables and Overall Best model R2 values for all variables. 

Variables Control PET LDPE HDPE PVC PVOH PLA PHB/PHV 

DIC  
✓    

✓ ✓  

DOC ✓ ✓  
✓ ✓ ✓  

✓ 

TN  
✓  

✓  
✓ ✓  

pH  
✓ ✓ ✓   

✓ ✓ 

R2 0.23 0.70 0.29 0.61 0.32 0.54 0.57 0.36 

All variables 

selected 

Overall R2 

0.53 0.70 0.54 0.67 0.53 0.61 0.60 0.49 

The top three variables indicated by Best analysis for all the treatments were visualised in 

the dbRDA plot (Figure 2.3.7); vectors were proportional to their contribution to the total 

variation. The most important variables, which explained the differences in the community 

composition for all treatments were DOC (P = 0.006), TN (P = 0.001) and pH (P = 0.014). 

The dbRDA for chemical variables (Figure 2.3.7) showed a longitudinal separation of 

seawater bacterial communities of all treatments and the principal contributing chemical 

variables (DOC, TN and pH). The first two axes of the dbRDA plot of the all treatments 

explained 87.2 % of the variability in the fitted model and 9.4 % of the total variation in the 

bacterial community. This indicated that most of the salient patterns in the fitted model are 

captured. The vector overlays showed the relationship between the three variables found by 

the DistLM procedure. The first dbRDA axis was negative in relation to TN while the second 

axis showed a strong positive relationship with pH and DOC. 
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Figure 2.3.7 Distance-based redundancy analysis (dbRDA) plot to visualise DistLM results in 2-dimensional 

space for individual environmental variables. Vectors length is proportional to their contribution to the total 

variation and the circle denotes a correlation of 1.0. 

2.4 Discussion 

Microorganisms are well-known for their distinctive ability to quickly adapt to new 

ecological niches (Wiedenbeck and Cohan, 2011, Dutta and Paul, 2012). This adaptation 

applies also for the colonisation of marine plastics; an emerging artificial habitat in the ocean 

(Reisser et al., 2014). Plastic surfaces are immediately available for microbial colonisation 

(Harrison et al., 2014), which is well documented (Zettler et al., 2013, Oberbeckmann et al., 

2014, De Tender et al., 2015). However, to date, less is known about the selective pressures 

plastics can have on the microbial biomass in the oceans. This study addressed the research 

gap and demonstrated that the plastics in seawater microcosm studies affected the diversity 

of marine bacterial communities, which could potentially affect the key nutrient cycling 

functions (e.g. carbon cycling) in the marine environment. Therefore, the results of this study 

provide important information for interpreting the effects of marine plastic debris on the 

microbial communities within areas of high plastic concentrations (e.g. Great Pacific 

garbage patch). 

The addition of plastics affected the pH of the water in the treatments, which is an important 

physicochemical property of seawater. The pH has been implicated in governing the 

bacterial community composition in the marine environment, where small changes may 

favour distinct groups, possibly leading to compositional shifts in the community (Liu et al., 
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2010). The most notable change was observed in the biodegradable plastic treatments. The 

pH within the PVOH and PHB/PHV treated seawater decreased significantly (p < 0.05) to 

6.3 and 5.7 respectively, from the initial value of 7.5. It is likely that the organic acids along 

with other metabolites produced as a result of microbial metabolism play an important role 

in the resultant pH decline (Sumbali and Mehrotra, 2009). The continuous increase in 

bacterial cell numbers ( 

Figure 2.3.2) within the PVOH and PHB/PHV treatments was also indicative of the 

production of these metabolites. The decrease in the pH may also be due to the solubility of 

the polymer, as a 5 % solution of PVOH exhibits a pH in the range of 5.0-6.5 (Ku and Lin, 

2005). However, PHB/PHV is water-insoluble and resistant to hydrolytic degradation 

(Sudesh et al., 2000), thus it is more plausible that the PHB/PHV underwent microbial 

hydrolysis, which led to a progressive decrease in polymer chain length and ultimately the 

release of soluble oligomers (3-hydroxybutanoic acid and 3-hydroxypentanoic acid) 

(Kasuya et al., 2000) causing a decrease in the surrounding pH.  

The present study demonstrated that irrespective of plastic type, the concentration of DOC 

increased initially when plastics were added to seawater and decreased thereafter for PET, 

LDPE, HDPE and PVC treatments till the end of the study. As all the plastics used in this 

study contained no additive or stabilisers, so it is reasonable to assume that the DOC leaching 

within the plastic treatments was not due to the presence of additives. However, micro and 

nano-particles can be derived either from plastic degradation or plastics surfaces which could 

then be released into the surrounding water (Suhrhoff and Scholz-Böttcher, 2016). 

Therefore, the DOC in this study included all the organic compounds released by the plastics 

in either dissolved form or fragmented particles detached from plastic materials. The DOC 

loss in the synthetic plastic treatments was in line with the other observations on the DOC 

leaching from plastics which estimated that 45 % of the leached DOC was progressively lost 

within 8 days after the first contact of the plastics with seawater (Romera-Castillo et al., 

2018). It has been suggested that the loss could be due to either re-adsorption of DOC onto 

the plastics, the loss of unmeasured volatile organic compounds resulting from plastic 

degradation, or a combination of both (Romera-Castillo et al., 2018). Moreover, the decrease 

in the DOC concentrations could also be due to its utilisation by the marine bacteria as an 

energy source which in contrast to Romera-Castillo et al. (2018) study was immediately 

available for bacterial utilisation. Besides being utilised by marine bacteria, the DOC 

degrades through photolysis in the marine environment (Johannsson et al., 2017). This 

photo-degradation/oxidation process transforms DOC to change its bioavailability or even 
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oxidizes DOC directly into CO2 (Xie et al., 2004, Patel-Sorrentino et al., 2004). However, 

the decline of DOC in our study cannot be attributed to photo-oxidation since the experiment 

was conducted in the dark. 

In contrast to synthetic plastics, the concentration of DOC in the seawater treated with 

biodegradable plastics (PVOH, PLA and PHB/PHV) continued to increase during the study. 

This increase could be due to water-soluble products generated by biodegradation of these 

plastics. Sakai et al. (1998) and Matsumura et al. (1999) proposed a PVOH biodegradation 

pathway that yielded water-soluble acetic acid and methyl ketone products. Similarly, 

biodegradation of PLA and PHB/PHV by marine bacteria have been shown to produce 

monomers of lactic acid and 3-hydroxybutyric acid, respectively (Kasuya et al., 2000). 

However, the DOC concentration of PLA treated seawater was comparatively lower to that 

of PVOH and PHB/PHV treatment. This could be owing to the resistance of PLA to 

microbial attack when compared to other biodegradable plastics in marine conditions 

(Sashiwa et al., 2018). Thus, it has been shown that the DOC concentration started to 

increase late during the experiment (256 hr) in the PLA treatment. Another explanation for 

the increased DOC concentration in the biodegradable plastic treatments could be the 

increase in microbial biomass ( 

Figure 2.3.2). Marine microorganisms generally range from  0.02 to 200 µm in size 

(Cavicchioli et al., 2003). In this study, any microbial biomass less than 2.5 µm would be 

quantified as DOC since the seawater samples were only passed through 2.5 µm filter. The 

higher number of cells observed in PHB/PHV and PVOH treatments may be linked to a 

higher concentration of readily available biodegradation products. Thus, the higher 

concentration of these products might be acting as a nutrient source for the seawater bacterial 

community (Watanabe, 2001, López-Pérez et al., 2012).   

The most apparent effect of plastics in the seawater microcosms was the rapid stimulation 

of bacterial growth. This rapid response is probably due to the immediate availability of 

DOC leaching from the plastics, which could be used by heterotrophic growth, without the 

requirement for any period of bacterial adaptation (Romera-Castillo et al., 2018). Moreover, 

the T-RFLP analysis demonstrated shifts in the structure of seawater bacterial communities 

over time. Within the synthetic plastics (PET, LDPE, HDPE and PVC) treatment, a transient 

compositional shift was detected initially during 1-32 hrs. This was followed by a second 

community shift at the later periods (64-512 hrs) of the treatments which resulted in 

strikingly different diversity patterns. The distinct early and late shifts within these 
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treatments could be attributable to the DOC bioavailability as the marine bacterial 

communities are strongly coupled with the concentration of DOC (Alonso-Sáez and Gasol, 

2007, Traving et al., 2017a). Therefore, the shifts in DOC concentration induced changes in 

the bacterial community compositions. In the presence of biodegradable plastics (PVOH, 

PLA, and PHB/PHV), however, the first community shift occurred relatively early (1-8 hrs) 

as compared to synthetic plastic treatments. This different response pattern seems to be due 

to the initial higher DOC concentration within the biodegradable plastic treatments which 

continued to increase till the end of the experiment. Furthermore, a clear shift in the bacterial 

communities was observed during the mid-treatment period (16-128 hrs) which shifted 

further apart towards the end of study (256-512 hrs), suggesting that the higher release of 

DOC from biodegradable plastics selected for and against certain species and thus resulting 

in decreased bacterial diversity within all these treatments (Figure 2.3.3). This observation 

agrees well with the other reports on the response of the microbial community to the DOC, 

which found that addition of DOC shifted the coastal bacterial communities toward more 

copiotrophic taxa (Sipler et al., 2017, Traving et al., 2017a).  

The plastics used in that study were in either pellet or powder (only PVOH) (Table 2.2.1) 

therefore were all negatively buoyant in the seawater microcosms. Although, several plastic 

types exhibit positive buoyancy when entering the oceans (Andrady, 2011, Woodall et al., 

2014). In fact, it is estimated that about 60% of all produced plastic has a lower density than 

seawater (Andrady, 2011), since it is composed of the polymers polyethylene and 

polypropylene. However, after a period of weeks to months buoyant plastic can start to sink 

due to biofouling and particle attachment and thus exported to sediments and dee sea 

(Lobelle and Cunliffe, 2011, Pauli et al., 2017, Kooi et al., 2017). A recent study has reported 

the effect of plastics on sediment bacterial communities and concluded that the presence of 

microplastics alters sediment microbial community composition and nitrogen cycling 

processes (Seeley et al., 2020). In this chapter the hypothesis was that the presence of 

different plastics would affect the structure and composition of intact seawater communities 

(i.e. is seawater bacterial communities with plastics different from seawater communities 

without plastics?). Therefore, the main focus was to distinguish the community difference 

with respect to presence of plastics and not due to the varying properties of the plastic 

materials (e.g. density, hydrophobicity, surface area, etc). 

To examine the communities and identify putative bacterial populations responding to 

plastics addition, individual populations (i.e., TRFs), which contributed significantly to the 

differences in community composition between the treatments were identified throughout 
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the experiment sampling periods. The sequencing data of seawater used for the study showed 

that members within the classes of Gammaproteobacteria, Bacteroidetes and 

Alphaproteobacteria dominated the seawater which is in line with the other observations on 

seawater bacterial assemblage (Zettler et al., 2013, De Tender et al., 2017a). However, in 

contrast to these studies, the abundance of Gammaproteobacteria was relatively high in the 

seawater samples which could be due to spatial and seasonal variation (Suh et al., 2015, 

Walsh et al., 2015). Moreover, the higher abundance of Gammaproteobacteria could also 

be associated with the reduced pH (7.5) of seawater, collected for this study. It is lower than 

that of the ocean pH which is constantly remained at or above 8.1 (Pearson and Palmer, 

2000).  

The bacterial communities stimulated by the synthetic polymer (PET, LDPE, HDPE and 

PVC) treatments only differed in terms of their relative abundances, rather than changes to 

the types of taxa. The communities were composed of a high proportion of Alpha- 

(Rhodobacteraceae and Rhizobiales) and Gammaproteobacteria (Ectothiorhodospiraceae 

and Vibrionaceae). The proliferation of these taxa could be explained by several genera 

belonging to the taxa that are known to be the primary colonisers of marine artificial surfaces 

(Lee et al., 2008). Comparatively, the late increase of  Bacteroidetes (Flavobacteriaceae) 

within the PVC treatment suggested that this class could be categorised as secondary 

colonisers, which in agreement with the observations of Elifantz et al. (2013). The strong 

selection of these families within the synthetic plastic treatments suggests the use of these 

plastics as an energy source. Though the synthetic plastics are stable substrates and difficult 

to degrade but these bacterial groups are very diverse and possess the metabolic potential to 

degrade and assimilate complex carbon substrates (Carvalho et al., 2006, Le Borgne et al., 

2008, Kostka et al., 2011, Gutierrez et al., 2014). The proliferation of Alphaproteobacteria, 

Gammaproteobacteria and Bacteroidetes within these treatments also suggest an active 

usage of DOC as a carbon source. The ability to metabolise DOC in seawater by the member 

of these taxa is well documented (Jennifer and James, 2004, Sipler et al., 2017).  

A comparison of the bacterial communities within the seawater microcosms showed 

different dynamics when biodegradable plastics were added. The bacterial groups belonging 

to Pseudomonadaceae, Rhodobacteraceae and other unclassified Alphaproteobacteria 

proliferated most within PVOH treatment. Members of the groups Pseudomonadaceae and 

Alphaproteobacteria are known to be able to degrade PVOH (Kawai and Hu, 2009). 

Similarly, a marine bacterium Thalassospira povalilytica sp. belonging to the class 

Alphaproteobacteria was isolated in the PVOH biodegradation study (Nogi et al., 2014). In 
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contrast, the microbial community was dominated by Rhizobiales and 

Ectothiorhodospiraceae within the PLA treated seawater. The species belonging to these 

families have previously been isolated and used in PLA biodegradation studies  (Sangwan 

and Wu, 2008, Sangwan et al., 2009), thus potentially providing an explanation for their 

dominance within the PLA treatment. Moreover, within the PHB/PHV treatment, the 

bacterial diversity reduced and it was mainly due to two reasons: (1) the temporal 

disappearance of certain bacterial groups (i.e. Flavobacteriaceae and Rhodobacteriaceae) 

and (2) the strong selection of PHB/PHV degrading marine bacteria (i.e. 

Gammaproteobacteria), which became particularly prevalent in the nutrient-rich PHB/PHV 

biodegradation studies (Mergaert et al., 1995, Volova et al., 2010).   

Bacterial populations differ in their response to the substrates released from organic 

particles, and consequently, different particles may attract and select certain bacterial species 

(Traving et al., 2017a, Bižić-Ionescu et al., 2018). Similarly, the proliferation of Alpha and 

Gammaproteobacteria that was observed in the PVOH and PHB/PHV treatments could be 

due to the higher DOC release from these plastics (Figure 2.3.1b). This probably fostered 

the development of these fast-growing bacterial populations which were also found to be 

most responsive to the DOC additions (Sipler et al., 2017) and thus decreasing the pH within 

these treatments due to their metabolic activity (Sumbali and Mehrotra, 2009). Moreover, 

small changes in the pH have a direct effect on seawater bacterial community composition 

and the phylogenetic groups including Gammaproteobacteria, Flavobacteriaceae and 

Rhodobacteraceae respond most notably to shifts in pH (Krause et al., 2012). Therefore, it 

is also plausible that the variation in the pH contributed in the selection of Alpha and 

Gammaproteobacteria within biodegradable plastic treatments. However,  Witt et al. (2011) 

argued that pH-dependent changes in bacterial diversity and composition are largely 

contributed by Flavobacteriaceae. In contrast, Flavobacteriaceae was not responsive to pH 

change in both  PVOH and PHB/PHV treatments but within PLA treatment, there was a 

significant increase in  Flavobacteriaceae after 64 hr which could be attributable to the pH 

change as the pH slightly decreased during 32-64 hr (Figure 2.3.1a). Moreover, members of 

the class Gammaproteobacteria (unclassified and Vibrionaceae) were the other prominent 

bacterial groups initially but their abundance diminished progressively over time, falling to 

its lowest proportion by 512 hr.   

Various physico-chemical variables play important roles in shaping bacterial diversity and 

community structure (Agogué et al., 2011, Signori et al., 2014). Most of the tested marine 

physical and chemical properties were significantly correlated with bacterial community 
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composition within the plastic treatments. DOC, pH and TN were identified as top-ranked 

environmental variables from the DISTLM analysis (Figure 2.3.7),  shaping the seawater 

bacterial community which was in agreement with the previous studies (Krause et al., 

2012, Luria et al., 2017). However, DIC was not significant to bacterial community 

variations here but has been previously observed to have a strong influence on  bacterial 

community structure in other studies (Witt et al., 2011, Meyer et al., 2016). 

When considering the impacts that physico-chemical variables have on bacterial community 

structure, it is predicted that DOC leaching directly from plastics is likely to be the most 

important variable correlated to changes in community structure in seawater (Romera-

Castillo et al., 2018). As expected, this study supports the observation as the bacterial 

community structure and diversity of the control, PET, HDPE, PVC, PVOH and 

PHB/PHV treatment significantly correlated with the DOC (Table 2.3.4). However, 

despite the observed change in DOC within LDPE and PLA treatment, no correlation was 

identified between community diversity and the DOC data. Whereas, change in pH was 

the main factor affecting the structure and diversity within these treatments when DOC 

concentration was not a limiting factor. This could be explained as temporal shifts in 

marine microbial community composition may arise due to a small variation in seawater pH 

(Meron et al., 2011, Meron et al., 2012, Krause et al., 2012).  Furthermore, potential 

relationships between microbial diversity and nutrient availability, specifically TN, were 

also detected across bacterial communities of PET, HDPE and PVOH treatments. A negative 

relationship was observed between TN and DOC within these treatments (Figure 2.3.7) 

which implies that TN could be a limiting factor where DOC is available (Seekell et al., 

2015).   

2.5 Conclusions  

This chapter demonstrated the influence that plastics has on the seawater microbial 

community within microcosm experiments, and the parameters (DOC, pH and TN) defining 

the resultant community structuring. Using a controlled experiment with a range of plastics, 

this study showed that the bacterial assemblages differed significantly not only from the 

control but also between the plastics. The various plastics induced single-end shifts in the 

composition and diversity of the marine community. Moreover, the DOC increased within 

synthetic plastic treatments and was significantly correlated with the structuring of the 

bacterial community. However, the microbial activity within biodegradable plastic 

treatments was influenced by decrease in pH which will also play a role in defining the 
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community diversity. These microcosm experiments can only provide an abstraction of the 

complex ecology of a natural environmental system. However, this study represents the first 

quantitative and culture-independent assessment of the plastics to function as potential 

drivers of marine microbial community structuring and diversity which play an important 

role in various biochemical processes within oceans. The present results provide a starting 

point for research into the ecology and functions of microbial assemblages in areas with 

high plastic concentrations (gyers) and understanding how the plastics are influencing the 

foundation of the ocean’s life support systems which may be being reshaped by continuous 

increase of plastic waste.  
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Chapter 3: Diversity and Dynamics of Microbial 

Community Succession on Synthetic Plastics in Seawater: 

A long-term Marine Exposure Study 

 

 

3.1 Introduction  

In Chapter 2 it was demonstrated that the presence of plastic materials in seawater induced 

major shifts in the composition and diversity of the microbial community. This was 

attributed to changes in the physio-chemical parameters of the water resulting from the 

breakdown of the material. Whilst Chapter 2 focused on the microbiology of the surrounding 

seawater, it is recognised that due to the longevity of plastic in the marine environment, this 

material also serves as a distinct and extensive surface for microbial colonisation (Zettler et 

al., 2013). However, there is a lack of ecological information about the formation and 

temporal dynamics of biofilm formation on synthetic plastics under comparable marine 

environments. Therefore, it is relevant to characterise the microbial communities living on 

plastics to identify microbes that interact and preferentially attach to plastics in marine 

environments. This Chapter looks to build on existing work by providing a better 

understanding of the impact of plastics on marine microbial life. 

Microbial colonisation of plastic occurs relatively quickly (within one week) (Lobelle and 

Cunliffe, 2011, Harrison et al., 2014) in aquatic environments, a process which is no different 

to any other artificial surfaces (e.g. glass, steel and acryl) (Lee et al., 2008). Upon the release 

of a plastic item into the aquatic environment, a coating layer of organic and inorganic 

substances is formed (called “the conditioning film”) (Loeb and Neihof, 1975). This is then 

rapidly colonized by microorganisms, which form a biofilm on the surface (Cooksey and 

Wigglesworth-Cooksey, 1995). The resulting biofilms are functionally and phylogenetically 

diverse communities of bacteria, algae, protozoans, and fungi that are embedded within an 

exopolymeric substance matrix (EPS). They are collectively termed as a biofouling 

community, microbial assemblage, or periphyton (Donlan, 2002). (Davey and O'toole, 

2000). These natural assemblages offer various advantages to microorganisms including: 

protection against toxic substances; metabolic cooperativity; possibilities for forming stable 
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consortia; horizontal gene exchange and nutrients accumulation (Flemming, 1998, Davey 

and O'toole, 2000). 

In order to understand the ecological impacts of the plastic-attached biofilms, it is important 

to study how the microbial community develops over time and how the composition of the 

plastic affects the community dynamics and diversity. Some studies have already analysed 

the biofilms attached to marine plastics using culture-independent methods (Zettler et al., 

2013, Oberbeckmann et al., 2014, Amaral-Zettler et al., 2015, De Tender et al., 2015, Bryant 

et al., 2016, Debroas et al., 2017). These studies have essentially focused on comparing the 

biofilm communities of plastic debris biofilms to the free-living bacteria in the sea. However, 

little is known about the temporal development and dynamics of marine biofilms, formed on 

chemically distinct synthetic plastics e.g. polyolefins, polyesters. The investigations of 

biofilm formation on plastic surfaces are scarce and the reconstruction of the mature biofilm 

based on randomly collected plastic debris was proven to be difficult due to their unknown 

origin, travel history and exposure duration (De Tender et al., 2017a). Only a few studies 

have so far described either the early (< 4 weeks) (Lobelle and Cunliffe, 2011, Harrison et 

al., 2014, Eich et al., 2015, Oberbeckmann et al., 2016) or the long term (> 6 months) biofilm 

formation (Webb et al., 2009, De Tender et al., 2017a) onto the selected plastics within 

marine environment.  

This Chapter examines the influence of polymer type on the composition of marine biofilm 

communities when compared to indigenous free-living microbial inhabitants in seawater. 

High-density polyethylene, polyethylene terephthalate and polyvinyl chloride were selected 

for this study due to their cumulative share of 38 % in global polymer production (Geyer et 

al., 2017) and were also widely reported as major components of plastic debris in world’s 

oceans (Barnes et al., 2009, Morét-Ferguson et al., 2010, Browne et al., 2011, Duhec et al., 

2015).  

The specific aims of this Chapter are: 

1. To investigate the long-term biofilm formation and progression on different synthetic 

polymers, in the natural marine environment; 

2. To measure the temporal variations in the structure and diversity of plastic biofilms 

over time; 

3. To identify the common genera within the plastic colonising bacterial assemblages. 
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3.2 Materials and Methods  

3.2.1 Experimental Setup and Sampling  

A long-term exposure experiment was designed to investigate the temporal dynamics of 

microbial biofilm communities attached to synthetic plastics in natural seawater. Three types 

of plastic films; high-density polyethylene (HDPE; thickness 0.01 mm), polyethylene 

terephthalate (PET; thickness 0.013 mm) and polyvinyl chloride (PVC; thickness 0.2 mm) 

(Goodfellow Cambridge Ltd, Huntingdon, UK) were submerged in the seawater at Queen 

Anne’s Battery Marina (50°21'57.1"N 4°07'53.8"W) Plymouth, UK  (Figure 3.2.1) over the 

period of 56 weeks from 17 July, 2017 to 13 August, 2018. 

 

Figure 3.2.1 Map of the exposure study site. The small black box denotes the regional location of the site within 

the UK. Location of field site at Plymouth, Devon, UK is shown in the magnified box. Grey colour represents 

land and white represents the sea. Circular marker denotes the sample deployment site.  

Three strips (140 mm by 40 mm) of each plastic type were placed in thick square PVC frames 

(189 × 189 mm) (Figure 3.2.2a). To avoid sample loss during the exposure period, each 

plastic film was further secured separately between nylon micromesh (mesh size = 4 mm) 

(Allplas Ltd, Letchworth, UK) (Figure 3.2.2b). 40 sample holder frames were then fixed on 

both sides of a supporting beam (3500 × 250 mm) (Figure 3.2.2c) and suspended 

approximately 2 m below the water’s surface from a floating pontoon to stimulate exposure 
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and conditions of plastic at the near-surface of the oceans. Moreover, three HOBO Pendant® 

temperature/light loggers (UA-002-08) (Onset, MA USA) were also attached to the 

supporting beam to record the daily temperature and light intensity.  

 

Figure 3.2.2 The deployment structure used to expose plastics in natural marine water. (a) the plastic films 

holding frame, (b) three strips of each plastic type secured between the nylon micromesh within each holding 

frame, (c) the arrangement of the sample holding frames mounted on 15 mm thick PVC supporting beam.   

The plastic samples were periodically retrieved from the beam after 3, 6, 9, 12, 18, 30, 42 

and 56 weeks. When taken out of the water the sample frames were kept in seawater at 4 ºC 

within a thermoelectric cool box (Mobicool U32, Waeco, Bromborough, UK) for transit. 

Upon arrival in the laboratory, each plastic film was immediately removed from the frames 

and washed gently with sterile artificial seawater (ASW) to remove loosely attached 

material. The washed plastic films were then cut into smaller pieces (20 × 10 mm), half of 

which were stored at -20 ºC for DNA extraction and the other half was then used for 

subsequent analyses. Seawater samples were also collected at 0 and 56 weeks as described 

in Chapter 2 for molecular analysis. 

3.2.2 Biofilm Assays 

A quantitative biofilm assay was used to measure biofilm formation on the plastic film 

surface using an existing protocol developed by Lobelle and Cunliffe (2011) with slight 

modifications. For this assay, samples (5 × 5 mm, n = 8, totalling 24 at each sampling point) 

were gently rinsed with sterile ASW and air-dried for 45 mins in a sterile 24-well cell culture 

plate separately. The plastic films were then stained with 1% (w/v) crystal violet (CV) 
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solution for at least 45 mins and washed three times with sterile ASW to remove the excess 

CV. The stained samples were air-dried for another 45 mins and then placed into a new cell 

culture plate where 1 mL of 95 % (v/v) ethanol was added in each well to solubilise the CV.  

The plate was incubated for 10 mins at room temperature and then the plastic films were 

removed. The solubilised CV solution was further diluted 10-fold in 95 % ethanol and then 

200 µL of diluted CV solution was added to a 96-well flat-bottom polystyrene micro-titre 

plate in triplicate. The optical density (OD) was then measured at 595 nm using a microplate 

absorbance reader (ELx 808 BioTek, Swindon, UK). To correct the background staining of 

crystal violet, the mean optical density at 595 nm of the negative control (95% ethanol) was 

subtracted from the mean optical density of the stained biofilm. 

3.2.3 Scanning Electron Microscopy  

The qualitative assessment of biofilm formation on plastic films was investigated through 

scanning electron microscopy. The plastic samples (5 × 5 mm, n = 3) were fixed in 2.5 % 

glutaraldehyde in 0.1 M Sorensen’s buffer (pH 7.2) for 1 hour at room temperature and 

washed three times with 0.1 M phosphate buffer (pH 7.2). The films were then immersed in 

1 % osmium tetraoxide (OsO4) solution (0.25g OsO4 in 25 mL 0.1 M phosphate buffer) for 

another 1 hr and washed again three times with 0.1 M phosphate buffer. The samples were 

dehydrated in a graded (30, 50, 70, 90 and 100 %) ethanol for 10 min each and then within 

absolute ethanol (3×) for 15 min. The dehydrated samples were fixed on 12 mm aluminium 

stubs using carbon tape and then gold-coated (10 - 12 nm thickness) with an SC7640 Mini 

Sputter Coater (Quorum Technologies, Laughton, UK) in an argon atmosphere. The surface 

of the plastics was examined using a Field Emission Gun- Scanning electron Microscope 

(FEG-SEM) (ZEISS Supra; 55-VP; Zeiss Micro-imaging, Gottingen, Germany), which was 

operated with an accelerating voltage of 3 kV and a 7 - 10 mm working distance. 

3.2.4 DNA Extraction and Next-Generation Sequencing  

DNA from the plastic biofilms was extracted using a modified protocol from Griffiths et al. 

(2000) (as described in Chapter 2). Briefly, plastic strips (5 × 10 mm, n = 3) of each substrate 

type was transferred to 2 mL Lysing Matrix E tube (MP Biomedicals, OH, USA) containing 

a mixture of 0.5 mL of 5 % hexadecyltrimethylammonium bromide (CTAB) solution in 120 

mM phosphate buffer (pH 8.0) and 0.5 mL of phenol:chloroform:isoamyl alcohol in the ratio 

of 25:24:1. The tube was shaken at 5.5 m.s-1 for 40 secs using an MP Fastprep-24 

homogeniser (MP Biomedicals, OH, USA) and then centrifuged at 16,000 × g for 15 min at 

4 ºC. The aqueous phase (supernatant) was then removed and an equal volume of chloroform 
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isoamyl alcohol (24:1) was added to remove residual phenol, followed by centrifugation at 

10,000 × g for 10 min at 4 ºC. The total genomic DNA was subsequently precipitated 

overnight at 4 ºC using 2 × volume of 30 % polyethelene glycol solution, followed by 

centrifugation at 14,000 × g for 15 min at 4 ºC. The pelleted DNA was then washed with 

ice-cold ethanol (70 %), air-dried and re-suspended in 50 µL of nuclease-free water 

(Invitrogen TM, UK). Subsequent purification was conducted using GeneMATRIX universal 

DNA purification kit (EURx, Gdansk, Poland). Microbial DNA was also extracted from the 

indigenous seawater at the beginning and end of the study as described in Chapter 2: (Section 

2.2.4.3) The molecular size and the purity of the DNA extracts were analysed by agarose gel 

electrophoresis (1%) and the DNA extraction yields were measured with a NanoDrop 

spectrophotometer (Thermo Scientific, Wilmington, DE). The DNA extracts of all samples 

were stored at -20 °C until further use. 

Barcoded amplicon sequencing of the 16S rRNA gene was performed to study the bacterial 

communities within the plastic biofilms. The V4 hypervariable region of the 16S rRNA gene 

was selected for amplification and subsequent sequencing. Prior to amplicon sequencing, the  

DNA samples were tested for the successful amplification of the V4 hypervariable region 

using 515F (5’-GTGCCAGCMGCCGCGGTAA-3’) and 806R (5’-

GGACTACHVGGGTWTCTAAT-3’) (Caporaso et al., 2011) primers. Amplification was 

carried out using 1 µL of template DNA in a 50 µL reaction mixture containing 250 nM of 

each primer, 5 µL of 5× Taq buffer, 2 mM MgCl2, 0.1 mM of each dNTP and 1.75 U of Taq 

(New England Biolabs, MA). PCR conditions were as follows: initial denaturation for 5 min 

at 94 ºC followed by 35 cycles of denaturation at 94 ºC for 30 sec, annealing at 53 ºC for 40 

sec, extension at 72 ºC for 1 min and a final extension at 72 ºC for 5 min. All PCR products 

were verified on a 2 % (w/v) agarose gel (Sigma, Aldrich, Germany) by electrophoresis with 

a DNA marker, 2-Log DNA Ladder (New England Biolabs, MA). The PCR products were 

then purified using co-precipitant pink (Bioline, London, UK) protocol according to the 

manufacturer’s instructions. Successfully tested samples were then sent to Molecular 

Research Laboratory (Texas, USA) for library preparation and sequencing by Illumina 

MiSeq platform using a 600 cycle (2×300 bp) v3 MiSeq reagent kit (20,000 average reads) 

following manufacture’s guidelines.  

3.2.5 MiSeq Data Processing  

Illumina MiSeq reads were joined and barcodes and sequences less than 150 base pair (bp) 

were clipped (pre-processing by Molecular Research LP, Texas, USA). Reads were further 
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processed in MOTHUR v1.40.5 (Schloss et al., 2009) according to MOTHUR MiSeq SOP 

(Kozich et al., 2013) (online access September 2018), which included removal of sequences 

with homopolymers or ambiguous bases (> 8 bases). The remaining sequences were then 

aligned against a non-redundant SILVA database v132 (Quast et al., 2013) and trimmed to 

a maximum length of 430 bp before chimaeras removal using VSEARCH (Rognes et al., 

2016). The taxonomic identity of sequences was determined by comparing with the 

MOTHUR formatted ribosomal database project (RDP) database (v.16). Any sequence 

returned as unknown, chloroplast or mitochondrial were removed from further downstream 

analysis. Operational taxonomic units (OTUs) were defined after removal of singleton 

sequences, clustering at 3% divergence (97 % sequence identity) and thus a total of 

1,303,605 classified sequences was obtained for bacteria and archaea. The archaea 

sequences were removed in the further analysis. Finally, subsampling to 25400 sequences 

per samples was performed to calculate the rarefaction curves and to eliminate the sampling 

biases during the subsequent diversity analysis.  

3.2.6 Statistical Analysis 

All statistical analyses on bacterial community data were carried out using multivariate 

routines in the statistical software package PRIMER 7 (v7.0.13) with the add-on package 

PERMANOVA+ (Clarke and Gorley, 2015). All 26 samples were assigned to the 

corresponding substrate type (HDPE, PET, PVC and seawater) and sampling period (weeks 

0, 3, 6, 9, 12, 18, 30, 42 and 56). Relative bacterial read abundance was calculated by 

dividing the number of bacterial reads by the number of bacterial reads for each sample. The 

OTUs with a minimum relative abundance of 0.1% in each substrate type were considered 

for further analysis. A core microbiome was calculated for the plastic-attached bacterial 

community. For this, the OTUs contributing relative abundances of >1% of the total 

community within all samples at each sampling point were designated as core 

microorganisms. Rarefaction curves were also generated to visualize OTU richness of 16S 

rRNA genes from samples. Rarefaction curves are a plot of the number of species as a 

function of the number of sampling events. Thus, when the curve plateaus and increased 

sampling events do not increase species richness, it is possible to infer that the environmental 

site has been sufficiently sampled to ensure full representation of the species present. 

To visualize patterns in community composition, principal coordinate analysis (PCO) was 

performed using the Bray-Curtis similarity index (S17). All data were log-transformed to 

meet the assumptions of parametric analysis and to calculate the resemblance matrix. To test 
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for statistically significant variance among the biofilm communities attached to the different 

substrates and time, and their various interaction effects, PERMANOVA with fixed factors 

and 999 permutations at a significance level of p < 0.05 was performed. The test design used 

the parameters already described in Chapter 2 (Section 2.2.5). Similarity percentage analysis 

(SIMPER) (Clarke, 1993) was used to calculate the total similarity within and dissimilarity 

between the different groups of substrates and seawater communities. Furthermore, 

quantitative biofilm data was compared against two factors: plastic types and exposure 

period, using mixed factorial repeated-measures ANOVA. Generalised linear model (GLM) 

with two-way interactions (plastic-type × time (weeks)) was used to analyse within-subject 

(time) and between plastic-type difference during the experiment. These statistical analyses 

were conducted using IBM SPSS Statistics for Windows v. 22.0. 

3.3 Results 

3.3.1 Biofilm Formation and Quantitation  

Biofilm formation was visible on all the plastic types after the first sampling time point (3 

weeks of exposure) and the formation increased throughout the experiment (Figure 3.3.1). 

Initially, the plastic films were sparsely covered and had loosely attached sediment particles. 

The coating became denser over time due to macrofoulants (e.g. mussels, tunicates) and 

algae, however, this development varied strongly with plastic-type.  
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Figure 3.3.1 Biofilm formation on plastic films. The appearance of HDPE, PET and PVC films at each 

sampling point after submersion at the sea-end of Queen Anne’s Battery Plymouth. (scale bar = 5 mm) 

The biofilm was quantified using the CV staining assay after removing the loosely attached 

macrofoulants and sediment particles. A firmly attached biofilm was present on all plastic 

types after 3 weeks and the amount increased significantly over time (Figure 3.3.2; time: F 

(8, 168) 174.43, p < 0.001, Table 3.3.1). For HDPE, the initial quantification of attached biofilm 

revealed that the OD increased to 0.93 ± 0.39 after 3 weeks as compared to the control (OD 

= 0.35 ± 0.03). The biofilm formation continued to increase slightly over the sampling period 

and the OD was measured at was 2.71 ± 1.68 after 30 weeks. However, a strong biofilm 

growth was observed during the late sampling intervals (42 and 56 weeks) of the exposure 

experiment and the OD value was 3.92 ± 1.37 after 56 weeks (Figure 3.3.2 a). The increase 
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in the HDPE attached biofilm was found to be significant (HDPE, F (8, 63) 47.39, p < 0.001 

Table 3.3.1) over the sampling periods.  

 

Figure 3.3.2 Boxplots representing the biofilm quantification by crystal violet staining assay on the plastic 

films at each sampling point. (a) HDPE (b) PET (c) PVC (n=8). Time 0 represents the polymer without biofilm. 

A significant (PET, F (8, 63) 55.35, p < 0.001 Table 3.3.1) increase in the biofilm was also 

observed for PET films. The biofilm attached to the PET film was detected after 3 weeks of 

exposure (OD = 0.63 ± 0.33). A subsequent gradual increase in the biofilm formation was 

observed over time (3 to 18 weeks) and the OD value, measured for the amount of biofilm, 

was increased to 2.22 ± 1.81 after 18 weeks. However, there was a strong increase in the 

amount of deposited biofilm after 30 weeks of submersion (OD = 3.95 ± 0.91) that continued 

to increase for the remainder of the experiment until 56 weeks (OD = 4.64 ± 2.63, Figure 

3.3.2 b).  

Similarly, a temporal increase in the biofilm formation was measured for PVC films (Figure 

3.3.2 c), however, the biofilm attachment was highest on PVC as compared to HDPE and 

PET. The average OD of PVC attached biofilm increased significantly (PVC, F (8, 63) 71.94, 

p < 0.001 Table 3.3.1) from 0.66 ± 0.31 (3 weeks) to 5.96 ± 1.99 after 56 weeks. The 

quantification of the attached PVC biofilm corroborated the visual observations (Figure 

3.3.1). Moreover, the repeated measures ANOVA results also showed that the amount of 

biofilm formed was significantly affected by the plastic-type (Table 3.3.1). 
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Table 3.3.1 Mixed factorial repeated measures ANOVA results of biofilm (OD 595nm) data in relation to 

plastic-type and exposure time. SS = Type III sum of squares; df = degree of freedom; F = F-value; p = 

significance value  

Source SS df Mean Square F p 

HDPE 91.18 8 11.39 47.39 < 0.001 

PET 161.79 8 20.22 55.35 < 0.001 

PVC 283.23 8 35.40 71.94 < 0.001 

Plastic type 26.20 2 13.10 31.03 < 0.001 

Time (weeks) 500.88 8 62.61 174.43 < 0.001 

Plastic type × Time (weeks) 35.31 16 2.21 6.15 < 0.001 

3.3.2 Scanning Electron Microscopy of Microbial Biofilm on Plastics  

Scanning electron microscopy was used to further examine the microbial biofilms on the 

three plastic types (HDPE, PET and PVC) at each sampling point. SEM analysis showed a 

morphologically diverse biofilm community, comprising of both prokaryotic and eukaryotic 

microorganisms, on all plastic types (Figure 3.3.3, Figure 3.3.4 and Figure 3.3.5). The 

examination of the HDPE film revealed the attachment of few rod-shaped bacteria after 3 

weeks (Figure 3.3.3b). After 6 and 9 weeks, co-aggregation of bacterial cells were observed 

along with the attachment of intact pennate diatoms (Figure 3.3.3 c, d). Between 12 and 30 

weeks, the biofilm was dominated with single-celled circular bacteria and the exopolymeric 

substance (EPS) was evident (Figure 3.3.3 e-g). However, the HDPE film was covered with 

a layer of organic matter and the biofilm consisted mostly of diatoms as well as broken 

diatom frustules towards the end of incubation (42 and 56-week) (Figure 3.3.3 h, i).  

SEM images showed that the biofilm communities on the PET and HDPE samples were 

morphologically distinct (Figure 3.3.4). Following both 3 and 6 weeks of exposure in the 

seawater, several areas of the PET film were colonised by spherical-, rod- and filamentous-

shaped bacterial cells (Figure 3.3.4 b, c).  The surface of the PET film was dominated by 

clusters of bacterial cells and these cells appeared to be covered with exopolysaccharides, 

which were produced by the biofilm community between 9 and 18-weeks (Figure 3.3.4 d-f). 

After 30 weeks, the presence of centric diatoms and their remnants became more frequent 

(Figure 3.3.4 g). However, a well-developed biofilm containing a high amount of coccoid 

bacterial cells embedded in EPS along with diatoms and flagellates was observed on PET 

film at the end of the exposure experiment (Figure 3.3.4 h, i). 

Inspection of the PVC films collected following 3-weeks of submersion in seawater by SEM 

revealed that the surface was heavily colonised with filamentous and rod-shaped bacteria 

(Figure 3.3.5b). The cell aggregations were more apparent at 6-weeks and presented cellular 

organisation in the form of microcolonies (Figure 3.3.5c). After 9 and 12-weeks of exposure, 

the PVC surface was associated with multispecies of microbial biofilms consisting of 
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pennate diatoms, as well as coccus-, rod-, and spiral-shaped cells (Figure 3.3.5 d, e). The 

biofilm cover increased at 18-weeks and much dense and tighter conglomerates were formed 

by pleomorphic bacterial cells (Figure 3.3.5 f). Similarly, cells of various phenotypes, 

especially with long filaments, were observed on 30 and 42-weeks samples (Figure 3.3.5 g, 

h). However, the PVC film was densely covered with sediment particles and organic matter 

(e.g. EPS) that prohibited the detection of microbial cells after 56 weeks of exposure (Figure 

3.3.5i).   
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Figure 3.3.3 Scanning electron micrographs of microbial biofilm on plastic. Biofilm on HDPE films sampled after (a) control, (b) 3, (c) 6, (d) 9, (e) 12, (f) 18, (g) 30, (h) 42, (i) 56 -weeks 

exposure in marine water. Scale bar = 5 µm. 
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Figure 3.3.4 Scanning electron micrographs of microbial biofilm on plastic. Biofilm on PET films sampled after (a) control, (b) 3, (c) 6, (d) 9, (e) 12, (f) 18, (g) 30, (h) 42, (i) 56 -weeks 

exposure in marine water. Scale bar = 5 µm. 
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Figure 3.3.5 Scanning electron micrographs of microbial biofilm on plastic. Biofilm on PVC films sampled after (a) control, (b) 3, (c) 6, (d) 9, (e) 12, (f) 18, (g) 30, (h) 42, (i) 56 -week 

exposure in marine water. Scale bar = 5 µm.



 
75 

3.3.3 Dynamics of Bacterial Community Composition 

Barcoded 16S rRNA Illumina MiSeq technology was used to analyse the bacterial 

community associated with plastic films and the surrounding seawater at the test site. A total 

of 1,307,649 reads passed the quality control and ranged from 25,100 to 78,854 reads per 

sample. Figure 3.3.6 shows the bacterial community structure – at class-level classification 

– of biofilm composition formed on HDPE, PET and PVC at weeks 3, 6, 9, 12, 18, 30, 42 

and 56, presented alongside the community of the surrounding seawater at 0 and 56 weeks. 

The bacterial community of the seawater maintained a relatively consistent structure at the 

beginning and end of the experiment (at 0 and 56 weeks respectively). The community was 

dominated by Alpha- and Gammaproteobacteria (58-68 %), with high contributions also 

by Flavovacteriia (5-12 %), Actinobacteria (5-10 %), Planctomycetia (2-4 %).    

 

Figure 3.3.6 Bacterial community composition of plastics exposed to the marine environment and within 

surrounding seawater over time. Displayed are bacterial taxonomic classes with abundances of >0.1% in at 

least each sample at each sampling point. 

For all the bacterial biofilm communities, the dominated phyla were Proteobacteria (53-74 

%), Actinobacteria (5-16 %), Bacteroidetes (4-14 %) and Planctomycetes (2-8 %). The 

biofilm communities were further analysed at Class level and revealed that all of the biofilm 

communities were dominated (relative abundance >1% in each sample at each sampling 
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point) by 15 Classes (Figure 3.3.6). The most abundant classes were Alpha- (20-47 %), Beta- 

(5-2 %) Delta- (3-9 %) and Gammaproteobacteria (16-37 %). In addition, the taxonomic 

classes of Actinobacteria (9-22 %), Planctomycetia (3-6 %), Flavovacteriia (2-6 

%), Osillatoriphycideae (1-6 %), Nitrospira (1-6 %) and Sphingobacteria (1–4 %) were also 

dominated in all biofilm communities.  

All of the biofilm communities displayed a gradual change in taxonomic composition 

overtime (Figure 3.3.6). The change in biofilm communities on the HDPE films was caused 

by shifts in the abundance of particular bacterial groups. This included an increase in the 

relative abundance of Alpha- and Betaproteobacteria and Bacteroidetes (flavobacteria, 

Sphingobacteria and cytophagia) and a decrease in the relative abundance of 

Gammaproteobacteria. In contrast, the relative abundance of Alphaproteobacteria 

decreased on PET over the exposure period however, the relative abundance of 

Gammaproteobacteria increased initially (till 18 weeks) and then gradually decreased 

towards the end of the exposure period. Additionally, there was an increase in the relative 

abundance of Delta- and Betaproteobacteria and Bacteroidetes. Similarly, the biofilm on 

the PVC exhibited a decrease in the relative abundance of Alphaproteobacteria and increase 

in the relative abundance of Actinobacteria and Nitrospira (Figure 3.3.6). However, the 

relative abundance of Gammaproteobacteria remained steady throughout the experiment 

within the range of 17 to 22 %. 

3.3.4 Structuring and Specificity of Bacterial Communities  

To determine whether the microbial communities, which colonised the different plastic 

substrates, were distinct from that of within the seawater, the community structure of 

biofilms attached to the polymers was compared to seawater using α diversity (rarefaction 

curves) and β diversity (Principal Coordinate Ordination PCO). The overall qualitative 

operational taxonomic units (OTUs; 97% sequence similarity) richness from the seawater 

and plastic biofilm appears to be high as rarefaction curves did not reach asymptote, even 

after 25000 sequences were examined for each sample (Figure. Appendix D.1, Figure. 

Appendix E.1, Figure. Appendix F.1 and Figure. Appendix G.1). Comparisons of 16S rRNA 

gene sequences rarefaction curves showed that the α-diversity of the plastic biofilms was 

lower in the beginning of the exposure (Figure. Appendix E.1, Figure. Appendix F.1 and 

Figure. Appendix G.1). The diversity increased with the exposure period except for PVC 

biofilm for which α-diversity decreased toward the end of exposure experiment (Figure. 

Appendix G.1). The communities attached to synthetic polymers and the seawater 
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communities clustered separately from each other (Figure 3.3.7). The 16S rRNA gene 

sequence comparisons showed significant differences between the seawater communities 

and those associated with synthetic polymers (p < 0.001; PERMANOVA). The two factors: 

sample type (seawater, HDPE, PET and PVC) and the exposure time, both significantly (p 

< 0.001, PERMANOVA) affected the bacterial community composition, with highly 

significant interaction effects (all interaction effects p < 0.001) between these two factors. 

Moreover, SIMPER analysis showed that the seawater bacterial communities had the 

average dissimilarity of >70 % with the plastic biofilm communities (Table 3.3.2), therefore, 

clustered separately from all plastic samples (Figure 3.3.7). 

 

Figure 3.3.7  Principle Coordinate Ordination (PCO) analysis. PCOs representing similarity of the bacterial 

communities based on Bray-Curtis similarity index, calculated from OTUs (>0.1%) data of the bacterial 

communities attached on plastics and within seawater samples. The symbols represent the sample types 

including seawater (SW) and plastics (HDPE, PET and PVC). The numbers indicate the time of sampling in 

weeks. Clusters represent samples sharing at least 50% similarity of their bacterial communities. 

The PCO analysis also revealed that the biofilm communities of all the three plastic types 

further shifted away from the earlier time points (Figure 3.3.7), indicating that the plastics 

exposed to seawater displayed a gradual change in bacterial community composition. 

Furthermore, the community structure of biofilms attached to three different synthetic 
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plastics were compared to determine the similarity and dissimilarity percentages within each 

other and with seawater communities. SIMPER analysis showed that bacterial biofilm 

communities associated with different synthetic polymers differed between 40.9 to 42.9 % 

from each other, and between 70.3 to 72.0 % from the control seawater communities (Table 

3.3.2). The overall similarity within all sampling point for each sample type (SW and 

plastics) remained between 52.6 to 56.6 % (Table 3.3.2). 

Table 3.3.2 SIMPER analysis of bacterial communities, presenting the total similarity within and dissimilarity 

between the seawater and plastics attached communities. Av.Si%: average percentage similarity within all 

sampling points, Av.i %: average dissimilarity between the seawater and plastic attached bacterial 

communities. 

Av.Si% Av.i% 

SW 52.63  SW HDPE PET 

HDPE 57.32 HDPE 72.00   

PET 56.58 PET 71.04 40.92  

PVC 53.79 PVC 70.31 42.91 42.45 

3.3.5 The Core Biofilm Communities  

To search for sets of OTUs that are shared across all plastic samples at each sampling point, 

a core microbiome was determined. For this, the OTUs contributing relative abundances of 

>1% of the total community were detonated as core microorganisms. In total, 36 bacterial 

core OTUs were identified for all three plastic types (HDPE, PET, PVC). Based on their 

temporal profile, these core members were classified into three groups: (1) OTUs with higher 

abundance at the beginning of experiment (early colonisers within 3-12 weeks) e.g. 

Ferrimicrobium, Pseudahrensia, Marinobacter, Iamia, Candidatus Atelocyanobacterium, 

Cyanobacterium, Ilumatobacter, Pseudomonas, Azospirillum, Labrenzia and Roseovarius; 

(2) OTUs with higher abundance in the middle (intermediary colonisers within 18-30 weeks) 

of the exposure period, e.g. Nitrosospira, Schlegelella and (3) OTUs with highest abundance 

at the end (late colonisers between 42-56 weeks) of the experiment, e.g.  Nitrospira 

Arthrobacter, Mesorhizobium (Figure 3.3.8).  

Changes in the relative abundance of different bacterial OTUs were observed between 

different plastics and over time. The Heatmap represents the relative OTU abundance of all 

36-core bacterial of all the three-plastic types over the exposure period. (Figure 3.3.8).  The 

early (within 3-12 weeks) biofilm bacterial community on HDPE, PET and PVC were 

dominated by genus Ferrimicrobium (8.5-9.5 %), Iamia (3.8-6.5 %), Pseudahrensia (4-7.4 

%), Candidatus Atelocyanobacterium (3.7-4.5 %), Pseudomonas and (3.2-4 %). However, 

the genus Marinobacter (14 %) was also present on HDPE in the early stages. In contrast, 

the genus both Cyanobacterium (3.4 % on PET; 6.5 % on PVC) and Roseovarius (3.1% on 
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PET; 2.5 % on PVC) were observed as early colonisers of PET and PVC. The other two 

OTUs differentiating the PVC biofilm community from other plastic communities were 

Anaeromyxobacter and Pirellula with the relative abundance of 3 and 2.3 % respectively. 

The relative abundances of all these OTUs decreased during the intermediate (18-30 weeks) 

and late (42-56 weeks) period of exposure.  

The plastics biofilm communities showed little changes during the middle of the experiment 

(18-30 weeks), but the relative abundances of characteristic intermediary colonisers 

(Nitrosospira and Schlegelella) of all plastic substrates proliferated. In addition, OTUs 

belonging to the genus Aciditerrimonas and Ilumatobacter was increased (both 

approximately 2 %) on the HDPE and PET films during the intermediary period (Figure 

3.3.8). Plastics samples taken during the late exposure period (42-56 weeks) showed 

differences in their attached biofilm community compared to those taken following the early 

period (3-12 weeks). All plastic types showed enrichment in OTUs affiliated with the genus 

Nitrospira and Mesorhizobium. Additionally, increase in the relative abundance of genus 

Arthrobacter (15.6 %), Frigoribacterium (2 %) and Thalassospira (1 %) was detected on 

PVC during the late period which was undetectable in other plastic types (Figure 3.3.8).
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Figure 3.3.8 Heatmap of 36 core OTUs relative abundances across all plastic samples at the beginning indicated as “early” (3-12 weeks), middle indicated as “intermediary” (18-30 weeks) 

and end indicated as “late” (42-52 weeks) of the exposure. Colour key represents the log-tansformed relative abndances (in percentage). Samples were clustered hierarchically based on 

SIMPROR permutation tests and core OTUs were based on similarity index of association (average linkage). Red lines indicate clusters that are not significantly different (p < 0.05). 
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3.4 Discussion 

Biofilm development on three chemically distinct synthetic polymers was analysed over a 

56-week period, and the characteristic plastic-attached community was studied to assess and 

identify patterns of biofilm temporal change. After exposing the plastics in the seawater, the 

formation of a microbial biofilm was observed after the first sampling point (3 weeks of 

exposure). This is in agreement with previous studies demonstrating that biofilms form 

quickly (after one week) on plastic surfaces in the marine environments (Lobelle and 

Cunliffe, 2011, Harrison et al., 2014, De Tender et al., 2017a). Moreover, different 

progressive stages of biofilm formation were identified based on the increased microbial 

biomass and a gradual change in the taxonomic composition of biofilm communities over 

time. 

Comparison of the plastic biofilms and the seawater communities demonstrated that both 

communities were generally distinct regardless of having taxonomic classes in common 

(Figure 3.3.6). This finding is in agreement with  numerous previous studies (Zettler et al., 

2013, Oberbeckmann et al., 2014, 2016, Amaral-Zettler et al., 2015, Bryant et al., 2016, De 

Tender et al., 2015, 2017a, Kirstein et al., 2018) which also observed that the plastic attached 

biofilm communities were different from free-living seawater communities. This could be 

due the higher cell density within the attached biofilms as compared to surrounding seawater 

(Kirstein et al., 2018) A higher cell density supports the formation of complex matrix-

stabilized biofilms which comprise of a diversity of microorganisms with vast metabolic 

capacities  (Flemming et al., 2016).  Moreover, it promotes strong competition for nutrients 

in the nutrient-limited marine environments which may force natural selection and also 

induce certain microorganism to adopt the surface-attached lifestyle or disperse from the 

biofilm (Karatan and Watnick, 2009, Petrova and Sauer, 2012, Rendueles and Ghigo, 2012, 

Dang and Lovell, 2016) 

OTUs with a relative abundance of > 0.1 % in each substrate type were analysed and found 

that amongst those, even if sometimes rare (< 0.1%), all bacterial OTUs were detected on 

all synthetic polymers. Hence, the dissimilarities in the bacterial community composition 

observed as a function of the synthetic polymers investigated resulted from variable relative 

abundance profiles of dominant OTUs. A core group of 36 bacterial OTUs with the relative 

abundance of > 1 % were detected across all plastic samples from three weeks onward until 

the end of the exposure period. Those core organisms were divided into three groups 

depending on the timing of their peak abundance. Attachment of such core organisms during 
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the long term biofilm development was also studied by  De Tender et al. (2017a) and 

identified a core group of 25 single OTUs, belonging to the phylum Proteobacteria, 

Bacteroidetes and Verrucomicrobia on PE. However, it remains unclear whether these “core 

organisms” are specific for an environment or whether they are also found on other types of 

plastics, natural surfaces or other hard substrates.  

The core community was dominated by genera belonging to phylum Actinobacteria 

(Ferrimicrobium, Iamia, Ilumatobacter, Arthrobacter), Cyanobacteria (Candidatus 

Atelocyanobacterium), Proteobacteria (Pseudahrensia, Marinobacter, Pseudomonas, 

Azospirillum, Labrenzia, Roseovarius, Nitrosospira, Schlegelella, Mesorhizobium and 

Nitrospirae (Nitrospira). A temporal biofilm development study on PE (De Tender et al., 

2017a) and 15-month-old mature biofilm study on synthetic plastics in the North Sea 

(Kirstein et al., 2018) also identified unique core OTUs. Comparison with these studies 

showed similarities at phylum, class and family level however, no similarities were found at 

genera level except Nitrospira. The dissimilarities between these biofilm communities could 

be due to the difference in the composition of bacterial taxa of contrasting water bodies (i.e. 

the North Sea and the English Channel) (De Tender et al., 2015, De Tender et al., 2017a, 

Kirstein et al., 2018). In addition, it is well established that the environmental factors (e.g. 

hydrodynamics, temperature, water chemistry and nutrient availability) also influence the 

composition of biofilm communities (Salta et al., 2013). Thus, indicating that the source 

communities within surrounding water and the environmental conditions were shaping the 

colonisation patterns on HDPE, PET and PVC. Similarly, it has also been demonstrated that 

the plastic associated biofilm communities were distinct with respect to different ocean basin 

(Amaral-Zettler et al., 2015) and were affected by both seasonal and spatial variations 

(Oberbeckmann et al., 2014). 

In this study, the plastic-attached biofilm communities in this study demonstrated a gradual 

change in its taxonomic composition throughout the exposure period (Figure 3.3.8). Certain 

microbial taxa showed dominance during the succession process in addition to the core 

bacterial community present in the biofilms, but their relative abundances differed over time. 

The varying relative abundances of these bacterial taxa was pointing towards the different 

stages of biofilm formation. Therefore, it can be suggested that these specific bacterial taxa 

are vital for the formation of biofilm and its progression. Previously, members of phylum 

Proteobacteria were reported as primary surface colonisers and the members of phylum 

Bacteroidetes were found to be secondary colonisers of various anthropogenic substrates 

including plastics in the marine environments (Dang and Lovell, 2000, Dang et al., 2008, 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/marine-ecosystem
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Lee et al., 2008, Elifantz et al., 2013, De Tender et al., 2017a). Although the members of 

Proteobacteria were also observed as early colonisers in the current study however, there 

were high abundances of some members of Actinobacteria initially. This might have 

occurred because the plastics submerged in the harbour are impacted by intertidal 

environment having influences of both terrestrial and aquatic environments (Elifantz et al., 

2013, De Tender et al., 2015). Moreover, in contrast to previous studies, Nitrospirae 

dominated the late biofilm communities and were therefore suggested as secondary 

colonisers in this study. A prior study (Kirstein et al., 2018) also reported the high relative 

abundance of phylum Nitrospirae (7–12%) within the 15-month mature biofilms of synthetic 

plastic biofilms and thus pointing to a possible link to recognise Nitrospirae as a secondary 

coloniser. Moreover, the members of Nitrospirae are known for microcolony formation 

within biofilms after the initial attachment of primary surface colonisers. They can then 

recruit other microorganisms to the surface through coaggregation  (Martiny et al., 2003, 

Rickard et al., 2003, Martiny et al., 2005, Dang and Lovell, 2016). 

Despite the similarities among HDPE, PET and PVC associated bacterial communities, a 

few distinctively unique OTUs were observed for all the three plastic attached communities 

across the sampling points. This indicates that physicochemical factors of plastics shape the 

biofilm communities in addition to the surrounding seawater. These factors include: 

chemical nature; roughness; vulnerability to weather; surface conditioning and nutrient 

enrichment (Dang and Lovell, 2016, Frère et al., 2018, Parrish and Fahrenfeld, 2019). OTUs 

that differentiated HDPE biofilm from both PET and PVC biofilms belonged to the members 

of Actinobacteria (Aciditerrimonas) and Alteromonadales (Marinobacter), both of which 

were also observed in other plastic biofilms studies (Jiang et al., 2018, Pollet et al., 2018). 

Members of the Actinobacteria and Alteromonadales have also been reported for other 

marine surfaces (Chen et al., 2013, Rajeev et al., 2019). Their ability to produce 

exopolysaccharides (Lee et al., 2016) and amyloids (Blanco et al., 2012) for providing 

adherence and resistance to environmental variables respectively, likely make them 

successful biofilm community members. The unique OTUs of PET attached biofilms 

belonged to the order Rhodobacterales (Sulfitobacter), which were previously recognised as 

dominant surface colonisers in the coastal environment (Dang et al., 2008). Rhodobacterales 

can produce quorum-sensing (a cell to cell communication process) signals which could be 

involved in several microbial processes such as biofilm formation and its succession process 

(Gram et al., 2002, Martens et al., 2007). Thus, the presence of these bacteria within the PET 

biofilm suggest their involvement in shaping biofilm development and its subsequent 

structuring via intercellular communication and interaction. Moreover, a relatively high 
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abundance of Planctomycetales (Pirellula) and Actinobacteria (Arthrobacter and 

Frigoribacterium) was observed within PVC biofilm communities contrary to HDPE and 

PET communities. The members of Planctomycetales produce holdfast structure to facilitate 

surface attachment and also colonise marine particles and algal or abiotic surfaces (Egan et 

al., 2013, Lage and Bondoso, 2014, Bižić‐Ionescu et al., 2015). 

The biochemical processes within biofilms are typically conducted by a consortia of 

microorganisms in which a particular process is conducted by the biofilm community as a 

whole and individual community members contribute specific responsibilities (Dang and 

Lovell, 2016). Therefore, distinct microbial communities colonising plastics might exhibit 

various microbial functions within biofilms. One of the notable bacterial taxa within the 

plastic biofilm assemblages was the genus Pseudomonas (Figure 3.3.8). The strains of 

Pseudomonas have been found to have biodegradation potential for HDPE 

(Balasubramanian et al., 2010), PET (Vague et al., 2019) and PVC (Danko et al., 2004) 

plastic films. The high abundance of Pseudomonas within the plastic biofilms suggests that 

the plastic may be selecting for bacteria capable of decomposing the plastic compounds. 

Similarly, the increased abundance of Cyanobacteria on all the plastic types was observed 

compared to surrounding seawater. It has been reported that the prevalence of Cyanobacteria 

on the plastics increased the rates of oxygen production and respiration (Bryant et al., 2016). 

Assuming this, the occurrence and enrichment of oxygen-producing Cyanobacteria on the 

plastic surface suggest that they could be involved in the oxidation of the polymers.  

In some cases, organisms can also enter an obligatory synergistic metabolic association 

(syntrophic metabolism) in order to perform an otherwise energetically unfavourable 

metabolic process (Kouzuma et al., 2015). The close association of syntrophic participants 

within a biofilm facilitates these metabolic reactions. The association of Nitrosococcus sp 

and other ammonia-oxidizing bacteria with nitrite-oxidizing bacteria including Nitrospira 

sp is a notable example of such physiological associations which is commonly encountered 

within beneficial biofilms in sewage treatment (Juretschko et al., 1998). Here, highly soluble 

nitrite produced by ammonia oxidation can be quickly used by nitrite oxidizing bacteria, 

growing in immediate proximity within a biofilm. Such metabolic interactions would not be 

practical in suspended (i.e. planktonic) populations (Juretschko et al., 1998). The late co-

occurrence of Nitrosospira (ammonia oxidising bacteria) and Nitrospira (nitrate oxidising 

bacteria) within this studies plastic biofilm communities indicated the prevalence of such an 

association. This might result in a potential impact on the nitrogen cycle in the areas where 

plastics accumulate (gyres). Similarly, it has been argued that the presence of nitrogen 
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fixating bacteria on the plastics creates small nutrient hotspots in otherwise relatively 

nutrient-poor waters (Bryant et al., 2016).  

3.5 Conclusions 

This study analysed the temporal biofilm development on distinct synthetic polymers, 

exposed to seawater. Firstly, it has been demonstrated that biofilms attached to synthetic 

polymers are significantly different from the surrounding seawater. Secondly, in-depth 

analysis of bacterial taxa on plastics revealed core microorganisms of the biofilm 

community which are divided into three groups based on the timing of their highest growth 

within the plastic biofilms. The results suggest that the members of this bacterial core 

community are common among all plastic-types. However, some core microbes were 

substrate-specific despite the occurrence of common bacterial groups on all the substrates, 

with notable differences observed at genera-level. These microbes could be used as 

indicator organisms for future studies on plastics within important marine areas (gyers). 

Furthermore, the role of the core community and their ability to degrade the plastics in the 

seawater remain unclear because there are fewer studies recognising these microbes as 

potential degraders. Therefore, further experiments need to be conducted to gain insights 

into the specific functions and metabolic activities of the core microbial community. 
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Chapter 4: Degradation of synthetic plastics in the sea: a 

long term in situ exposure study 

 

 

4.1 Introduction  

In Chapter 3, temporal biofilm formation on three chemically distinct synthetic plastics was 

characterized after long-term exposure in the marine environment. The results showed that 

the biofilms attached to the plastics were significantly different from the surrounding 

seawater and a core microbial community was identified. Additionally, the analysis of the 

core biofilm community revealed the presence of bacteria that could possibly be involved in 

the degradation of plastics. This, therefore, allows the investigation into whether the biofilm 

development and prevalence of potential degraders on the polymer surfaces influences the 

degradation of plastics within the marine waters.  

Plastics in marine environments undergo several weathering processes that result in their 

degradation, this includes: solar irradiation, thermal ageing, oxidation and 

biofilm growth (Andrady, 2017, Guo and Wang, 2019). Plastic degradation refers to any 

chemical and physical change that results in the reduction of its average molecular weight 

and mechanical integrity, and is generally categorised into photodegradation, thermal 

degradation, hydrolysis, mechanical shearing and biodegradation (Singh and Sharma, 2008, 

Andrady, 2011, Avio et al., 2017). These degradation processes often lead to fragmentation 

of macroplastics into microplastics (size < 5 mm) either by abiotic (e.g. sunlight, 

temperature, moisture, mechanical abrasion) or biotic (microorganisms) factors. 

Microplastics are well known to negatively impact the marine environment and are reported 

to be ingested by numerous marine biota (Chapter 1:, Section 1.1.1). The degradation of 

microplastics changes their physicochemical characteristics, which includes properties 

related to surface morphology, colour, density and particle size (Zettler et al., 2013, Lambert 

and Wagner, 2016, Fazey and Ryan, 2016, Zhou et al., 2018, Guo and Wang, 2019).  

However, degradation processes do not stop at the micro-level, they continue further to 

produce smaller particles called nanoplastics (Lambert and Wagner, 2016). They have 

different properties (e.g. increased surface area, higher reactivity) compared to macro and 

microplastics and are therefore degraded quickly (Klein et al., 2018). 
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Due to their chemical inertness, plastics are generally resistant to degradation, with estimates 

for their complete degradation ranging from decades to centuries (Browne et al., 2007). The 

degradation of plastics has been studied in the marine environments by measuring the change 

in relevant physical and chemical properties such as: surface morphology; tensile properties; 

molecular mass distribution; chemical composition and mass loss (Pegram and Andrady, 

1989, Lacoste and Carlsson, 1992, Andrady et al., 1993b, O'Brine and Thompson, 2010, 

Andrady, 2015a, Eich et al., 2015, Cai et al., 2018).  These studies focused on early 

degradation processes to determine the lifetime of the plastics. However, information about 

the long-term degradation of plastics within the marine environment is very limited, with 

only a  few studies experimenting over periods longer than one year (Brandon et al., 2016, 

Welden and Cowie, 2017, Biber et al., 2019).  

In order to advance our understanding of the fate of plastic debris in the oceans and their 

ecological impacts on marine organisms, it is important to study the long-term degradation 

of common synthetic plastics and the variables that govern the degradation process. To date, 

most of the plastic degradation studies have focused on surface debris. However, the 

formation of biofilms on marine plastics (Chapter 3:) makes them negatively buoyant (Ye 

and Andrady, 1991, Fazey and Ryan, 2016, Chubarenko et al., 2016, Guo and Wang, 2019) 

and results in them sinking into the water column (Andrady, 2011). Moreover, wind-driven 

mixing results in the submersion of marine plastic debris and it is estimated that 

approximately 60 % of the debris is submerged in seawater at any given time by this mixing 

(Kukulka et al., 2012).  

Measuring the natural physical and chemical degradation of plastics submerged in seawater 

will form the basis of this Chapter. This Chapter is the physical sciences companion to 

Chapter 3:, where long-term biofilm development and dynamics were analysed. The 

degradation analysis was carried out on chemically distinct synthetic plastics (HDPE, PET 

and PVC) that were exposed to seawater for 56 weeks in two metres of natural seawater. 

The specific aims of this Chapter are: 

1. To investigate the long-term degradation of different synthetic polymers, exposed to 

seawater. 

2. To measure changes in the physicochemical properties of plastic including surface 

morphology, mechanic stability and chemical composition. 
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4.2 Materials and methods 

4.2.1 Experimental Design 

In order to determine the degradation of synthetic plastics in seawater, three types of plastic 

films; high-density polyethylene (HDPE; thickness 0.01 mm; glass transition temperature 

Tg -130-100 °C; melting temperature Tm 130-140°C; whitish, semi-opaque) , polyethylene 

terephthalate (PET; thickness 0.013 mm; Tg 70-80 °C; Tm 245-265°C; colourless and 

transparent) and polyvinyl chloride (PVC; thickness 0.2 mm; Tg 65-85 °C; Tm N/A; 

colourless and transparent) (Goodfellow Cambridge Ltd, Huntingdon, UK) were submerged 

2 m deep in the sea at Queen Anne’s Battery Plymouth, UK (50°21'57.1"N 4°07'53.8"W) 

over a 56 week period from 17 July, 2017 to 13 August, 2018. Each plastic material was cut 

into 40 strips (120 mm × 30 mm) and placed within square frames that were mounted on a 

supporting beam. Three HOBO Pendant® temperature/light loggers (UA-002-08) (Onset, 

MA USA) were also attached to the supporting beam to record the daily temperature and 

light intensity. The plastic samples were collected after 3, 6, 9, 12, 18, 30 42 and 56 weeks 

of exposure to the seawater. Full details of the sample preparation, deployment in the 

seawater and collection for subsequent analysis are included in the methods section of 

Chapter 3:(3.2.1). 

4.2.2 Removal of Biofilm  

The periodically retrieved plastic samples were covered with biofilm, macrofoulants and 

sediment particles (Chapter 3:, Section 3.3.1). In order to facilitate the subsequent analyses, 

the plastic films were washed following a protocol developed by Orr et al. (2004a). For this, 

each plastic-type was placed in 100 mL capacity conical flask separately with 30 mL of 2 % 

(w/v) sodium dodecyl sulphate (SDS) solution. The flasks were gently rotated at the speed 

of 20 rpm for 4 hours to facilitate the detachment of the covering biofilm and other particles. 

The plastic films were then disinfected with 70 % (v/v) ethanol and washed in distilled water 

to ensure maximum removal of microbial cell and debris. The washed films were then placed 

on Whatman® qualitative filter paper (Grade 1) and dried overnight at 40 °C. This procedure 

was also applied to the control plastics films prior to their analyses.  



 
89 

4.2.3 Measuring Plastic Degradation  

4.2.3.1 Plastic Surface Characterisation 

4.2.3.1.1 Scanning Electron Microscopy 

The changes in surface morphology of plastic films were observed through scanning electron 

microscopy. For this, the dried plastic samples (5 × 5 mm, n = 3) were fixed on 12 mm 

aluminium stubs using carbon tape and then gold-coated for 40 secs (10 - 12 nm thickness) 

with an SC7640 Mini Sputter Coater (Quorum Technologies, Laughton, UK) in an argon 

atmosphere. The plastic surfaces were examined using a Field Emission Gun- Scanning 

electron Microscope (FEG-SEM) (ZEISS Supra; 55-VP; Zeiss Micro-imaging, Gottingen, 

Germany), which was operated with an accelerating voltage of 3 kV and a 7 - 10 mm working 

distance. 

4.2.3.1.2 Surface Wettability Analysis  

Changes to surface wettability is an important indicator of plastic degradation (Restrepo-

Flórez et al., 2014). Wetting refers to the ability of a liquid to spread out on a solid substrate 

and maintain contact with the surface (Dwivedi et al., 2017).  The surface wettability (the 

degree of wetting) of the exposed and control plastic films were determined by measuring 

the contact angle (CA) between a liquid droplet and the films. The surfaces with higher 

contact angle are considered hydrophobic and those with a lower contact angle are 

hydrophilic (Webb et al., 2009). Two liquids of varying polarity, Millipore grade distilled 

water and formamide, were used and their contact angle with plastic films was determined 

using sessile drop method on an optical tensiometer (Theta Lite, Biolin Scientific, 

Manchester, UK). In brief, approximately 2 µL of liquid was applied on the surface of plastic 

samples (5 × 5 mm, n= 6) and then images were taken immediately for 20 secs using an 

attached FireWire digital camera. The contact angle was measured from the captured image 

at 10 secs, processed in OneAttention software.  

4.2.3.2 Mechanical Characterisation  

4.2.3.2.1 Tensile Stress Testing 

Changes in the mechanical properties of plastic films were investigated through tensile stress 

testing. For this, the plastic films were cut into the shape shown in Figure 4.2.1 using a 

professional guillotine according to ASTM D882-12 (ASTM-International, 2012). The 

dimensions of the films after cutting were 25 mm width (b), 100mm total length (𝓁) and 50 
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mm gauge length (𝓁o; length used for test). The thickness (h) of each film was measured 

using an electronic digital micrometre (RS PRO 50-700-001) at every 20 mm along the strip. 

This produced five reference points for each plastic sample and then the mean thickness was 

calculated using these readings. The tensile stress at break (the maximum load (N) a material 

can withstand before it breaks) was measured using a tensile testing machine (Instron 5969, 

Force capacity 50 kN, Norwood, MA, USA) at the rate of 50 mm min-1 of crosshead 

movement. 

 

Figure 4.2.1 Schematic illustration of the tensile stress test specimen. h: mean thickness, b: width, 𝓁: total 

length, 𝓁o: gauge length. 

The maximum tensile stress was calculated using the following Equations Equation 4.2.3.1 

and Equation 4.2.3.2. 

 𝐴 =  𝑏ℎ Equation 4.2.3.1 

 𝜎 =
𝐹

𝐴
 Equation 4.2.3.2 

In Equation 4.2.3.1, A is the cross-sectional area which was calculated by multiplying 

sample width (b) and mean thickness (h) values. While the tensile stress (σ, expressed in 

MPa) was calculated by dividing the maximum load (F) with the cross-sectional area 

(Equation 4.2.3.2). The reported values of tensile stress were the average of three replicates 

per sample. Baseline tensile properties were determined by testing the controls of each type 

of plastic films.  
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4.2.3.3  Spectroscopic Analysis  

4.2.3.3.1 Fourier Transform Infrared (FTIR) Spectroscopy 

Fourier transform infrared (FTIR) spectroscopy was conducted in order to determine 

changes in the molecular composition of plastic films exposed to seawater. It is an efficient 

and non-destructive technique used for the identification of chemical functional groups 

based on their well-known infrared absorption bands (Skoog et al., 2017). There are two 

main operating modes for FTIR spectroscopy, transmittance and reflectance. Transmittance 

mode is limited to characterising transparent and thin material while the non-transparent and 

other solid samples can be characterised in reflectance mode (Ojeda et al., 2009). In addition, 

there is another reflective method of operation knows as attenuated total reflectance FTIR 

(ATR-FTIR) spectroscopy (Skoog et al., 2017). In this method, the infrared rays are passed 

through a highly refractive crystal which is in contact with the sample surface. This results 

in a spectrum with high signal-to-noise ratios and minimal distortion (Bokria and Schlick, 

2002, Li et al., 2007).  

In this study, FTIR analysis of plastic films was performed using attenuated total reflectance 

FTIR (ATR-FTIR) spectroscopy. For this, an FTIR (Nexus, Thermo Nicolet, Madison, 

USA) spectrophotometer coupled with Specac Golden Gate ATR device was used. The ATR 

accessory consisted of a diamond crystal at an incidence angle of 45 degrees. The ATR 

diamond was cleaned with 70 % ethanol before performing the analysis and a background 

scan was performed between each sample. The cleaned plastic films (5 × 5 mm, n = 6, each 

plastic type at each sampling point) were compressed against the ATR crystal to ensure good 

contact between the sample and the crystal. Spectra were collected in reflectance mode 

within the range of 400-4000 cm-1 wavenumber using a spectral resolution of 2 cm-1. Each 

spectrum was collected using 100 co-added scans to increase the signal-to-noise ratio in 

OMINIC software (v. 9.2).  

The carbonyl bond area within the infrared spectra was measured as a proxy for degradation 

and change based on previous research (Socrates, 2004, Pavia et al., 2008). The infrared (IR) 

signal of carbonyl bonds appear in the wide range of wavelengths (e.g. 1550–1810 cm-1) 

(Socrates, 2004, Brandon et al., 2016) and the peak at 1715 cm-1 (ketone absorption band) is 

commonly used as the central reference for the carbonyl bond absorption region (Pavia et 

al., 2008). The carbonyl bond peaks within this region are indicative of chemical change and 

appear due to the oxidation of carbon within the plastic hydrocarbon chains (Brandon et al., 
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2016). The extent of this chemical oxidation is often quantified as according to the carbonyl 

index (CI), using the following Equation 4.2.3.3. 

𝐶𝑎𝑟𝑏𝑜𝑛𝑦𝑙 𝐼𝑛𝑑𝑒𝑥 (𝐶𝐼)  =  
𝐴𝐶=𝑂  

𝐴𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑒𝑎𝑘
 Equation 4.2.3.3 

Where AC=O is the absorbance of AC=O stretching area (1550-1810 cm-1) and the A Reference peak 

is the absorbance of reference peak area which is considered to be not changed by the 

degradation processes and varies in terms of its location within IR spectra of the material of 

interest (Socrates, 2004). The area of reference peaks used for this study is shown in Table 

4.2.1. 

Table 4.2.1 Wavenumbers selected as reference peak area for HDPE, PET and PVC to measure the carbonyl 

index. 

Plastics Area of reference peaks  References 

HDPE 2908-2920 cm-1 
(Nishikida and Coates, 2003, 

Socrates, 2004) 

PET 1395-1415 cm-1 

(Noda et al., 2007, Asensio et al., 

2009, Nguyen-Tri and Prud'homme, 

2019) 

PVC 1422-1438 cm-1 
(Beltran and Marcilla, 1997, Noda et 

al., 2007) 

4.2.4 Statistics 

The quantitative contact angle, tensile stress and carbonyl index data was compared against 

two factors; plastic types (HDPE, PET, PVC) and exposure period (0, 3, 6, 9, 12, 18, 30, 42, 

56 weeks) using mixed factorial repeated-measures ANOVA. A general linear model (GLM) 

with two-way interactions (plastic-type × time (weeks)) was used to analyse within-subject 

(time) and between-subject (plastic-type) difference during the experiment. Posthoc Tukey 

tests were used when non-significant interactions were observed, to identify the significant 

effects. These statistical analyses were conducted using IBM SPSS Statistics for Windows 

v. 22.0. 

4.3 Results 

4.3.1 Temperature and Light  

Temperature and light levels of the exposure site were measured using loggers attached to 

the sample supporting beam. The average monthly seawater temperature was 12.75 °C over 
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the course of the exposure experiment. The seawater temperature varied between 7.83 °C, 

recorded in March, and 17.15 °C, recorded in July, with clear seasonal variations (Figure 

4.3.1). The average monthly light intensity was 35.5 Lux during the exposure period. The 

highest monthly light intensity of 122.5 Lux was recorded for July 2017 and the lowest 

intensity took place in the month of November 2017 (0.46 Lux) (Figure 4.3.1). 

 

Figure 4.3.1 Average monthly temperature (°C) and light intensity (lux) over the period of exposure 

experiment. The error bars indicate standard error of the mean. 

4.3.2  Morphological Changes  

Scanning electron microscopy was used to examine the physical surface topography of the 

three plastic types (HDPE, PET and PVC) at each sampling point. SEM analysis showed 

diverse alterations in the surface properties of all plastic types within an exposure time of 56 

weeks in the seawater. The examination of the control HDPE film revealed a smooth and 

featureless surface (Figure 4.3.2 a). Similarly, HDPE films remained largely homogenous, 

with no visible features after 3 and 6 weeks in the seawater (Figure 4.3.2 b, c). After 6 weeks, 

small fissures appeared on the HDPE film (Figure 4.3.2 d) and were more visible after 9 and 

12 weeks of exposure time along with small holes (Figure 4.3.2 e, f). SEM analysis of the 

HDPE films revealed that surface features including microcracks and grooves became more 

apparent between 30 and 42 weeks of incubation (Figure 4.3.2 g, h). The topography of 

HDPE exhibited large cracks, the remnants of the biofilm and the areas where the upper 

surface layer was separating from the underneath layer, following 56 weeks (Figure 4.3.2 i).   
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Scanning electron images of PET films, obtained before the seawater exposure (control), 

showed a uniform smooth surface (Figure 4.3.3 a).  Similarly, the surface of PET films did 

not show notable changes and presented uniformity after sampling at 3, 6, 9, 12 18 weeks of 

exposure. The SEM images of these samples bore a striking resemblance to the control films 

(Figure 4.3.3 b-f). However, the surface morphology after 30 weeks of immersion in 

seawater showed the development of small cracks on PET films (Figure 4.3.3 g). The cracks 

were more noticeable on the PET films, collected after 42 and 56 weeks of incubation (Figure 

4.3.3 h, i).  

Inspection of the PVC control films revealed a relatively uniform surface with few spheroid 

shape granules on the surface (Figure 4.3.4 a). Following 3 and 6 weeks of submersion in 

seawater, the PVC films did not show any signs of surface alterations and remained largely 

similar to the control surface (Figure 4.3.4 b, c). However, the PVC films collected after 9 

weeks, appeared to have an uneven surface containing numerous small pits (Figure 4.3.4 d). 

These pits were more apparent at 12, 18 and 30 weeks and presented a hollowed-out 

appearance (Figure 4.3.4 e-g). Similarly, the SEM images showed a highly irregular surface 

with numerous pits at the end of incubation (42 and 56-week) along with adhering material, 

probably the biofilm particles remained on the surface due to incomplete removal (Figure 

4.3.4 h, i). 
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Figure 4.3.2 Scanning electron micrographs showing the topography of HDPE films, sampled after (a) control, (b) 3, (c) 6, (d) 9, (e) 12, (f) 18, (g) 30, (h) 42, (i) 56 -week exposure in sea 

water. Scale bar = 5 µm. 
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Figure 4.3.3 Scanning electron micrographs showing the topography of PET films, sampled after (a) control, (b) 3, (c) 6, (d) 9, (e) 12, (f) 18, (g) 30, (h) 42, (i) 56 -week exposure in sea 

water. Scale bar = 5 µm. 
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Figure 4.3.4 Scanning electron micrographs showing the topography of PVC films, sampled after (a) control, (b) 3, (c) 6, (d) 9, (e) 12, (f) 18, (g) 30, (h) 42, (i) 56 -week exposure in sea 

water. Scale bar = 5 µm. 
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4.3.3  Contact Angle Measurement 

The contact angle (CA) was measured to analyse the changes in surface wettability of 

plastics. The water contact angle of untreated (control) HDPE, PET and PVC films were 

87.57° ± 4.37°,  74.55° ± 2.38° and 85.69° ± 3.04° respectively, indicating that the surfaces 

of all plastic-types were initially hydrophobic due to a high water contact angle (Figure 4.3.5 

a). After the submersion of all plastics in the seawater, the water CA decreased gradually 

over 56 weeks (Figure 4.3.5 a). The CA (H2O) of HDPE films decreased significantly 

(HDPE, F (8, 45) 3.14, p = 0.007 Table 4.3.1) from 85.85° ± 2.67° (after 3 weeks) to 78.37° 

± 2.91° at the end of the experiment. Similarly, a significant (PVC, F (8, 45) 3.62, p = 0.002 

Table 4.3.1) gradual decrease in the water CA of PVC films was also measured. The CA 

(H2O) of PVC films was decreased from 82.86° ± 2.55° (3 weeks) to 76.12° ± 5.56° after 56 

weeks. In contrast to HDPE and PVC, the water CA of PET films was slightly decreased 

from 72.82° ± 3.31° to 70.22° ± 3.51° over the exposure period (Figure 4.3.5  a).  

 

Figure 4.3.5 Contact angle (CA) measurement for HDPE, PET and PVC films as a function of sampling time. 

(a) water contact angle; (b) formamide contact angle. The error bars indicate the standard error. 

Further insights into the surface properties of the plastics were determined by measuring the 

formamide contact angle. The contact angle of formamide droplet resting on the untreated 

surface of HDPE (70.32° ± 2.84°), PET (50.92° ± 2.85°) and PVC (53.69° ± 1.67°) were 

lower compared to water CA, i.e. they spread more across the plastic surfaces. Notably, the 

formamide contact values increased for all plastic surfaces after the submersion in the 

seawater (Figure 4.3.5  b). The highest increase was observed in the recorded for PET and 

PVC films. For PET, it increased significantly (PET, F(8, 45) 8.27, p < 0.001  Table 4.3.1) 

from 50.05° ± 2.04° (after 3 weeks) to 59.82° ±  3.03° (after 56 weeks) while the contact 

value for PVC increased significantly (PVC, F(8, 45) 14.54, p < 0.001  Table 4.3.1) form 

the first sampling (3 weeks) value of 53.75° ± 1.42° to 64.47° ± 2.27° at the end of 
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incubation. Similarly, the measured values for formamide contact angle were also increased 

slightly for HDPE films (from 70.87° ± 2.74° to 75.09° ± 4.07°  ), however, this increase 

was negligible and repeated measure ANOVA test showed no significant difference within 

the sampling points (HDPE, F(8, 45) 1.96, p = 0.07  Table 4.3.1).    

Table 4.3.1 Mixed factorial repeated measures ANOVA results of H2O and formamide contact angle (CA) data 

in relation to plastic-type and exposure time. 

 CA-H2O 

Source SS df Mean Square F p 

HDPE 281.39 8 35.17 3.14 0.007 

PET 154.76 8 19.34 2.34 0.034 

PVC 465.38 8 58.17 3.62 0.002 

Plastic-type 4900.24 2 2450.12 131.74 < 0.001 

Time (weeks) 713.63 8 172.4 8.12 < 0.001 

Plastic-type × Time (weeks) 187.90 16 22.69 1.07 0.39 

 CA-Formamide 

Source SS df Mean Square F p 

HDPE 126.02 8 15.75 1.96 0.07 

PET 396.06 8 49.51 8.27 < 0.001 

PVC 913.83 8 114.23 14.54 < 0.001 

Plastic-type 9818.15 2 4909.07 1018.69 < 0.001 

Time (weeks) 1160.43 8 145.04 19.08 < 0.001 

Plastic-type × Time (weeks) 275.60 16 17.23 2.27 0.006 

4.3.4  Changes in Tensile Properties  

Tensile stress tests were performed to determine the changes in the mechanical properties of 

all three plastic types. At first, the maximum tensile stress of all unexposed plastic films 

(negative controls) was measured. The tensile stress of control PET films was higher than 

the PVC (164.1 ± 22.4 and 55.7 ± 4.2 MPa, respectively) while the HDPE films had the 

lowest tensile stress (28.6 ± 0.3 MPa). After exposing to seawater, all plastic-types were 

recovered successfully at each sampling point and analysed visually. No surface area loss 

was measured, and all samples remained intact in the seawater. However, the maximum 

tensile stress of all the plastic-types (HDPE, PET and PVC) decreased in seawater over the 

exposure period, indicating some degree of degradation (Figure 4.3.6). Moreover, the rate at 

which the tensile stress decreased, was different for all plastic-types.  
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Figure 4.3.6 Tensile stress (MPa) of HDPE, PET and PVC films, exposed to seawater over the period of 56 

weeks. The error bars indicate the standard error.  

The tensile stress results obtained for PET and PVC films were similar as shown in (Figure 

4.3.6). More specifically, the tensile stress of both of these plastic films decreased over time 

but did not show a significant within the sampling points (repeated measure ANOVA: PET, 

F(8,18) 101.12, p = 0.47 and PVC, F(8,18) 3.95, p = 0.46, Table 4.3.2). Similarly, the maximum 

tensile stress of HDPE also decreased over time from 26.31 ± 0.97 (after 3 weeks) to 22.2 ± 

0.1 MPa (after 56 weeks). However, in contrast to PET and PVC, there was a significant loss 

of tensile stress of the HDPE samples (repeated measure ANOVA: HDPE, F(8,18) 11.8, p < 

0.001, Table 4.3.2). 

Table 4.3.2 Mixed factorial repeated measures ANOVA results of tensile stress data in relation to the plastic-

type and exposure time. 

Source SS df Mean Square F p 

HDPE 120.81 8 15.100 11.778 < 0.001 

PET 808.99 8 101.123 .997 0.47 

PVC 31.618 8 3.952 1.021 0.46 

Plastic type 243173 2 232532.42 3145.61 < 0.001 

Time (weeks) 585.99 8 73.25 2.5 0.05 

Plastic type × Time (weeks) 375.41 16 44.87 0.61 0.77 
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4.3.5  Changes in ATR-FTIR Spectra 

The attenuated reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy was used 

to analyse the chemical changes on the surface of plastics within the experiment. The ATR-

FTIR spectra of all three plastic types (HDPE, PET and PVC) at each sampling point were 

plotted in a comparative way in Figure 4.3.7, Figure 4.3.8 and Figure 4.3.9 respectively. For 

HDPE, six characteristic peaks were identified at wavenumbers of 717, 730, 1462, 1472, 

2846 and 2915 cm-1 (Figure 4.3.7 a). The large intensity peaks at 717 and 730 cm-1 

correspond to the rocking vibration of CH2 groups and the crystallinity of HDPE. The 

medium intensity peaks at 1462 and 1472 cm-1 are attributed to CH2 bending and scissoring 

groups and represent crystallinity. The strong sharp peaks at 2847 and 2915 cm-1 correspond 

to CH2 groups and asymmetric and symmetric C−H stretching respectively (Figure 4.3.7 a). 

After being exposed to the seawater, no new peaks appeared for HDPE during the exposure 

period. However, the intensity of existing characteristics peaks varied at different sampling 

intervals, which can be attributed to degradation (Gulmine et al., 2003, Da Costa et al., 2018). 

There was a general increase in the peaks of  717, 730, 1462, 1472, 2846 and 2915 cm-1 at 9 

weeks (Figure 4.3.7 b-e), then a decrease after 12 weeks that lasted until 42 weeks, where it 

began to increase again at 56 weeks. The increase in the peak intensity at 2915 cm-1 indicated 

the decrease in the oxidation of the polymer chain (Figure 4.3.7 d). To quantify the extent of 

oxidation during the exposure period, the carbonyl index of HDPE was calculated. A 

nonlinear change in the carbonyl index was observed, with a decrease from 0 to 9 weeks, a 

gradual increase from 12 to 42 weeks and another decrease at the end of the exposure period 

(at 56 weeks) (Figure 4.3.10 a). 

The ATR-FTIR spectra of PET had six characteristic peaks at the wavenumbers of 722, 871, 

1094, 1241, 1410 and 1712 cm-1 (Figure 4.3.8 a). The peak at 722 cm-1 corresponds to C−H 

bending vibrations of the benzene rings and the weak peak at 871 cm-1 represent the C−C 

out of plane bending bond. The intense peaks at 1094 and 1241 cm-1 correspond to ether 

aliphatic (C−O stretching) bonds and the weak peak C=C stretching appears at 1410 cm-1. 

The strong band at 1712 cm-1 is attributed to ester (carbonyl C=O stretching) (Figure 4.3.8 

a). When exposed to seawater, the intensities of the PET characteristic peaks at 1241 and 

1712 cm-1 were changed. In the beginning, there was no change in the intensities of these 

peaks (from 0 to 18 weeks) but decreased at 30 weeks. Then peak intensities began to 

increase again after 42 weeks until 56 weeks (Figure 4.3.8 d,e). The ATR-FTIR spectra of 

seawater exposed PET also demonstrated new peaks, which were not typical for PET. These 

peaks were observed gradually during the 56 weeks incubation period at the following 
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positions: (a) at 970 cm-1 (Figure 4.3.8 b) (b) at  1120 cm-1 (Figure 4.3.8 c) and (c) at 1578 

cm-1 (Figure 4.3.8 e), corresponding to C−H out of plane bend,  C−O stretching, and ring 

C=C stretching respectively. Furthermore, the carbonyl indices for PET at each sampling 

interval were determined (Figure 4.3.10 b) relative to the C=C stretching peak at 1410 cm-1. 

There was no change in the carbonyl indices of PET initially (from 0 to 9 weeks) except for 

a transient dip at 12 weeks.  It began to increase after 18 weeks of exposure, indicating an 

increase in the oxidation of PET which lasted until 30 weeks, then decreased at 42 weeks. 

However, another increase in the carbonyl index of PET was observed towards the end of 

the experiment (at 56 weeks) (Figure 4.3.10 b).  

For PVC, the characteristics peaks were observed at the wavenumbers of 610, 1240, 1331, 

1427, 2910 and 2970 cm-1 (Figure 4.3.9 a). The strong peak at 610 cm-1 corresponds to C−Cl 

bond while the peaks at 1240 and 1331 cm-1 are assigned to bending bond of C−H near Cl. 

The weak band at 1427 cm-1 and the shoulder peak at 1434 cm-1 is attributed to C−H aliphatic 

bending bond. Moreover, the peaks at 2910 and 2970 cm-1
 represent the asymmetric 

vibrations of C−H stretching (Figure 4.3.9 a).  Among the native peaks of PVC, the intensity 

of 610 cm-1
 decreased and a wide band was observed after 56 weeks incubation in the 

seawater (Figure 4.3.9 b). Similarly, at 965 cm-1
 1 (correspond to the vibrational bands of 

the rocking of CH2 groups) and 1434 cm-1 (C−H aliphatic bending bond peak), there was a 

decrease and the peaks broadened (Figure 4.3.9 c, d). Apart from the characteristic peaks, a 

small band at 1735 cm-1, attributed to C=O bond, was observable in the spectra of PVC at 

each sampling point. The intensity of this peak remained unaltered initially (from 0 to 12), 

then gradually decreased slightly from 18 weeks to 42 weeks but the maximum decrease in  

1735 cm-1 band was observed after 56 weeks of exposure (Figure 4.3.9 d). Moreover, the 

carbonyl indices for PVC after seawater exposure were determined (Figure 4.3.10 c) relative 

to the C-H peak at 1427 cm-1. No obvious trends, however, were observed in the calculated 

carbonyl indices (Figure 4.3.10 c). 
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Figure 4.3.7 ATR-FTIR spectra of HDPE films. (a) Comparative spectra of HDPE outer surface at 0 (control), 

3, 6, 9, 12, 18, 30, 42, and 56 -weeks of exposure to seawater, with the intensity of peaks recorded as arbitrary 

units (a.u.). For better visualisation, the ATR-FTIR spectra are enlarged at wavenumbers (b) 600-900, (c) 900-

1400, (d) 1400-1600 and (e) 2600-3200. 
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Figure 4.3.8 ATR-FTIR spectra of PET films. (a) Comparative spectra of PET outer surface at 0 (control), 3, 

6, 9, 12, 18, 30, 42, and 56 -weeks of exposure to seawater, with the intensity of peaks recorded as arbitrary 

units (a.u.). For better visualisation, the ATR-FTIR spectra are enlarged at wavenumbers (b) 650-1000, (c) 

1000-1200, (d) 1200-1550 and (e) 1550-1850. 
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Figure 4.3.9 ATR-FTIR spectra of PVC films. (a) Comparative spectra of PVC outer surface at 0 (control), 3, 

6, 9, 12, 18, 30, 42, and 56 -weeks of exposure to seawater, with the intensity of peaks recorded as arbitrary 

units (a.u.). For better visualisation, the ATR-FTIR spectra are enlarged at wavenumbers (b) 550-850, (c) 850-

1200, (d) 1200-1800 and (e) 2750-3150. 
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Figure 4.3.10 Boxplots representing the carbonyl index (CI) measurements for HDPE, PET and PVC films as 

a function of sampling time. (a) HDPE; (b) PET; (c) PVC. 

4.4 Discussion 

Physicochemical properties of three chemically distinct synthetic polymers were analysed 

over a 56-week period to assess their degradation in seawater. After exposing the surface 

morphology of all the tested plastics changed. Surface textures such as fractures, grooves, 

and large cracks appeared on HDPE and PET films, whereas PVC films displayed more 

well-defined pits. Similar surface morphologies changes have been reported on plastics 

sampled from beaches and seawater (Corcoran et al., 2009, Cooper and Corcoran, 2010, 

Zbyszewski and Corcoran, 2011, Fotopoulou and Karapanagioti, 2015, Cai et al., 2018, Da 

Costa et al., 2018, Tang et al., 2018). In all these accounts, the textures were attributed to 

chemical oxidation due to either solar or artificial UV irradiation. Though the plastics were 

not directly exposed to sunlight in this study as they were submerged in seawater, a small 

amount of UV radiations still penetrated (Figure 4.3.1). Additionally, the inorganic ions (e.g. 

sulphates, chlorides) present in the seawater can act as catalysts for plastic oxidation under 

reduced UV radiation which might have resulted in these morphological changes (Leonas, 

1993, Da Costa et al., 2018). However, the low concentration of dissolved oxygen in the 

seawater reduces the photo-oxidation regardless of the amount of UV rays penetration (Biber 

et al., 2019). The gradual development of uneven surfaces for all the tested plastics also 

suggests peeling off the upper layers (Tang et al., 2018) and thus exposing the inner surfaces 

for further degradation. It is also plausible that the plastic surfaces might have undergone 

enzymatic hydrolysis due the presence of microorganisms (Chapter 3, Section 3.3.5) that can 

produce extracellular enzymes with the potential of degrading plastics (Balasubramanian et 

al., 2010, Vague et al., 2019). Such hydrolytic degradation reactions preferentially occur at 

the amorphous regions of the polymer (Donelli et al., 2009, Herrero Acero et al., 2011). 

Moreover, the inorganic ions including calcium or magnesium cations present in the 

seawater can also act as catalysts for these enzymatic hydrolysis reactions  (Kawai et al., 

2019). 
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Further insights into the surface properties of the plastics were determined by measuring 

their wettability (the ability of a liquid to spread out on a solid substrate). While immersed 

in seawater, plastics are known to change their surfaces properties due to water diffusion and 

restructuring of surface molecules in order to reduce the interfacial/surface energy of the 

plastics (Dussud et al., 2018). This phenomenon denotes to the hydrophobicity of the 

plastics. In contrast, the current study observed a significant change in the surface wettability 

of all tested plastics when exposed to the seawater.(Figure 4.3.5) The plastic surfaces became 

hydrophilic which was observed by the gradual decrease in the water contact angle (CA) of 

all the plastics over the exposure period. This is attributed to the attachment of 

microorganisms on the plastic surfaces (Chapter 3, Section 3.3.1) (Dussud et al., 2018) and 

subsequent surface degradation (Sudhakar et al., 2008, Yang et al., 2014, Yang et al., 2015, 

Nauendorf et al., 2016). A change in hydrophilicity further promotes biofilm attachment 

(Callow and Fletcher, 1994, Artham et al., 2009a, Dussud et al., 2018). Contrary to the water 

CA, there was a general increase in the formamide contact angle of the plastics, suggesting 

an increase in the interfacial energy (excess energy at the surface of plastics). This was in 

agreement with previous studies demonstrating that the colonisation of marine 

microorganisms changes the surface topography and increases the interfacial energy of PET 

films in seawater (Webb et al., 2009) and the interfacial rearrangements occur in the region 

between the surface and the colonising microorganisms (Busscher et al., 2010). Although 

seawater is more hydrophilic and due to alkaline in nature it can also induce surface 

modifications by alkaline hydrolysis therefore can increase the surface hydrophilicity of the 

polymers (Maekawa et al., 2006, Donelli et al., 2009). However, the development of biofilm 

on the plastic surfaces (Section 3.3.1) which contained potential biodegraders (section 3.3.5) 

because of their ability to produce hydrolytic enzymes (Danko et al., 2004, Ronkvist et al., 

2009, Balasubramanian et al., 2010, Vague et al., 2019), it is more probable that the decrease 

in the contact angle and consequently increase in the degree of hydrophilicity of plastics was 

due to surface degradation by enzymatic hydrolysis (Sudhakar et al., 2008, Donelli et al., 

2009) 

The changes in tensile stress differed among the tested plastics. The tensile stress of HDPE 

decreased slowly but significantly over time, indicating that HDPE film demonstrated 

degradation in seawater. This is in agreement with previous seawater field-studies that 

reported a reduction in tensile strength of polyethylene films exposed over 40 weeks 

(O'Brine and Thompson, 2010) and 48 weeks (Heimowska et al., 2011). Mechanical damage 

of the PE macro chains may be also caused by the swelling and bursting of growing cells of 

the invading microorganisms or by macro-organisms in seawater (Heimowska et al., 2011). 
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Other studies showed that the changes in the tensile properties of PE were much faster when 

exposed in the air than seawater due to higher oxidation rate (Pegram and Andrady, 1989, 

Andrady, 1990, Andrady et al., 1993a, Biber et al., 2019). However, the slow change in the 

tensile properties of HDPE films in the current study is likely due to lowered temperatures 

and attenuated UV light in seawater which inhibits the oxidation. The apparent small 

changes in the tensile strength of all plastics also indicated that the bulk material had not 

changed to a large extent and could only be due the surface degradation as observed in SEM 

and contact angle analysis.  

There was no significant change in the tensile stress of PET films, except for the late decrease 

between 42 and 56 weeks (Figure 4.3.6). This potentially suggests a comparative late onset 

of PET deterioration and shows that exposure time could be the limiting factor for its 

degradation within seawater. Previously, reduced degradation of PET has been observed in 

seawater. Heimowska et al. (2011) exposed PET for 48 weeks in the Baltic sea at the depth 

of 2 m and reported a non-significant change in its tensile properties. A long-term seawater 

exposure (600 days) study also reported no measurable loss of tensile properties for PET 

films (Biber et al., 2019).  In addition to PET, the tensile stress tests performed to determine 

the changes in the mechanical properties of PVC films did not show any significant changes. 

It could be due to the deployment of the PVC samples two meters deep in the water column 

which reduced its susceptibility to photodegradation, even though it is very sensitive to UV 

radiation (Gewert et al., 2015, Bond et al., 2018). Moreover, the colonising microorganisms 

on the PVC films (Chapter 3, Section 3.3.1) may further reduce the UV irradiation by 

covering the surface and the shielding the plastic from UV light (O'Brine and Thompson, 

2010, Welden and Cowie, 2017).  

The investigation of chemical composition by ATR-FTIR indicated subtle changes. For PET 

exposed in seawater, a decrease in absorbance is observed for characteristics peaks at 1721 

(C=O) and 1241 cm-1 (C−O stretching) (Figure 4.3.8) relative to control. Such decline in 

band intensities has been previously observed and may indicate a change in the composition 

of the PET (Fotopoulou and Karapanagioti, 2015, Ioakeimidis et al., 2016). The decrease in 

the intensity of these peaks leads to the expectation of new peaks formation which, in fact, 

was observable. New peaks appeared at 970, 1120  and 1578 cm-1 over the exposure time, 

suggesting the development of a new C−H, C−O and aromatic bond respectively (Coates, 

2006). In contrast, Ioakeimidis et al. (2016) reported new peaks at 1435 and 620 cm-1 

corresponding to alkyne (C≡H) and C-H bond, respectively were attributed to PET 

degradation in the marine environment. On the other hand, no new peaks were observed for 



 
109 

HDPE and PVC after seawater exposure in this study, suggesting that the degree of 

weathering was not sufficient to promote the formation of degradation products responsible 

for respective peaks. However, reduction in characteristic peaks was observed for both 

plastics along with peak broadening. This could be due to the chemical changes resulting 

from the bonding of specific elements (e.g. H, C) with other chemical groups of plastics and 

such changes have been demonstrated for plastic films after their exposure to 

microorganisms (Restrepo-Flórez et al., 2014, Skariyachan et al., 2017).    

Despite the observable patterns within the FTIR spectra of plastics, no clear trends were 

detected for carbonyl index measurements. This could be attributed to the low oxidation 

within the seawater due to lower temperature and reduced UV radiation (Pegram and 

Andrady, 1989, Andrady, 1990, Andrady et al., 1993a, Biber et al., 2019). This limited 

oxidation could also be explained by the presence of Cyanobacteria on all the plastic 

surfaces (Chapter 3, Section 3.3.5) which could be involved in the oxidation of the polymers 

by increasing the rates of oxygen production and respiration (Bryant et al., 2016). However, 

the development of uneven surfaces (SEM observations) suggests that after a certain stage 

of degradation in seawater, the upper layer of the plastics becomes so brittle that it erodes 

and expose the new underlayer (Halle et al., 2017), which could explain why the carbonyl 

indices did not show any trends. Moreover, it could also be due the enzymatic hydrolysis of 

amorphous regions of polymers which could result in the change of polymer crystallinity 

(Donelli et al., 2009). The members of biofilm communities (e.g. Pseudomonas) reported in 

the previous chapter (Chapter 3, section 3.3.5) have the ability to produce extracellular 

enzymes which could degrade polymers by hydrolysis (Danko et al., 2004, Ronkvist et al., 

2009, Balasubramanian et al., 2010, Vague et al., 2019). Within the plastic construct, the 

amorphous regions are more susceptible as they favour the hydrolytic attack of these 

enzymes (Donelli et al., 2009, Ronkvist et al., 2009). 
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4.5 Conclusions 

This study analysed the long-term degradation of three widely used synthetic plastics in 

seawater (HDPE, PVC and PET). The results demonstrated that surface morphology and 

wetting properties of these plastics significantly changed over time. HDPE demonstrated the 

fastest rate of deterioration out of the three-plastic tested. However, the molecular 

composition and the bulk properties (e.g. tensile strength) of the samples did not change. It 

was attributed to nonlinear oxidation of plastics due to attenuated UV radiation in the water 

column, a lower average temperature and biofilm formation on the plastics. Therefore, the 

degradation plastics in the marine environment appeared to be more complex than predicted; 

as the carbonyl bond also did not change linearly with time. Due to the nonlinear changes in 

carbonyl bond, the indices presented here are of potential use for quantifying the exposure 

time of plastics only over a relatively limited time period. 
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Chapter 5: Biodegradation of Synthetic Plastics by 

Marine Consortia: A Respirometric Study 

 

 

5.1 Introduction  

In Chapters 3 & 4 it was demonstrated that the surface properties of plastic material changed 

significantly over time when submerged in seawater. This was attributed to the attachment 

of microorganisms (Chapter 3, Section 3.3.1) and the seawater chemistry. These studies also 

provided evidence that the colonising biofilm on the plastic surface could be playing an 

active role in degradation. However, these studies provided no direct proof of mineralisation 

due to microbial activity. Measuring the degradation of plastics in terrestrial environments 

is well established (Song et al., 2009, Briassoulis et al., 2010) with published international 

test methods and standards (e.g. BS EN 13432). In contrast, there is a lack of published test 

methods and standards to for evaluating the biodegradability of plastics within most marine 

environments (Tosin et al., 2012) and recreating the multitude of different parameters 

associated with a marine environment is challenging in laboratory environments (Harrison 

et al., 2018a). One approach to assess the plastic biodegradability is to simulate the marine 

(seawater) environment in a closed system (Pauli et al., 2017). Therefore, using laboratory 

simulation experiments, this chapters seeks to investigate the biodegradation of plastics in 

marine conditions.  

Plastics are potential substrates for heterotrophic marine microorganisms including bacteria 

and fungi (Shah et al., 2008). The biodegradability of plastics depends on the physical state, 

crystallinity, molecular weight and the metabolic interactions within the plastic-attached 

biofilms (Gu, 2003, Artham et al., 2009b, Harrison et al., 2011). Generally, the 

biodegradation of plastics within marine environments comprises of four steps including: 

biodeterioration; biofragmentation; assimilation and mineralisation. The first step, 

biodeterioration, involves biofilm formation on the plastic surface which modifies the 

physical, mechanical and chemical properties of the plastics. The second step is the 

biofragmentation in which the plastics are cleaved into smaller units (e.g. oligomers and 

monomers) by the extracellular enzymes of colonising microorganisms. The next step is 

assimilation where the oligomers are transported inside the microbial cells to produce 
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energy, new biomass and various metabolites. The last step of the biodegradation process is 

mineralisation which refers to excretion of simple (e.g. CH4) and completely oxidized 

metabolites (e.g. CO2, H2O) to the extracellular surroundings (Lucas et al., 2008, Dussud 

and Ghiglione, 2014, François-Heude et al., 2014).  

The ability of microorganisms to degrade plastics have been known for several decades, with 

the first study in 1968 identifying bacterial isolates as potential plastic degraders (Booth et 

al., 1968). However, the biodegradation of plastics within the marine environments only 

became a focus of research a couple of decades later (Palmisano and Pettigrew, 1992). So 

far, only a few studies have analysed the biodegradation potential of a wide range of plastics 

in the marine environments (Table 1.4.1, Chapter 1: Section 1.4.3). These studies mainly 

focused on the isolation and in vitro biodegradability testing of microbial strains from the 

marine environments. The isolated microorganisms showed the biodegradation potential of 

the plastics (Urbanek et al., 2018). For example, Balasubramanian et al. (2010) isolated 

bacterial strains belonging to genera Pseudomonas and Arthrobacter from Gulf of Mannar, 

with HDPE degradation ability. Similarly, bacterial genera of Kocuria, Bacillus and 

Rhodococcus had also been reported for the biodegradation of polyethylene (Harshvardhan 

and Jha, 2013, Auta et al., 2017, Auta et al., 2018). Moreover, marine fungi e.g. Aspergillus 

and Zalerion sp. have also been identified as plastic degraders (Devi et al., 2015, Paço et al., 

2017). Although these studies claim to assess the microbial degradation of plastics in marine 

environments, they provide no direct experimental data on microbial assimilation of plastic. 

The potential biodegradation was assessed either by weight loss measurements or by 

determining the changes in morphological, mechanical and chemical properties of plastics, 

which do not necessarily prove the biodegradation process (Shah et al., 2008). Therefore, 

little is known about the complete assimilation and mineralisation of plastics by marine 

microbes. 

Whilst the marine microbes have demonstrated the capabilities to degrade plastics, the rate 

of degradation was low, even in optimised laboratory conditions (Krueger et al., 2015, 

Debroas et al., 2017). It was attributed to the large size of plastic molecules, higher chemical 

stability and lower bioavailability of plastic materials to microbial cells (Alexander, 1975, 

Andrady, 1994). Additionally, most of the studies used single microbial strains (Sekiguchi 

et al., 2009, Balasubramanian et al., 2010, Harshvardhan and Jha, 2013, Auta et al., 2017, 

Auta et al., 2018, Giacomucci et al., 2019) that can also limit the plastic biodegradation 

process as the mineralisation of plastics is a complicated process and usually conducted by 

consortium of species with functional complementarity (Syranidou et al., 2017). 
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Therefore, the specific aims of this Chapter are: 

1. To isolate three marine bacterial consortia depending on their ability to biodegrade 

three chemically distinct synthetic plastics;  

2. To assess the capability of the consortia to degrade plastics in a simulated marine 

environment using a respirometric system; 

3. To measure changes in the physicochemical properties of plastic after the 

biodegradation. 

5.2 Materials and methods 

5.2.1 Seawater Sampling 

In order to isolate the microorganisms from the marine environment, natural seawater 

samples were collected from Skegness beach, UK (53.137844 ºN; 0.351808 ºE), on the 20th 

of April 2017. These samples were previously used in Chapter 2 to study the effects of 

plastics on marine microbial communities in seawater. Full details of the sample collection, 

handling and storage for subsequent analysis are included in the methods section of Chapter 

2 (2.2.1). 

5.2.2 Enrichment of Marine Consortia  

A three-step enrichment method was used to isolate three unique marine bacterial consortia 

with the potential to degrade three chemically distinct synthetic plastics; high-density 

polyethylene (HDPE), polyethylene terephthalate (PET) and polyvinyl chloride (PVC). At 

first, the enrichment was carried out in natural seawater. For this, 100 mL of natural seawater 

was transferred aseptically to three 250 mL capacity autoclaved Erlenmeyer flasks 

individually, one for each plastic-type. To these flasks, one gram (g) of plastics (each type 

to separate flask) was added. Prior to the use, the plastics were ground using a CryoMill 

(Retsch GmbH, Haan, Germany) and sterilised with 70 % ethanol and subsequently air-dried 

in laminar flow hood. Following the addition of seawater and the plastics, the flasks were 

sealed with cotton wool to prevent contamination and then incubated on a rotary shaker (120 

rpm) at room temperature for 30 days. In the second step, the enrichment was performed in 

marine broth. For this, 5 ml of previously enriched natural seawater was used as inoculum 

and transferred to three new sterile flasks separately. Each flask contained 100 mL of marine 

broth and one gram of single plastic-type. The marine broth was prepared with deionised 

water and contained the following (per 1000 mL): 19.45 g of NaCl, 5.9 g of MgCl2; 5 g of 

Peptone; 3.24 g of NaSO3; 1.8 g of CaCl2; 1 g of yeast extract; 0.55 g of KCl; 0.16 g of 
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NaHCO3; 0.10 g of ferric citrate; 0.08 g of KBr; 0.034 g of SrCl2; 0.022 g of H3BO3; 0.008 

g of K2HPO4; 0.004 g of sodium silicate and 0.001 g of NH4NO3. The pH of the broth was 

adjusted to 7.0 using 1M HCl and then sterilised by autoclaving at 122 °C for 20 min. The 

inoculation was performed in a laminar flow hood to minimise the risk of contamination. 

The flasks were then sealed and incubated on a rotary shaker (120 rpm) at room temperature 

for another 30 days. Finally, the same procedure used for the second step was repeated for 

the third step of the enrichment method and the marine broth from the second enrichment 

was used as inoculum for this step. 

5.2.3 Selection and Isolation of Marine Bacteria with the Plastic Degrading Ability 

In order to develop a unique consortium for each plastic-type, bacterial isolates with plastic 

degrading ability were first selected. For this, the cultures obtained after the enrichment 

process was spread across plates containing carbon-free minimal salt agar medium. The agar 

plates contained the following (per 1000 mL of deionised water): 15 g of agar; 1 g of NaCl; 

1 g of (NH4)2SO4; 1 g of K2HPO4; 0.2 g of KH2PO4; 0.025 g of yeast extract; 0.01 g of 

ZnSO4.7H2O; 0.01 g of FeSO4.7H2O; 0.005 g of H3BO3; 0.002 g of CaCl2.2H2O; 0.001 g of 

CuSO4 and 0.001 g of MnSO4.H2O. The enriched cultures (0.5 mL) of each plastic-type was 

spread homogeneously across the surface of the agar plates, which were subsequently 

covered with plastic film (20 mm × 20 mm). The plates were then sealed with parafilm and 

incubated at 30 °C for 30 days. The growth on the plastic films was then selected for 

subsequent isolation and purification of bacterial isolates.  

To obtain pure isolates, the plastic films with growth were transferred into separate sterile 

flasks containing 100 mL of fresh marine broth. The flasks were incubated at 30 °C for 7 

days and the successfully growing cultures (0.1 mL) were pipetted on marine agar plates. 

After incubation of 7 days, the colonies formed on the marine agar plates were shifted to 

new plates with fresh agar medium to obtain pure colonies of the isolates. For this, a streak 

plate method was used, which is a quadrant streak technique that facilitates sequential 

dilution of the original inoculum over the entire surface of the agar plate (Sanders, 2012). 

The individual pure colonies were then selected for molecular identification of isolates.  

5.2.4 Molecular Identification of Isolates  

In order to identify the isolates, sequencing of the 16S rRNA gene was performed 

(hypervariable regions V1-V9). For this, the bacterial universal primers 27F (5’-

AGAGTTTGATCMTGGCTCAG-3’) and 1492R (5’-TACGGYTACCTTGTTAGGACTT-



 
115 

3’) (Lane, 1991) were used. DNA was not extracted prior to PCR, instead, colony PCR was 

performed to amplify the 16S rRNA gene of cultured isolates. For this, amplification was 

carried out using a single colony in a 50 µL reaction mixture containing 250 nM of each 

primer, 5 µL of 5× Taq buffer, 2 mM MgCl2, 0.1 mM of each dNTP and 1.75 U of Taq (New 

England Biolabs, MA). PCR conditions were as follows: initial denaturation for 10 mins at 

94 ºC to promote cell lysis; followed by 35 cycles at 94 ºC for 1 min; annealing at 55 ºC for 

40 sec; extension at 72 ºC for 1 min and a final extension at 72 ºC for 10 min. All PCR 

products were verified on a 2 % (w/v) agarose gel (Sigma, Aldrich, Germany) by 

electrophoresis with a DNA marker, 2-Log DNA Ladder (New England Biolabs, MA). The 

PCR products were then purified using co-precipitant pink (Bioline, London, UK) protocol 

according to the manufacturer’s instructions.  

The purified PCR products were sequenced at Eurofins genomics, Germany using Sanger 

sequencing, which was performed using a 3730xl DNA Analyser. Sequencing was 

undertaken in both forward and reverse direction using respective primers. Sequencing data 

in the form chromatograms were analysed using the software BioEdit v7.2.5 (Hall, 1999, 

Hall et al., 2011) to identify the high-quality DNA regions. Moreover, a contig (overlapping 

DNA fragments that in combination represent a consensus region of DNA) was prepared for 

each isolate using sequences of the 27F and 1492R amplifications. The contigs were aligned 

with organisms present on a DNA sequences database (GenBank) using the Basic Local 

Alignment Search Tool (BLAST) (Johnson et al., 2008), developed by National Center for 

Biotechnology Information (NCBI), USA. This analysis was performed to identify the most 

closely related species to each isolate and their % homology with these species. 

5.2.5 Biodegradation Test 

To quantify the biodegradation of synthetic plastics by the isolated bacterial consortia, a 

respirometric experiment was carried out in an optimised aerobic marine environment. For 

this, a bespoke respirometric system was developed and the test was performed according to 

the guidelines of ASTM D 6691-09 (ASTM-International, 2009). This test method is used 

to determine the degree of aerobic biodegradation of plastic materials exposed to isolated 

marine consortia. The test mixture contains an inorganic medium (artificial seawater), the 

organic test material (plastics) pre-selected marine microorganisms as the inoculum. The 

mixture is aerated with carbon-dioxide-free air over a period of time depending on the 

biodegradation kinetics, but not exceeding 6 months according to the standard guidelines. 
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5.2.5.1 Respirometric System  

A respirometric system or respirometer is a device used to test and/or quantify the respiration 

activity of living organisms by either focusing on oxygen (O2) consumption, CO2 evolution 

or both (Kijchavengkul et al., 2006). Generally, there are three major components of a 

respirometer: (1) an air supply, (2) an air-tight closed vessel containing the living test 

organisms, and (3) a measuring device, to measure the quantity of O2 consumption and/or 

CO2 evolution (Kijchavengkul et al., 2006). The respirometric system can also be adapted 

and used to quantify the amount of CO2 gas evolved from the aerobic biodegradation of 

plastic materials  (ASTM-International, 2009). 

Based on ASTM D 6691-09 (ASTM-International, 2009), a closed system respirometer was 

used to measure CO2 evolved from respirometer vessels using an infrared CO2 analyzer. This 

respirometric system consisted of seven major components: (1) an air pump; (2) flow 

multiplexers; (3) respirometric vessels; (4) manifold valves; (5) CO2 analyzer; (6) control 

software and (7) water bath. Ambient air was pushed through a pump (SS4 Sub-Sampler, 

Sable Systems International, NV, USA) to flow multiplexers (RM-8, Sable Systems 

International), which allowed selection of one channel at a time for further pushing of the 

air to a single respirometric vessel, thus allowed the build-up of CO2 in other vessels. At the 

same time, the CO2 in the headspace moved to manifold valves to prevent developing of 

hypercarbia condition between the readings. The manifold valves switched according to flow 

multiplexers and directed the exhaust CO2 from vessels to the infrared gas analyser (CA-

10A, Sable Systems International). Prior to and during the experiment, the gas analyser was 

calibrated frequently using a zero CO2 gas (pure nitrogen) and a known amount of pure CO2 

(0.2 % CO2). All these components were controlled by ExpeData software (v 1.8.5) which 

also recorded the concentration of CO2 of each vessel every two hours. A water bath was 

used to control the temperature of the respirometric vessels at 30 °C (Figure 5.2.1 a). 
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Figure 5.2.1 Experimental set-up for biodegradation test. (a) Schematic diagram of respirometric system 

components; (b) The original laboratory set-up of the respirometric system 

5.2.5.2 Preparation of Inoculum  

The focus of this work was to develop a unique marine consortium for each plastic-type and 

assess its biodegradation potential. Therefore, the inoculum was prepared separately for each 

plastic-type by using previously isolated bacteria that were selected due to their growth on 

respective plastic after enrichment. For this, each isolate was grown separately in 50 mL of 

autoclaved marine broth for 7 days at 30 °C. The cultures (10 mL) of each isolate (according 
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to plastic-type) were then placed into a single sterile flask with cap and mixed together by 

using vortex. For reference material and blank (with no testing material), the inoculum was 

prepared by mixing all the isolates irrespective to enrichment source.  

5.2.5.3 Preparation and Inoculation of Respirometry Vessels  

For the respirometric experiment, 4 L capacity Nalgene (Fisher Scientific, Loughborough, 

UK) bottles were used as respirometric vessels. The vessels were first sterilised along with 

lids and the attached tubes prior to setting up the experiment. These vessels were not 

autoclavable, therefore, a two-step wet sterilisation was performed. In the first step, the 

vessels and the accessories were immersed in 1% virkon (a strong disinfectant) for 10 min 

then washed with distilled water and dried. In the second step, the vessels were thoroughly 

rinsed with 70% ethanol and closed the lids. The vessels were then filled with 2000 mL of a 

test medium, artificial seawater (ASW). It was prepared with deionised water and contained 

the following (per 1000 mL): 24.53 g of NaCl; 5.20 MgCl2; 4.09 g of Na2SO4; 1.16 g of 

CaCl2; 0.695 g KCl; 0.201 g of NaHCO3 0.101 g of KBr; 0.027 g of H3BO3; 0.025 g of SrCl2 

0.003g of NaF; 99.4 µg of Ba(NO3)2; 34 µg of Mn(NO2)2; 30.8 µg of Cu(NO3)2; 9.6 µg of 

Zn(NO3)2; 6.6 µg of Pb(NO3)2 and 0.49 µg of AgNO3. The pH was adjusted to 8.2 with 0.1N 

NaOH solution and then autoclaved at 122 °C for 20 min. Additionally, 5 g of the test 

(HDPE, PET and PVC; in both powder and film form) and reference (cellulose; powder 

only) specimens were added to vessels. The samples were sterilised using 70 % ethanol and 

subsequently air-dried in laminar flow hood prior to placement into vessels. Three replicates 

were set up for each plastic, reference and blank (with no additional material). Finally, the 

vessels were inoculated with the 5 mL of previously prepared inocula and attached the 

vessels to respirometer after placing them in a water bath set to 30 ± 2 °C (Figure 5.2.1 b). 

The biodegradation test was performed for 6 months as per ASTM D 6691-09 (ASTM-

International, 2009) guidance. 

5.2.5.4 Calculations  

To calculate the level of ultimate biodegradation, the theoretical amount of carbon dioxide 

was first determined using the Equation 5.2.5.1  

𝑇ℎ𝐶𝑂2 = 𝑋𝑐 ×  
𝑀𝐶𝑂2 

 

𝐴𝑀𝐶
× 𝑚 Equation 5.2.5.1 
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where Xc is the organic carbon content of the test materials that were determined by using 

the method described in Chapter 2 (Section 2.2.3.2), MCO2 is the molecular mass of carbon 

dioxide (44.0095 gmol-1) and AMC is the atomic mass of carbon (12.0107 g/mol). 

Furthermore, m is the total dry solids, in grams, in the test material introduced into the vessels 

at the start of the test and was determined using Equation 5.2.5.2  

𝑚 = 𝑊𝑊 × (
𝐷𝑊

100
) Equation 5.2.5.2 

where WW is the wet weight and DW is the dry weight. It is the weight of test material that 

remains after drying the sample overnight at 105 °C. The measured amounts of Xc, WW and 

DW are presented in Table 5.2.1. 

Table 5.2.1 The total organic carbon and the wet and dry mass of the test materials used for the study. 

Polymers 
Total organic carbon 

(gram C per gram) 
Wet weight (g) Dry weight (%) 

Cellulose 0.43 ± 0.003 5 94.22 ± 0.79 

HDPE 0.84 ± 0.001 5 98.99 ± 0.35 

PET 0.61 ± 0.012 5 98.86 ± 0.45 

PVC 0.37 ± 0.015 5 99.36 ± 0.35 

Finally, percent carbon loss or rate of biodegradation (Dt) was calculated using the Equation 

5.2.5.3 

𝐷𝑡 =  
∑(𝐶𝑂2)𝑡𝑒𝑠𝑡 − ∑(𝐶𝑂2)𝑏𝑙𝑎𝑛𝑘 

𝑇ℎ𝐶𝑂2
× 100 Equation 5.2.5.3 

where ∑(CO2)test is the cumulative amount of carbon dioxide evolved (in grams) in each 

respirometric vessel containing test material, ∑(CO2)blank is the cumulative amount of carbon 

dioxide evolved (in grams) in blank vessels and ThCO2 is the theoretical amount of carbon 

dioxide evolved by the test material. 

5.2.6 Analysis of Physicochemical Properties 

After the biodegradation test, the morphological analysis of plastic films was performed 

using a Field Emission Gun- Scanning electron Microscope (FEG-SEM) (ZEISS Supra; 55-

VP; Zeiss Micro-imaging, Gottingen, Germany), which was operated with an accelerating 

voltage of 3 kV and a 7 - 10 mm working distance. The samples were prepared by fixing in 
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2.5 % glutaraldehyde and 1 % osmium tetraoxide (OsO4) solution. Subsequent dehydration 

of samples was carried out in graded (30, 50, 70, 90 and 100 %) ethanol. A full detailed 

description of the method used to prepare and visualise samples for SEM can be found in 

Chapter 3 (Section 3.2.3).   

In order to examine the changes in the molecular structure, FTIR analysis was carried out 

using a Nexus, Thermo Nicolet (USA) FTIR spectrophotometer coupled with Specac Golden 

Gate ATR device. The plastic films were analysed within the range of 400-4000 cm-1 

wavenumber using a spectral resolution of 2 cm-1. The analysis was performed on plastic 

films before (control) and after (with biofilm and cleaned) the biodegradation test. For 

cleaning the plastic attached biofilms, previously described (in Chapter 4, Section 4.2.2 

washing method with 2 % (w/v)) SDS solution was employed. Moreover, the carbonyl index 

was calculated as a proxy for degradation and change in the molecular composition of 

plastics (see Chapter 4, Section 4.2.3.3.1 for full details on carbonyl index measurements).  

5.3 Results 

5.3.1 Preliminary Screening of Plastic Degrading Marine Bacterial Isolates 

Screenings for plastic degrading bacterial isolates were performed in terms of their 

colonisation on the HDPE, PET and PVC film in the carbon-free minimal salt media agar 

plates. A visible microbial growth was observed after spreading the enriched cultures on 

agar plates which were then covered with respective plastic films  (Figure 5.3.1). The 

examination of growth on HDPE film revealed translucent colonies on the surface, with 

growth spreading out from a high concentration around the film in the middle (Figure 5.3.1 

a). Similarly, a wide-spread growth was observed around the PET film but in contrast to 

HDPE, the growth was relatively thick and opaque colonies were visible on the PET surface 

(Figure 5.3.1 b). For PVC film, the enriched culture grew as thin, translucent colonies on the 

surface (Figure 5.3.1 c). All of these growths on plastic films were individually used to 

isolate bacteria using the method outlined in Section 5.2.3, which subsequently formed a 

unique consortium for each plastic-type.   
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Figure 5.3.1 Mixed bacterial growth on the surface of plastics. (a) HDPE, (b) PET and (c) PVC 

5.3.2 Identification of Isolates  

A total of 19 bacterial cultures were isolated by selecting colonies that formed after 

inoculating the marine broth with biofilms from the different plastics. Five distinct bacterial 

colonies were isolated from HDPE, six from PET and eight from PVC. The isolates were 

taxonomically identified to the genus level using the NCBI Blast database (Table 5.3.1). 

Each of the isolates was closely related (99 % similar) to species that have been previously 

isolated either from seawater, marine sediments, wastewater or soil environments (Table 

5.3.1). Additionally, one of the isolates from the PET film belonged to the Bacillus genus 

which is closely related to Bacillus massiliosenegalensis that is found in the human gut 

(Lagier et al., 2012).  

There was a commonality between the bacteria isolated from the different plastics, for 

example, bacteria belonging to the genera Salinibacterium and Bacillus were isolated from 

each plastic-type. In addition, bacteria closely related to Rhodococcus qingshengii were 

isolated from HDPE and PVC; Vibrio was found on both PET and PVC films. However, 

distinct bacteria were also isolated for each-plastic type. This included isolates closely 

related to Pseudoalteromonas hotoensis (for HDPE); Bacillus massiliosenegalensis; 

Pseudoalteromonas prydzensis (for PET); Epibacterium scottomollicae; Cellulophaga 

geojensis; Pseudomonas guineae and Microbacterium maritypicum (for PVC) (Table 5.3.1). 
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Table 5.3.1 The taxonomical identification of marine bacteria isolated from the surface of plastics after the 

enrichment procedure. 

Plastic Isolate 
Closest Blast Match (NCBI nt 

database) 
Source of the closest relative 

HDPE AN-HDPE-01 Pseudoalteromonas hotoensis 
Coastal seawater  (Chi et al., 

2014) 

HDPE AN-HDPE-02 Oceanisphaera sediminis 
Marine sediment (Shin et al., 

2012) 

HDPE AN-HDPE-03 Rhodococcus qingshengii 
Wastewater treatment facility 

(Wang et al., 2010) 

HDPE AN-HDPE-04 Salinibacterium amurskyense Seawater (Han et al., 2003) 

HDPE AN-HDPE-05 Bacillus licheniformis Soil (Veith et al., 2004) 

PET AN-PET-11 Salinibacterium amurskyense Seawater (Han et al., 2003) 

PET AN-PET-12 Oceanisphaera donghaensis 
Marine sediment (Park et al., 

2006b) 

PET AN-PET-13 Bacillus massiliosenegalensis 
Human gut (Lagier et al., 

2012) 

PET AN-PET-14 Bacillus licheniformis Soil (Veith et al., 2004) 

PET AN-PET-15 Vibrio pacinii 
Variou marine organisms 

(Thompson et al., 2001) 

PET AN-PET-16 Pseudoalteromonas prydzensis 
Antarctic coastal 

areas(Bowman et al., 1997) 

PVC AN-PVC-21 Bacillus licheniformis Soil (Veith et al., 2004) 

PVC AN-PVC-22 Rhodococcus qingshengii 
Wastewater treatment facility 

(Wang et al., 2010) 

PVC AN-PVC-23 Salinibacterium amurskyense Seawater (Han et al., 2003) 

PVC AN-PVC-24 Vibrio pacinii 
Various marine organisms 

(Thompson et al., 2001) 

PVC AN-PVC-25 Epibacterium scottomollicae 

Marine electroactive 

biofilm(Vandecandelaere et 

al., 2008) 

PVC AN-PVC-26 Cellulophaga geojensis Marine sand (Park et al., 2012) 

PVC AN-PVC-27 Pseudomonas guineae 
Antarctic environment (Bozal 

et al., 2007) 

PVC AN-PVC-28 Microbacterium maritypicum 
Swamp forest (Park et al., 

2006a) 

5.3.3 Respirometric Analysis 

Biodegradation tests were initially set to perform for 6 months performed according to 

ASTM D 6691-09 (ASTM-International, 2009). But the carbon dioxide evolution did not 

reach the plateau stage after 6 months therefore, the incubation period was extended to 7 

months. At the end of the test, the mean amount of cumulative carbon dioxide of each plastic-

type, reference material (cellulose) and the blank was calculated and is presented in Figure 

5.3.2. For this, the data collected in ppm measurements were first converted to the volume 

percentage of CO2. It was then converted to grams based on the flow rate of ambient air to 

the system. After 210 days of incubation, HDPE samples displayed the highest mean 

cumulative CO2 of 2.45 ± 0.07 g and the mean cumulative CO2 evolved for PVC, PET, 
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cellulose and blank vessels were 2.21 ± 0.13, 1.84 ± 0.51, 1.41 ± 0.11 and 1.13 ± 0.15 g, 

respectively (Figure 5.3.2).  

 

Figure 5.3.2 Total carbon dioxide (CO2) evolved from Blank, Cellulose, HDPE, PET and PVC treatment over 

a seven-month incubation in artificial seawater along with respective marine bacterial consortia. The shaded 

areas represent ± 1 standard deviation of the mean. 

Next, the percentage carbon loss (% biodegradation) of each test material was calculated 

using Equation 5.2.5.3, which is the relationship between the actual amount of CO2 evolved 

from the test material and the theoretical amount of CO2 (maximum CO2 that can be evolved 

from the test material). Following incubation with respective consortia, the biodegradation 

of each synthetic plastic appeared to start without an apparent lag-phase (Figure 5.3.3). After 

210 days of the test, the PVC showed highest biodegradation percentage (16.26 %) whereas 

the per cent carbon loss for HDPE and PET was 8.71 and 6.51 %, respectively. In addition, 

the cellulose vessels showed mean biodegradation of only 3.74 % (Figure 5.3.3). 
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Figure 5.3.3 Percentage of estimated carbon dioxide that was evolved from Cellulose, HDPE, PET and PVC 

treatment over a seven-month incubation in artificial seawater along with respective marine bacterial 

consortia. 

5.3.4 Surface Morphology of the Plastics  

Scanning electron microscopy was used to examine attached biofilm and the physical surface 

of the three plastic-types (HDPE, PET and PVC) before and after the respirometric test. SEM 

analysis showed morphologically diverse biofilm and changes in the surface topography of 

all plastic types (Figure 5.3.4). The comparison of control and microbially treated HDPE 

films in the respirometer revealed differences on the polymer surface. The control HDPE 

film had a smooth and featureless surface (Figure 5.3.4 a), however, after incubation with 

unique HDPE marine consortium, many fissures were observed throughout the surface and 

these microcracks were more evident around the attached bacterial cells (Figure 5.3.4 b).  
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Figure 5.3.4 Scanning electron micrographs showing the attached biofilm and topography of plastic films. (a) 

HDPE control, (b) HDPE after (t-210 days), (c) PET control, (d) PET after (t-210 days), (e) PVC control, (f) 

PVC after (t-210 days) of the respirometric test. Scale bar = 5 µm. 

The SEM examination of the control PET film revealed a uniform smooth surface (Figure 

5.3.4 c). Following the biodegradation test, the surface of PET films was not changed 

substantially and presented uniformity with some localized deterioration in the form of small 

pits.  It was noted that bacterial cells attached on to these pits using extracellular organelles 

(e.g. pili), indicating their adhering capabilities and potential utilisation of PET (Figure 5.3.4 

d).  

For PVC, the control films presented a relatively uniform surface with a few spheroid shape 

granules (Figure 5.3.4 e). However, the PVC films collected after the biodegradation test 

appeared to have a degraded surface containing large pits (Figure 5.3.4 d). The formation of 

pits was indicative of polymer fragmentation during the test. In addition, a dense 
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heterogeneously distributed biofilm was also observed on the PVC film with some of the 

biofilm cells found growing inside the pits (Figure 5.3.4 f). 

5.3.5 Changes in ATR-FTIR Spectra 

The attenuated reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy was used 

to analyse the chemical changes after the respirometric biodegradation test. The ATR-FTIR 

spectra of all three plastic types (HDPE, PET, and PVC) before and after the respirometric 

test were plotted in a comparative way in Figure 5.3.5, Figure 5.3.6 and Figure 5.3.7 

respectively. 

For control HDPE film, characteristic peaks were identified at wavenumbers of 717, 730, 

1462, 1472, 2846 and 2915 cm-1 corresponding to vibrating CH2 groups, bending CH2 

groups and C−H stretching (Figure 5.3.5). These native peaks were discussed in detail in 

Chapter 4 (Section 4.3.5). After the biodegradation test, the ATR-FTIR analysis of HDPE 

with biofilm showed the formation of new peaks at the wavenumbers of 1120 and 1186 cm-

1, suggesting the presence of alkoxy and acyl C−O stretching bands. In addition, a wide peak, 

centred at 3390 cm-1 was also observed, indicating the presence of OH functional group. 

Similarly, the cleaned HDPE film also showed peaks at 1120 and 1186 cm-1 but the peak at 

3390 cm-1 was disappeared after washing (Figure 5.3.5).  

The ATR-FTIR spectra of PET had six characteristic peaks at the wavenumbers of 722, 871, 

1094, 1241, 1410 and 1712 cm-1 which were attributed to C−H bending, C−O stretching, 

C=C stretching and C=O stretching respectively. More details on these peaks were discussed 

in Chapter 4 (Section 4.3.5). The ATR-FTIR spectra of PET samples collected after a 210-

day respirometric study was different from that of control (Figure 5.3.6). For PET with 

biofilm, the corresponding spectra showed the formation of peaks at 2359 and 2970 cm-1.  

These peaks were attributed to uneven surface, background CO2 and C−H (asymmetrical 

and symmetrical) stretching. Moreover, a negligible broadened peak was also observed in 

the region of 3300-3400 cm-1. A close look at the data revealed that the peak intensity was 

highest at 3390 cm-1, corresponding to OH functional group. In contrast, the spectra of 

cleaned PET presented no peak at 2359 and 3390 cm-1 but it retained the peak at 2970 cm-1. 

Moreover, a new peak was also observed for cleaned PET at 1576 cm-1, corresponding to 

C=C stretching (Figure 5.3.6). 
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Figure 5.3.5 ATR-FTIR spectra of HDPE films. Comparative spectra of HDPE before (t-0) and after (t-210) 

days (with biofilm and cleaned) of the respirometric test. The intensity of peaks recorded as arbitrary units 

(a.u.).  

 

Figure 5.3.6 ATR-FTIR spectra of PET films. Comparative spectra of PET before (t-0) and after (t-210) days 

(with biofilm and cleaned) of the respirometric test. The intensity of peaks recorded as arbitrary units (a.u.). 
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Figure 5.3.7 ATR-FTIR spectra of PVC films. Comparative spectra of PVC before (t-0) and after (t-210) days 

(with biofilm and cleaned) of the respirometric test. The intensity of peaks recorded as arbitrary units (a.u.).  

For control PVC, the characteristics peaks were observed at the wavenumbers of 610, 1240, 

1331, 1427, 2910 and 2970 cm-1 corresponding to C−Cl bond, C−H bending bond and C−H 

stretching (Figure 5.3.7). These peaks were discussed in detail in Chapter 4 (Section 4.3.5). 

After the biodegradation test, the ATR-FTIR spectra of PVC with biofilm revealed new 

peaks at 831, 1645 and 3390 cm-1, corresponding to vinylidene group (compounds with 

C=CH2 functional group), C=C bonds and OH functional group, respectively. In addition,  

the peak at 638 cm-1 (assigned to C−Cl bond) disappeared after the respirometric experiment. 

Similarly, the disappearance of a peak at 638 cm-1 and appearance of a new peak at the 

wavenumber of 831 cm-1, were also observed for the PVC spectra after washing off the 

biofilm. However, the ATR-FTIR spectra of cleaned PVC film did not show peaks at 1645 

and 3390 cm-1 (Figure 5.3.7).   

Finally, carbonyl indices (CIs) of HDPE, PET and PVC were determined relative to peaks 

at 2915 cm-1 (C−H stretching), 1410 cm-1 (C=C stretching) and 1427 cm-1 (C-H bond) 

respectively. The CI of HDPE decreased after the biodegradation test but the decrease was 

not significant (Student’s t-tests showed p > 0.05). In contrast, there was an increase in the 

carbonyl indices of both PET and PVC. A Student’s t-test showed that the difference 

between the CIs of PET before and after the respirometric analysis was significantly  (p < 

0.001) higher compared to CIs of PVC (p < 0.05) (Figure 5.3.8). 
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Figure 5.3.8 Carbonyl indices (CI) of HDPE, PET and PVC films before (t-0) and after (t-210) the 

biodegradation test. **indicates significance p-value < 0.001, *indicates significance p-value < 0.05 

5.4 Discussion 

Marine bacterial consortia that could degrade three chemically distinct synthetic plastics 

were isolated using the enrichment, screening and isolation protocols employed in this 

Chapter (Section 5.2.2 and 5.2.3). A total of 19 bacterial isolates were isolated from the 

surface of all plastic-types. Taxonomic identification of isolates selected from HDPE film 

showed that they were closely related to the genera Pseudoalteromonas, Rhodococcus, 

Oceanisphaera, Salinibacterium and Bacillus. These genera predominantly contain marine 

and terrestrial bacteria (Holmström and Kjelleberg, 1999, Hayat et al., 2010, Elsayed et al., 

2017). The enrichment of these genera in seawater with HDPE as a sole carbon source, could 

be due to their ability to degrade polyethylene and other synthetic plastics (Leathers et al., 

2000, Kathiresan, 2003, Orr et al., 2004a, Sivan et al., 2006, Syranidou et al., 2017). In 

addition, several species of Rhodococcus are also known to be producers of a number of 

extracellular enzymes and have reported biodegradation of recalcitrant organic pollutants 

(Laczi et al., 2015, Yano et al., 2015). 

From the PET film, the isolates belonged to the genera: Salinibacterium; Oceanisphaera; 

Vibrio; Pseudoalteromonas and a couple of closely related strains of Bacillus species, were 

isolated. Besides their previously described ability to degrade polyethylene, 

Pseudoalteromonas and Bacillus species have also shown the capability to degrade highly 

recalcitrant polycyclic aromatic hydrocarbons (Hedlund and Staley, 2006, Das and 

Mukherjee, 2007, Papa et al., 2009, Lily et al., 2009). Similarly, an Oceanisphaera strain 

has recently been reported to have biodegradation potential for a common environmental 
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pollutant, nicosulfuron (Zhou et al., 2017). The ability of these isolates to degrade complex 

aromatic compound molecules explains their enrichment in the seawater with PET, as the 

polymer chains possess a relatively high density of aromatic groups and therefore could be 

useful in PET biodegradation. 

The bacteria isolated from the microbial growth on the PVC film (Figure 5.3.1) were 

identified as members of the genera Bacillus, Rhodococcus, Salinibacterium, Vibrio, 

Epibacterium, Cellulophaga, Pseudomonas and Microbacterium. The ability to degrade 

PVC by various strains of Bacillus, Rhodococcus, Vibrio and Pseudomonas is widely known 

(Danko et al., 2004, Danko et al., 2006, Sah et al., 2011, Das et al., 2012, Raghul et al., 2014, 

Yang et al., 2018, Kumari et al., 2019, Giacomucci et al., 2019). No scientific literature can 

be found to suggest the direct biodegradation of PVC by Epibacterium, Cellulophaga, and 

Microbacterium isolates. However, production of extracellular enzymes including; lipase, 

protease and depolymerase, have been reported previously for closely related strains of 

Microbacterium (Osman et al., 2015) and, therefore, might be able to biodegrade PVC, as 

the polymer is susceptible to depolymerase (Shah et al., 2008). 

The selected isolates were used as a separate consortium to test their biodegradation potential 

for the respective plastic-type in a respirometric system. After incubation, the PVC vessels 

showed the highest mineralisation of 16.26 % whereas HDPE and PET achieved 8.71 and 

6.51 %, respectively. There are no peer-reviewed published experiments to directly compare 

these results to, except for the study by Alvarez-Zeferino et al. (2015). They used sodium 

hydroxide-CO2 trap respirometer system and reported mineralization of approximately 2.06 

% for polyethylene using seawater as inoculum. In contrast to the current study, low degree 

of biodegradation has been reported previously in other environments for PET and HDPE. 

For example,  2.7 % biodegradation was reported for PET after incubation in composting 

conditions at 58 °C after  63 days (Kijchavengkul et al., 2006). Similarly, in a composting 

process inoculated with Rhodococcus rhodochrous HDPE biodegraded by 6 %. Soil 

incubations experiments exhibit similar results, for example, Fontanella et al. (2010)  

measured < 5% HDPE mineralization after 352 days of experimentation.  

All of these studies have used a general microbial community, however, the higher rate of 

mineralization achieved for PVC, HDPE and PET in this study suggest degradation can only 

occur in the presence of selected microorganisms. These microorganisms can be isolated 

after enriching in their respective plastics or found exclusively in environments submitted to 

continuous contamination by the polymer (Chiellini et al., 1999). Similarly, HDPE and PET 
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degrading microorganism were isolated from their respective polluted environments 

(Balasubramanian et al., 2010, Yoshida et al., 2016). The selective pressure exerted by the 

acclimation procedure tends to further increase the population of these plastic degrading 

microorganisms. Moreover, the enrichment of the selected microorganisms could also 

explain the low degree of cellulose assimilation by these microbes, as revealed by the very 

limited biodegradation (3.74 %) of the cellulose sample (Figure 5.3.3). In contrast, the 

cellulose is highly biodegradable material and it has the >70 % of degradation rate in 

respirometric systems (Kijchavengkul et al., 2006, Way et al., 2010, Bettas Ardisson et al., 

2014). 

Physicochemical properties of the plastics were analysed by SEM and ATR-FTIR 

spectroscopy to assess their degradation after the respirometric test. The surface morphology 

of all the tested plastics changed after their incubation with corresponding bacterial consortia 

which further support the biodegradation of the plastics. Surface textures such as fissures 

and cracks appeared on HDPE and the surface became irregular, whereas PET and PVC 

films displayed pits. These morphological changes were attributed to the formation of the 

microbial biofilm on the plastic surfaces, indicating the tendency of bacteria towards the 

plastics in order to utilise it as carbon and energy source. Such alteration of the plastic 

surfaces due to microbial growth has been elucidated by many studies (Raghul et al., 2014, 

Restrepo-Flórez et al., 2014, Das and Kumar, 2015), where grooves and pits were detected 

superficially after polymers were subjected to biodegradation. 

The morphological changes were substantiated by ATR-FTIR analysis revealing changes in 

the chemical composition of plastics due to microbial activity. After the biodegradation test, 

all the plastic materials with attached biofilms shared one common OH functional group 

peak at 3390 cm-1. This could either be due to the presence of water in the attached microbial 

cells  (Nichols et al., 1985) or the presence of salts  in the seawater (Peters and Ewing, 1997). 

In addition, a recent study on environmental degradation of polyethylene in seawater 

reported that the peak was due to the formation of a new functional group and was not 

disappeared after washing the plastic (Da Costa et al., 2018). However, the subsequent 

washing of plastic films in the current study revealed that the peak disappeared in the 

corresponding spectra, thus confirming the earlier peak due to the presence of either water 

in the attached microbial cells. 

Distinct new peaks were also detected on each plastic-type in comparison to their untreated 

controls. For HDPE, new peaks appeared at 1120 and 1186 cm-1, suggesting the presence of 
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alkoxy and acyl C−O stretching bands. These bands are the indicator of alcohol, ether and 

ester formation by microbial activity and could be formed due to oxidation of HDPE (Jeon 

and Kim, 2013), thus confirming the HDPE degradation. Similar peaks were observed in 

previous studies examining the extent of polyethylene degradation in marine environments 

(Syranidou et al., 2017, Da Costa et al., 2018). 

For PET, two new peaks were detected at 1576 and 2970 cm-1 corresponding to C=C and 

C−H bond, respectively. Though new double bonds could be formed due to microbial 

hydrolysis of ester bond at 1712 cm-1 (Webb et al., 2013) and could result in the formation 

of peaks in the region of 1615- 1570 cm-1. However, no change was observed in the peak 

intensity of ester bond at 1712 cm-1, suggesting that the C=C peak appeared at 1576 cm-1 

was due to the structural aromatic ring of PET and not because of the formation of new 

double bonds. In contrast, the formation of alkane bond (C−H) could be due to the 

degradation of PET as a similar bond formation was reported for PET degrading in the 

marine environment (Ioakeimidis et al., 2016)  

The PVC spectra presented a new peak at 831 cm 1, corresponding to the functional group 

of vinylidene (C=CH2). This group is usually formed by the cross-linking of smaller PVC 

chains after successive chain scission reactions (Alothman et al., 2012), which results from 

oxidation of PVC (Shi et al., 2008). Since microbes are known to produce enzymes which 

can catalyse the oxidative depolymerization of plastics (Kırbaş et al., 1999), this suggests 

that  the oxidation and subsequent degradation of PVC by the microbial consortium used in 

this study. In addition, the peak at 638 cm-1 (assigned to C−Cl bond) disappeared after the 

respirometric experiment. This could be due to the dechlorination of PVC which is an abiotic 

degradation phenomenon resulting from UV radiation (Gewert et al., 2015). Since the 

biodegradation test was not performed in the dark, it is possible that photo-induced 

dechlorination of PVC might have occurred in the vessels.  

The spectra of all plastics were then investigated to measure the carbonyl index; a commonly 

used indicator to characterise biodegradation by determining the oxidation of plastic 

materials. The carbonyl index of the HDPE slightly decreased was its control, which could 

be explained by the mineralization of the degradation products by microorganisms. A 

similar decrease in the carbonyl index of polyethylene has been reported by previous studies 

due to bioassimilation of oxidised PE in biologically active environments (Chiellini et al., 

2003, Hadad et al., 2005, Sudhakar et al., 2008, Syranidou et al., 2017). In contrast, the 

carbonyl index of PET and PVC were significantly increased which could be due to slow 
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biodegradation of these polymers as they are resistant to microbial degradation (Gewert et 

al., 2015, Wei and Zimmermann, 2017). PET is also susceptible to hydrolysis which leads 

to a decrease in molecular weight and an increase in carboxylic acid end groups (Gewert et 

al., 2015), therefore, explaining the increase in carbonyl index. 

5.5 Conclusions 

This study aimed to demonstrate the biodegradation potential of marine microbes selected 

for synthetic polymers in a marine environment. The first part of the study concerned with 

the isolation of mixed bacterial isolates having enhanced biodegradation ability. The 

enriched bacterial community showed growth on the respective plastics and selected for 

further biodegradation test. In the second part of the study, the biodegradation of the plastics 

was examined using respirometric method under simulated seawater conditions. PVC was 

found to biodegrade with 16.26 % mineralisation after incubation for 210 days, whereas 

HDPE and PET achieved 8.71 and 6.51 % of mineralisation, respectively. The 

biodegradation was further confirmed by SEM images with significant surface alterations 

and chemical changes were elucidated by ATR-FTIR. The results suggest that the microbial 

degradation of these plastics can only occur in the presence of selected microorganisms and 

the selective pressure exerted by the enrichment method tends to increase the population of 

these plastic degrading microorganisms. Furthermore, the role of the selected bacterial 

isolates, in terms of their specific functions and metabolic activities associated with 

biodegradation, is not yet completely characterized. Therefore, further experiments are 

required in order to better understand and predict the mechanisms and kinetics of the 

synthetic plastics biodegradation in natural marine environments. 
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Chapter 6: General Discussion  

 

 

This thesis aimed to study the effects of plastic pollution on the microbial and chemical 

properties of seawater and the role microorganisms played in the early stages of plastic 

decomposition. Initially, a short-term laboratory microcosm experiment was carried out to 

evaluate the potential impacts of seven different plastics on seawater bacterial communities. 

The structure, diversity and taxonomic identities of bacterial communities were determined 

by T-RFLP and amplicon sequencing (Chapter 2). Temporal biofilm formation on three 

chemically distinct plastics was then investigated within natural seawater in a long-term 

exposure experiment. The biofilms were characterised and visually confirmed using 

amplicon sequencing and SEM, respectively (Chapter 3). Additionally, physical and 

chemical degradation of the exposed plastics were quantified by SEM, contact angle, tensile 

testing and FTIR spectroscopy methods (Chapter 4). Finally, marine consortia were 

developed using an enrichment method to determine their ability to biodegrade selected 

plastics in a marine environment. The ultimate level of biodegradation was quantified using 

a respirometric system and then visually and chemically confirmed by SEM and FTIR 

spectroscopy (Chapter 5). In this Chapter, key findings of the thesis are discussed and 

summarised, and recommendations for future work are made.   

6.1 Effect of Plastics on Marine Microorganisms 

Chapter 2 described the potential effects of synthetic and biodegradable plastics on seawater 

microbial communities. The results showed that when plastics were introduced into 

seawater, they changed the inherent chemical and biological properties, and induced major 

shifts in the composition and diversity of the microbial community in the water. Two of the 

most important drivers of microbiological shifts in seawater were changes in DOC 

concentration and pH caused by the presence of plastic. Moderate changes in pH have been 

previously shown to cause shifts in bacterial communities when measuring the effects of 

ocean acidification as a result of elevated CO2 levels in the atmosphere (Krause et al., 2012). 

Furthermore, based on the results of this thesis, the presence of plastic pollution in the worlds 

ocean may contribute to localised increases in ocean acidification. A dilution effect may 

mitigate this to some extent but may have implications for ocean chemistry. This could, for 

example, indirectly affect organisms that incorporate calcium carbonate into their shells, e.g. 
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corals (Doney et al., 2009). Corals may be particularly affected because plastic degradation 

in the oceans will likely lead to an increase in DOC levels as well. Elevated DOC levels have 

been shown to accelerate the growth rate of microbes living on coral surfaces by an order of 

magnitude, which leads to mortality because of a disruption in the balance between the coral 

and its associated microbiota (David et al., 2006).  

Although DOC was leached from all plastic types used for this study, the highest 

concentrations of DOC were leached from biodegradable plastics. In both cases, the DOC 

leaching from the plastics may contribute to the oceanic DOC which supports micro-

heterotrophic growth (Hansell et al., 2009, Romera-Castillo et al., 2016) and plays an 

important role in carbon cycling by acting as a vector for quick transfer of carbon and energy 

in food webs (Kirchman et al., 1991). This is a significant novel finding of this thesis that 

furthers the understanding/consequences of plastic pollution in the world's oceans. Recently, 

Romera-Castillo et al. (2018) estimated that up to 236,000 MT of such DOC could be 

leached from the synthetic plastics per year in the global ocean and could make up to 10 % 

of the oceanic DOC in the area of high plastic contamination. However, based on the findings 

of this thesis, it is plausible that leached DOC could be much higher than these estimates due 

to higher amounts of DOC released from biodegradable plastics.  This may increase in future 

as the nature of plastic pollution will evolve with the advent of new biodegradable plastics, 

for example, global production of biodegradable plastics is currently 2.11 million tonnes and 

expected to increase by 20 % to 2.62 million tonnes in 2023 (European Bioplastics, 2018).  

An increase in oceanic DOC that supports heterotrophic bacterial activity, may subsequently 

lead to increased competition for inorganic nutrients between bacteria and phytoplankton 

(Thingstad et al., 2008). This may weaken the link between phytoplankton production and 

bacterial activity and expand the zones of the net heterotrophy (Traving et al., 2017b). These 

zones have higher concentrations of CO2 in the seawater than in the atmosphere above and 

the excess CO2 is released to the atmosphere (Traving et al., 2017b). This may have 

consequences for global carbon cycling as it may change the oceans from a net CO2 sink to 

a net CO2 source. This research, therefore, raises further questions beyond the scope of the 

original work and suggests that fossil fuel derived and biodegradable plastics could have 

unintended consequences when they breakdown in the natural environment.  

The bioavailability of the leached DOC stimulated microbial growth which causes a decrease 

in the pH of the seawater. The distinct patterns of DOC bioavailability appeared to induce 

shifts in the composition of bacterial communities when analysed by 16S rRNA gene T-
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RFLP profiling. For synthetic plastics, the bioavailable DOC decreased following an initial 

increase which could be due to re-adsorption of DOC onto the plastics, as has been 

previously reported (Romera-Castillo et al., 2018), or due to utilisation by heterotopic 

microorganisms. The availability of DOC explains the distinct compositional shifts in 

synthetic plastic treatments. In contrast, with the biodegradable plastic treatment, the 

concentration of bio-available DOC continued to increase over time, which could be due to 

water-soluble products generated by biodegradation of these plastics (Sakai et al., 1998, 

Matsumura et al., 1999, Kasuya et al., 2000). Therefore, a clearer shift in the bacterial 

communities were observed with the biodegradable plastics, due to the bioavailability of 

DOC. This contrasting result for synthetic and biodegradable plastic treatments highlights 

the high temporal variability of leached DOC which should be considered when examining 

the long-term effects of plastics on marine microorganisms. 

Following the taxonomic identification of TRFs through amplicon sequencing data, it was 

revealed that the bacterial communities differed in their response to the substrates released 

from the plastics, and consequently, certain bacterial communities were selected. The 

bacterial groups belonging to the classes Alphaproteobacteria, Gammaproteobacteria and 

Bacteroidetes proliferated most within all plastic treatments and only differed in terms of 

their relative abundances. The proliferation of these bacterial groups suggests potential 

degradation and assimilation of complex carbon substrates, including leached DOC 

(Carvalho et al., 2006, Le Borgne et al., 2008, Kostka et al., 2011, Gutierrez et al., 2014, 

Sipler et al., 2017). It is well established that bacterioplankton communities have the ability 

to respond to environmental disturbances (Langenheder et al., 2005, Allison and Martiny, 

2008, Comte and del Giorgio, 2011, Sjöstedt et al., 2012) and can either become sensitive 

(i.e., decrease in relative abundance), resistant (i.e., maintain relative abundance), or 

responsive (i.e., increase in relative abundance) (Allison and Martiny, 2008). Based on the 

findings of this thesis, the bacterioplankton communities can be considered both sensitive 

and responsive to the presence of plastics, with the different response of individual bacterial 

populations suggesting the presence of plastics in oceans will have the potential to cause 

profound changes in bacterioplankton community composition. Like other environmental 

perturbations, this may also have implications for many properties of bacterioplankton 

community (e.g. bacterial production and activity) that heavily influence ecosystem 

functioning by changing the flow of carbon (Comte and del Giorgio, 2011, Lindh et al., 

2015). 
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It is also important to note that the observed changes among bacterial populations in Chapter 

2 are the result of adaptation in a closed system. The distribution of bacterial populations in 

the natural marine environment is limited by very few physical barriers and therefore 

dispersal is likely an important factor for bacterioplankton responses to plastic pollution. 

Nevertheless, these observations highlight substantial effects of plastic-induced shifts in 

local environmental conditions for regulating bacterioplankton community composition and 

provides a starting point for research into the ecology and functions of microbial 

assemblages in areas with high plastic waste concentrations. Where plastic pollution is 

concentrated in the world’s oceans (e.g. the gyres), it could be that over time, this 

represents a new micro-scale environmental gradient, where physicochemical parameters 

are altered due to the presence of plastic pollution and therefore a habitat heterogeneity 

along a gradient is created which results in a unique niche for microorganisms (Dang et 

al., 2019). 

6.2 Marine Biofilm Formation on Plastics 

In Chapter 3, microbial colonisation on three chemically distinct synthetic polymers was 

analysed within a long-term (56 weeks) exposure experiment, with the characteristic plastic-

attached communities studied to assess and identify patterns of biofilm temporal change. 

Microbes were found to colonise all plastic-types, exhibiting a successional increase with 

the sampling interval. Both the structure and diversity of the plastic-associated assemblages 

were significantly different from those found within surrounding seawater. Zettler et al. 

(2013) coined the term “Plastisphere” for these plastic colonising microorganisms, which 

are based on the difference between the microbial communities present on the plastic 

materials and their planktonic counterparts. Similarly, the uniqueness of plastic-associated 

assemblages was confirmed in several later studies (Oberbeckmann et al., 2014, Amaral-

Zettler et al., 2015, De Tender et al., 2015, Bryant et al., 2016, Debroas et al., 2017, De 

Tender et al., 2017a, Jiang et al., 2018, Kirstein et al., 2018). Therefore, the results of this 

thesis (Chapter 3) and the findings of previous studies point towards the consensus that 

Plastisphere communities are different from those living freely in seawater. Since it is well 

recognised that the surface chemodynamics (e.g. surface conditioning and nutrient 

enrichment) play a role in forming distinct biofilm communities (Dang and Lovell, 2016), 

the uniqueness of the Plastisphere communities is likely due to specific surface conditioning. 

Based on the findings of Chapter 2, there was evidence to suggest that the DOC leached 

from plastics was re-adsorbed onto their surfaces, therefore, further conditioning the surface 

for the subsequent attachment of unique bacterial taxa that were likely to use DOC as a 
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carbon source. This may have fostered the development of unique Plastisphere communities 

on the tested plastics. The plastic-associated bacterial communities were analysed for their 

specificity. The results indicated that the Plastisphere communities were significantly 

different from each other. This was contrary to the results from previous studies which 

investigated the biofilm formation over a short incubation period and did not detect 

significant differences between distinct plastic types (Oberbeckmann et al., 2016, 

Oberbeckmann et al., 2018). The discrepancy between these observations and the differences 

between the Plastisphere communities, detected in Chapter 3, is surprising since it has been 

demonstrated that bacterial communities present on dissimilar surfaces evolve to a similar 

community structure over time (Salta et al., 2013, De Tender et al., 2017a). However, a 

recent long-term study on nine distinct plastics observed significant differences in the 

composition of biofilm communities (Kirstein et al., 2018). Based on these findings and the 

insights gained in Chapter 3, it is possible that a longer exposure to seawater may have 

introduced unique bacteria to the biofilm communities, which subsequently resulted in a 

significant difference amongst the communities. Moreover, the physicochemical factors of 

plastics, which includes: colour; absorbed chemical; roughness; vulnerability to weather; 

surface conditioning and nutrient enrichment may have also played a role in forming distinct 

biofilm communities (De Tender et al., 2015, Dang and Lovell, 2016, Frère et al., 2018, 

Parrish and Fahrenfeld, 2019). These factors were not studied in this thesis; therefore, future 

work could include these parameters while investigating the specificity of the Plastisphere 

communities in long-term experiments. 

Comparison of the bacterial Plastisphere communities revealed a common core bacteriome 

on all the plastics, which could be divided into three groups based on the timing of their peak 

relative abundance. Despite a number of studies detailing Plastisphere microbial 

communities in the world’s oceans, there are only two studies that describe microbial 

communities attached to plastic surfaces close to the UK (North Sea) (De Tender et al., 

2017a, Kirstein et al., 2018). Comparison with these studies showed similarities at phylum, 

class and family level, however, no similarities were found at genera level except for 

Nitrospira. The dissimilarities between these biofilm communities could be attributed to the 

difference in the composition of bacterial taxa of contrasting water bodies (De Tender et al., 

2015, De Tender et al., 2017a) as the current study was conducted in the English Channel. 

In addition, localised and regional differences in environmental factors (e.g. hydrodynamics, 

temperature, water chemistry and nutrient availability) can also influence the composition 

of biofilm communities (Salta et al., 2013). This, therefore, suggests that the source 

communities within the surrounding water and the inherent specific environmental 
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conditions shaped the colonisation patterns on plastic surfaces in this study. These findings 

agree with previous studies (Oberbeckmann et al., 2014, Amaral-Zettler et al., 2015, 

Oberbeckmann et al., 2016, Kirstein et al., 2018), showing that geographical location and 

seasonal variations drive the Plastisphere communities in marine habitats. It remains unclear 

however whether core microorganisms are selected by the hard surface of plastic or by the 

chemical composition of the plastic itself. The latter may be an important factor, as the 

results from this thesis show that some of the microbes among the core bacterial community 

are plastic specific, therefore, they may be used as indicator organisms that are preferentially 

able to interact with plastics and use it as potential carbon source in marine environments. 

6.3 Physical Degradation of Plastics  

Textural investigations were carried out in parallel to the microbial analyses. The results 

indicated that tested plastics, exposed in seawater, exhibited many of the same surface 

textural characteristics as previously reported plastics from beaches and the world’s oceans 

(Corcoran et al., 2009, Cooper and Corcoran, 2010, Zbyszewski and Corcoran, 2011, 

Fotopoulou and Karapanagioti, 2015, Cai et al., 2018, Da Costa et al., 2018, Tang et al., 

2018). The gradual development of uneven surfaces for all the tested plastics suggested 

delamination of the upper layers and formulation of small pieces (microplastics). The 

ecological impacts of microplastics are well recognised (Andrady, 2011, Andrady, 2017), 

and pose greater environmental risks than the original intact items of plastic waste (Browne 

et al., 2007, Wright et al., 2013b, Wu et al., 2019).  

In this study, the overall degradation rate (as measured by tensile stress test) was found to 

be slow for all the tested plastics. This could be attributed to lower temperatures and 

attenuated UV light in seawater. In addition, the colonising microorganisms on the plastic 

films (Chapter 3) may further reduce the UV irradiation by covering the surface and 

shielding the plastic from UV light (O'Brine and Thompson, 2010, Welden and Cowie, 

2017). It is interesting to note that the biofilm attached to plastics did not contribute to the 

plastic degradation in seawater, however, there was evidence to suggest that some members 

of the biofilm community (e.g. Pseudomonas and Cyanobacteria) had the potential to 

biodegrade plastics (Chapter 3, Section 3.4). Chemical degradation characteristics were also 

less prominent on plastic samples which may be a result of less time at sea along with the 

environmental conditions. No significant difference between the seawater exposed and 

control samples suggests that the degradation rate is slow and is in accordance with previous 

studies (Pegram and Andrady, 1989, Andrady, 1990, Andrady et al., 1993a, Biber et al., 
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2019). This is an expected finding as plastics submerged in seawater, which make up 60 % 

of debris (Kukulka et al., 2012), degrade much slower due to biofilm formation. The biofilm 

shields the plastics from UV light and makes the plastic negatively buoyant and sink (Fazey 

and Ryan, 2016, Weinstein et al., 2016). As a result, the exposure to light, shear stress, 

oxygen and temperature will be limited and therefore reduce degradation (Gewert et al., 

2015). However, hydrolytic degradation of plastics, particularly for PET, is also possible 

because of the exoenzymes produced by microorganisms within the marine environment 

(Gewert et al., 2015, Bollinger et al., 2020). Such hydrolytic degradation reactions 

preferentially occur at the amorphous regions of the polymer (Donelli et al., 2009, Herrero 

Acero et al., 2011). 

The data in Chapter 4 showed that synthetic plastic formulations persist and do not degrade 

quickly in a long-term (i.e., > 1 year) exposure to natural seawater. In addition, the 

experiment undertaken provided a more realistic proxy for the degradation process, as the 

test materials experienced open ocean conditions rather laboratory controlled exposures that 

often use idealised test conditions (Brandon et al., 2016, Da Costa et al., 2018, Cai et al., 

2018, Tang et al., 2018). From the perspective of marine litter, the current study was limited 

by the selection of plastics used, which can only be considered as representatives of a few 

types within the wide range of plastics usually found in marine debris (Bond et al., 2018). 

Different formulations of each plastic might respond to environmental exposure in different 

ways. The plastics used for this study were selected because they represented 38 % of global 

polymer production (Geyer et al., 2017) and they were also widely reported as major 

components of plastic debris in the world’s oceans (Barnes et al., 2009, Morét-Ferguson et 

al., 2010, Browne et al., 2011, Duhec et al., 2015). Therefore, the patterns, similarities and 

differences highlighted here in terms of their degradation in natural seawater, should 

stimulate further, more detailed investigations in the future. 

6.4 Biodegradation of Plastics  

Chapter 5 described the isolation and assessment of marine bacterial consortia with the 

potential to biodegrade chemically distinct synthetic plastics. The bacterial consortia were 

dominated by members of Actinobacteria, Alpha-, Gamma-proteobacteria, Flavobacteriia 

and Firmicutes. Members of these taxonomic classes were also identified as most responsive 

to plastic additions (Chapter 2) and plastic surface colonisers (Chapter 3). The isolates 

selected for biodegradation of tested plastics were the nearest taxonomic relatives of 

Pseudoalteromonas, Oceanisphaera, Rhodococcus, Salinibacterium, Bacillus, Vibrio, 
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Epibacterium, Cellulophaga, Pseudomonas and Microbacterium species. Prior literature 

also suggested that closely related strains of the selected isolated have the ability to degrade 

recalcitrant materials (Hedlund and Staley, 2006, Das and Mukherjee, 2007, Papa et al., 

2009, Lily et al., 2009). 

The biodegradability test revealed that the consortium selected for PVC had the highest 

biodegradation potential compared to HDPE and PET with their respective consortia. This 

suggests that that the microbial degradation of these plastics can only occur in the presence 

of selected microorganisms after enrichment and isolation, or microorganisms found 

exclusively in environments submitted to continuous contamination by the polymer 

(Chiellini et al., 1999, Yoshida et al., 2016). There is a need for more enrichment strategies 

to isolate plastic degrading microorganisms, as cultivation dependent work will enhance our 

ability to perform further cultivation independent assessments and will give the insight into 

the metabolic capabilities of these versatile microorganisms.  

Although ASTM D 6691-09 (ASTM-International, 2009) test used in this thesis is the 

standard test method to quantify the degree of plastic biodegradation in the aerobic marine 

environment, this cannot be considered as proof of ultimate biodegradation, but rather an 

indication about a potential for biodegradation in the oceans (Jacquin et al., 2019). Therefore, 

this test cannot be used to realistically predict the biodegradability in the world’s oceans, 

therefore the results presented are not representative of in situ rates of plastic biodegradation. 

Various limitations can be identified that should be taken into account when interpreting this 

Chapters results. These include: (1) underestimation of biodegradability time, (2) use of 

enriched consortia and (3) temperature used. Firstly, this test significantly underestimated 

the time required for polymer biodegradation within the marine environment. According to 

test guidelines, the maximum test duration should be six months, but the CO2 evolutions did 

not reach a plateau during the experiment, which suggests that total conversion of plastic 

into biomass and CO2 did not occur. Secondly, using preselected or preconditioned strains 

is not a true representation of the world’s oceans and represents an idealistic approach which 

means the results cannot be representative of the natural environment. These uncertainties 

are well recognised in the scientific literature (Muller, 2005, Harrison et al., 2018a). Finally, 

the test temperature was higher than those encountered within the natural environment and 

did not account for seasonal fluctuations in conditions which could influence the 

composition and activities of plastic-associated microorganisms (Sudhakar et al., 2008, 

Artham et al., 2009a, Oberbeckmann et al., 2014).  
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6.5 Recommendations for future work 

Results from this thesis shed light on the impacts of plastics on marine microbial 

communities, their colonisation and extent of degradation in the marine environment. There 

does, however, remain scope for further work as detailed below.  These studies should 

include:  

• In Chapter 2, plastics appeared to affect the bacterial communities in seawater and 

diverse changes in composition and diversity were observed. However, it remained 

unclear that the resultant community change had an effect on its functional 

performance as this study did not measure the metabolic activities of the bacterial 

communities, which can be elucidated by mRNA assays (Moran et al., 2013). 

• The impacts of plastics were only explored for bacterial communities, however, 

eukaryotes, especially fungi which play a major role in marine ecosystems as 

decomposers (Hyde et al., 1998) were not studied. Therefore, this should be 

addressed in future studies. 

• In Chapter 3, the plastic attached bacterial communities were investigated but the 

SEM images showed the attachment of various eukaryotes (e.g. diatoms, 

dinoflagellates and fungi). Therefore, future studies should examine the complete 

Plastisphere communities including eukaryotes in similar short time intervals as used 

for this thesis, to understand the influence of eukaryotes in the biofilm development 

and recruitment of specific species on the biofilm.  

• Since it is well established that environmental factors influence biofilm communities 

(Salta et al., 2013) therefore, Plastisphere communities should be monitored at close 

time intervals over more than one seasonal cycle, and at different locations to 

delineate the effects of season and habitat variation. 

• In Chapter 4, the degradation of plastics was only monitored in submerged condition, 

however, plastics also occur on the surface and in intertidal habitats. Therefore, 

future studies should also include these habitats for better understanding of the fate 

of plastics in open oceans. 

• In Chapter 5, various marine bacterial isolates were selected based on their growth 

on plastics and were subsequently used for a respirometric investigation to determine 

their ability to biodegrade plastics. Another method to actually indicate the 

degradation of plastic is by studying enzyme production by microbial strains 

(Yoshida et al., 2016). Therefore, future studies should study the enzyme production 

by these isolated strains. 
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6.6 Conclusions 

Based on the findings of Chapter 2 following conclusions were drawn:  

• The presence of plastics induced major shifts in the composition and diversity of the 

microbial community in the water.  

• Two of the most important drivers of microbiological shifts in seawater were changes 

in DOC concentration and pH caused by the presence of plastic. 

• DOC was leached from all the plastics; however, the highest concentrations of DOC 

were leached from biodegradable plastics. 

• The bacterial groups belonging to the classes Alphaproteobacteria, 

Gammaproteobacteria and Bacteroidetes proliferated most within all plastic 

treatments and only differed in terms of their relative abundances. 

• The change in community was significantly correlated with the concentrations of 

DOC, TN and the pH change. 

Based on the findings of Chapter 3 following conclusions were drawn:  

• The Plastisphere communities are different from those living freely in seawater. 

• The results indicated that the Plastisphere communities were significantly different 

from each other. 

• Comparison of the bacterial Plastisphere communities revealed a common core 

bacteriome on all the plastics, which could be divided into three groups based on the 

timing of their peak relative abundance. 

• Despite the similarities among HDPE, PET and PVC associated bacterial 

communities, a few distinctively unique OTUs were observed for all the three plastic 

attached communities across the sampling points. This indicated that 

physicochemical factors of plastics shape the biofilm communities in addition to the 

surrounding seawater. 

Based on the findings of Chapter 5 following conclusions were drawn:  

• It was concluded that the surface properties of plastic material changed significantly 

over time when submerged in seawater. This was attributed to the attachment of 

microorganisms 

• The surface wettability of all tested plastics was also changed significantly in this 

study 
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• The changes in tensile stress differed among the tested plastics. The tensile stress of 

HDPE decreased slowly but significantly over time, indicating that HDPE film 

demonstrated degradation in seawater. However, no significant loss in tensile stress 

was observed for PET and PVC. 

• Chemical degradation characteristics were also less prominent on plastic samples 

which were attributed to attenuated UV, lower average temperature and biofilm 

formation of plastic surfaces.  

Based on the findings of Chapter 6 following conclusions were drawn:  

• Marine bacterial consortia that could degrade three chemically distinct synthetic 

plastics were isolated using the enrichment, screening and isolation protocols  

• The biodegradability test revealed that the consortium selected for PVC had the 

highest (16.26 %) biodegradation potential compared to HDPE (8.71 %) and PET 

(6.51 %) with their respective consortia. 

• Although the test used in this thesis is the standard test method to quantify the degree 

of plastic biodegradation in the aerobic marine environment, this cannot be 

considered as proof of ultimate biodegradation, but rather an indication about a 

potential for biodegradation in the oceans. 
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Appendices 

 SIMPER analysis of bacterial communities 

Table. Appendix A.1 SIMPER analysis of bacterial communities, presenting the total similarity within all 

sampling points and dissimilarity between the control and plastics treated communities. Av.Si%: average 

percentage similarity within all sampling points, Av.i %: average dissimilarity between the control and 

plastics treated bacterial communities. 

Av.Si% Av.i% 

Control 88.36  Control PET HDPE LDPE PVC PVOH PLA 

PET 78.93 PET 37.06       

HDPE 80.52 HDPE 30.45 33.23      

LDPE 84.12 LDPE 32.6 36.42 30.73     

PVC 77.69 PVC 36.45 36.95 35.44 37.08    

PVOH 81.15 PVOH 35.42 39.66 38.62 39.49 37.71   

PLA 77.28 PLA 35.3 37.49 36.52 36.93 37.78 37.26  

PHB/PHV 75.39 PHB/PHV 41.84 47.86 44.25 45.28 43.56 42.33 44.56 
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 PERMANOVA pair-wise tests 

Table. Appendix B.1 PERMANOVA pair-wise tests of bacterial communities within plastic treatments and 

control based on Bray-Curtis similarities index. Significance results (p (perm) < 0.05) are in bold 

 Comparison t p(perm) Unique perms 

Control vs 

PET 1.4197 0.052 998 

HDPE 1.7335 0.015 998 

LDPE 2.4349 0.001 998 

PVC 1.9151 0.004 999 

PVOH 2.2739 0.001 999 

PLA 1.4909 0.03 999 

PHV/PHB 2.5034 0.001 999 

PET vs 

HDPE 1.6228 0.014 999 

LDPE 2.2914 0.001 999 

PVC 1.7025 0.012 998 

PVOH 2.1629 0.002 998 

PLA 1.764 0.003 999 

PHV/PHB 2.6316 0.001 999 

HDPE vs 

LDPE 2.3057 0.002 998 

PVC 2.2896 0.001 999 

PVOH 3.1376 0.001 999 

PLA 2.1012 0.001 999 

PHV/PHB 3.2663 0.001 999 

LDPE vs 

PVC 2.8059 0.001 998 

PVOH 3.2872 0.001 998 

PLA 2.5846 0.001 998 

PHV/PHB 3.5022 0.001 998 

PVC vs 

PVOH 2.0245 0.001 999 

PLA 1.7877 0.003 998 

PHV/PHB 2.5057 0.001 999 

PVOH vs 
PLA 1.8311 0.003 998 

PHV/PHB 2.3197 0.001 998 

PLA vs PHV/PHB 2.1599 0.001 998 
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 PERMDISP pair-wise tests 

Table. Appendix C.1 PERMDISP pair-wise tests of bacterial communities within plastic treatments and control 

based on Bray-Curtis similarities index. Significance results (p (perm) < 0.05) are in bold 

 Comparison t p(perm) 

Control vs 

PET 1.8645 0.091 

HDPE 0.005033 0.998 

LDPE 0.78666 0.477 

PVC 1.9908 0.093 

PVOH 2.0946 0.088 

PLA 2.7984 0.022 

PHV/PHB 3.722 0.005 

PET vs 

HDPE 1.9934 0.078 

LDPE 1.1247 0.283 

PVC 0.33629 0.777 

PVOH 0.42055 0.717 

PLA 1.38 0.215 

PHV/PHB 2.268 0.057 

HDPE vs 

LDPE 0.83627 0.437 

PVC 2.099 0.076 

PVOH 2.2125 0.059 

PLA 2.9155 0.005 

PHV/PHB 3.8991 0.002 

LDPE vs 

PVC 1.3301 0.225 

PVOH 1.4292 0.21 

PLA 2.2387 0.053 

PHV/PHB 3.1684 0.007 

PVC vs 

PVOH 0.071082 0.948 

PLA 1.007 0.386 

PHV/PHB 1.7964 0.134 

PVOH vs 
PLA 0.95464 0.456 

PHV/PHB 1.7512 0.139 

PLA vs PHV/PHB 0.66422 0.557 
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 Rarefaction curves of seawater bacterial communities 

 

Figure. Appendix D.1 Rarefaction analyses, indicating the α-diversity of bacterial communities in the seawater 

samples at the beginning (0-week) and end (56-week) of exposure experiment. 

 Rarefaction curves of HDPE biofilm communities 

 

Figure. Appendix E.1 Rarefaction analyses, indicating the α-diversity of HDPE biofilm bacterial communities 

at the sampling period of 3, 6, 9, 12, 18,30, 42 and 56 weeks. 
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 Rarefaction curves of PET biofilm communities 

 

Figure. Appendix F.1 Rarefaction analyses, indicating the α-diversity of PET biofilm bacterial communities at 

the sampling period of 3, 6, 9, 12, 18,30, 42 and 56 weeks 

 Rarefaction curves of PVC biofilm communities 

 

Figure. Appendix G.1 Rarefaction analyses, indicating the α-diversity of PVC biofilm bacterial communities 

at the sampling period of 3, 6, 9, 12, 18,30, 42 and 56 weeks.  
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