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Abstract

This study is concerned with the design of a range of products intended to cover

different applications. The prominent example throughout the thesis is that of a

family of industrial trucks that need to cater for a wide range of load capacities. That

product range is normally built around platforms, i.e. basic sets of components that

are common to some or all of the products in the range. With this approach, each

product is made up of those common components and additionally other components

that are specifically suited for each particular product.

The outcome of this thesis is a novel method to assess the possible combinations

of common/specific components to build up a product range to cover a predeter-

mined set of user applications and provide the company with a clear view of the

trade-off between offering customer appealing products and keeping the costs down.

The method uses a combination of mathematical modelling and simulation for

estimating the relevant performance attributes of each possible product design, fuzzy

logic to reduce the naturally large number of objectives to a manageable one and a

multi-objective searching algorithm to find a Pareto set of solutions to provide the

decision makers with clear and useful information with which they can take a better

decision.
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Chapter 1

Introduction

In the automotive industry the desire of companies to increase their offer and simplify

maintenance and spare parts has led to the introduction of product platforms. Now

many other application areas and sectors are following suit.

This thesis addresses the design of a range of products intended to cover different

applications and the definition of the platform/variants structure. The platform is

the set of common components and the variants the different products that compose

the range. The aim is to present a method to decide what parts can be made common

to all or some of those products and what parts should be kept as individual to each

product variant. Several methods exist for solving this type of problems but most of

them either start with a preconception of what parts will be shared, or restrict the

problem by choosing the common parts first without the benefit of the big picture,

or define a target that misses important points and trade-offs. This thesis will argue

that these aspects are important for the industry and present a novel method with

that in mind. The thesis will use industrial trucks as a prominent example of an

industry immersed in the design of product families. The method will be developed,

tested and validated using those products as a case study.
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1.1 Background

In the early 20th Century, Ford started mass-producing their model T in what

has become one of the most re-told episodes in every account of the history of

manufacturing. All the cars coming out of the production line were built to the

same specifications, to the extent that they were all painted the same colour. Ford

sold millions of virtually identical units of the model T to customers of all kinds.

By the 1960’s, the American automotive market had significantly evolved. Each car

producer offered many models and each model was updated every year. Customers

were also offered a wide range of options from which they could choose the final

specification for their purchase. This made it theoretically possible for a company to

manufacture millions of cars without repeating the same exact configuration twice

(Wilson, 1997). The automotive industry was a pioneer in this approach which,

since the 1990s, has been widely known as mass customization (Da Silveira et al.,

2001). Nowadays, it is often expected that companies producing consumer goods

are flexible enough to offer a range of products that appeal to a wide customer base,

by satisfying the particular requirements of different kinds of users, without severely

increasing the costs. For companies that produce goods destined for industrial use,

personal preferences are arguably less important because the products are mainly

perceived as tools or components. But, the applications for which the products are

going to be used can vary widely, and the implications for the manufacturer are still

the same, i.e. they need to offer a range of products flexible enough to satisfy the

customer’s desires at a competitive price.

With this in mind, companies that design and manufacture goods aim to offer a

wide variety of products while at the same time using the minimum number of differ-

ent parts and systems (Nelson et al., 2001). This approach has several advantages:

economies of scale and reduction of parts inventory (Martin and Ishii., 1996); shorter

lead time and easiness to design new product variants (Meyer and Lehnerd, 1997)
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(Ulrich, 1995); and a reduction of manufacturing tooling and processes (Sidique et

al., 1998). Another indirect advantage is that a well thought out product platform

with appropriate margins for future change will lower the redesign costs in the long

term and will delay the necessity for a completely new design (Eckert et al. 2012)

(Lebjioui, 2018). The concept behind this approach is known as product platform

design (PPD) and is central to this thesis.

Following that approach, the products, known as product variants, that a com-

pany offers are usually organised into product families, i.e. sets of products that share

a number of common components and functions with each product having its unique

specifications to meet demands of certain customers (Pirmoradi et al., 2014), and

hence it can be said that product families are built around product platforms, with

the family being the set of products that the customer can buy and the platform

the structure of common components and principles.

Figure 1.1 shows a family of industrial trucks, the type of product that will

serve as a case study throughout this thesis. These trucks are a good example of

products that have similar functionality, lifting and moving loads. However, they are

also vastly different depending on the application for which they are used, ranging

enormously in terms of size and power. This leads to a non obvious question of

what components can be common to what products without subsequent under-

performance or over-design issues. The picture is a good visual clue of the range

of applications and the different sizes available; a van is placed in the middle for

reference. The size of the biggest of them, the reachstacker, can be inferred from

the fact that only a small part of it lies within the picture frame.
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Figure 1.1: Materials handling trucks from smallest (hand pallet truck) to largest (reachstacker)

1.2 Motivation

The topic of this thesis is how a company, or a design team, can conceive an offer

of related but different products for different applications while being competitive

both at the market place and also with the costs involved in designing and producing

those products. The design team also has to take into account the present situation

in which the company may have existing individual products or components.

The main idea is to provide information about the potential strategies for sharing

components across those products to keep both aspects within target.

This is a well-known problem in the industry, and one which the author is fa-

miliar with after being an R&D engineer for several years at the time of conducting

this study. During that time, the author has been exposed to the realities and diffi-

culties of designing products and product families, and seen how many decisions are

regularly taken based on history, preconceptions or judgements without the benefit
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of having quantitative data at hand. For example, it is common to have a project

to develop a lifting mechanism for forklift trucks with capacities between 2 and 3.5

tonnes, while at the same time there is another project to design a similar lifting

mechanism for trucks between 4 and 7 tonnes. Why two different mechanisms? and

why the dividing line is between 3.5 and 4 tonnes? What if only one mechanism

were designed? or two but with a different point marking the division?

This kind of decisions are taken at the initial stages of a design effort and have

a profound effect downstream, imposing restrictions on the detail stages that will

provide the final output. In particular, the class of decisions that will be discussed in

this thesis are those related to the structure of a product line, what and how many

products will be on offer? what is the relation between them? what components will

be shared across what products? and what components will be made individually

for a particular product?

This thesis draws heavily from the particular industry of material handling ve-

hicles, or industrial trucks. Those vehicles all share a common purpose to move

loads from one place to another, but there are still remarkable differences, the most

obvious one is the size of the loads, which can range from small boxes in a store

to large containers in the docks. At the same time, industrial vehicles are complex

machines and their fitness for purpose is measured against a varied set of attributes,

some of them in conflict to each other. This means that it is hard to define an

appropriate criterion to say that a particular vehicle is better or more attractive

than other. Even if that could be defined, it will not be trivial how to improve

a product, due to the complex relation between components and how they affect

the different attributes. Additionally, in this kind of industry it is not common to

design a product offer from scratch, models tend to be introduced sequentially, and

new models are sometimes influenced by existing models and components that are

already in use. All this makes this industry a compelling case for study.
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1.3 Objectives of this thesis

The objective of this thesis is to propose a method to design the platform architec-

ture, or the structure of common components across a product line intended to cover

a number of applications. The aim is to avoid any preconception of how many prod-

ucts are necessary for those applications and assess the potential solutions against a

multi-attribute criterion that considers both the performance of each product, how

fit they are for each application, and the costs and savings that can be achieved by

sharing components across different products. The method will be demonstrated on

an industrial case study that will be introduced in chapter 4 and described in detail

in chapters 6, 7 and 8.

Figure 1.2 shows an example simplified for the purpose of clarity. The starting

point is the top and bottom lines: 6 applications and a number of choices for engines,

pumps, cylinders, gearboxes and tyres. The result of solving the problem is the map

between the top and bottom lines, and consists on 4 different products build from

the combinations of components indicated by the arrows.

The objective of this thesis is to develop an algorithm that allows the user to

generate solutions of that type and evaluate them according to a multi-objective

criterion to provide a reduced set of solutions showing the trade-offs over which the

final decision needs to be based.
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Figure 1.2: Example of applications to products map

1.4 Research questions

There is a set of research questions for which this thesis will attempt to find an

answer. Those questions are:

Research question 1

How can a platform strategy improve product development processes?

Research question 2

What are the barriers to industrial adoption of product platform strategies?

Research question 3

Can an alternative product platform strategy be devised that addresses these bar-

riers?
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Research question 4

How well could this new strategy perform in a real world industrial context?

The nature of question 1 will be justified in the literature review, where the

main characteristics of existing methods are explained as well as their shortcomings

due to some a priori decisions that are commonly taken and restrict the potential

solutions to the problem.

The second question addresses an important issue of complexity associated to this

problem, and will be clearly reflected in the case study, i.e. the vastness of the design

space, the need for simultaneously assess the different products that compose a

family considering the multitude of performance attributes that are relevant, and the

presentation of the solutions in a meaningful and useful way. As it will be seen in the

literature review, the more attributes that are considered, the harder it becomes to

distinguish between desirable and non-desirable solutions. This inevitable fact leads

to potential scenarios in which showing the solutions to a problem may obfuscate

the field to the point of not being helpful to the person who makes the final decision.

The third and fourth questions incorporate typical characteristics of real industry

problems that complicate the process to solve them and are often ignored, such as

the diverse nature of the variables under consideration and the fact that there is

often a legacy element in most new designs. The method presented in this thesis

attempts to be general, and capable of dealing with the different scenarios that can

be found in industry settings.

1.5 Thesis structure

After this introduction, this thesis will be structured in the following chapters:
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• Chapter 2 - Literature review. A review of the state of the art in the field and

related fields relevant to this project.

• Chapter 3 - Methodology. Description of the methodology followed during this

project, and the frame in which it is placed.

• Chapter 4 - Industry justification. Description of the problem from the in-

dustry point of view, where the motivation for this project comes from. This

chapter is written based on the author’s experience.

• Chapter 5 - Developing a method for product family design. A general de-

scription of the philosophy and the method proposed in this thesis.

• Chapter 6 - Case study. An application of the method described in the previous

chapter going step by step on a real case study.

• Chapter 7 - Implementation and results. Implementation of the case study

and presentation of the results.

• Chapter 8 - Validation. Validation of the results presented in the previous

chapter.

• Chapter 9 - Evaluation, discussion and conclusions. A review of the thesis

and how the method addresses the original research questions and makes and

original contribution. Final thoughts and paths for further research.

Figure 1.3 shows a map between the research questions and the chapters of the

thesis in which they are addressed.
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Figure 1.3: Map between research questions and thesis chapters where they are addressed
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Literature review

The research questions 1 and 2 refer to how a platform strategy can improve product

development and the barriers to industrial adoption. In this context, development

not only refers to the process of development itself but also includes the outcomes

and how desirable they are for the company. This chapter is a review of the existing

literature in that field to highlight the pros and cons of platform strategies as well

as different methods, approaches and debates around the issue from an academic

point of view. To answer those research questions, the analysis will be completed in

chapter 4 from the industrial point of view.

The structure of this chapter is shown graphically in figure 2.1 and it is divided

in two distinct parts: The first part is a review of the state of the art regarding

product family design, it begins with a description of product architecture, which is

a fundamental concept to understand the relation between the applications, products

and components in a product line-up and its organization in platforms and variants.

This is followed by an introduction to platform design, with definitions, pros and

cons, types, typical design process and existing methods. This part ends with the

identification and statement of an existing gap in current research that led to the

formulation of the research questions and a high level introduction to the method

that will be proposed and discussed in the remainder of this thesis.
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The second part is a general background on fields and techniques that the novel

method will draw upon. Being this thesis focused on complex products, some kind

of criterion has to be defined to balance the different targets both for each product

and the entire product range, leading to an introduction to decision making theory

and the review of two different approaches representative of the two main currents

of thought: value driven design (an attempt to find a single measure that defines

a whole product) and multi-objective optimization, where each target is treated

separately and the study focuses on how each individual target is met. The latter

will lead to the method proposed in this thesis in combination with a fuzzy method

to compare physical performance of different attributes for each product, which is

why some basic notions of fuzzy mathematics are also included in this chapter. The

final field to be reviewed is that of modelling and simulation, which is necessary to

estimate the required characteristics of the potential products without building any

prototype.
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Figure 2.1: Literature review scheme

2.1 Part 1: Product family design

This part will set the context and show the existing research around product family

design focusing on the most important aspects for this thesis. Product family and

platform design has been a research topic since the 1990’s and it is still a very active

issue both from the academic and industrial point of view.

2.1.1 Product architecture

A fundamental concept for this project is that of product architecture. Eppinger and

Ulrich (2012) define the product architecture as ”the scheme by which the functional

elements of the product are arranged into physical chunks and by which the chunks

interact”. Products can be based on a modular architecture if the ”chunks imple-
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ment one or a few functional elements in their entirety and the interactions between

chunks are well defined and generally fundamental to the primary functions of the

product” (Eppinger and Ulrich, 2012), or integral where either a chunk implements

several functions, or a function is performed by several chunks, or the interactions

between them are not well defined. Real world complex products are not necessarily

based on purely modular or integral architectures, but a combination with a certain

degree of modularity. Highly modular architectures are more suitable for designing

product families with a high level of commonality and flexibility, whereas integral

architectures may be the preferred option when commonality is not so important

and technical constraints are the main issue (Pirmoradi et al., 2014).

A product family can be defined as a set of product variants based on a common

platform but otherwise different to satisfy varied customers (Nayak et al, 2010) or

in other words, a set of products sharing some common components and functions

while still catering for different customer demands (Meyer and Lehnerd, 1997). The

problem of designing one or more product families is referred to as product family

design, and normally abbreviated as PFD. Family architecture is a term that consid-

ers how the different products of a family interact with each other in terms of what

commonality exist among them, as well as the modularity of each product (Jiao,

2000). Figure 2.2 shows an example of a product family composed of four product

variants. Components A and B are common to all the variants and hence they are

the common platform, whereas components D and E are individual for each product.

Components C1 and C2 are common to some variants, this concept is referred to

as subplatform and will be explained later on. That commonality among different

products leads to the related field of platform design.
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Figure 2.2: Example of product family composed of four product variants

2.1.2 Platform design

When a company wants to offer a range of products for different applications, known

as product variants, the simplest way to have the products with the best possible

performance is to optimize them individually. This will generally result in a collec-

tion of products completely different to each other, and this approach is known as

a null platform (Nelson et al, 2001). However, if the number of different products

is big, with big meaning more than 2 or 3, as can be expected in many sectors

nowadays; this approach may lead to prohibitively high costs as the company would

miss on the benefits of economies of scale associated to the sharing of some common

components, both in terms of procurement, development and maintenance, and the

products may not be competitive in the market against other products that may be

inferior in terms of performance but significantly cheaper to purchase, making them
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more appealing to the customer overall (Meyer and Lehnerd, 1997).

A common way to offer a wide range of different products while at the same time

keeping the costs under control is what is known as platform family design. Although

it is difficult to find a widely accepted definition, the idea is to design different

product variants based on both common components across the range and also

specific components for each product. Typical examples are different automobiles

sharing parts such as the chassis, engine, suspension and transmission, while each

model has unique body panels, windows or interiors. Another common example

is domestic appliances such as dishwashers or washing machines sharing the main

body frame and electronics but different mechanisms inside.

The term commonality refers to the fact that the same parts or systems are used

in the manufacture of different products (Cambridge dictionary, 2019). Those parts

or systems are known as components, and the number of them in which a product

is divided is not defined by a unique criterion, since a component can be an engine

or a single bolt depending on the level of detail applied. This level of detail or

granularity has a deep effect on how the problem is posed (Holtta-Otto et al., 2014)

as the number of potential design combinations grows exponentially with the number

of component choices and this number will be larger the finer the granularity (Maier,

2016). Components can be common or individual, depending on whether or not they

are shared by two or more product variants or they are explicitly designed for just one

variant. The practice of sharing components across several products is not a target in

itself, it is a worthwhile pursuit only if the benefits associated in terms of increased

revenue or cost reduction overcome the downfalls (Cameron and Crawley, 2014).

The practice of sharing common components across different products without a well

thought strategy may result in compromised designs that would not be as optimal as

they could have been without any commonality restriction. Either each individual

product fails to deliver the maximum possible performance (Nelson et al, 2001),
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or conversely, products can be over-designed resulting in excessive running costs

(Eckert et al., 2013). On the other hand, optimizing products individually results

in very specialized and expensive products that are unlikely to be competitive in

the market. For most types of products, the design of a product range involves a

trade-off between the advantages of component commonality, primarily economic

but recently also in terms of sustainability (Kin and Moon, 2017), and the level

of performance of each individual product (Alizon et al., 2007) or in other words,

between the economy of scope from product variety and the economy of scale from

component sharing (Song et al., 2019). It is inherently a combinatorial problem

with conflicting objectives (Eichstetter et al., 2015).

Definition of platform

The exact definition of the term varies among different authors and texts. For exam-

ple, for Eppinger and Ulrich (2012) a product platform is ”the collection of assets,

including component designs, shared by otherwise different products”. Whereas for

Simpson and D’Souza (2004) it is ”a group of related products that share common

components and/or subsystems”. Robertson and Ulrich (1998) go further and in-

clude the people involved in the development and their relationship, and Nayak et

al (2002) define platform as ”the maximum level of standardization with which it is

possible to meet all the requirements for all the products”.

Although the definitions vary, the idea of what a platform strategy means for

the design of a product range appears more or less clear and can be summarized

as ”essentially an effective and deliberate program of component reuse which takes

advantage of the economies of scale across the product family, while minimizing the

negative impact of reuse on individual product variant distinctiveness and perfor-

mance” (De Weck and Suh, 2003). However, the idea of platform is not restricted

to sharing physically equal components, it can also include scaled components that
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share the same principles, as for example in different length trailers sharing the

same manufacturing process, or even intangible assets such as software modules

(Sangiovanni-Vicentelli and Martin, 2001).

As there are multiple definitions of platform available in the literature, it is

necessary to adopt one that will be followed for the remainder of the thesis. The

term platform will refer to the set of common components shared across different

products of the family, in opposition to individual components which only appear in

a particular product variant.

Advantages and disadvantages

The design of platform based product families comes with some advantages. Cameron

and Crawley (2012) classified those advantages in three groups: revenue benefits,

cost savings and risk benefits.

The revenue benefits are mostly due to the shorter lead time and easiness to de-

sign new product variants to fill a niche (Meyer and Lehnerd, 1997)(Ulrich, 1995) or

satisfy growing customer demands (Aljorephani and ElMaraghy, 2016). This point

is especially important for the type of products that are configured or engineered to

order (Levandowsky et al., 2015), where a product platform must take into account

a wide range of potential requirements and products not yet defined.

Among the cost savings are the use of economies of scale to get cheaper com-

ponents, reduction of parts inventory (Martin and Ishii, 1996), and a reduction

of manufacturing tooling and processes (Sidique et al, 1998). Pander (2012) and

Cameron and Crawley (2014) estimated the benefits in cost reduction can be up to

30% and production times cut by half. The costs advantages are difficult to esti-

mate, as they are several types of costs that depend on the family structure, such

as development, administration, testing and parts. The parts costs are some of the

most affected by the different degrees of commonality, and also one of the simplest
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to estimate. Ripperda and Krause (2017) estimated a share at 40 - 50% of the family

cost. Another advantage, especially for multinational corporations, is that a wide

product platform allows for easier relocation of production to better suit the market

needs (Lampon et al., 2017)

The third group, risk benefits, are associated with the use of known technologies

and processes, the risks of failures in new products is obviously lower when parts

or engineering principles of that product are already incorporated in other products

and it is known how they perform. However, it is not all advantages in structuring

products around a platform, there are also some disadvantages associated, such as:

• Cannibalization between the different variants (Kim and Chhajed, 2000)(De

Weck and Shu, 2003), i.e. the possibility of a lower quality product affecting

the sales of the higher end product due to them being perceived as similar and

the customers not being willing to pay the extra premium for the higher end

product. A typical example was the increase of the Skoda branded cars to the

detriment of the more expensive Volkswagen when they started to share an

important percentage of their parts (Shu, 2005).

• Performance of each individual product based on a platform can be poorer

than it could be without any commonality constrain (Nelson et al, 2001). This

makes platform strategies not optimal for very specialized products or those

for which performance are almost the only important features, such as fighter

jets or expensive supercars. It is, however, still possible to find examples of

commonality and platforms even in products as unique as NASA spacecrafts

(Gonzalez-Zugasti et al, 2000), although in those cases commonality is only

accepted when performance is not affected.

• Flexibility limits. New advances and requirements may eventually make plat-

forms obsolete and very expensive to replace. A company may try to over-
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stretch a platform life due to the high costs of developing a new one, and this

will result on the product features or performance being restricted. (Eppinger

and Ulrich, 2012).

• Unexpected technical problems. An example was the Audi TT, whose rear

end tended to be looser than expected. The problem was traced to the car

being based on a platform designed for other different cars without taking into

account the particularities of the TT (De Weck and Suh, 2003). For products

with a high degree of complexity it can be very difficult to understand and

predict all the consequences of using an existing basic design, although these

problems also arise for individually designed products.

When designing a platform or a product range based on one or more platforms,

engineers need to balance the trade-offs between these advantages and disadvantages

in order to achieve the best range to meet the company objectives.

Types of platforms

Product platforms can be classified according to several criteria. In terms of how

the platform is introduced and evolves, there are mainly two different and opposed

approaches (Kalligeros et al, 2006):

• A top-down approach is defined in the cases in which a company deliberately

designs and introduces a platform strategy and bases their products on it. It

can also be described as based on market needs rather than existing products,

since it is not necessary for the variants to be known at the time of developing

the platform (Alizon et al., 2007).

• A bottom-up approach exists when the process occurs in the opposite direction,

where after years of developing different products, the engineers realize that
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they share, or can potentially share common systems and components and the

platform emerges almost in a natural manner.

Top-down approaches are naturally suitable for cases where the variants are not

well defined, in particular because the platform is intended to last for a long time

during which new products will be developed.

On the other hand, bottom-up approaches are more suitable for evolutive cases,

where some products already exists and it is not realistic to re-design a completely

new family from scratch.

In terms of how the product range is structured to cover the market segments,

there are four different possibilities (De Weck and Suh, 2003):

• No leverage: designed for a single market segment.

• Horizontal leverage: used across products of different brands placed in a similar

segment.

• Vertical leverage: used across products of the same brand placed in different

segments.

• Beachhead: a combination of horizontal and vertical.

According to their architecture, platforms can be (Simpson et al., 2001):

• Scale based, where the different variants are designed by scaling up or down

the non-platform variables.

• Module based, where different modules are added to the common platform to

form the different variants.

Process to design a product family

This subsection presents a general summary of a typical process to design a product

range, it is a very high level description and each of the stages could be further
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broken down and detailed (Otto et al., 2016), but this top level view should clarify

the process at a level appropriate for understanding the remainder of this thesis. It

is not claimed that this is the only process by which a product range comes to exist,

but it is common and representative of the kind of steps required.

When a company wants to develop a product range, first they need to be clear

about what are the applications for which they want to offer a product and identify

the intended market.

Once the market is identified, the term product clustering or market segmentation

refers to the separation of the different product market niches and the definition of

the products that will target each segment (Pirmoradi et al, 2011). Although the

two terms are not exactly synonymous, both refer to a similar stage in which a large

set of intended applications is mapped to a reduced set of products. The generation

of that map is also called product portfolio positioning (Pirmoradi et al., 2014).

Typical existing methods to design a product platform and family assume this stage

is already done and the products are well defined, whereas the method presented in

this thesis will show the products as a part of the result.

The next step is to decide on the family architecture, i.e. what components can

be shared across what product variants, or what will the platforms look like and

how many of them will be. This is referred to as platform identification (Chowdhury

et al, 2011), and can be a priori if it is done before designing the variants or non a

priori if done at the same time.

Each variant needs to be designed, taking into account the common and the

individual parts. In two stage platform design methods, all the variables of the

common components are determined or optimized first, and then the same is done

with the individual components of each variant. Whereas in single stage methods,

all the variables are determined at the same time (Simpson and D’Souza, 2004) (Dai

and Scott, 2006). In practice, this step takes many months or years, as it involves
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the traditional design and development of each product variant, the methods for

design considered in this thesis, including the novel method, are all high level, and

do not attempt to return complete detailed designs.

During the development of each variant, there are continuous assessments of the

performance of the products, and when it is not satisfactory, that leads to redesign.

This is expected as part of the normal product development process. How far back

the redesign goes depends on the careful thoughts put into the first stages, or how

the uncertainty was managed. This whole process as outlined above is graphically

shown in Figure 2.3.

Figure 2.3: Product family development process flow
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Challenges of product family design

The process described in the previous section poses a number of problems or chal-

lenges. Jiao et al (2007) classified those challenges in three main groups:

• Front end issues: translation from customer needs to product functionality.

• Family design issues: map from the functions identified in the front end to

design variables.

• Back end issues: collection of issues related to processes such as manufacturing

or supply chain.

Methods to design a platform architecture

The problem of product family design involves selecting the components that can

be made common, fix the variables that define those components, and also the

variables for all the individual components that will be part of the finalized product

variants. Several methods have been developed in the last 20 - 30 years to solve

that problem. They can be classified into one and two stage methods as mentioned

in the previous section. One stage methods are normally reserved for families with

relatively low number of products and variables, as the computational complexity

increases exponentially with those numbers and the problem quickly gets out of

hand. On the other hand, complexity of two stage methods only increases linearly

with the number of products and variables, which make them more practical for

large problems (Dai and Scott, 2006).

Most of the methods described in the existing literature belong to the second

group, the following list shows a selection of them. The list is not exhaustive as this

type of approach is not the focus of this thesis. The most prominent methods have

been selected for the purpose of giving an overall view of the research in that field.
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• Design for variety(Martin and Ishii, 1996). Uses two indices for the depen-

dency between components and the amount of redesign eventually required

for future variants, the purpose is to select the common components that min-

imize those two indices. The method is shown applied to a family of water

coolers (Martin and Ishii, 2002). This method is particularly good when the

long view and having a flexible platform is more important than the immediate

products, and it requires a good estimation of the likely future re-work.

• Method for architecting product platforms (Gonzalez-Zugasti et al, 2000). Iter-

ative process based on identification of possible platforms looking at different

products variants. This method focuses on platform identification from al-

ready existing product lines, it is a clear example of a bottom-up approach to

platform strategy.

• Multi-criteria optimization in product platform design (Nelson et al, 2001).

Compares the best possible variants under a commonality constraint with

those variants without the constraint. Then selects as common parts those

that resulted in the closest comparisons.

• Product platform concept exploration method (Simpson et al, 2001). Uses sur-

rogate models to predict product performance and then formulates a com-

promise decision support problem. This method requires products for which

the performance under evaluation is well behaved, i.e. it is suitable for scal-

able variables and products with a relatively low degree of interdependence,

as the surrogate models can easily break as soon as discrete components or

complicated machines are involved.

• Variation based method (Nayak et al, 2002). Defines and minimises a function

that incorporates the constraints.
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• Product family strategy and platform portfolio optimization (De Weck and Shu,

2003). Defines product variants as vectors, whose elements are the variables,

and maps them to performance vectors to compare them with the objective

vectors defined by the performance of the market leaders. That map between

the variants and performance vectors can be complicated and is one of the

main points of this thesis.

• Flexible product platforms (Shu, 2005). Focus on design for flexibility to ac-

commodate future requirements.

• Proactive platform modularity (Hirshburg and Siddique, 2014a). Identifies

product requirements using customers surveys and selects the platform with

an analysis of common functions implemented with scalable parts. Then this

method uses a mathematical model to scale the platform for all the products.

The method is demonstrated on a family of lawn blowers (Hirshburg and

Siddique, 2014b)

An inherent problem with two stage methods is that, as some variables or compo-

nents are fixed before looking at the others, this approach restricts the number and

quality of possible solutions, especially in real cases of complex products with many

performance attributes and where each attribute depends on non-obvious combina-

tions of the chosen components. One stage methods have the potential to find a

superior solution or set of solutions by searching the entire design space as opposed

to a restricted version of it, but computational constraints and difficulties have kept

them somehow in a second front of research. The objective of this thesis is to de-

velop a method applicable to any general case, and hence the chosen approach is

single stage; while keeping it computationally feasible.

Several methods were found in which both the platform and the variant variables

are determined at the same time, or one stage methods. They are discussed in the
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next list and explained why they still miss the capability to tackle a problem such

as the case study in this thesis:

1. Effective platform family design using physical programming and the product

platform concept exploration (Messac et al., 2002)

2. Effective product family design using preference aggregation (Dai and Scott,

2006)

3. Selection-integrated optimization (Khire and Messac, 2008)

4. Comprehensive product platform planning (Chowdhury et al, 2011)

5. Multi-objective genetic algorithm with generalized commonality (Khajavirad

et al., 2014)

6. Platform design variable identification using multi-objective particle swarm

optimization (Moon et al., 2014)

The first method (Messac et al., 2002) uses physical programming, which assigns

a degree of desirability to each performance attribute. However, this method is still

based on performance only, and does not represent the trade-offs involved in the

design of a real product family.

The second method (Dai and Scott, 2006) uses fuzzy logic for aggregating the

several performance attributes of the products, hence converting an original multi-

objective problem into a single objective one. It optimizes both platform and indi-

vidual variables at the same time, but assumes which components are common and

which are not, i.e. it incorporates a priori platform identification, which imposes

restrictions that this thesis is attempting to overcome.

The third method (Khire and Messac, 2008) applies a genetic algorithm to solve

a multi-objective adaptive optimization problem. However, it reduces the multiple

objectives to a single objective with an aggregation function, and hence the approach
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is not truly multi-objective. The paper considers the field of platform design as

analogous to adaptive systems, in which there are some fixed variables for all modes

of operation (akin to platform variables) and flexible variables different for each

mode of operation (akin to product individual variables). The similarity between

the two fields has its limits, and problems in which different product variants carry

different components instead of similar components with scalable dimensions, as the

typical problem object of this thesis, are out of those limits.

The fourth method (Chowdhury et al., 2011) performs both platform identifi-

cation and optimization against an objective function that aggregates performance

and cost decay depending on commonality and production volume. This is the most

comprehensive method found, does not have a priori decisions on commonality and

allows for platforms and subplatforms to appear during the solving process. How-

ever, it is only shown with a relatively simple case and it is not clear how it transfers

to a more complex case.

The fifth method (Khajavirad et al., 2014) proposes a multi-objective genetic

algorithm to solve the platform problem in two levels: with the upper level looking

at platform architecture and the lower level at optimizing each product variant. It

uses the CI commonality index introduced by Martin and Ishii (1996) and measures

the deviation from performance target values. The CI is a measure of components

used, it does not take into account the relative importance of reducing one compo-

nent or other, this method assumes that less components is always better, and this

assumption does not always work for real industry cases.

The sixth method (Moon et al., 2014) aims to assess different degrees of com-

monality in the value of some design variables considering two objectives: a sum of

the deviations from performance targets and the variation in the design variables.

This method uses a multi-objective particle swarm optimization algorithm to find a

Pareto front showing the trade-off between the two mentioned objectives. Measur-
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ing a performance objective as a sum of the deviation from targets and defining a

commonality objective comes with three downsides:

• It does not take into account the non-linearity of the function relating the

deviation with the desirability, i.e. in some cases a deviation of 5% may be a

very good result while a deviation of 10% may render a product unacceptable.

• It does not represent a realistic balance between different performance at-

tributes, i.e. the deviation from one performance target may be far more

important than the deviation from another.

• A lower degree of variability is often related to lower costs, but this is not

always the case.

The last four methods consider a problem where the variables are either contin-

uous by nature or can be relaxed and approximated as continuous. These methods

are in principle not applicable to the case where the products are designed based

on sets of possible components, with parts such as an engine, where any attempt to

relax the problem is doomed to fail.

All this existing and ongoing research, summarised in table 2.1 provide an idea

of the complexity of the problem, both in terms of definition of the objective and

size. All methods are shown on relatively simple cases and there is no method that

can claim to completely solve a complex real case in a practical manner. This thesis

attempts to show a single stage, multi-objective method to solve a general problem

that can either contain discrete or continuous components while taking into account

meaningful measures for the objectives.
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Table 2.1: Summary of methods for product platform design

Method Reference Stages Platform
identifi-
cation

Design for variety Martin and
Ishii, 1996

2 a priori

Method for architecting product plat-
forms

Gonzalez-
Zugasti et al,
2000

2 a priori

Product platform concept exploration Simpson et al,
2001

2 a priori

Multi-criteria optimization in product
platform design

Nelson et al,
2001

2 a priori

Variation based method Nayak et al,
2002

2 a priori

Product family strategy and platform
portfolio optimization

De Weck and
Shu, 2003

2 a priori

Flexible product platforms Shu, 2005 2 a priori
Proactive platform modularity Hirshburg and

Siddique, 2014
2 a priori

Effective product family design using
physical programming and the product
platform concept exploration

Messac et al,
2002

1 a priori

Effective product family design using
preference aggregation

Dai and Scott,
2006

1 a priori

Selection integrated optimization Khire and Mes-
sac, 2008

1 a priori

Comprehensive product platform plan-
ning

Chowdhury et
al, 2011

1 non a pri-
ori

Multi-objective genetic algorithm with
generalized commonality

Khajavirad et
al, 2014

1 non a pri-
ori

Platform variable identification with
MOPSO

Moon et al,
2014

1 non a pri-
ori
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2.1.3 Summary and conclusion on product architecture and

platform design

Table 2.2 shows a summary of the different types of platforms available according

to different points of view and approaches to define them.

Table 2.2: Summary of platform types and approaches

Type Description
Two stages Method to design a product family by first

determining the platform elements or vari-
ables and then the variants

Single stage Method to design a product family by de-
termining platform and variant elements
or variables at the same time

A priori platform identi-
fication

Method in which the common components
are predetermined

Non a priori platform
identification

Method in which the common components
are kept open until all the elements or
variables are determined

Top down Strategy to design a common platform
first and the variants later

Bottom up Strategy to come to a platform based on
existing variants

Scale platform Family where the variants differ by a fac-
tor of scale

Module platform Family where each variant is composed of
different modules

No leverage Platform used for products of one brand
in one market segment

Horizontal leverage Platform used across products from differ-
ent brands in the same market segment

Vertical leverage Platform used for products from one
brand targeting different market segments

Beachhead Platform used across products from differ-
ent brands targeting different market seg-
ments

Different approaches exist, and it is not possible to identify a superior one in-

dependently of the problem. The decision for the approach taken for this thesis is

based on the case under study and its particularities.
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The problem targeted by this thesis consists of finding a method to choose the

right components for a product family, while presumably some of those components

will be common across all or some of the products forming platforms and subplat-

forms. The focus is on the parts that can potentially be made common. Part of the

design of each product can never be made common, such as the chassis of a big and

a little forklift truck, and hence all those parts will be out of the scope.

Two stage methods are ideal when the components that can be made common

are obvious, such as the battery in a family of hand held power tools, or the shaft

in a family of electric motors. However, when the ideal strategy for commonality

is not clear, two stage methods unnecessarily restrict the design space, running the

risk of missing potentially better solutions that are automatically excluded at the

time of choosing the common components (Messac et al., 2002).

Single stage methods ensure that all solutions can be considered according to

their merits, and for general problems and those such as the one that will be the

subject of the case study they are preferable if they can be managed. This thesis

will attempt to implement a single stage approach.

2.1.4 Existing gap

This review showed that platform design is a powerful approach to design a product

line that offers solutions for several applications while containing costs and develop-

ment efforts at the same time, something that would not be possible when designing

one product at a time independently of each other. The way in which a product line

can be structured has a large number of solutions as a result of compounding the

many options for many variables, i.e. how many products, what limits to cover each

product, what parts can be made common, what products will share those parts,

what specifications the common parts can have and ditto for the individual parts.

Finding the most suitable solution is a matter of balancing the performance on the
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diverse attributes achieved by each product and the associated costs to design the

entire product line. It is hard to define clear measurements that can be used to

classify the different solutions and put them in order of preference. Several methods

exists but not a single method that can be considered as definite.

Most methods attack the problem in two stages, with the associated shortcom-

ing stated before. This is due to many authors considering that the downsides of

missing some potentially good global solutions when introducing the necessary a

priori constraints are far outweighed by the increase in tractability and decrease in

computational complexity associated to two stage methods. But the purpose of this

thesis is to find the best possible solution with as few restrictions as possible, and

hence two stage methods are out of the scope.

Some single stage methods were found, however they either assume common

parts, ignore the trade-off between performance and cost or consider continuous

problems. This last point is important, since a problem in which the variables are

continuous, or can be approximated as continuous, can be addressed with a number

of methods such as gradient search or linear programming, however this is not the

case for industrial trucks where there is a choice between one component or another

and their behaviour can change dramatically.

In addition, all methods reviewed start from a predetermined set of products to

design, leaving apart the problem of structuring the product line-up. This is better

explained in figure 2.4. The four diagrams show the different approaches:

• Two stage methods (top-left): product variants are assumed and components

are a priori classified into platform or individual parts. Platform is optimized

first and then variants with the platform component already fixed. These

methods are appropriate when it is clear what parts should belong to the

platform and what parts should not, and it is a priority to optimize those

belonging to the platform, for example, a platform intended to last for a long
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Figure 2.4: Different platform design approaches

time and multiple future products to be designed around it. Examples of this

approach are all those methods identified as 2 stage methods in the section

2.1.2 Methods to define a platform architecture.

• Single stage a priori platform (top-right): single stage method, platform and

variants are optimized at the same time but which components are part of

the platform and which are individual for each variant is predetermined. This

approach is also appropriate for cases where the platform is obvious, but its

optimization does not take priority over the variants. Examples of this ap-

proach are the first three single stage methods identified in the section 2.1.2

Methods to define a platform architecture.
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• Single stage non a priori platform (bottom-left): single stage method, the

improvement respect to the top right approach is that platform and individual

parts are not identified a priori, but a result of the optimization process. These

methods can return null platforms, subplatforms, etc. That improvement

also results in increased computational complexity. This is an open approach

for cases where common parts are not an obvious choice. Examples of this

approach are the last two methods identified in the section 2.1.2 Methods to

define a platform architecture.

• Single stage application based (bottom-right): proposed method in this thesis,

products variants are not predetermined. What is predetermined is the set of

applications for which a product needs to be designed, the number and type

of each product is a result of the optimization process. Product clustering,

platform and variant design is integrated in one stage, unlike any of the existing

methods found in the literature. This is appropriate for general cases and a

superset of the other three approaches.

Apart from the process to select the components and the products, another

important point is the objective for them. Figure 2.5 shows the different approaches

to define the design objective for a product family independently of the method

chosen to solve it.

• Dark grey arrows: The design is based only on performance. This approach is

valid for methods in which the platform components are defined a priori, since

otherwise an exclusively performance based objective would normally result in

null platforms. It is assumed that the choice of platform is good to fulfil the

cost targets, hence this approach is typically used on products for which the

platform structure is obvious either due to the nature of the particular case or

experience.
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• White arrows: Performance and costs are balanced in an a priori articulation

of preferences function, converting the original multi-objective problem into

a single objective one. Examples of this approach is value driven design as

defined in section 2.2.1 - Decision making theory/Value driven design, or any

other combination of preferences codified in a function.

• Light grey arrows: Multi-objective approach, the problem is optimized for per-

formance and cost at the same time returning a Pareto set (or approximation

of) containing possible solutions. Preferences are then articulated over that

set. This approach has the advantage of presenting several alternatives with-

out being constrained by a preference function that may not accurately reflect

the desires of the decision maker.
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Figure 2.5: Different objective setting

2.2 Part 2: Background

This part introduces some basic and necessary concepts to understand the method

that will be presented in subsequent chapters. They are:

• Decision making theory: necessary to justify the multi-objective approach in

this thesis.

• Fuzzy mathematics: this technique will be used to assess different objectives

measured in different units.

• Modelling and simulation: a fundamental concept for this thesis as the algo-

rithm is based on performance values calculated through mathematical models.
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2.2.1 Decision making theory

Decision making is a process by which a person, group or other entity named the

decision maker selects a choice among a number of candidates. This type of processes

can be found everywhere, economics, managerial sciences or autonomous driving just

to cite a few examples.

Applied to engineering, Scott and Antonsson (1999) defined the problem as Given

several performance criteria which are to be simultaneously optimized, determine a

method for comparing any two design alternatives that depends only on the values

of the individual criteria for each alternative

In the same paper, it is stated the difference between problems in which best

refers to a single measurable objective and those in which the objectives are more

than one. Those problems with more than one objective are referred to as multi-

criteria decision making, or multi-objective optimization. Although those two terms

are often used interchangeable, they are not synonymous. The former refers to

the process by which a decision maker chooses a preferred option among several

alternatives and does not necessarily imply optimization, whereas the latter refers

to finding a number of solutions that maximize or minimize the defined objectives

(Thiele et al., 2009). There are three approaches to multi-criteria decision making

depending on when the decision is incorporated (Purshouse et al., 2014):

• a priori: the decision maker preferences are incorporated before the search, and

hence they are an integral part of the objective function. Under this approach,

a multi-criteria problem is turned into a single criterion problem at all effects.

• a posteriori: the preferences are articulated over a set of possible solutions

found without them being part of the search, generally a Pareto set of solutions.

This term will be defined in a subsequent section.

• interactive: the preferences are progressively incorporated during the search.
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There are two main ways in which the decision maker can make their choice:

satisficing and optimizing. The former refers to finding a choice that is good enough

in any aspect in which the design is to be measured, whereas the latter refers to

finding, or approaching the best option. These two approaches often appear together

in problems with more than one objective, defining a problem such as optimizing

objective x such that criterion y is satisfied. Criterion y is a constraint that needs

to be satisfied but not optimized.

This thesis is mainly concerned with optimizing, and hence with what best means

and how the choice leading to it can be found.

Multi-objective optimization

A multi-objective optimization problem is, as its name suggests, a type of optimiza-

tion problem in which there are more than one objectives or attributes to optimize.

A formal definition is (Marler and Arora, 2004):

Minimize
x

F(x) = [F1(x), F2(x), ..., Fk(x)]T

subject to gj(x) ≤ 0, j = 1, 2, ..., e

(2.1)

It is customary to describe an optimization problem as a minimization problem. In

practice many functions have to be maximized to find the optimum, profits is an

obvious example, but those functions can always be converted into minimization

problems for consistency by taking the inverse 1/Fi or adding a minus sign. When

x depends on more than one variable, the problem is referred to as multi-objective

multi-variable optimization. In that case, x is typed in bold and represents a vector

composed of several variables.

A theoretical optimal point is called utopia point, and is that one for which all
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the F functions are optimal

Fo is an utopia point iff F o
i = minimum

x
{Fi(x)|x ∈ X} (2.2)

The utopia point can rarely be achieved. When it is, that will be the optimal solution

for the problem. However, in most practical cases that point is only theoretical, and

hence multi-objective optimization problems generally do not have a unique solution.

An important concept is that of Pareto optimal. A Pareto optimal is a solution so

that there is no other that improves one of the objectives without making any other

worse (Kasprzak and Lewis, 2000). The set of Pareto optimal solutions is known as

the Pareto front.

x∗ ∈ X is Pareto optimal iff @ x ∈ X such that Fi(x) ≤ Fi(x
∗), ∀i

and Fi(x) < Fi(x
∗) for at least one function

(2.3)

A weakly Pareto optimal is a solution so that there is no other that improves all of

the objectives at the same time.

x∗ ∈ X is weakly Pareto optimal iff @ x ∈ X such that Fi(x) < Fi(x
∗),∀i (2.4)

A point that is better in at least one objective than other point and not worse at

any other objective is said to dominate. It is obvious that for any non-Pareto optimal

solution there is always at least one Pareto optimal solution that improves it, hence

the best solution for any optimization problem, independently of the criterion, is

always a point contained in the set of Pareto optimal solutions. The problem is that

the set of Pareto optimal solutions can be large, or infinite for continuous problems,

and no particular point of it is superior to any other until a preference is defined.

Several methods exist in the literature to select the best solution according to the

decision maker preferences. All methods can be classified as either Archimedian
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or preemptive (Messac, 1996). Archimedean refers to those methods that use a

weighting of some kind for the different objectives, whereas preemptive refers to

methods that optimize each objective sequentially in order of objective priority.

Another way to classify the methods is according to whether the preferences are

articulated a priori, a posteriori, or not articulated / interactive (Marler and Arora,

2004) (Wang et al., 2017). Some of the salient methods are briefly described in the

next subsections.

Some examples of searching algorithms will be described, but an important point

to consider is any of the several versions of the no free lunch theorem (Wolpert and

Macready, 1997), which states that no algorithm performs better than others across

several classes of problems, i.e. the best choice for a particular problem will not be

a good choice for all other problems.

A priori articulation of preferences For all these methods, the decision maker

specifies preferences such as goals or weights for each objective. Most methods in

this category consider a utility function that can be optimized and provide a clearly

ordered criterion to select among the possible solutions. This function reflects the

preferences between one solution or other, and can be cardinal or ordinal (Read,

2004). The first case is a quantifiable function that provides information not only

about the preferability of one solution over other, but also a quantification of that

preferability. While on the other hand, an ordinal utility function only compares

solutions by pairs without quantifying the difference.

It is important to highlight that when a-priori methods are used, the problem

is no longer multi-objective from a mathematical point of view. All the complexi-

ties associated with true multi-objective optimization problems in terms of choosing

the solutions and showing them to the decision maker or user disappear, and the

resulting problem is virtually indistinguishable from a standard single objective op-

timization one. There is no need to or even sense in finding a Pareto front in these
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cases.

Methods to define the utility function include weighted exponential means such

as

U =

{
k∑
i=1

ωsi [Fi(x)− F o
i (x)]s

}1/s

(2.5)

Where s is a parameter to specify the relative importance of the outliers. Values

of s < 1 result in high valued functions not having a big effect and values of s > 1

result in high valued functions affecting heavily the utility function, or in other

words, allowing some good functions to compensate for other poor functions (Dai

and Scott, 2006). For s = 1 the utility function is the well-known simple weighted

mean. One problem with this type of utility functions is that the different Fi can be

measured in different units, and the orders of magnitude can also vary. This means

that the sum may not make real sense. This can be corrected by transforming the

functions Fi into other dimensionless functions that can be compared. One of those

transformations is referred to as normalization and returns values between 0 and 1

(Koski, 1981).

F trans
i =

Fi(x)− F o
i

Fmax
i − F o

i

(2.6)

The weighted Tchebycheff method consists in looking at the higher term of the

weighted mean of different solutions and selecting that one for which that term is

minimum. In the lexicographic method, the functions Fi are ordered in a rank of

importance and then optimized sequentially (Marler and Arora, 2004). This method

imposes progressively more severe constraints as the functions get lower in the rank.

Goal programming consists in selecting targets for each function, and then mini-

mizing the sum of the deviations. As for the weighted mean methods, the deviations

can be transformed functions so the sum makes sense (Charnes and Cooper, 1977).

A posteriori articulation of preferences These methods consist in finding or

approximating the set of Pareto optimal points and then have the decision maker
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choose the preferred solution amongst them. One of the main advantages is that the

decision maker can change the criterion without the need to recalculate the entire

problem again, as the Pareto front is already available. This makes these methods

more robust when a clear and undisputed preference function is hard to define.

Several methods exist for the generation of the Pareto front, some consider solv-

ing the problem for a parametric preference function and then vary the parameters to

obtain different points of the front. Examples of this approach are physical program-

ming (Messac and Mattson, 2002), normal boundary intersection (Das and Dennis,

1998), or normalized normal constraint (Messac et al., 2003). Other approach to

find the Pareto front is using multi-objective evolutionary algorithms such as genetic

algorithms (Deb and Sundar, 2006).

The result of all these methods is a set of solutions among which the final solution

should be chosen. By definition there is no advantage in choosing any solution that

is not part of the Pareto front. However, there is still the question of which of

those solutions is best, and at that point a preference has to be articulated, but it is

generally easier and more intuitive for the decision maker to do that when visually

presented with real possible solutions rather than before knowing what the solutions

look like (Wang et al., 2017).

Another advantage of a posteriori methods is that it is compatible with the con-

cept of set-based design concurrent engineering, a design framework in which a set

of possible designs are considered in principle and then elements of the set are pro-

gressively discarded as the design advances (Sobek et al., 1999). This methodology

has been applied for platform based families (Levandowski et al., 2014)(Raudberget

et al., 2015) and the initial set can be the Pareto result of a multi-objective search.

Interactive articulation of preferences This method consists in refining the

area where the final solution is searched after successive iterations of optimization

runs and the feedback from the solutions that appear. It is a combination of the
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other two in which each iteration is a restricted search of the Pareto front according

to a criterion that can be modified and influenced by the results. Commonly the

iterative articulation of preferences is done over the Pareto set of solutions looking

at the objectives, although some methods perform that articulation looking at the

design variables rather than the objectives (Hettenhausen et al., 2013). The method

proposed in this thesis can either be used as a posteriori articulation of preferences

or as part of an interactive search.

Value driven design

Value-Driven Design or VDD is a framework against which methods, processes, and

tools can be assessed (Collopy and Hollingsworth, 2009, Hazelrigg, 1998). It differs

from traditional design methods in that instead of working to meet a set of require-

ments such as dimensions, performance, etc., the task of the design team is to create

a design that yields the highest score on a function that converts all the considered

attributes to a scalar (Collopy and Hollingsworth, 2009).

It is typical in value driven design to use surrogate modelling, which is the practice

of replacing realistic models that replicate the physics of the real world products with

mathematical models that replicate the results of the original models. This is done

when the original models are too complex and a full analysis is not feasible in terms

of computational time. The idea of surrogate modelling is akin to curve-fitting,

although not restricted to one variable (Collopy and Hollingsworth, 2009).

The use of surrogate models has two advantages:

• The model is more or less continuously differentiable.

• They are computationally less expensive.

The defining characteristic of Value-Driven Design is that engineers, when making

design choices, select the best design rather than selecting any design that meets the
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requirements, or the design that is most likely to meet the requirements (Collopy and

Hollingsworth, 2009)(Hazelrigg, 1998). Under Value-Driven Design, the attributes

are assessed with an objective function or value model, which gives a scalar score to

any set of attributes. The biggest challenge in implementing a process within the

VDD framework is generating the objective function (Collopy and Hollingsworth,

2009), which needs to take into account a large number of factors that provide the

product value.

Collopy (2009b) analyses several methods candidate to be used as value model

and assesses them according to three attributes:

• Truth or accuracy

• Beauty or lack of complexity

• Justice or capability to lead to right decisions

The reason for beauty, a very subjective term, being in the list is mainly for

transparency. A transparent method is more reliable as the results can be better

understood. Most methods use economics and currency as the unit for the value

function. The surplus value models consider how far the design is from the ideal

revenue if there were no competitors, i.e. considering the maximum price above

which the customer would not buy that good. The VDD approach is focused on

single products, and not on product families or ranges.

Value-driven design has been demonstrated as an alternative to other multi-

objective optimization techniques to define the Pareto frontier for products as com-

plex as satellites (Miller et al., 2014)

However, defining an appropriate value model that fully captures the designer

preferences is difficult, and guidance on how to develop them is scarce. Lee et al.

(2014) provide guidance to design appropriate value functions based on the present

net value and the axioms of utility theory (von Neumann and Morgenstern, 1944).
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Those axioms are:

• Completeness: The decision maker can express a preference between any two

outcomes.

• Transitivity: The preferences are consistent in repeated pair-wise comparisons.

• Continuity: The preferences can be described by a scalar quantity.

• Convexity: A greater chance of a preferred outcome is preferred.

• Independence: The preference between outcomes is independent of other out-

comes.

The paper goes on to define further characteristics of effective value models:

• Single decision maker: The introduction of more decision makers will result

on the impossibility to define a value model. This is a result of Arrow’s im-

possibility theorem that states that the preferences of several agents cannot

be combined into a single criterion that satisfy all of them (Arrow, 1950).

• Ranking: The value model must return a scalar number that can be ordered.

• Uncertainty: The model incorporates the believes and uncertainty of the de-

cision maker.

• Risk preference: The preferences for the outcome take into account that un-

certainty.

• Rationality: The action is based on maximization of the utility.

• Driver of value:The driver is the net present value of profit for a company or

the societal benefit for a non-for-profit entity.

• Impact of actions: Predicts impact of design decisions on the system and

environment.
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• System behaviour: Predicts how the system and environment interact to im-

pact outcomes of concern.

• Stakeholder actions: Predict the impact of stakeholders actions on the system,

environment and decision maker.

• Stakeholder concerns: Predicts aspects of system and environment that drive

the stakeholders’ decisions.

Although the value driven design approach is in use in some industries, the main

difficulty to implement it lies with the complexity involved in designing the value

function, and the inherent effect that once that function is designed the designers

are blind to the solutions that would have fitted other alternative definitions of

that function. This can be overcome by defining successive value functions and

running the problem with each of those definitions, but then, which one is the real

value function? The other downside of this approach is that this method may be

unable to search non-convex regions of the Pareto front (Ehrgott and Wiecek, 2005),

i.e. regions where the objectives of the Pareto points are poorer than the linear

interpolation of some other Pareto points. This case is very real when combining

components to obtain a design, such as the case that will be presented in this thesis.

Conclusion on decision making

Decision making is a complex social process, and any non-trivial reduction of the

problem leads to missing points that can be important.

Cases such as the one presented in this thesis are inherently multi-criteria decision

problems, it is not possible to select a single criteria among all the existing ones and

ignore the others. The question is which of the two principal approaches to follow,

either articulating the preferences a priori and define a single objective to optimize,

such as VDD or pre-emptive methods; or a multi-objective approach to present the
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decision maker with a set of non dominated possible solutions.

The problem with a priori methods is that it is already very hard to define a

good preference function that truly reflects the desirability of products with a cer-

tain level of complexity, and this difficulty greatly increases when the design object

is a family rather than a single product. Another downside, is that by articulating

preferences a priori, potentially good solutions are kept invisible from the decision

maker (Marler and Arora, 2004), since the search will only return a good solution

in the direction specified by the preference function, ignoring other solutions. A

simplified preliminary study was done following an a priori approach (Zapico et al.,

2015), and the shortcomings have lead to the decision to avoid this scenario as far as

reasonably possible, preferring a multi-objective approach instead. This approach

allows the decision maker to compare between different possibilities, making it eas-

ier to articulate the preferences after observing what is feasible. However, the share

of solutions included in the Pareto front increases dramatically with the number

of objectives (Deb, 2001)(Khare et al., 2003), and for more than ten it approaches

100% of the solutions, as can be seen in figure 2.6 (Ishibuchi et al., 2008), where

the x-axis is the number of objectives for a problem and the y-axis the typical per-

centage of valid solutions that belong in the Pareto front. This figure is based on a

500 variables knapsack type problem, i.e. maximizing the value of the items to put

in a bag with a weight limit, and is representative of the expected trend, but the

values for each particular problem may vary depending on the individual character-

istics such as number and type of variables or relation between the objectives. For

problems such as the case study that will be presented in this thesis, multi-objective

optimization considering all of the objectives is unmanageable unless some objec-

tives are combined, which represents a compromise between pure single and pure

multi-objective approaches. The purpose is to present the decision maker with a

legible and understandable set of solutions that can be easily visualized while at the
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same time avoiding undue restrictions that would hide potentially good solutions,

so the decision maker can still see what their trade-off means over real solutions.
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Figure 2.6: Non-dominated solutions as a function of the number of objectives (Ishibuchi et al.,
2008)

Due to the restrictions imposed by the no free lunch theorem, this thesis can not

recommend a particular searching algorithm for all cases. The case study will be

done with a genetic algorithm but that will be a specific choice for this case.

2.2.2 Fuzzy mathematics

A short introduction to fuzzy mathematics is now presented as this is a technique

that will be extensively used in this thesis to assign a score to the degree to which

a product meets its performance requirements.

The fuzzy branch of mathematics includes fuzzy sets, fuzzy logic, fuzzy arith-

metic, fuzzy functions, fuzzy algorithms and many other sub-fields. It was proposed

by Lofti Zadeh in the 60’s and has become common use in the study of systems that

do not have well defined properties. A fuzzy set is defined on a domain, normally the

set of real numbers, by a membership function that can take values between 0 and

1. 0 means the element does not belong in the set, 1 means the element completely

belongs in the set, and any value in between means that the element somehow be-

longs in the set (Zadeh, 1965). Fuzzy sets are particularly suitable for representing
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human assertions such as It is very unlikely that there will be a significant increase

in the price of oil in the near future. (Zadeh, 2001) When trying to quantify that

last expression there are three obvious obstacles:

• What does very unlikely mean? Is it 1% chance or 10% chance?

• How much is a significant increase? Is it $10 or $100

• Is there a borderline between the near future and the distant future? When?

The fuzzy approach proposes to represent the terms in fuzzy sets, as in figure 2.7
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Figure 2.7: General example of fuzzy sets

Fuzzification

Fuzzification is the process of constructing and designing the functions that represent

the membership to a fuzzy set (Wierman, 2010). The manual methods used for this

purpose belong to two main categories (Watanabe, 1993):

• Frequency. Based on the percentage of experts that consider an element to

belong to the set.

• Direct estimation. Based on ratings for compatibility between the element and

the set.
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In addition to these manual methods, there are also automated methods using arti-

ficial neural networks, genetic algorithms, deformable prototypes, gradient search or

inductive reasoning to read large data sets and construct the membership functions

(Wierman, 2010). Automated methods are more suitable for cases in which there is

a large amount of data available. This is not the case in the method presented in

this thesis where the fuzzy sets will be based on the ratings of a restricted number

of people, and the fuzzification method to be used will be manual.

Applications related to product family design

In a review of fuzzy logic applications in product family development (Agard and

Barajas, 2012), fuzzy logic has been used to define the QFD (Quality Function

Deployment) to translate customer desires into design specifications. Li et al. (2016)

used fuzzy arithmetic to implement expert’s opinions in the definition of common,

modular and scaled components, but no work has been found to use it for evaluation

of the product families. Those efforts employ crisp - non-fuzzy - parameters, such as

the metrics introduced by Thevenot and Simpson (2007). It has also been used as

a method for aggregating information of different types in multi-objective decision

making problems (Ekel et al., 2016). Li et al. (2016)

Conclusion on fuzzy mathematics

Fuzzification is the method used in this thesis to assess how a product meets perfor-

mance requirements for two reasons: Firstly, it is a method that allows for aggregat-

ing and comparing different performance attributes as all are measured in the same

units, those of goodness. And secondly, unlike other methods such as deviation

from an ideal figure, it can incorporate non-linear relations between the physical

units measuring a performance attribute and how good that is, which makes it in

line with a more realistic perception of how good the attributes really are.
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2.2.3 Introduction to modelling and simulation

Product modelling is a fundamental practice in engineering, it can be argued that

modelling in one way or another is the main contact point between engineers and

the products (Eckert et al., 2015). As this section is intended as introductory to

modelling and simulation, the main questions to be addressed are what is a model?

and what is a simulation?

What is a model?

There are several definitions for a model. A model is a representation of information

related to a product (Maier, 2016). Or according to the US Department of Defense,

a model is ’a physical, mathematical, or otherwise logical representation of a system,

entity, phenomenon, or process.’(DoD, 1998), whereas Frigg and Hartmann (2012)

consider physical objects, fictional objects, set-theoretic structures, descriptions or

equations, and combinations of them. In other words, a model is a simplification

of the real event that involves a degree of accuracy that is enough for the purpose

of our interest, without the need to replicate extra aspects. Models are widely

used in research and development and built specially for particular purposes. An

example is a clay model of a car, its intention is to provide a good visual idea of

the shape of the car in 3D and sometimes be used for aerodynamic studies in a

wind tunnel. A clay model is excellent for those purposes, much better than any

drawings or 3D rendering on a screen for visualization, and better than a CFD

model for aerodynamics. However, a clay model of a car is useless for estimating the

acceleration of the car or the ride quality. For those purposes, completely different

types of models are required.

There are many types of models used in engineering, such as scale models, er-

gonomic bucks, working mules, CAD models or mathematical models, which include

dynamic models, FEA models or CFD models. They serve different purposes, some
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are functional models that predict the performance of a particular system, whereas

others are only intended to show the shape.

The definition of model provided at the beginning of this section distinguishes

between physical, mathematical and otherwise logical models, and provides further

definitions for the different types (list not exhaustive):

• physical model :a model whose physical characteristics resemble the physical

characteristics of the system being modelled. This type includes all the scale

models and different types of bucks or mules.

• symbolic model :a model whose properties are expressed in symbols.

• graphical model :a symbolic model whose properties are expressed in diagrams.

This includes diagrams, decision trees, etc.

• mathematical model :a symbolic model whose properties are expressed in math-

ematical symbols and relationships

The models required for this thesis are those that are capable of relating com-

ponent choice with performance. Although it is possible to use physical models,

specifically scale models, to predict some performance attributes for several ma-

chines, being aerodynamic or hydraulic performance obvious cases; it is not feasible

for a problem such as the one presented in this case study due to the difficulty of

building scale models of the engines, or all the necessary component instances. Any

other type of model not relying on mathematical relations somehow, is not capable

of providing the required estimation of physical performance. And within the math-

ematical field, non realistic models such as surrogate models have already been ruled

out due to their incapability of identifying discontinuities and singular points. For

the type of problems that this thesis addresses, only models based on calculating

the physics of the machines can provide the necessary information.
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Most problems in Physics or Engineering are complex. The sought after result

or behaviour depends on many variables and details and cannot be accurately repre-

sented with a single and elegant equation. If we wanted a perfectly accurate model,

we would need to consider every single factor that has an effect on the outcome.

Even for an overly simple example such as a free falling object, that would ultimately

mean taking into consideration the impact of every molecule of Nitrogen and Oxy-

gen in the air, and the position, angle and deflection of every cubic millimetre of the

object, making it an infeasible problem to solve. It is also hard to decide where the

limits of the system are, as the local conditions of the air cannot be isolated from

the whole atmosphere as a system, which itself depends on the radiation of the Sun,

etc. In practice, every mathematical model has to restrict the system boundary and

restrict the effects and the granularity applied. In the case of the free falling object,

the model can be something as simple as a point mass subject to the gravity law, or

a mass with a surface considering the air resistance as a linear/quadratic law. This

will not be an exact representation of the problem but good enough in most of the

cases.

When designing mathematical models it is important to account for the effects

that are relevant for the intended purpose but also to simplify or eliminate those

which are not, to avoid computational burden that will slow down the simulation

without adding any value. This is of particular importance in cases where the models

are used for optimization, and need to be run a large number of times.

What is a simulation?

Simulating is synonymous with running a model, i.e. providing inputs to the model,

calculate it and obtain the outputs. In other words a simulation is the imitation of

a real process by another process (Hartmann 1996, Humphreys 2004). A simulation

can be static or dynamic, the former consists on a single step calculation, although

54 Miguel Zapico



Chapter 2. Literature review

there may be some parts of that calculation that involve iterations or integration

over lengths, surfaces or volumes, such as for example a finite element analysis sim-

ulation. The latter, dynamic simulation, involves the simulation of a system over

a period of time and, with the exception of the simplest problems, this invariably

requires the use of some sort of software with a numerical integration method. Sev-

eral software packages are readily available for this, some are proprietary such as

Matlab/Simulink, Dymola or MapleSim, while some others such as Octave, SliLab

or OpenModelica are open source, the list is not exhaustive. The models in this

thesis have been written and simulated with Simulink for convenience, but this par-

ticular choice has no effect on the results. The second part of running a simulation,

after writing the models, is to select a solver to integrate the models over time. This

sometimes has a profound effect on the result, as some problems require particular

types of solvers, and using the wrong one can crash the simulation, or in the worst

case, yield false results. Solvers can be classified according to several criteria:

• Ordinary or partial: depending on whether the model involves ordinary differ-

ential equations (ODE), typical for multi-body mechanics problems, or partial

differential equations (PDE), typical for computational fluid dynamics.

• Fixed step or variable step: depending on whether there is a fundamental

time step, such as the case of control systems where that fixed step is the

controller clock cycle, or not. Variable step solvers vary the time step during

the integration depending on the rate of change of the variables. This is an

advantage as it allows the simulation to speed up during periods where the

system activity is low, reducing the total computation time. However, it is

still fairly common to use fixed step methods for this type of problems, or at

least limit the maximum possible step to reduce the errors.

• Continuous or discrete: depending of whether there are continuous variables,
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such as almost all physical problems, or only discrete variables, such as state

machines or sequencing problems.

• Explicit or implicit: explicit methods can be used when all the outputs can be

written as functions of the independent variables either in a direct way or a

cascade. Implicit methods need to be used when the output variables cannot

be isolated, which is typical of bidirectional mechanical problems where there

is not a clear direction of flow. Some of these problems can be rearranged to

be explicit by doing the approximation of applying a time step delay in all

output signals that are fed back to the model.

• Stiff or not stiff: depending on whether there are variables in the model with

very different rates of change and frequencies.

• Order: this is the order of the error generated by the solver, for example a

solver of order 2 means that the error tends to zero at the same rate as the

time step to the third power.

Conclusion on modelling and simulation

The target of this thesis is to provide a method to guide the design of a product

family by choosing the parts that can be made common to all or a subset of products.

As this analysis is intended to be done at an early stage, it is fundamental to explore

how each product would be depending on the selection of parts to build it. This

can only be done by either experimenting with physical parts or using some kind of

mathematical model. The former is expensive in terms of both money and resources,

as well as limited in scope. It is not possible to test a large number of combinations

physically, for the example of industrial trucks, assuming a single product with 3

possible engines and 6 pumps, this method would require to build 18 prototypes,

already a challenging number. And when more parts are considered such as the mast
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for different lifting heights, or considering a whole product family, the number of

prototypes can easily get into the thousands, which renders this method impossible.

There are several mathematical methods to estimate a product’s physical per-

formance depending on its components. They range from simple methods such as

interpolating from existing similar products or building a reduced number of proto-

types, to full simulations. This latter method is the one chosen for this thesis as it

allows to virtually test any combination of components not only to estimate hard

performance figures but also performance through any working cycle.

This chapter has reviewed the existing literature, identified advantages, problems

and different approaches as well as the existing gap that this thesis will attempt to

fill. The next chapter will focus on the methodology followed to arrive to the method

that will be presented in the subsequent chapters.
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Methodology

This section will first provide a background from the author’s perspective and expe-

rience, then an overview of the research methodology theory and finally a roadmap

of the methodology followed during the research.

3.1 Author’s experience

The author has spend over fourteen years in R&D departments of several companies,

the majority of the time in two of the top five major industrial truck manufacturers

worldwide. This section is mostly a recollection of the experience acquired during

that time and written in first person. That experience is fundamental for the de-

velopment of this thesis as the topic and requirements arose from it. The level of

detail is restricted by confidentiality and kept to a general overview.

First I worked in a department dedicated to a particular variety of truck, known

as reach truck and described in the next chapter. There was an existing truck in

production in 2005 and I have seen the development of two additional trucks; the

first of them, called truck A, a new type of product as an alternative to the main

option and the second one, truck B, a direct replacement for the main product.

Both trucks were designed for different capacities, from 1.2 to 2 tonnes, and both
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were designed with little regard to other products of the family, other than trying

to re-use existing parts. For the truck A, many new components were designed, and

the truck kept very little in common with the existing main truck, the only major

component in common was the drive unit, and it was a deliberate choice to keep it.

Truck B was a much closer match to the existing truck, sharing many more parts

and principles. However, apart from specific cases, such as the replacement of a

drive unit with a part present in a big selling truck of a different type, I have not

seen too much combined effort to design different trucks as part of a bigger family

from the beginning.

My role in the second company was in a team not linked to any particular

product, and hence the exposure to different types of trucks was much bigger. My

main mission was to build mathematical models of different systems and estimate

several performance figures for alternative components and configurations. Here

was where I realized the power of using simulation for assessing a large number

of possibilities in a relatively fast and cheap manner. As an example, one of my

projects consisted on assessing the impact on fuel consumption of fitting different

kinds of engines, pumps, lifting mechanisms and drive trains. A selection of the

potential configurations were based on existing products, so the results could be

validated.

After that, I left the industrial truck industry but continued writing vehicle dy-

namics models and simulations with a well-known Formula 1 and supercars company.

In that job I learnt about sampling searching spaces and running simulations with

higher degrees of accuracy and more complex cycles such as the response of a racing

car during a lap over a particular track, where the accuracy needs to reach the tenth

of a second.

My current job with the biggest steel producer in the world has moved away

from dynamic simulations but on the other hand it has made me more familiar with
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searching over vast spaces and using a diverse set of optimization techniques such

as genetic algorithms or ant colony optimization. This recent experience has also

helped me understand better the difference between truly multi-objective and single

objective optimization, and be more aware of the shortcomings of the latter. This

last point has had a definite influence in the thesis, shifting the focus from developing

an appropriate preference function for a product family to the generation of a Pareto

set over which the decision maker will choose its preferred solution knowing what is

possible and what is not.

3.2 Methodology theory

Design is a complex topic involving multitude of different aspects, and design re-

search must account for this by being open in scope and draw from many varied

fields.

The main goals of design research are understanding design and improving it

(Eckert et al., 2003), being the former a pre-requisite for the latter.

Blessing and Chakrabarti (2009) divided design research in four stages, this

methodology is known as Design Research Methodology or DRM.

• Criteria definition: definition of the criteria or objective by which the design

will be evaluated.

• Descriptive study 1: literature and observation to understand what factors

influence the identified criteria.

• Prescriptive study: development of a method to improve the current situation

according to the identified criteria.

• Descriptive study 2: evaluation of the applicability of the method and the

success in improving the identified criteria.
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Eckert et al. (2003) proposed a spiral model for design research, which is shown

in figure 3.1 and differs from the DRM in that it is a continuous process that each

project can enter and exit at any pair of phases depending on the scope, does not

require to identify a criteria for success as a premise, and recommends validating

each of the stages rather than a unique validation at the end. The arrows in that

figure leading to cells called Evaluation of ... could be interpreted as bi-directional

to reflect possible iterations depending on the results of the evaluation.

Figure 3.1: Spiral of design research (Eckert et al., 2003)

The approach followed by this project will be declared in section 3.3 research

methodology.

3.2.1 Case study as a design research methodology

Case study methodologies are common in several fields, and have a long tradition in

social and life sciences. They are fully discussed by Yin (2017) who defines them as
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empirical studies of phenomena in their real context with which they are intrinsically

associated. There are advantages and disadvantages of case studies as a research

methodology (Zainal, 2007) (Yin, 2017), advantages are:

• The data is examined in the real context

• Allow for quantitative and qualitative analyses of the data

• Helps to explain the complexities of the real life scenario

And disadvantages or criticisms are:

• Potential lack of rigour due to weak methods or biases

• Difficulty to generalize the results

• Can take too long and produce too much data difficult to organise

This methodology is also used in engineering and design research, and Tee-

gavarapu et al. (2008) argues against the main criticisms when the methodology is

applied in these fields:

• Case studies are rigorous if the stages are thoroughly followed. They benefit

from triangulation, or the fact of collecting data from different sources and in

different processes and observe how they converge.

• Many universal theories were based on analytic generalization of single studies

rather than finding statistical significance after a large number of experiments.

The key is the criticality of the experiment or case study.

• Time and excessive data can be relevant sometimes but is generally not the

case for design research when the case study is adequately defined.
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3.2.2 Verification and validation

Verification and validation are two terms that often appear interchangeably and

with blurred definitions. Pedersen et al. (2000) made the following distinction when

the terms are applied to engineering research:

• Verification: internal consistency, i.e. whether the results are coherent with

the premises.

• Validation: justification of knowledge claims, i.e. whether the theory is valid

and useful for the problem under study.

According to the writer’s experience, in the industry the terms normally denote:

• Verification: necessary checks and tests against the specifications to prove that

a prototype or product is built up to them, this includes safety, standards and

legislation requirements.

• Validation: necessary checks and tests to prove that a product or prototype

functions as expected and desired, i.e. not only it meets the specific require-

ments but it also fulfils its intended functions at an acceptable level.

Pedersen et al. (2000) further distinguishes between two validation approaches:

• Logical empiricist validation: a formal process that categorically proves or

disproves a proposal.

• Relativistic validation: a gradual process of building confidence in the useful-

ness of a new piece of claimed knowledge.

The former is the typical approach to prove a mathematical theorem or a theory in

hard experimental sciences, but it is not appropriate for a problem such as that one

under study in this thesis, where there is not a definite answer that can claim to be

the solution to the problem. For this second approach Pedersen et al. introduced

the validation square, shown in figure 3.2 and composed of four phases:
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• Theoretical structural validity: correctness and logic of the method and the

steps that compose it.

• Empirical structural validity: adequateness of the example over which the

method is tested.

• Empirical performance validity: performance of the method on a case study

is correct.

• Theoretical performance validity: performance of the method is robust beyond

the case study.

Figure 3.2: Validation square. Pedersen et al., 2000

3.3 Research methodology

This section explains the methods followed to address each of the research questions

and how that fits with the formal research methodologies previously described.

There is no criteria for success, and hence the DRM cannot be strictly applied,

although some of their concepts are.
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Regarding the spiral of design research, this project aims to understand the

benefits of platform design strategies, barriers to its adoption, propose a method

to overcome them and evaluate it. Hence it can be said to enter the spiral at the

phase Empirical studies of design behaviour, and progress through Evaluation of

tools. Strictly speaking, this project does not follow the spiral model exactly, as the

evaluation of theory and evaluation of tools are done together over a case study.

3.3.1 Research questions 1 and 2

How can a platform strategy improve product development processes? What are the

barriers to industrial adoption of product platform strategies? The literature on

the field will be reviewed together with an analysis of the current practice in an

industrial truck company based on experience, observation and interviews. That

analysis will involve a description of the industry and the design and development

process. Interviews will be conducted to gain a deeper insight on the reasons for

platform based designs and the barriers to their implementation.

These two questions correspond with the Empirical studies and evaluation of

empirical studies phases of the spiral research model.

3.3.2 Research question 3

Can an alternative product platform strategy be devised that addresses these barriers?

A method will be developed taking into account the problems identified in the

previous research questions. The method will be described in a general manner.

This question corresponds with the Development of theory and integrated under-

standing phase of the spiral model.
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3.3.3 Research question 4

How well could this new strategy perform in a real world industrial context? The

method described in the previous question will be demonstrated over an industry

case. This question corresponds to the Evaluation of theory phase of spiral model.

The theory will be evaluated over a case study and that will include all the necessary

work in terms of models and algorithms to run the case, so this part of the project will

also touch on the phases Development of tools and Evaluation of tools. However, the

tool used will be tailor made for the particular case study and it is not the intention

of this thesis to provide a tool that can be directly used for any other case.

3.3.4 Software

Two different software packages will be used for this research project:

• Matlab/Simulink: a language and suite for modelling almost any mathematical

problem. Simulink is a graphic environment to model and simulate dynamical

systems and nearly a standard for the automotive and aerospace industry. In

this project it will be used to write the models that calculate the different

performance attributes of each truck candidate. There are alternatives such

as Modellica or Octave, and the particular choice does not have an effect on

the results. Simulink was chosen for convenience and familiarity.

• R studio: an environment for the R language, this will be used for the de-

velopment and coding of the searching algorithm, as well as for the analyses

included in the validation tests. This language is widely popular in the data

analysis community and perfectly suited for the analysis, whereas its selection

for the main algorithm is due to convenience, i.e. availability and author fa-

miliarity with it. The algorithm could be coded in any other language such

as Python, Matlab, C++, etc. The choice can have an effect in the efficiency
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and computation time, but a proper analysis of that is out of the scope of this

project.

3.3.5 Verification and validation

Verification and validation for this project will consist of a series of tests that build

confidence in the two aspects; how the algorithm is logic and consistent - verification

- and how it provides useful knowledge that helps the designers - validation. The

method proposed in this thesis will consist of three main tasks:

1. Definition of objectives for the product family.

2. Performance models to estimate characteristics of potential products.

3. Algorithm to search for the most appropriate solutions.

A test or sets of tests will be defined to validate each of these tasks.

Objectives validation

This step is intended to validate the objectives towards which the problem will be

optimized. This is a validation task as the target is to prove that the definition of

the objectives is such that the solutions provide useful information. The technique

to use will be a comparison between the ranking of several solutions according to

the users and the ranking provided by the objectives model.

Performance model verification

The models written to calculate the different performance attributes will be time

simulation mathematical models. It is necessary to verify that those models replicate

the true physics, and for that some known products will be modelled and compared

to actual performance figures. This step is part of the verification process and one
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that can be classified as logical empiricist according to Pedersen’s classification as

it is a traditional model vs experiment results comparison.

Searching algorithm verification

This is a process to verify that the searching algorithm performs appropriately and

efficiently. The algorithm is heuristic and it cannot be proved how far the best

solution is from optimal, but statistical tests will be used to increase the confidence

in the algorithm efficiency.

Industry design validation tests

A validation exercise will be carried out over the case study and its results. It

consists of a series of tests to build confidence on the different steps that compose

the method. They include:

• Performance models - accuracy of the models used to estimate the different

performance attributes of the different products.

• Objectives - how they reflect the preferences of the decision maker.

• Search - check that the search has produced meaningful results.

• Results - consistency of the results with the problem principles.

3.4 Summary

This chapter has detailed the methodology that will be followed during this thesis

to find answers to the research questions, firstly looking at the current status in the

literature and in an industrial setting; and then proposing a method to address the

identified barriers and validating it over a case study.
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Industry justification

This chapter complements the literature review in the search to answer the first two

research questions on how a platform strategy can improve the product development

process and the barriers to its implementation in the industry. This chapter is mostly

based on the author’s experience and draws from the particular industry of materials

handling trucks where the author has spend 11 years. Nevertheless, its ideas and

conclusions can be generalized.

The mentioned industry of industrial trucks involves the vehicles used typically

in warehouses and industrial yards to move different sorts of loads from one place to

another. On a high level, those vehicles must meet two objectives to be successful:

move the loads with the efficiency and speed required and be as cheap as possible

to run and maintain.

This is a common and clear example of conflicting objectives, as it is almost

intuitive to any casual observer that the faster and more powerful the truck is, the

more expensive it will be and the more fuel it will consume.

The chapter begins with an overall description of the industrial trucks industry

and its characteristics that motivates this research on platform design. The second

part is an attempt at generalizing the problems found in this industry so that they

can be extrapolated to a general case. Finally, the third part is a wrap up of the
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chapter justifying the decisions made for the development of this thesis and leading

to its core chapters.

4.1 Industrial trucks - overview

Industrial trucks are a convenient example for this research, as they are complex

and diverse machines that nevertheless are all related by the fact that they perform

a similar function: move a load from point A to point B. This characteristic makes

them a suitable candidate for the application of common design approaches and

component sharing. On the other hand, there are significant differences between

different uses. The loads to be moved vary greatly in mass, size, shape and height

to be picked from or stack to. The environments vary from enclosed warehouses

and cold stores to timber yards, scrap yards, docks or even potentially explosive

atmospheres. Hence, while the basics look similar to the untrained eye, products

for different applications need to be designed with all the particularities in mind.

According to ISO 3691, the main international standard applicable to industrial

trucks, a self-propelled industrial truck is any wheeled vehicle having at least three

wheels with a powered driving mechanism, except for those running on rails, designed

to carry, tow, push, lift, stack or tier in racks any kind of load and controlled by an

operator. (ISO, 2012)

The fact is that there are many different vehicles that fit that description, the

main types are shown in figure 4.1

• Counterbalanced forklift trucks : Probably the best-known for the general pub-

lic. They are the kind of vehicles often seen in warehouses and industry yards

with an extendible metal frame at the front and a counterweight at the back.

This counterweight is necessary due to the load being carried ahead of the front

axle. The metal frame at the front is called mast, and it serves as the guide to
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Figure 4.1: Different types of industrial trucks)

the carriage and fork arms, which is the part that holds the load, which will

normally be resting on a wooden pallet. This type of truck typically ranges in

capacity from 2 to 40 tonnes, and can be powered by an internal combustion

engine (petrol, diesel or LPG) (1 in figure 4.1) or electric motors (2 in figure

4.1), in the latter case normally one for each drive wheel. The source of energy

for electric vehicles is a lead acid battery for most of the existing units, big and

heavy, so apart of the primary function, they also serve a secondary purpose

as counterweight. Currently there is a high focus on researching alternative

sources of power for electric trucks, such as other battery chemicals or fuel

cells. As suggested, the reason for that research is energy efficiency, and not

mass reduction. Counterbalanced trucks can be used indoors and outdoors,

with the electric versions easier to find in indoor applications. Although they

are generically referred to as forklifts, not all of them incorporate forks. There

are many of these trucks equipped with different attachments such as clamps,
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typically found in the paper industry, a protruding shaft for steel rolled coils,

or electro-magnets for a scrap yard.

• Reach trucks and straddle trucks : (3 in figure 4.1) Highly specialized trucks

purposely built to operate in warehouses with flat floors and normally have ca-

pacities of up to 2 tonnes. The operator normally sits at an angle of 90 degrees

with the direction of travel, and the trucks are much shorter than counterbal-

anced trucks. They normally have only three wheels, two at the load side,

which for this type of truck is called rear, and one, normally the drive wheel

at the front, right below the driver. This configuration allows reach trucks to

turn in very confined spaces and operate in narrow aisles where counterbal-

anced trucks would not be able to manoeuvre. The tyres are normally made of

a hard material such as polyurethane, and the heights at which they can stack

a load can reach up to 14 meters, for which they have 2, 3 or even 4 stages

masts. Compared to counterbalanced trucks - with the exception of container

handling counterbalanced trucks -, reach trucks can typically reach higher,

and hence their name, as they are designed to operate on flat well conditioned

floors where it is easier to ensure their stability. A consequence of the different

uses, is that reach trucks can spend up to 50% or more of their time lifting,

lowering and stacking, whereas counterbalanced trucks will rarely exceed 20%

in those operations, being the rest of the time driving from one place to other.

Reach trucks are always electric powered, as they are intended for indoor use.

One major feature that separates them from counterbalanced trucks is that

the load is carried between the rear wheels, and not beyond their axis. This

reduces the need for a heavy counterweight.

• VNA trucks - very narrow aisle: (4 in figure 4.1) This type of truck is designed

for working in the homonym very narrow aisle warehouses. Their purpose is

to move up and down an aisle and stack or retrieve loads from both sides.
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They never leave the aisle and are not used to load a lorry or take the load

somewhere else, hence they do not need to turn and are often guided by side

rails along the aisle. The forks can face both sides of the aisle and the capacity

is similar to that of reach trucks.

• Tow tractors : (5 in figure 4.1) As their name suggests, their purpose is to

pull a trailer with a load. These trucks are easy to spot in airports handling

the check-in baggage or in train stations pulling wheelie bins. They are also

typically electric powered and can tow up to 25 tonnes.

• Reachstackers : (6 in figure 4.1) Also known as container handlers or variable

reach trucks. They have an extending arm, called boom, rather than a mast

and can either have a carriage with fork arms or a container handling device

designed for 20 or 40 feet containers. The most common environment for this

type of truck is the docks, and the capacity can reach 52 tonnes. They are big

trucks and the driver needs to climb a ladder to reach the cabin. This is also

the most expensive type of truck, with prices ranging $150,000 to $300,000

• Rider pallet trucks : Some look like a downsized version of reach trucks (7

in figure 4.1) whereas others have a platform behind the main body for the

operator to ride on (8 in figure 4.1). They are also designed mostly to work

indoors in warehouses with capacities of up to 2 tonnes, however, they are not

capable of reaching equivalent heights.

• Pedestrian trucks : (9 in figure 4.1) The smallest type of truck, they do not

have a position for the driver, he or she walks alongside. Due to safety reasons

they cannot lift higher than a person height. Their capacities are similar to

other warehouse equipment, up to 2 tonnes.

• Side loaders : (10 in figure 4.1) This is a truck commonly seen in timber yards,
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with capacities around 6 tonnes, and two fork arms on one side of the truck

to carry the load parallel to the longitudinal axis.

Industrial trucks are rated according to the maximum load that they can handle

safely, and those loads can go from 1 tonne to 52 tonnes. In practice, this means a

high variability in size.

Figure 4.2 shows the main parts of a typical forklift truck on a high level. In-

dustrial trucks are highly configurable. even when considering only one type of a

particular brand, for example a 2.5 tons internal combustion counterbalanced truck,

the customer can choose among eight different engine options, three wheelbases,

three track widths, three different types of mast, each one of them with heights

varying from 2090 mm to 7800 mm in increments of 100 mm, eight sizes of forks,

two types of carriages, three types of cabs, and many more options. The number

of variations of trucks of this type that can be built without repeating the same

configuration is in the tens or hundreds of millions.

In terms of prices, industrial trucks range from $150 for a hand powered unit or

$4,000 for small motorized models to $300,000 for the biggest ones. A typical 2.5 ton

Diesel counterbalanced truck costs around $25,000, whereas a similar truck electri-

cally powered costs around $36,000 including the battery. Purchasing price is only

a relatively small component of the total cost of ownership. Considering a typical

design life of 20,000 hours, a 2.5 ton truck can imply a fuel bill between $60,000 and

$120,000 depending on the tax regime of the country in which it operates. Other

smaller, although significant costs include service and consumables such as tyres,

chains, oil, filters, fork arms, etc. However, the main cost by far of operating a truck

is the driver. For the typical design life, the operator can represent up to 80% of the

total cost. This makes a high performing truck capable of moving the same number

of loads in less time an attractive option, specially in areas within the developed

world where labour costs are relatively high.
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Figure 4.2: Main parts of a forklift truck

4.2 Market overview

To provide an idea of the market size, in 2012 a total of 943,724 new trucks were

sold worldwide (MMH, 2013). The top five manufacturers were:

1. Toyota (Japan)

2. Kion (Linde, Still & OM) (Germany)

3. Jungheinrich (Germany)

4. NMHG (Hyster & Yale) (USA)

5. Crown (USA)

Of those, only NMHG, and Kion until recent years, offered a whole range from

small pallet trucks to container handlers. The other brands are more specialized in
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warehousing or low to medium capacity counterbalanced, whereas brands special-

ized in big trucks such as container handlers do not appear at the top due to the

reduced market size. In addition to the list, there is a large number of smaller, al-

though important and competitive, manufacturers distributed all around the world,

and mostly dedicated to a specific range or type of product. The big manufacturers,

such as those on the list, sell trucks worldwide and operate as classical multina-

tional corporations, with representation, manufacturing facilities and even design

teams in several countries. Due to particular market requirements, the trucks are

not necessarily equal for each country, for example pallet trucks provided with a

rider platform are required to be able to coast to a stop when the operator leaves

the platform if they are intended for the American market, however, this feature is

prohibited in trucks destined for Europe. Another example is that many counterbal-

anced trucks are equipped with petrol engines in America, but this type of engine

in a truck is unheard of in Europe.

4.3 Product variability

Industrial trucks are highly customizable products for which the customer is pre-

sented with a large number of options. As an example, figure 4.3 shows the main

available options for a 2.5 tonnes counterbalanced truck. The table shows 55776

different possible configurations for that truck, and the list is not exhaustive, as

there are further options such as cab materials, heating, extra lights, CCTV, etc.

This variability is necessary since the truck needs to be adequate for the intended

application, and it is not possible to build all the trucks with the same mast height

for example. However, what is possible is to share technology and basic design

although the final dimensions are customized. This makes industrial trucks an

interesting candidate for a study on platform design and methods, with an almost

unaccountable number of different applications and not clearly defined a priori limits.
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Figure 4.3: Options for a 2.5 T counterbalanced truck

4.4 Product requirements

There are two main types of requirements: legal and commercial.

4.4.1 Legal requirements

Industrial trucks are work equipment, and as such they are subject to stringent

health and safety requirements. In the European Union they are covered by the

Machinery Directive 2006/42/EC, which sets essential safety requirements and also

assigns the manufacturer the responsibility to perform a product risk assessment

and design the vehicles according to the state of the art regarding safety. In order

to facilitate this task, ISO and CEN publish several standards, some of them are

harmonized by the EU Commission. Harmonization means that the EU Commis-

sion accepts compliance with the standards as a means to prove presumption of

conformity with the legal requirements. A little known fact, even among engineers,

is that unlike the automotive industry, for industrial vehicles it is not compulsory to

follow those standards. The only compulsory legislation is the Machinery Directive.

However, the text in the Directive is vague and it can be hard to prove compliance

with it in the case of not following the standards, specially if there is an accident

involved. In North America there is a different set of standards published by ANSI,
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but in recent years much work has been done to unify the requirements for all the

countries, resulting in the publication of the ISO 3691 series of standards intended

to cover all the world. However, even that ambitious standard still prescribes dif-

ferent requirements for specific markets, mainly aligned in two groups: countries

following European approach or American approach. Those requirements are not

design restrictive, i.e. there is no specification for any technology to implement.

What the standard specifies is a set of safety performance requirements to be tested

or assessed, such as minimum insulation, maximum level of electromagnetic emis-

sions, maximum speed at which the load may fall in case of hydraulic failure, or

maximum breaking distance depending on the speed. The manufacturers are free

to design the vehicles and sign compliance with the standards as long as they meet

the performance requirements specified in the texts (ISO, 2012).

All legal requirements must be fulfilled for a truck to be sold to a customer.

They are hard constraints on the design.

4.4.2 Commercial requirements

Apart from legal requirements, a truck needs to meet other additional requirements

to make it appealing to the customer. The truck needs to offer a level of performance

high enough to fulfil the required application, and be competitive with the other

products in the market. For example, a truck capable of lifting 10 tonnes with a

maximum lifting speed of 0.4 m/s and a fuel consumption of 8 l/h cannot be sold at

the same price as a competitor truck that achieves 0.5 m/s while consuming only 6

l/h of fuel. These performance requirements need to be defined by the brand and the

design process should be oriented to achieve them. Normally, and industrial trucks

are not an exception, achieving higher performance requires more expensive designs

using higher end technologies, components and materials, so there is a balance to

be found.
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4.5 Product development

This section is entirely based on the author’s experience with two of the major

industrial truck manufacturers. The normal process to develop a new truck begins

with a decision from the project review board. The decision can be triggered mainly

by two reasons:

1. A perceived gap in the market not covered by the current range and with

potential for profitability. That results on a new truck type.

2. A model that is in the process of becoming obsolete, either technologically,

ergonomically, economically or due to impending legislation, and needs re-

placement. That can be an update of the old model or an entirely new truck.

The project is then assigned to the development centre specialised on the particu-

lar truck sector, which adds it to the workload according to the specified priority.

The specialization of different design centres is not necessarily dependent on the

geographic market for which the truck is intended. Often the reason for the spe-

cialization is legacy, as some of the bigger manufacturers acquired smaller brands

dedicated to specific product types or markets. But even in the case that the devel-

opment centres are agglutinated in one location, there will still be separated teams

with expertise in particular products. One of the effects of this localization is that

different products are typically designed independently from each other, unless there

is a deliberate strategy to align them. There is a formal process consistent on sev-

eral milestones between the green light for the project to start and the final day

in which the vehicle is put on the market. Although each company will have their

own process, the typical stages between those milestones or gates according to the

author experience are showed in figure 4.4

The organisation can be akin to the lightweight project matrix organisation de-

scribed in Ulrich/Eppinger (Eppinger and Ulrich, 2012), although this can also be
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Planning

Requirements

Design/
Verification

Validation

Pre-production

Production

Figure 4.4: Typical design gate process

company dependent. The team assembled for a particular project is composed of

representatives from several departments, including engineering, marketing, manu-

facturing, finance and logistics. They meet on a regular basis and always before any

of the milestones is signed off. The requirements that must be met for sign off are

clearly specified in an internal document. The whole process can last from one year

for a small project such as adding a simple feature to an existing truck, up to three

years or more for a new truck. An example of a mid-range project is illustrated in

figure 4.5. The example shows a high level view, most of the mentioned tasks are

further separated in several subtasks.

The main steps included in the chart for gate 1 - planning are:

• Planning: all the project planning including times, resource allocation, etc.

• Ergonomic buck: this is not a working vehicle but a wooden or tubular struc-

ture on which several elements such as seats, levers, steering wheel, etc. can

be assembled to test ergonomics and driver perception.

For gate 2 - requirements:
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Figure 4.5: Typical design time line

• Concept design: this phase is where all the ideas for the new vehicle are

generated and evaluated. At the end of this phase there is a rough idea of

what the truck will look like, although not every detail is fixed.

• Competitor benchmarking: main competitor products are intensively tested

in order to define the design requirements. This benchmarking is to fine tune

the requirements, some level of benchmarking is also done continuously every

time a main competitor releases a new truck.

• Driving buck: this is a working prototype which differs greatly from the new

design, but on which new parts or solutions can be tested. Typically, this can

be a modified late model truck.

For gate 3 - design/verification:

• Production design: this is a long stage involving all the CAD design, perfor-

mance mathematical modelling and component specification. Depending on

the project depth it can last anything from six months to over three years.

• Development test: the development team starts conducting performance and

safety tests on the driving buck, as well as bench tests.
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• Engineering procurement: logistics start searching for parts according to the

specifications given by engineering.

• Proto A: this is a working prototype that will be very close to the final design,

only minor changes are expected between the two. This prototype is build in

a lab by hand, hence it is typically a very expensive vehicle.

• Engineering change notice: design is frozen, and further changes need to be

documented as engineering changes from this point.

For gate 4 - validation:

• Proto A validation: the development team uses the proto A vehicle to perform

all the necessary tests to ensure legal compliance and requirements fulfilment.

• Proto B: this phase involves the generation of the tooling that will eventually

be used to manufacture the truck. Unlike proto A, this prototype is built in

the factory and can be considered the zero series.

• Proto B validation: validation continues on proto B, as this is the final truck

on which legal compliance will be signed off.

• Software validation: Software is also validated at this stage. This is one of the

few things that can still have changes before production.

• DFMEA complete: together with the legally required risk assessment, this is

part of the paperwork necessary to sign off the truck. This is an acronym

for Design Failure Mode Effects Analysis, which is a bottom-up approach

consisting on an assessment of all possible failures that may arise in any part

of the vehicle, the consequences and the measures in place to prevent or detect

them.

• CE sign off: declaration of conformity with the Machinery Directive 2006/42/EC.
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For gate 5 - pre-production:

• Pilot: a reduced number of trucks go through the production line to check

everything is in place and correct. These will be real trucks to be tested by

specific customers as beta trials.

And for gate 6 - production:

• Production: the truck is finally rolled out to the factory to be mass produced.

This is an example of the design process for industrial trucks, other companies

dedicated to other type of products may have different processes involving different

time scales, and different iterations, although the philosophy will be similar.

The most salient point of the process described above for the purposes of this

thesis, is that this process involves a single product, with no regard to the other

products in the family. The method to be developed and explained in subsequent

chapters will consider single products as a part of a larger family, and will guide the

selection of components for each member. It will naturally fit before the stage of

production detailed design.

4.6 The need for product platforms

An interview was conducted with two long experienced senior engineers (29 and 34

years in industrial truck product development for the purpose of understanding the

challenges associated with introducing a platform based product family in a real

industrial setting. The following is a list of salient points:

• Pros and cons: ’Platform based products give a major advantage in logis-

tic and financial terms, and also reduce development time and increase the

capability to react to customer demand and offer the right product. On the
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other hand two products that are too similar may make one of them more dif-

ficult to sell, especially if the customers are able to upgrade a cheaper product

themselves by changing a small number of components.’ This quote shows

the alignment between real experience and the pros and cons detailed in the

literature review and awareness of the potential cannibalization issue such as

the VW-Skoda issue reported by Shu (2005).

• Traditional methods in use: ’Decisions on whether to base a product line on

a platform or what elements go in the platform are taken based on experience

and ad-hoc analysis. A structured mathematical tool would be welcome but it

would have to be validated and proven somehow before it is incorporated to the

design process.’ Clearly there is an existing gap for comprehensive methods,

but with an emphasis on reliability and confidence. Academic methods need

to be validated in the real world in order to be embraced.

• Coordination efforts: ’Introducing a platform based product line is a ma-

jor effort. It takes many resources from several departments.’ Another well

documented issue in the literature (Pirmoradi et al., 2014), (ElMaraghy and

AlGeddawy, 2014).

• Legacy and transition from existing offer: ’In the current range there are

many individual parts designed for different product variants that could poten-

tially be made common. This is due to them being designed independently with

little communication between the different teams and the lack of a deliberate

strategy to first design a platform and then the variants.’ This is the typical

scenario for a bottom-up platform strategy as defined in the literature review

chapter (Kalligeros et al., 2006), and has a profound effect as the benefits of

introducing new common parts needs to be weighted against those of keeping

the existing well-known parts.
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• Preferences: ’For industrial vehicles, the main point that the customers look

for is a low total cost of ownership - TCO -, which is not necessarily the option

with the lowest purchasing price. However, often the total cost of ownership

can be similar across different competitor products and then an appropriately

differentiated product has its value.’ The total cost of ownership is hard to

calculate as it involves many different costs and it is not easy to find an agree-

ment on how every factor affects it. There are studies of TCO for passenger

cars (Szumska et al., 2019), (Lebeau et al., 2013), but the case of industrial

machinery such as industrial trucks is more complex due to the effect of the

productivity that can be achieved with them being the main issue.

It is also difficult to model the balance between costs and other factors that can

make a product desirable, typically a company will define a set of requirements

but there is a degree of arbitrariness to them.

• Product variants requirements: ’There are many engineering challenges

in designing a common platform for several products. Perhaps the biggest one

is to understand in detail the requirements of each variant, as they may be very

different to each other. It is important to involve the experts in each model from

the beginning.’ This quote highlights the importance of the front end issues

and in particular the map from customer needs to functional requirements as

identified by Jiao et al. (2007).

• Performance trade-off and consistency across the range: ’Unavoid-

ably, there are conflicts between the different variants. Sometimes a decision

that is the best for the whole range is not the best for a particular variant.

In the early stages of designing a platform there are many uncertainties and

sometimes engineers need to take decisions without detailed knowledge using

educated guesses.’ This is an important point that highlights the uncertainties
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inherent to the early planning and design stages where the platform structure

needs to be defined.

It is clear that engineers are aware of the advantages and disadvantages of plat-

form based design and it is infeasible in practice to offer a large range of products

without some degree of commonality, as echoed by Otto et al. (2016). However, it

is not so obvious where that commonality should lie for optimal results, and struc-

tured methods for that optimization process are not always well understood or even

used. There is still work needed to align industrial practice with academic research

(Simpson et al., 2001)(Simpson et al., 2014).

4.7 Generalization

The previous sections have introduced the world of industrial trucks, and this sec-

tion attempts to generalize the problem to most other types of manufacturing indus-

tries. This problem of designing and manufacturing a range of similar but different

products is common to many types of industries, such as automotive, domestic ap-

pliances, electronics, industrial machinery, computer equipment, etc. In general,

designing and producing an individual product in a separate way for each possible

application is expensive and inefficient, making it impractical (Simpson et al., 2001).

When facing the design of a product family, there are a number of issues about re-

quirements and implementation that need to be addressed. The list presented below

is based on the case of industrial trucks but applicable to many other products. The

issues are numbered arbitrarily for reference purposes, their number does not imply

importance, chronology or order of any type.

Product architecture:

1. Identifying the applications for which the company want to offer a product.
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2. Number of distinct products the company needs to cover all the identified

applications.

3. Identifying what components can be shared among what products and what

components need to be unique.

4. Balancing the advantages and disadvantages of component commonality.

5. Transition from the existing products to a platform based family.

Product performance:

1. Identifying and quantifying performance attributes to be considered.

2. Balancing some performance attributes with others.

3. Product performance consistency across the range.

The principal issues are, what do we want to obtain from our product family?

what is the final objective? How can we say that a potential product family is

preferable to other? All these issues are further elaborated in the next subsections.

4.7.1 Identifying the applications

To design a product family it is first necessary to know or define what kind of

applications to cover. Each application can be defined by the intended use, the

environment, and all the particularities that can make it different from another one.

For example, an automotive family may be intended to offer city cars and family cars

but not luxury cars. The applications can be a discrete set, e.g. a dishwasher and

a washing machine, or a continuous range, such as electric motors from appliances

ranging from a toothbrush to a home water pump. This is a top level definition of the

problem and there is not a unique interpretation of the level of detail that distinguish

one application from another. In the case of industrial trucks the borders between
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different applications are blurred and some arbitrariness is required to separate them.

For example, can it be considered as the same application two trucks handling the

same loads but one in a 100 meter yard and other in a 200 m yard? The working cycle

of the first one will include less driving as a percentage of the total energy consumed,

but otherwise they are still similar applications that may be served with the same

truck. This is also the case in industries such as automotive, but can be different

for other industries where the limits between applications are much clearer, such

as domestic appliances, where there is no middle ground between a dishwasher and

a washing machine for example. They are clearly different applications, although

there is still room for subtlety in distinguishing between a 7 kg and a 8 kg washing

machine.

This is a front end issue (Jiao et al., 2007) named product family positioning or

market segmentation (de Weck and Shu, 2003).

4.7.2 Number of distinct products

Another issue, similar but not identical, is how many products are required to fulfil

all the determined applications. This question may appear in a similar way to the

case of designing a product family from scratch, or in a different format when a

family, or a product, already exists. In the latter case, the question will take the

shape of do we need an extra product to cover this new application or can we use

an existing one?, or can we replace these two products by one or do we need to keep

two? Depending on how detailed the applications are, the number of products can

be equal or lesser than the number of applications, since one product may cover

more than one. Normally, the number of products is determined before any design

work is undertaken, i.e. it is decided to design a product to cover an application,

or a number of products to cover a number of applications. One of the purposes of

this thesis is to provide a methodology to assess possible product family solutions
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eliminating the hard constraint of the number of products. This is the concept of

product clustering explained in the literature review chapter (Pirmoradi et al., 2011),

and for the case of industrial trucks it is particularly important.

4.7.3 Identifying what components can be shared among

what products

This is referred to as platform identification in the literature review (Chowdhury et

al., 2011), and it is answered first in most methods, either one or two stage ones.

This is a question directly applicable to every type of industry or family for which

a platform strategy is even considered. Each product of a family is made up of

a number of components. Some of those components can be common to several

products, or even to all the products in the family, but what are the components

that can be made common? and what are the specifications for those components

so that they can be shared across several products? Those two questions cannot

be considered independently, there are three possibilities, which will be illustrated

using the particular case of industrial trucks:

• A priori platform identification The components to be made common are iden-

tified a priori and then the problem is what are the specifications that they

must meet. e.g. We want to build a family of industrial trucks and decide

that we will fit the same engine and pump to all of them. Then the task is

to design or specify an engine and a pump that will be appropriate for all the

products in the family. This approach requires a priori knowledge or experi-

ence to decide for what components this strategy is feasible. In the example

given, the pump would not be a suitable part to be made common across the

entire family, as this is dependent on the load to be handled. An experienced

team could decide to share a pump between trucks from 1 and 3 tonnes, and

another pump for trucks between 4 and 5 tonnes, for example. This approach
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corresponds with either of the two diagrams in the top row of figure 2.4 and

is a common approach across the industry.

• Predetermined or preexisting components A specific instance of a component

with determined specifications is already known and selected, then the problem

is to decide in what products it can be used. e.g. we want to build the family

of trucks and we already have an existing engine in production, probably from

the previous generation of trucks and we intend to keep using it. Can we use

that engine for all the trucks? if not, for how many of them can we use it? We

will need to find other alternatives for those products for which that engine

is not suitable. This situation is common when an already existing family is

extended, rather than designed from scratch. The scenario would be, we are

adding this new product, can we fit the existing engine to it?

• Open ended problem The problem is open on both sides, there is a large number

of ways to allocate component versions to product variants. How many product

variants can share a particular component depends on what component version

is chosen, and no a priori decisions are made. e.g. For the same family of

trucks, we want to find the best way to distribute a yet undefined number of

engine types among all the products. If we pick a particular engine, that will

fit some of the trucks and we will need a second type for the rest of the trucks,

or if we pick a different type of engine maybe it will fit all of them. This third

type of problem is more complex, as it is often difficult to define what ’best

way’ means. This has to consider the wider picture of the whole family, not

only that component.

These are three clearly different scenarios and are described for one component, a

real case will have several components and may lie across several of these options.

For example, we may be designing a family of agricultural tractors, which may have
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an already existing engine to be used for at least some of them -case with pre-existing

components- and we may be studying how many gearboxes are required for all of

them -case of open ended platform-.

4.7.4 Balancing the advantages and disadvantages of com-

monality

Another issue directly applicable to every case that proves a difficult one to answer.

It is specific to each problem and difficult to get agreement on. This is a trade-off

by nature, and often each decision is taken on a case by case basis, depending on

the importance conceded to it. Using the family of industrial trucks as an example,

if we fit the same engine to a 3 tonnes and a 5 tonnes truck, the 3 tonnes truck may

be overpowered, but the development will be easier, the purchasing price per engine

cheaper and the service simpler. On the other hand, if we fit the optimum engine

for each truck, the performance metrics are likely to be better, but at the expense

of a longer and more expensive development, higher prices and more costly service.

How can we compare both pros and cons?

4.7.5 Transition from the existing products to a platform

based family

This question is applicable or not depending on the circumstances rather than the

type of industry. The case in which some products already exist is common. In the

real world, the case of a company creating a product family from scratch is rare

although it may occasionally happen in cases of a major revamp or a hypothetical

new company entering a well established market. Normally a company will already

have an existing product line, or products and they would like to update them,

substitute them or add new variants. The existing product line as well as the
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order in which new product variants are added have an important influence on the

problem, for example, the possibility of reusing an expensive piece of tooling may

make a particular option more attractive than other, and even compensate for a

potential poorer performance or more expensive parts. A platform that arises in

this manner is referred to in the literature as a bottom-up platform (Kalligeros et

al., 2006).

4.7.6 Identifying and quantifying performance attributes

This task corresponds to the front issue of mapping customer requirements to func-

tional requirements (Jiao et al., 2007) and can range from a few for relatively simple

products such as pens or coffee makers to dozens for complex machines such as

industrial trucks or automobiles. Performance attributes are the metrics by which

a product can be measured. They are part of the typical product specification

sheet that the customers will read when deciding what product to buy. Although

a product may have many performance metrics, not all of them will have the same

importance, and finding the right balance between them is a problem on itself. A

typical practice to design a product is to set a list of requirements and then chose a

design that satisfies all of them. This is called ’satisficing’ (Simon, 1956) and does

not involve any process of optimization, it is common use in the industry as it is easy

to understand and manage. However, this approach blocks the path to potentially

more desirable solutions.

4.7.7 Balancing some performance attributes with others

The issue of balancing performance attributes is what makes a good product over-

all, how some features compensate for others. With several performance attributes

to consider it is difficult to define clearly and unequivocally what makes a product

superior to other. This is aggravated by the fact that some of the relevant perfor-
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mance attributes are naturally in conflict with others, a typical example of this can

be power and fuel consumption in a car. This leads to necessary trade-offs during

the design, some attributes can only be improved at the expense of others, and all

are further restricted by a target cost for the whole product. Most available methods

do not clearly address this, although some do (Chowdhury et al., 2011).

4.7.8 Product performance consistency across the range

Performance consistency is important also for many types of industries, and related

to brand reputation. Normally, a company will not be interested in designing a

product family that includes good and poor products, unless they are clearly differ-

entiated in ranges, such as basic and premium. In an extreme case, a company may

prefer not to offer a product suitable for a particular application rather than offer

one whose performance level is not consistent with the other products as this can be

damaging for the brand and prevent customers from returning for other products.

4.7.9 What is the final objective?

Although the last on of the list, this is the main question that encompasses all

the others when designing a product family. What is that the company intends

to achieve with that family? There is not a categorical answer that fits all the

cases. The objective is not simply selling the highest possible amount of products, or

designing the best possible products. In general a company would want to maximize

their profit, but may not want to do that at the expense of an enormous investment,

or by offering products that are out of what they consider their niche. There are

multiple factors and each case can be unique. Companies normally consider those

factors in a list of key performance indicators (KPI) to measure their performance

against their targets, but no universal KPI exist to measure the overall target for

all the companies. Some of those factors are:
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• Sales volume

• Gross profits

• Ratio income/outcome or margin of operations

• Reputation

• Geographic extension of the market

The ’best’ product family is that one which maximizes the objectives of the company.

How to define and model that is a complex problem in itself, it requires taking

decisions, assessing factors and making assumptions with high levels of uncertainty.

4.8 Summary

The industry described in this chapter presents a problem in which a company

has to offer a wide range of products with similarities among them but clearly

differentiated requirements, similar in that way to other case studies in the existing

literature. Most of the products share a similar architecture, i.e. a chassis, an engine

or motor, transmission, wheels and a lifting mechanism. While at high level this

is the same across the range, the parts can greatly differ for each product. This

type of product families differs from cases such as that of electric motors, analysed

multiple times in the literature and used almost as a de facto benchmark, in which

the products are not only similar on a high level view but also component wise,

being those components scalable and hence good candidates for continuous solving

methodologies. Problems such as that one described in this chapter require a solving

method valid for discrete systems, where there is no relation between two different

choices for a component.
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4.8.1 Case study approach justification

Figure 2.4 in the literature review chapter shows four different method approaches

to solve the problem of designing a product platform-based range. After having

described the particularities of the industrial trucks industry it is possible to assess

which of those approaches is a better fit for this problem. The approaches are

discussed in the same order in which they were described.

• Two-stage a priori platform identification: is a two-stage method and as such

it requires to optimize or decide on the common parts first and the individual

parts second. For the case of industrial vehicles there are parts that can be

fixed as common a priori, before even knowing the specifications for that part,

for example the seat, steering wheel and binnacle, or pedals. However, for

other parts such as the engine, it is not easy to say, for example, that models

from 2 to 5 tonnes will have one type of engine, models from 6 to 9 tonnes

will other type of engine, and then specify those engines. This approach is

unlikely to return a good solution unless it is based on prior knowledge. Even

if this were not a problem, the first approach also requires optimization of those

parts identified as common before having any knowledge of the parts specific

for each model, and this is also flawed for this type of machinery where it is not

possible to define the requirements for a component which is part of a chain

independently of the other parts of the chain. For example, it would not make

sense to optimize a pump for several trucks without knowing the specifics of

the hydraulic system of each one of those trucks.

• Single-stage a priori platform identification: is a single stage approach and

therefore the second problem of the previous approach is not applicable. How-

ever, the first problem is still relevant. Deciding on a priori common compo-

nents can be done based on experience, but it relies on a belief that what has
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been done before was ideal and will be in all circumstances, closing possible

opportunities for exploration.

• Single-stage no a priori platform identification: is a single stage approach and

the commonality architecture is not predetermined. This is a suitable candi-

date for this case as it is open to all combinations of common and individual

parts and their specifications. However, it can still be improved by the next

approach.

• Single-stage no a priori platform identification non predetermined number of

products: In addition to the previous one, this also allows for different maps

from applications to products, or different product clustering options, eliminat-

ing the need to take those decisions a priori. This is a considerable advantage

for a case such as this one, where the number of applications is not clearly

marked and there are many ways to cluster them into a manageable set.

The problem is now illustrated both theoretically and from an industrial point of

view, the next chapter will explain the basics of the method that this thesis proposes

and will claim as a contribution to knowledge in the field.

98 Miguel Zapico



Chapter 5

Developing a method to design

product family architecture

This chapter outlines and describes the method proposed to solve the identified gap

at the end of the literature review. The method is original and the main contribution

of this thesis.

5.1 Terminology used in this method

The following terms will be often used in this and the subsequent chapters. The

definitions are specific for this thesis.

• Component type: each of the components which are part of a bigger machine in

a general sense, comprising all the possible instances that can fulfil a function,

e.g. an engine.

• Component instance: each particular component that can be used to fulfil

a specific function, e.g. a particular model of 2.5 litre Diesel engine from a

defined supplier.

• Pool of components: set of all the available component instances.
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• Product candidate: each possible combination of component instances to create

a product that fulfils a particular application.

• Pool of product candidates: set of all the possible product candidates for all

the applications to be fulfilled. This set is divided into as many subsets as

applications exist.

• Family candidate: each possible combination of elements from the pool of

product candidates formed by selecting one element from each application

subset.

• Pool of family candidates: set of all the possible family candidates.

• Method: the whole process that is described in this chapter and demonstrated

in the next one.

• Step: each of the sequential tasks to be followed to accomplish the method.

• Performance model: model that maps a product candidate to the figures it

would achieve in the different performance attributes under consideration.

• Attribute goodness: value between 0 and 1 that relates a particular perfor-

mance figure to its desirability for a particular application.

• Aggregated goodness: value between 0 and 1 that relates a product candidate

to its desirability for a particular application.

• Objective model: model that provides a score for each family candidate against

one or several objectives.

• Search: or searching algorithm, is the step of the method that searches for the

solutions.
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5.2 Principles for the method

This chapter will present a method to aid the decisions on the structure of compo-

nent commonality across a product family. The scope is comprehensive from the

applications to be covered to the structure of platform and variants and the char-

acteristics of each component, and it adopts a single stage approach. The method

proposed will provide a Pareto set of solutions with conflicting objectives, such as,

for example, performance and costs as independent variables, leaving the decision

maker with a visual envelope of possibilities to analyse before deciding on the final

option. The novelty resides in three main points:

• Product variants are not predetermined. They are one of the outputs from

the method.

• Performance optimization and aggregation of performance is done with a fuzzi-

fication model, requirements are given as fuzzy sets instead of a list of hard

constraints.

• Truly multi-objective approach from intended applications to product family

structure and variants solved with a multi-objective genetic algorithm.

These three points are further explained in the next subsections.

5.2.1 Product variants not predetermined

Normally, the product clustering and family design problems are treated separately,

first and second problems. This allows for having two more contained problems at

the expense of optimizing the two of them independently, with the implied risk of

missing solutions. For the case of industrial trucks, this clustering is typically done

in two levels, the first of them is the fundamental type of application for which the

truck is intended, such as towing, general lifting and carrying, or warehouse; and
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the second level is a division in load capacities. This thesis will propose a method to

consider the applications to be covered rather than the products to cover them, so

avoiding the constraints generated by the solution of the first problem and typically

passed on to the second problem. This generalization increases the computational

complexity, and is not feasible for any arbitrarily large number of applications. In

cases where the number of applications is too large, a reduction may be necessary.

5.2.2 Performance optimization

The method presented in this thesis does not consider a list of requirements for each

product, but the degree of how good a particular performance attribute is for each

identified application. This approach allows for better products to have preference

over others which just meet minimum or desired requirements.

5.2.3 Multi-objective approach

A multi-objective treatment of the problem presents two main advantages over a

single objective treatment:

• Balancing several objectives into one is difficult to do and to check that the

combined function truly reflects the preferences. In the case of industrial trucks

there are many performance attributes that are important for the customer

and it is very hard to define a function that combines all of them together

with the purchasing price to provide a score that really reflects the preferences

and can be used to categorically say truck A is better than truck B. It is

necessary to consider all the objectives. A multi-objective approach shows

the set of solutions for all kind of balance between the objectives. This is

particularly true with two objectives, as the set can be shown in a 2D plot

easy to visualize. For higher numbers of objectives the visualization is less

intuitive and can become overloading for the person analysing it.
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• Performing trials with different ways of defining a single preference function is

computationally expensive, since it is basically repeating the entire problem

again. A multi-objective approach provides this analysis for any articulation

of preference in one go, although this run will typically take longer than a

single instance of single objective.

5.3 Method overview

The problem that this method is addressing can be posed as: Find the best product

families and commonality strategy to fulfil a number of applications from an existing

or hypothetical pool of components without imposing restrictions by a priori decisions

on commonality or product clustering.

Those undue restrictions, or a subset of them, are commonly found in several

methods available in the literature, and they refer to:

• Number and characteristics of variants predetermined.

• Platform and variant specific components predetermined.

• Variables of a continuous nature only.

• Performance defined as a simple attribute easy to estimate.

• Objectives based only on performance or wide statements such as sharing the

maximum number of components. No balance between pros and cons of a

platform approach.

The problem can be broken down into several sub-problems or questions. From

the statement of the problem, it is clear that the solution will take the shape of a

product family, i.e. a number of products that will cover a number of applications.
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So, what are those applications? And, what are the performance attributes

that need to be considered?

Furthermore, the products in the family will be built with some common and non

common components selected from a pool of existing or hypothetical components,

what is that pool of components?.

Defining a family from a pool of components is a combinatorial problem, and

there can be a large number of possible solutions, but the problem asks for the best.

Best is a term that requires some criteria to define it, what does best mean?,

and how can we find it or them?.

It is obvious that in order to find the best family according to some criteria it

is first necessary to be able to assess a family against those criteria, how can we

know how good is any given product family without building it?

The next subsections will look into these questions in more detail.

5.3.1 What are those applications?

This question consists in identifying the applications for which the company intends

to offer a product. Each application is an intended use that can be differentiated

from the rest. As it has often been mentioned in this thesis, application is not

synonymous with product, an application is a use whereas a product is a particular

set of components intended to fulfil at least one application. There is a map between

applications and products that is not necessarily one to one. An example of that

map, for illustrative purposes only, is shown in figure 5.1. Ultimately, there is a

map between applications and components, with products as a step in the middle.

The method presented in this thesis assumes the applications at the top and the

components at the bottom, and generates the products in the middle that map the

two extremes.

The set of product applications, once identified, is a fixed set for the remainder
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Figure 5.1: Applications to products map

of the problem resolution, and an input for the next steps, whereas the map between

applications and products can and is expected to vary for different potential solu-

tions. It is also important to clarify the scope of this thesis regarding the definitions

of the applications. This step is part of the described method, but it is taken as

given information, the methods to define the target applications are not part of this

project.

5.3.2 What are the performance attributes?

Once the applications are determined, it is necessary to identify the attributes

against which a product will be measured. They are the important features that

will define whether a potential product can fulfil an application and how well it does

so.

5.3.3 What is that hypothetical pool of components?

At this point, the possible components that will make up the products need to be

identified. The components need to be characterized so the different performance

Miguel Zapico 105



Chapter 5. Developing a method to design product family architecture

attributes can be modelled as a function of them.

As an example to provide an idea of how the combinatorial numbers escalate,

if the problem involves a family to fulfil 5 applications, each application requires 6

component types, and there are 7 component instances for each component type,

then each application can be implemented in 76 = 117649 ways, the pool of product

candidates will have 5 ∗ 117649 = 588245 elements in 5 subsets of 117649 elements,

and the pool of family candidates will have 1176495 = 2.25 ∗ 1025 elements. This

example shows how the complexity of the problem increases from a manageable

number of candidates for a particular application to a very large one when the

whole family is taken into account.

5.3.4 How can we know how good is any given product fam-

ily without building it?

This project shows a method that ultimately balances performance with costs at

a time when actual products do not yet exist and performance tests cannot be

conducted. For that assessment to be feasible, a method is required to know the

performance, or at least an estimation, for all possible designs under consideration.

This exercise involves one way or another of modelling, and in particular, mathe-

matical modelling for reasons explained in the Literature review. The models can

range from simple extrapolations from known products to general equations or full

models simulating the product in its intended use. The simplest modelling technique

would be extrapolating from previous knowledge, but this is not always reliable for

complex machines, as their performance depends on a chain of components that

interact with each other in a non-linear way. As an example to illustrate this point,

the length of the winding can be used to calculate the torque in an electric motor,

and there is a clearly defined relation between the torque of two motors that differ

only in the winding length . However, the case for machines such as industrial trucks
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is different. If a particular truck with a particular engine and a particular gearbox

yields a fuel consumption of 4 l/h, and it raises to 5 l/h with a second gearbox,

this represents an increase of 25%. If a different truck with the same engine and

gearbox consumes 6 l/h, and we replace the gearbox with the second gearbox, a

simple extrapolation would predict a new fuel consumption of 7.5 l/h, but the ac-

tual fuel consumption may be very different, or even move in the opposite direction

in the case that the second gearbox be the optimal for this second truck. Also,

in some cases, simpler equations can be used as surrogate models, or metamodels,

based on the performance of known machines to fit the existing data (Collopy and

Hollingsworth, 2009). The most common techniques in that field are Kriging and

Response Surface Methodology, which is a polynomial approach (Kleijnen, 2017).

However, those metamodels become harder to define as the number of inputs or

dimensions becomes larger, not only due to the increasing mathematical complex-

ity, but also because in a complex machine there are many discontinuities that are

hard to spot a priori or with a superficial analysis. For example, in a lifting system

in a truck, the lifting speed may seem to follow a curve depending on the pump

displacement, but at one particular displacement the system may not get enough

pressure to overcome the friction and not be able to lift at all. It is difficult to know

that point without a thorough analysis, and this effect is further compounded by the

fact that this point can be different when a different engine is fitted. This example

serves to illustrate that metamodels can not be relied upon when the real problem

involves complex machines with many variables.

5.3.5 What does best mean?

Best is a very loosely defined term, but for the purposes of this thesis, it can be

considered as that solution that better fits the preferences of the decision

maker. For problems with a unique objective, best is the solution that maximizes
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or minimizes that objective, but when more than one objective exists, as it is the

case with most engineering problems, it is generally impossible to obtain a solution

that maximizes or minimizes all the objectives at the same time. In those cases, best

refers to the solution that better fits the compromise or balance that the decision

maker assigns to the different objectives. As shown in the Literature review, this

can be done by defining an a priori criteria for that compromise, or a posteriori by

choosing among a set of possible solutions that are part of, or as close as possible

to, the Pareto set. There is no universal method to define best for multi-objective

problems. Defining an a-priori preference function is not an easy task, and it will

obscure all the potentially good solutions bar one from the decision maker’s sight.

On the other hand, when the number of objectives becomes too high, the set of

solutions presented to the decision maker for assessment also becomes very large

and with no apparent order, which is not helpful. This method incorporates a com-

promise approach by combining the objectives to present a manageable number of

them, which normally means no more than three and preferably two. The method

recommendation is to combine the objectives in a way that is meaningful to a de-

cision maker, such as pros and cons, cost and performance, etc. Simpson (2004)

identified three assumptions common to multi-objective approaches:

• Maximizing performance of each product increases their demand. However, it

is in general not possible to maximize all the performance objectives of all the

products at the same time, this is a balancing problem in itself.

• Maximizing commonality across products minimizes production costs. While

this is often true, there are cases in which it does not hold. Increasing com-

monality may require using more expensive parts resulting in higher overall

costs.

• The trade-off between the previous two provides the most profitable family.
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The next chapter will show an example of that trade-off by combining several

performance objectives on one side, and considering the cost of all the components

- rather than commonality on its own - on the other side.

5.3.6 How can we find the best one?

As it has been explained in the section on the pool of components, the pool of

family candidates, or possible solutions is normally very large, and it is not possible

to evaluate all of them. It is necessary to use some kind of searching algorithm,

there are several methods available and they have already been mentioned in the

Literature review. The approach of this thesis is to treat the problem of optimizing

a product family as a multi-objective optimization problem, i.e. generating a Pareto

front of solutions from which the decision maker will be able to pick the preferred

one. This is an a posteriori articulation of preferences case, as opposed to a priori

articulation of preferences where the decision maker preferences are modelled into

a function, turning the problem into an effectively single objective one. Due to

the characteristics of the problem, as it will become clear with the case study,

including discontinuities and discrete components, the problem is best tackled with

evolutionary algorithms, and the chosen one for the case study is a genetic algorithm.

This choice is not compulsory or an integral part of the whole method described in

this chapter and no novelty can be attributed to the searching algorithm per se.

This is only an example of how suitable solutions can be found for the problem

of designing a product family. For different case studies the particularities of the

searching algorithm may vary.
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5.4 Ordering the steps - Method description

The answers to the questions posed in the previous section will be worked following

a logical order, and this will result in the description of the method proposed in

this thesis. This method follows the right bottom corner diagram of figure 2.4, i.e.

single stage, non a priori platform identification, non a priori map from applications

to products. It is divided in the following main steps:

1. Identification of product applications

2. Definition of performance for each application

3. Definition of the design pool

4. Product simulation to find performance

5. Definition of objectives

6. Optimization

Figure 5.2 shows how each step is geared towards the questions in the previous

section, whereas figure 5.3 shows another diagram where the steps are mapped to

a reprint of the one shown in figure 2.4 in the literature review that illustrates the

objective of this thesis and. That diagram in figure 2.4 started with the applica-

tions that need to be covered, and through an optimization process, it outputs the

different product variants, as well as what components are part of the platforms or

subplatforms and what components are individual for each variant. The diagram

now in figure 5.3 shows a one to one relation for the identification of the appli-

cations, with the other steps of the method being a break down of the previously

termed optimization in general. The dashed lines on the right hand side represent

possible iterations and optimization re-runs if the found solutions are not satisfac-

tory. Whereas those on the left hand side represent how those iterations would work
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in practice, by either redefining the objectives because they do not represent the

preferences adequately, or there needs to be a rethink of the potential components.

The main purpose of each step, discussion, and how they can be accomplished in

general is detailed in the next sections. The following chapter will then go through

the steps as they were implemented in the particular case study used in this the-

sis. This process, and how each step is implemented, is original and it is the main

contribution that this thesis claims.

Figure 5.2: Map between steps and questions

5.4.1 Identification of product applications

The applications that the product family is intended to cover is taken as given

information, and as mentioned before, this method does not provide guidance on

how to accomplish this. There are many ways to separate and classify the amount of

products intended to be sold in a discrete number of applications, ranging from an

ideal, and unmanageable, one to one products unit to applications map, to just a few
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Figure 5.3: Map showing the main steps
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differentiated applications that wrap all the product units to be sold. The complexity

and required work for the remaining steps of this method is heavily dependent on

that. As a general rule, the method will consider the set of applications as it is

normally done in the industry or company where the family lies.

5.4.2 Definition of performance for each application

Once the applications are identified, it is necessary to define the most relevant perfor-

mance attributes for each application and quantify them. At this point, only strictly

performance attributes of the final products are considered, disregarding any man-

ufacturing, design or procurement issue. These attributes do not need to be the

same for all applications, and less so the quantification. The recommended method

to define the performance attributes is with a panel of people chosen from engi-

neering, marketing and product management who understand the intended product

positioning in the market, the requirements, and the competitors state of the art.

As suggested, this phase can be further split into two sub-phases; identification and

quantification.

Identification of performance attributes

The different target applications are separated and an analysis is performed for each

one. The identified attributes need to be the key characteristics that will distinguish

a particular product from the competitors, the attributes that the customers will

look for and will use to decide which of the available products they will purchase.

With the exception of very simple items, most products in general can be char-

acterized by many performance attributes. As an example, a car is normally issued

with a long list of specifications and performance, with attributes including acceler-

ation, maximum power, torque, urban fuel consumption, highway fuel consumption,

boot capacity, head room, etc. The list spans dozens of items. Even an apparently
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simpler machine, such as a washing machine, can still be measured against several

performance attributes: speed, energy consumption, water consumption, mass of

load per laundry, number of programs, etc. Each performance attribute depends on

a particular set of components, while other components may not have any effect on

it. For example, the fuel consumption of a car depends on the engine, vehicle mass,

gearbox, tyres, aerodynamic shape, etc. but it is independent of the material choice

for the seats. When the team is designing the seats, they do not need to consider

the effects it will have in the fuel consumption, and when the team is designing the

power train they do not need to consider the seats, as they are independent of each

other. Hence, only the attributes that depend on the components being designed

need to be considered.

Additionally, the performance attributes may not be the same for different appli-

cations. For example, when designing a family of domestic appliances, the attributes

that need to be considered for a washing machine will differ from those for a dish-

washer, even though the two products can still share several components such as

the body frame, motors (although highly unlikely) or electronics.

Considering individually all the performance attributes for all the products of

a family will result in a large set of objectives, and as it has been shown in the

Literature review, this would make the final set of solutions nearly as big as the

pool of family candidates, which would not add any value to solve the problem. In

order to keep the problem tractable and being able to offer a solution, it is normally

necessary to combine some of the objectives.

Fuzzification

To facilitate the combination or aggregation of difference performance attributes,

which will be necessary at least to some degree to define the problem objectives,

each different performance attribute is measured in units of goodness. The nature
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of these units is intuitive, i.e. how good the figure for each particular performance

attribute is. Goodness ranges from zero to one, where zero means that a particular

performance figure is not acceptable, and one means that it is the best that it can be,

impossible to improve upon. A function, or fuzzy set is defined for each attribute to

convert a performance figure to goodness. The simplest way to obtain that function

is by defining several membership levels, for example:

• 0: Unacceptable value. Any product with a single performance attribute with

a membership of zero will be discarded as invalid.

• 0.05: Just acceptable, barely enough to prevent the product from being directly

discarded.

• 0.2: Passable, performance would be slightly disappointing but still acceptable.

• 0.5: Fair, what they would expect to have in the final product.

• 0.8: Good, this performance would place the product among the top competi-

tors.

• 0.95: Very good, market leader in that particular attribute.

• 1: Ideal, Nothing could be better than this. This can be either an unachievable

point, such as a fuel consumption of 0 litres per hour for a vehicle, or a point

beyond which there is no real benefit, such as a legal driving speed for a vehicle

limited by regulation.

Then the panel selected to provide their input to build the membership sets

are asked to provide a value for each performance attribute that they will consider

passable, fair, good, etc. and the value that they will consider as the bare minimum

that should be achieved. This exercise will generate a more or less populated cloud

of points such as the one shown in figure 5.4. The set, red line in the figure, is
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then defined based on those points. The shape of the function defines the relative

importance of improvements depending on the area in which they happen. An

area where the curve is very steep means that small improvements of performance

make a considerable difference, whereas an area where the curve is nearly flat means

the opposite. There are multiple methods to draw the set, such as calculating the

average for each level, piecewise linear regression, splines, etc. But an important

point is that, for monotonically increasing sets such as the one in this example,

the extreme membership levels 0 and 1 should coincide with the maximum of the

unacceptable level and ideal level, to reflect the most stringent views from the panel.

In the case of a monotonically decreasing function, an attribute for which a lower

value is better, those levels should be taken as the minimum of the responses rather

than the maximum.

16 18 20 22 24

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Maximum speed [l/h]

G
oo

dn
es

s

Maximum Speed Laden

● ● ● ●
● ● ●●

● ● ●●

● ● ● ●

●● ● ●

● ● ● ●
● ● ● ●

Figure 5.4: Example of an attribute fuzzy set

Once the sets are defined, it is possible to assign a level to any value of that

attribute, either by interpolation or application of a curve function, depending on

the method used to define the set.
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Aggregation of performance

Normally, there are several performance attributes identified for each product, and

it is not manageable to keep every one as an objective for the optimization process.

It is convenient to define a single performance measure for each of the products in

the family that aggregates all of its identified attributes. In this thesis, that aggre-

gated performance measure is called product goodness and there are multiple existing

methods to define it as mentioned in the literature review, such as weighted means,

Tchebycheff, lexicographic, etc. What is important is that the method accurately

reflects the relative importance of each attribute and is capable of ordering different

products in a meaningful way with the agreement of the team that defines it.

An example of performance aggregation method, and the one that will be used

in the case study, is a weighted sum with all the attributes and an exponent to

define the level at which some good attributes can compensate for poor ones (Dai

and Scott, 2006).

G =

[ 9∑
i=1

wi ∗ Pgsi
9∑
i=1

wi

]1/s
(5.1)

Where G is the aggregated goodness for a given product candidate, w is the relative

weighting and Pg is the performance goodness on each attribute. The parameter

s is used to vary the level of compensation between different attributes. A value

of s = 1 results in the well known weighted arithmetic mean, whereas values of

s < 1 give more relative importance to low performance attributes, i.e. low degree of

compensation, and values of s > 1 give more relative importance to high performance

attributes, i.e. allow for a higher degree of compensation between the different

attributes.

In addition, the number obtained from that formula is multiplied by a function
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C that is defined as follows:

C =


0 ifPi = 0, for any i

1 otherwise

(5.2)

This ensures that a variant with an unacceptable attribute is spotted and discarded.

The different weight parameters of each performance attribute for each applica-

tion and the compensation parameter must be drawn from interviews with people

with expert knowledge who can assess the relative importance of each attribute.

5.4.3 Definition of the design pool

The design pool is the set of all the possible components that can go into the products

and are relevant for the study of how to architect the product family. This set must

include the components that may or may not be made common across the product

family or part of it, and that will have an influence on the different performance

attributes under consideration.

The characteristics of the components of the pool can typically be obtained from

data sheets when those components are sourced from existing suppliers’ offers, or

conceptualized, in the case that the components are yet to be designed. All potential

component instances must be included in the pool.

5.4.4 Product simulation to find performance

This step consists of designing the necessary models to map a choice of components

for each product application to a set of attributes, i.e. calculate or estimate quanti-

tatively what the different performance attributes of a product designed with those

components will be. This is shown in figure 5.5

The simulations need to be accurate enough to produce reliable results, but at

the same time they need to be run reasonably fast, as the searching algorithm will
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Figure 5.5: Simulation models map the choice of components for the n products that compose
the family to n sets of performance attributes

need to test many combinations of components for each application, typically in the

hundreds, thousands, or higher. For this reason, simulations based on full size finite

elements models, CFD, or similar may not be appropriate for most cases. If this

type of modelling is relevant to the problem, then simplifications or conversion to

tables are recommended.

5.4.5 Definition of objectives

This step is related to the question what does best mean?. This is the definition

of what is expected from the family and the products that compose it. In general

there are many objectives, both for each individual product and for the family

as a whole. Some typical objectives are the performance attributes that will be

calculated with the simulation models, but there are other types of objectives such

as costs, development time, commonality, or even hard attributes to measure such

as, for example, market disruptiveness or saleability. The selection of the objectives
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requires an exercise with technical and commercial input. Generally there are three

tasks involved:

1. Objective identification: Identify all the relevant objectives for each product

and the family as a whole. This should include the performance attributes

that were selected in the previous steps, and also all the costs that depend on

the choice of components, such as the costs to source them.

2. Objective quantification: This consists of assigning priority or importance to

each one of the identified objectives.

3. Objective aggregation: Combine or aggregate all the objectives previously

identified into a shorter and manageable set. For the problem to provide

solutions that can be meaningful, it is recommended to limit the final number

of objectives to two or three. Several combination techniques are available,

such as weighted sums, best minimax, etc.

Even if the problem consisted only in optimizing the performance of a product

family, without giving consideration to anything else, the number of performance

objectives would typically make for an intractable problem, in which nearly every

potential family would be a Pareto solution. It is therefore necessary to compromise

and reduce the number of objectives by combining or aggregating some or all of them.

The approach chosen for this thesis is to have a reduced number of main objectives

to optimize, normally two or three. In case of two, one of them would represent the

goodness, attractiveness, or customer appeal of the product family irrespectively of

the cost, and the second one the costs associated to obtain that family. In case of

defining three final objectives the third one can incorporate other features such as

development time or flexibility to add new products when necessary. The first of the

objectives needs to be the aggregation of all the performance objectives identified

as relevant, and for the case study shown in the next chapter it will follow a process
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shown in figure 5.6. Each of the single performance objectives of each variant is

converted into a unit of goodness ranging from 0 to 1, where 0 is a performance

figure that is unacceptable, and 1 is a performance figure that is as good as it

can be, or ideal. Those performance goodness figures are then aggregated using

the preferred method which is problem specific. In the case study the method of

aggregation will be a weighted mean allowing for compensation to obtain a single

goodness for each of the products that will fulfil the identified applications. The last

step is to aggregate the single score of each application. A possible method for that,

and the one that will be used in the case study and shown in chapter 6 is to estimate

the sales and price for each application depending on its aggregated score and add

the numbers for the entire family. It is important to consider family candidates only

if all the attributes for all the applications are at least acceptable according to the

defined criteria, otherwise the particular product with an unacceptable attribute

would not saleable and the family candidate would be lacking a product to cover

that application, deeming it invalid.

For the objective that considers the costs this thesis proposes, and will show

in detail in the next chapter, to add the cost of all the components necessary to

build each family candidate taking into account the number of units intended to

be manufactured and the variation in price that can be expected depending on the

purchased volume.

5.4.6 Optimization

The searching algorithm runs to find the best combinations taken from the design

pool. Due to the characteristics of this type of problems, in general evolutionary

algorithms are a good choice to solve them. Qualitatively, the searching algorithm

will run through a number of iterations evaluating the fitness function, i.e. calcu-

lating the objectives for one or several potential product families and choose those
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Figure 5.6: Diagram showing the performance aggregation layout

with the highest scores. For each iteration it selects a new set of potential families

based on the history, with the intention of finding better candidates than the current

best. The case study presented in the next chapter will use a multi-objective genetic

algorithm that incorporates a modification to run only part of the fitness function

in each iteration. Part of that function will be run as a pre-process before the start

of the first iteration. This will be explained in more detail in the next chapter.

5.5 Summary

This chapter has outlined the method and its phases in a general way. Figure 5.7

shows the techniques that are relevant for each of the steps that compose the method.

None of the techniques is new on its own, the novelty resides in the integration to

solve the problem of designing a product family. The next chapter will show how it

works over a case study, going deeper into the details.
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Figure 5.7: Techniques used for each step
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Case study

The previous chapter described the method proposed in this thesis in a general way.

This chapter presents a case study and will go through the different steps detailing

how they can be implemented. The case study is the design of a family of coun-

terbalanced forklift trucks powered by Diesel engines and intended for applications

ranging from 2 to 9 tonnes.

6.1 Identification of product applications

In this case study, the applications are defined by the load to be lifted and carried.

This is a natural decision as it is the main difference between the existing products

in all brands. There is a set of 12 different applications: 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5,

6, 7, 8 and 9 tonnes.

6.2 Definition of performance for each application

This step consists on understanding the product requirements to fulfil each applica-

tion and identifying the performance attributes that are the most relevant for the

products under consideration. This step requires deep knowledge of the applica-
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tions and what is required to fulfil them. For the case study, this knowledge was

acquired based on the author’s experience and interviews with both engineering and

marketing experts. Nine performance attributes were selected, they are:

• Fuel consumption: one of the main contributors to the total cost of ownership

of a truck, and hence one of the most important figures.

• Maximum speed: directly related to the productivity of a truck, specially for

applications in big yards with driving focused working cycles.

• Lifting speed: also related to the productivity, although this feature is more

relevant to warehouse equipment, it still applies to any type of working cycle.

• Drawbar pull: is the force that the truck can apply at a given speed of 1.6

km/h, or 1 mph. Although towing is not the main use for trucks, it provides

a good reference for their capabilities and how it will be affected by the loads

carried.

• Gradeability: is the slope that the truck is capable of climbing steadily at the

same given speed of 1.6 km/h. More or less relevant depending on the intended

use, but ramps are common in many yards and loading docks.

With the exception of fuel consumption, all the other items need to be provided

both with an unladen truck and carrying the rated load.

6.2.1 Identification of performance attributes

For the case study, there is a total number of performance objectives of 12∗9 = 108.

Those performance objectives are measured in physical units and then converted to

goodness units through a fuzzification process as explained in the previous chapter.

Then all the scores relevant for each application are aggregated into a single measure
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of goodness using a weighted sum that considers the relative importance of each

attribute and the degree of compensation that is allowed.

6.2.2 Fuzzification

The conversion from physical units to goodness units was done by defining fuzzy

membership sets for each performance attribute and then calculate the membership

of each achieved value. The process to define those sets consisted on holding dis-

cussions with personnel from Engineering and Sales & Marketing to provide ratings

for what they would consider unacceptable, acceptable, good, etc. values for the

different performance attributes for each application.

The information received was codified to define a fuzzy membership set for each

attribute. The fuzzy sets were defined with 7 levels of membership as described in

chapter 5. A total of 108 fuzzy membership sets were constructed based on the given

ratings, they are shown in figures 6.1 to 6.9. There is one plot for each performance

attribute and the twelve applications are represented in each plot. In cases where

only one line can be seen, such as gradeability, is because the desirability of each

value is common for all applications as identified by the personnel involved in the

study.

Fuel consumption in figure 6.1 shows a unique curve for each application because

the expectations cannot be the same for different loads. In this case, a goodness of 1

is unachievable, corresponding to a null consumption, as the lesser fuel consumed is

always the better without any limit beyond which a reduction would not represent

an advantage. The curves take goodness of 0.95 for values that would be top of

the market and falls to zero for values that would be uncompetitive. The drop

is not linear, reflecting a bigger influence at high levels of goodness, i.e. small

improvements on an already good fuel consumption provide huge market advantages.

Travel speed in figures 6.2 and 6.3 show the same curves for every application,
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Figure 6.1: Fuel consumption fuzzy membership set
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Figure 6.2: Maximum speed unladen fuzzy membership set
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Figure 6.3: Maximum speed laden fuzzy membership set

with two clearly defined extreme points, 17 km/h a minimum acceptable top speed

and 25 km/h as the speed not worth exceeding. The curve for a laden truck goes

above the unladen one, as a given speed has more merit when achieved with the

truck laden.

Lifting speed in figures 6.4 and 6.5 show similar characteristics as travel speed,

although in this case the curves are displaced to the left for higher capacities. This

is due to customers expectations namely higher for lighter trucks.

Drawbar pull in figures 6.6 and 6.7 are the attributes most clearly distinguished

for each application, as it is a scalable characteristic, a heavier truck requires a higher

drawbar pull. In this case, the curves are closer to linear between the unacceptable

values and those that would place the trucks at the top. The reason is that this is

not an attribute that makes a huge contribution to the overall goodness, and it is

not easy nor worth it to differentiate between the regions of the curve.

Gradeability in figures 6.8 and 6.9, like drawbar pull, is not the biggest con-

tributor to overall goodness and the curves are also less detailed. The difference

is that this is not a scalable attribute, and hence the curves are equal for all the

Miguel Zapico 129



Chapter 6. Case study

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lifting Speed[m/s]

G
oo

dn
es

s

Lifting Speed Unladen

2 T
2.5 T
3 T
3.5 T
4 T
4.5 T
5 T
5.5 T
6 T
7 T
8 T
9 T

Figure 6.4: Lifting speed unladen fuzzy membership set
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Figure 6.5: Lifting speed laden fuzzy membership set
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Figure 6.6: Drawbar pull unladen fuzzy membership set
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Figure 6.7: Drawbar pull laden fuzzy membership set
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Figure 6.8: Gradeability unladen fuzzy membership set
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Figure 6.9: Gradeability laden fuzzy membership set
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applications.

6.2.3 Aggregation of performance

As mentioned in the previous section, the original number of objectives is excessive

and the solution for that is combining them in a certain way. For that, the entire

performance of a product family was aggregated into a single objective. This objec-

tive will be part of the final problem, where other aspects apart from performance

also need to be taken into account. The approach to aggregate the 108 performance

attributes was to first aggregate the 9 attributes for each application to obtain a

single value for each product, and then define an objective function for a candidate

family composed by those products. This was shown graphically in chapter 5 in

figure 5.6, and justified in the next subsection.

Product goodness

As indicated in chapter 5, the aggregation of performance for each product candidate

was done with a formula that takes into account the relative importance of each

attribute and the allowed degree of compensation between attributes (Dai and Scott,

2006).

G =

[ 9∑
i=1

wi ∗ Pgsi
9∑
i=1

wi

]1/s
(6.1)

The number obtained from that formula is multiplied by a function C to ensure

that a variant with an unacceptable attribute is spotted and discarded:

C =


0 ifPi = 0, for any i

1 otherwise

(6.2)

The different weight parameters of each performance attribute for each applica-
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tion and the compensation parameter were drawn from interviews with personnel

from Sales & Marketing, exact details of those parameters are confidential and can-

not be disclosed.

Justification for aggregation method

The problem of optimizing a product platform refers to balancing the advantages and

disadvantages of component commonalization, and hence it is sensible to have two

main objectives: what the product family will bring to us and what it will require

from us. Or in a simple manner, how much income it will provide vs how much

outgoing it will demand. The objectives will be defined in the section Definition of

objectives. In this case study, a product family is composed of, a priori, 12 products,

and the problem can be rephrased as choose one of each product candidates to fill

each of the 12 application placeholders. Hence, it is advantageous to have a criterion

to grade the performance of two different product candidates to be able to say

which one is better in terms of performance, independently of the cost. This can be

accomplished if a goodness attribute is defined for each product, comprising all the

performance attributes.

6.3 Definition of the design pool

For this case study, the design pool is composed of 5 component types directly

related to the selected performance features. They are the engine, transmission,

tyres, hydraulic pump and lifting cylinder. the number of component instances is

detailed in table 6.1.

Due to confidentiality issues, further details of the components cannot be dis-

closed in this thesis, but this will not affect the results.

Each possible combination of components for each application is a product

candidate, and the set of all candidates is called pool of product candidates.
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Engine Six different engines named 1 to 6
Pump Nine different pumps named 1 to 9
Transmission 7 transmission ratios from 14:1 to 20:1

in steps of 1:1
Cylinder 14 cylinder diameters between 65 mm

and 130 mm in steps of 5 mm
Tyres Five different tyres named 1 to 5

Table 6.1: Component options

When referring to the complete family, a family candidate is a combination of

product candidates to form a product family, and the pool of family candidates

is the set of all the possible family candidates. The pool of product candidates

includes 12 ∗ 6 ∗ 9 ∗ 7 ∗ 14 ∗ 5 = 317520 candidates, or 26460 for each application.

And the pool of family candidates 2646012 = 1.18 ∗ 1053 candidates. This figures

provide a clear idea of why assessing each possible candidate is not feasible.

6.4 Product simulation to find performance

This section describes the models used to calculate the different performance at-

tributes of a product candidate as a function of the components used and the ap-

plication for which it is intended.

6.4.1 List of symbols

The following is a list of symbols used in the description of the models.

fi Instantaneous fuel consumption in kg/s

ρfuel Fuel density in kg/l

v Driving speed in km/h

vmax Maximum linear speed in km/h

rpm Engine rotational speed in rpm

Gear Overall gear reduction ratio
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TR Tyre radius in m

τ Engine torque in Nm

τdrive Engine torque required for driving

τlift Engine torque required for lifting

µroll Rolling resistance coefficient

ηdrive Efficiency of the driveline

M Mass of the truck unladen in kg

g gravity = 9.81m/s2

Peng Engine power in W

Ppump Hydraulic pump power in W

Pdrive Driving power demand in W

Plift Lifting power demand in W

ηmech Mechanical efficiency of the pump

ηvol Volumetric efficiency of the pump

ηdrive Drivetrain efficiency

ηtc Torque converter efficiency

Q Hydraulic flow in m3/s

Disp Pump displacement in cm3/rev

pavail Maximum pressure available from the pump in Pa

Cylarea Cylinder cross sectional area in m2

Cyldiam Cylinder diameter in m

p Pressure in Pa

ploss Pressure losses in Pa

khyd Constant for the pressure losses in kg/m7

Fliftavail Maximum available lifting force in N

DBP Drawbar pull in N

TCspratio Speed ratio between the torque converter input and output
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TCtqratio Torque ratio between the torque converter input and output

Grad Gradeability in tangent of the maximum climbing angle

6.4.2 Fuel consumption

The fuel consumption considered is in accordance with the VDI (Verein Deutscher

Ingenieure) 2198 cycle (VDI, 2012), which is a German standard and the de facto

standard used for the specification sheets of all industrial trucks in Europe. The

test track is shown in figure 6.10 and consists on two loading bays separated by 30

meters. The cycle is symmetrical and the truck carries its rated load throughout the

cycle, i.e. there is no loading/unloading. The truck drives from the left end to the

bay B. Once there the load is lifted to 2 meters, the mast tilts forward and backwards

and then the load is lowered again. The truck reverses to the right end and drives

to the bay A, where the same handling actions are performed, and the truck then

reverses to the left end. This completes a cycle. The declared fuel consumption is

the amount of fuel required to complete 60 cycles in 1 hour. The driver has to adapt

the speed to complete an average of 1 cycle per minute, what for an experienced

driver means driving slightly slower than what they can do.

Figure 6.10: VDI2198 cycle

There are two main ways to simulate a driving cycle: forward and backward

Miguel Zapico 137



Chapter 6. Case study

modelling (Murtagh, 2015). The former consists on starting from the driver actu-

ation and calculating through the powertrain to the tyres and handling apparatus,

and the latter assumes a cycle and works back the demand on the powertrain and

required fuel to accomplish it. The forward method is ideal to estimate performance

and it is the method used for all the models in this case study except fuel consump-

tion, whereas the backward method suits fuel calculation better, as it starts from a

predetermined cycle. The model architecture for calculating the fuel consumption is

shown in figure 6.11, and it is based on two power demand profiles, one for traction

and one for lifting, and a speed profile. The profiles are based on test data obtained

from a 2.5 tons truck and scaled up or down for different capacity trucks. The drive

and speed profile go through a model of the tyres, gearbox and torque converter to

calculate the torque and rpm demand on the engine. To that demand, the hydraulic

demand is also added, calculated from a model of the mast with parametrized cylin-

ders and pump. The engine model consists of two tables, a maximum torque-rpm

and a fuel map depending on torque and speed. The maximum torque curve is also

fed back to the demand profiles to check whether the engine is capable of following

the cycle. If it is not, that means that the truck is either underpowered or the

drivetrain, pump, etc. are not adequate. In this case the model issues a flag that

will later be interpreted by the value model as a non-useful configuration. If the

required torque is within the possibilities of the engine, then the torque and speed

are fed into an engine specific fuel consumption map that calculates the instant fuel

consumption. This value is integrated over a full VDI cycle and then multiplied by

60 to obtain the fuel consumed in an hour.

The relevant equations are:

V DIconsumption =
1

ρfuel
∗ 60 ∗

∫ 60

0

dt ∗ fi(τ, rpm) (6.3)

This is 60 cycles, or one hour as specified by the standard VDI 2198. The integral
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Figure 6.11: Fuel model diagram

over 60 seconds is the fuel spent for one cycle, and the function integrated is the

instantaneous fuel consumption, which is obtained from a fuel map where the entry

variables are the torque and engine speed. The whole result is then divided by the

fuel density to convert from kilograms to litres, as this is the unit specified in the

standard.

τ = τpump + τdrive (6.4)

This is the total torque demanded from the engine at each instant. It is the sum

of the torque required to drive and the torque required to lift, and the values are

considered at the engine output, i.e. they account for the useful torque and also all

the losses in the respective power transmission chains.

τpump =
Plift ∗ 1

ηmast∗ηmech∗ηvol
rpm ∗ 2∗π

60

(6.5)

where

ηmast = ηmast(Q, p), ηmech = ηmech(Q, p), ηvol = ηvol(Q, p) (6.6)

The torque demand for lifting is the required theoretical power to lift the load

divided by the different efficiencies of the mast mechanism and pump, and by the
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engine speed. The efficiency of the mast mechanism is obtained empirically as a

table where the entry variables are lifting speed and load weight. For the pump

there are two different efficiencies: volumetric and mechanical. The former refers to

the ratio of the oil that is pumped to the system respect to the incoming oil in the

pump. Since the typical pump is a gear pump, there is some oil that is returned to

admission pipe and the volumetric efficiency is never 100%. The latter refers to the

mechanical losses due to friction of the different parts of the pump. Both efficiencies

are provided by the pump manufacturers in tables with two entries, pressure and

speed.

rpm when lifting is

rpm =
Q ∗ 6 ∗ 107

Disp
, Q =

vlift ∗ Cylarea
2 ∗ ηvol

(6.7)

The flow necessary to follow the cycle is the cylinder cross section multiplied by

the lifting speed and divided by the pump volumetric efficiency and also by 2 due

to the mast mechanical advantage, i.e. the load is lifted 2 meters for each meter of

stroke coming from the cylinder. This can be seen in figure 6.12. Once the flow is

known, it is divided by the pump displacement to calculate the required rotational

speed. The extra numerical factors are placed in the equation only to match the

units.

And rpm when driving is

rpm =
v

3.6 ∗ TR
∗Gear ∗ 60

2π
∗ 1

TCspratio
(6.8)

τdrive =
Pdrive ∗ 60

ηdrive ∗ ηtc ∗ rpm ∗ 2π
(6.9)

The engine speed is the vehicle linear speed multiplied by the gear ratio and

divided by the tyre circumference and the torque converter slip. The units are con-
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Figure 6.12: Typical mast mechanical advantage

verted to rpm for convenience. The torque required for traction is the instantaneous

power read from the cycle profile divided by the engine speed and the power train

and torque converter efficiency. The torque converter efficiency is a table depending

on slip provided by the manufacturer.

6.4.3 Maximum speed

The maximum speed for a vehicle occurs at the point at which the resultant of the

forces between the tyre and the ground is not capable of producing any acceleration,

i.e. it is zero. The forces opposing the movement are the rolling resistance between

tyres and ground, internal friction and aerodynamic drag. For road vehicles aero-

dynamic drag is the most important contributor to limiting the speed as the force

grows with speed roughly linearly until approximately 50 mph and form then to the

square of the speed. However, for the typical speeds of industrial trucks -around

10 to 15 mph- this force is very weak compared to the rolling resistance and can

be neglected. The rolling resistance on the other hand, is nearly constant for any
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speed, depending only on the tyre load, composition, pressure and state of wear,

and the ground surface. Only the internal friction and rolling resistance need be

considered as opposing forces for this type of vehicles. The model calculates the

maximum driving speed laden and unladen based on the engine torque-rpm charac-

teristic curve, the gearbox, the tyre radius and the rolling resistance. The engine is

accelerated from 1000 rpm to its maximum speed with wide open throttle. The trac-

tive force is calculated considering all the drivetrain reduction ratios and efficiencies

and compared to the rolling resistance. The model calculates the speed based on

the engine rpm, torque converter speed ratio, the gear reduction and the tyre radius

and records the maximum value achieved before the tractive force becomes lesser

that the rolling resistance, which is expected to happen at some point of the torque

curve as it decays at the end of the range. The maximum speed is different for the

laden and unladen cases. this is due to two reasons:

• The rolling resistance is proportional to the mass, within the tyre load range.

So a laden truck will stop accelerating at a lower rpm than the same truck

unladen.

• The tyres are not ideal incompressible circumferences, and the effective radius

decreases for higher loads. This is itself due to two different effects:

– Compression making the radius shorter

– More tyre slip required for higher tractive force, resulting in a reduction

of the linear speed for a given rotational speed.

Figure 6.13 shows the engine torque curve (black) and the required torque to

overcome the rolling resistance laden (dashed green) and unladen (solid red). Points

L and U show the rpm for those maximum speeds respectively. The ratio between

the linear speeds is further decreased by the variation of the tyre radius.
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Figure 6.13: Engine rpm for which the laden and unladen maximum speeds are achieved

The relevant equations are:

vmax = 0.06 ∗max(
rpm

Gear
∗ 2 ∗ π ∗ TR) (6.10)

subject to the condition

τ ∗Gear ∗ ηdrive
TR

> M ∗ g ∗ µroll (6.11)

where

τ = τ(rpm) (6.12)

Equation 6.10 is a function that relates linearly the speed with the engine rpm.

The max means that the value is the maximum that is acceptable under the condi-

tion stated in the equation 6.11. That equation requires the engine torque multiplied

by the gear ratio and drivetrain efficiency and divided by the tyre radius to be bigger

than the rolling resistance. The torque converter efficiency and slip is not considered

for the calculation of the maximum speed because at that speed it is rigidly engaged,
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i.e. there is neither slippage nor torque multiplication.

6.4.4 Lifting speed

The model that calculates the maximum lifting speed is based on the engine torque-

rpm curve, the pump (displacement, volumetric and mechanical efficiencies), the

lifting cylinder area, the hydraulic losses, the masses being lifted, the friction losses

and the mast geometry. The engine is accelerated from 1000 rpm and both the

power and rpm are fed to the hydraulic pump. The pump calculates the flow and

the maximum pressure that can supply at that flow. For this two lookup tables

are required, volumetric and mechanical efficiency depending on pressure and rpm.

The rpm is directly fed from the engine, but the pressure comes from the end of

the model through a 0.01 seconds transport delay, to prevent algebraic loops. The

hydraulic losses depending on the flow are subtracted from the maximum pressure

available, and the resulting pressure is multiplied by the cylinder cross sectional area

to calculate the maximum lifting force available. This lifting force is compared to

the force required to lift the load and overcome the friction of the mast, and when

it becomes greater, the model stops.

To calculate the lifting speed, the flow is divided by the cylinder cross sectional

area and multiplied by two to reflect the pulley-chain factor. The minimum of

the available lifting force and the required force is divided by the cylinder cross

sectional area to calculate the real pressure. Then it is added to the pressure losses

to calculate the real pump pressure, which is fed to the pump efficiency lookup tables

as previously indicated. The relevant equations are:

Peng = τ ∗ rpm ∗ 2π

60
(6.13)

Ppump = Peng ∗ ηmech ∗ ηvol (6.14)

144 Miguel Zapico



Chapter 6. Case study

The power delivered by the engine is the torque multiplied by the speed. That

power is multiplied by the pump mechanical and volumetric efficiencies to obtain

the effective hydraulic power.

Q = Disp ∗ rpm ∗ ηvol ∗
1

6 ∗ 107
(6.15)

The flow is the pump displacement multiplied by the engine speed and the pump

volumetric efficiency. The engine speed and the pump speed is the same as they are

rigidly engaged without any gear reduction.

pavail =
Ppump
Q

(6.16)

The pressure is the effective power divided by the flow. The cylinder area is just

a cross section calculation with the diameter, which is the main specification for

each cylinder.

Cylarea = (
Cyldiam

2
)2 ∗ π (6.17)

ploss = khyd ∗Q2 (6.18)

Pressure losses are proportional to the square of the flow. This is an empirical

relation, and khyd is also an empirical constant.

Fliftavail = (pavail − ploss) ∗ Cylarea (6.19)

Finally the force is pressure differential multiplied by the cylinder cross section.
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6.4.5 Drawbar pull

The model that calculates the drawbar pull is based on the engine torque-rpm curve,

the torque converter characteristics, the tyre radius and the drive axle load. The

engine is accelerated from 1000 rpm to maximum speed and the rpm is compared to

the rpm at the torque converter output shaft corresponding to 1.6 km/h at the drive

tyres to find the speed ratio between the input and output of the torque converter.

A look up table maps the speed ratio into a torque ratio, which is multiplied by the

driveline efficiency and the gear ratio to find the maximum torque at the wheels.

That maximum torque is divided by the tyre radius to yield the maximum tractive

force. The maximum value during the run is stored. The maximum tractive force

allowed for the tyres is calculated as the axle load multiplied by the tyres friction

coefficient. The minimum of this and the tractive force previously calculated is the

drawbar pull. The relevant equations are:

TCspratio =
Gear ∗ 60 ∗ 0.444

rpm ∗ 2π ∗ TR
(6.20)

The torque converter slip ratio is the relation between the output speed, i.e.

the vehicle speed - 1.6 km/h - multiplied by the gearbox ratio and divided by the

tyre circumference, and the input speed, or engine speed. A table provided by the

manufacturer converts the slip ratio to the torque ratio.

TCtqratio = f(TCspratio) (6.21)

DBP =
τ ∗ TCtqratio ∗Gear ∗ ηdrive

TR
(6.22)

The traction torque is the engine torque multiplied by the torque converter torque

ratio and the drivetrain efficiency. This torque divided by the tyre radius is the

tractive force, or drawbar pull.
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0.444 is the required speed of 1.6 km/h given in m/s. The function that relates

the torque ratio with the speed ratio is characteristic of each torque converter.

6.4.6 Gradeability

The model that calculates the gradeability is based on the output from the drawbar

pull after adding a new function for the axle loads, the mass of the truck and the

rolling resistance. The steepest slope that a vehicle can climb is that for which

the tractive force equals the opposing force. The tractive force is calculated by the

drawbar pull model, taking into account the variation on the drive axle load due to

the angle.

The rolling resistance is subtracted from the drawbar pull and the result divided

by the weight (force) of the truck. The arcsine of that is the maximum angle that

can theoretically be surmounted, and the gradeability declared as the tangent of

that angle. The relevant equations are:

Grad = tan

[
sin−1

(DBP − µroll ∗M ∗ g
M ∗ g

)]
(6.23)

where

DBP = DBP (angle) (6.24)

Since the main equation is implicit, the angle solution is required to calculate the

DBP, the solution is found by inputting progressively bigger angles to the right hand

of the equation until the left hand matches the input angle. This is equivalent to

simulating the vehicle driving over an increasing slope until it stops.

6.4.7 Solver

For this case, the selected solver was ode3 (Bogacki-Shampine). This is an ODE,

fixed step, continuous variables, explicit, non-stiff, third order solver that uses the

Miguel Zapico 147



Chapter 6. Case study

Bogacki-Shampine method (Mathworks, 2018). The choice of solver is due to the

author’s preference after the experience with this particular solver for similar prob-

lems. The use of another solver would not have brought any change in the results,

as long as they feature continuous variables and are explicit, which are two main

characteristics of the models as they were written.

6.5 Definition of objectives

The definition of the problem objective requires a conversion from performance

figures for all the products in the family to how good or desirable that product

family is. There are several ways to define those objectives, and identifying the

most suitable one requires knowledge of the specific problem and judgement.

As previously stated, for this case study two objectives have been selected.

• Objective 1: A measure of what the product family will provide - Revenue.

• Objective 2: A measure of what the product family will cost - Cost.

A potential third objective can be the time and effort to develop the family.

Although this can also be absorbed by the second objective.

6.5.1 Objective 1 - Revenue

This objective considers the gross revenue that can be expected from the product

family depending on how good the family is. Gross revenue is the sum of the prices

for which all the products are sold over a time period. For this case study, the time

period considered is one year. There is a complex relation between price, number of

products sold, and a third variable that is the product appeal. For this case study,

the independent variable is the product appeal, which is the variable that depends

directly on the product performance. And the objective is the product of prices and
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number of sales. This product is also a function that can be maximized, but for

this case study it will be considered that the market share is a hard target, i.e. it

is required to sell a particular number of units of each product, while the price of

each unit will depend on the appeal, i.e. the independent variable. This is written

in the equation

Revenue =
n∑
i=1

Pri ∗Npi

Npi = constant, Pri = f(Gi)

(6.25)

where Pri is the price of each product, Npi is the number of units to be sold for

each product, and f(G) is a function of the goodness of each product

For the case study, the amount of trucks to be sold from each capacity were

entered as a 12 element vector Np. And another 12 element vector Pmax with the

maximum prices for what an ideal truck for each capacity (individual performance

value = 1) could hypothetically be sold.

For each family candidate selected, there is a vector named Gfam with the

individual goodness of each of the trucks that compose the family. Then this vector

is passed to the function f(G) to obtain a vector of prices Pr for what the products

of that given family candidate can be expected to sell. The element by element

product of Pr and Np is the vector of gross revenue for each product, and the sum

of this vector elements is total gross revenue, or objective 1.

As a clarification, this gross revenue is valid only for the purposes of optimizing

the component commonality across the product family, and not to be confused with

a realistic revenue for economical forecasting purposes.

The function f(G) used in this case study is simply a linear relation between the

goodness and the price. The development of a more accurate or realistic function

would require a joint sales and marketing effort and it is a long problem on itself of
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a more commercial nature, out of the scope of this thesis.

6.5.2 Objective 2 - Cost

This objective considers the costs associated with each family candidate that depend

on the choice of components for each product. Any other cost is omitted, and the

objective cannot be considered as a true cost for economic purposes.

For this case study, the costs considered are those of the parts, and take into

account the prices and also how the prices change with increasing volumes.

For each component, a curve was defined to relate the number of them used in

the whole family with the price per unit. The curves were modelled following a law

of exponential decay.

Punit = P0 + P0 ∗ e−k(u−1) (6.26)

Where Punit is the price per unit, P0 the minimum price per unit for an infinite

number of units, u the number of units and k a constant to define how fast the

curve approaches the minimum value. Large values of k correspond to curves that

get close to the minimum for a relatively low number of components, whereas small

values of k correspond with components that require a large volume in order to have

noticeable effects in the price per unit. The −1 in the exponential is added to make

it easier to define the price for a one-off unit, which in the equation as it is defined

is double the limit for an infinite amount of units. This can be easily changed by

adding a multiplicative factor to the exponential. As an example, figure 6.14 shows

the price curve of one particular engine.

The objective 2 is the sum of the purchasing prices of all the components neces-

sary to build the candidate family.

150 Miguel Zapico



Chapter 6. Case study

0 5000 10000 15000 20000

10
00

14
00

18
00

Number of units

P
ric

e 
pe

r 
un

it 
(£

)
Engine 1 price curve

Figure 6.14: Example of price vs number of units

Cost =
5∑
i=1

ct∑
j=1

Punit,i,j ∗Nunits,i,j

Punit,i,j = f(Nunits,i,j)

(6.27)

Where i is the component type, j the component instance, ct the number of

different component instances for each component type, Punit,i,j the price to purchase

each component instance j of the component type i, and Nunits,i,j the number of

component instance j of the component type i. Punit,i,j is a function of Nunits,i,j.

The model has a matrix B, with the minimum prices P0 for each component

instance and another matrix K, with the coefficients k for each component instance.

The first column refers to the engines, the second column to the pumps, etc. For

this case study, the matrices are 14x5, 5 columns one for each component type and

14 rows for the maximum number of instances for a component type, in this case

cylinders. The matrix is filled with zeros where necessary, as there are not the same

number of options for each component.
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6.6 Optimization

This is the process of finding the best, or a good product family according to the

defined objectives.

The problem in this case study can be formally stated as

Minimize
x

F(x) = [−F1(x), F2(x)]T

F1, F2 : R12x5 → R,∀x ∈ S ⊆ R12x5

F1 =
12∑
i=1

Pri ∗Npi, F2 =
5∑
i=1

ct∑
j=1

Punit,i,j ∗Nunits,i,j

Pri = f(Gi)

subject to Gi 6= 0 ∀i

(6.28)

Where F1 and F2 are the two objectives and F1 has a negative sign for consis-

tency in the equation, since the original function has to be maximized. x is any

solution represented as a 12x5 element matrix where the rows are applications and

the columns components. x is a member of the design space S defined as

Si,j ∈ N, ∀i ∈ [1, 12]

Si,1 ≤ 6

Si,2 ≤ 9

Si,3 ≤ 7

Si,4 ≤ 14

Si,5 ≤ 5

(6.29)
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6.6.1 Development of optimization process

The algorithm that will be used is a genetic algorithm. They are well suited for

combinatoric problems of this type (Simpson and de Souza, 2004). The details of

the algorithm as well as the results will be presented in the next chapter.

The general workflow diagram for a genetic algorithm is shown in the figure 6.15.

The steps are:

Figure 6.15: Genetic algorithm workflow

• Step 1 : Have a population of candidate solutions

• Step 2 : Evaluate the fitness function for all the candidate solutions in the

population

• Step 3 : Select the best candidates in the population according to the algorithm
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parameters, and update the record of the best solutions. This record can be

a single candidate for single objective algorithms or a Pareto set for multi-

objective algorithms

• Step 4 : Obtain a new generation of candidates by combining selected can-

didates, mutations to existing candidates and introduction of new random

candidates

This process involves evaluating the fitness function for each candidate solution

in the generation at every iteration of the algorithm. For the case study this would

involve calculating the 9 performance attributes of each of the 12 products of the

candidate family. This calculation is the most time consuming part of the iteration.

To illustrate this point, with the particular laptop used for this research, it took

around 42 seconds to simulate the performance of a family candidate, whereas the

remaining steps: fuzzification and calculation of objectives took a fraction of a

second. At this pace, the algorithm would be able to evaluate approximately 85

family candidates per hour. Fortunately, there are ways to improve the efficiency of

the searching algorithm, such as downsizing the problem and varying the work flow.

Downsizing the problem

With 6 engines, 9 pumps, 7 transmission ratios, 5 tyres and 14 cylinders, the number

of possible combinations for a single truck is

6 ∗ 9 ∗ 7 ∗ 5 ∗ 14 = 26460 combinations for each individual variant (6.30)

And since there are 12 variants, the total number of combinations to construct a

product range is

2646012 = 1.178 ∗ 1053 possible ranges (6.31)
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This number of combinations includes some impossible families, such as for ex-

ample one in which the 9 ton truck has a cylinder smaller than the 2 ton truck.

These kind of restrictions are easy to identify and can drastically reduce the search

space if they are removed beforehand. Just by eliminating one candidate from one

application, the searching space is reduced by 4.451 ∗ 1048 family candidates. It is

easy to see in an intuitive way the benefit of spending some time in eliminating

obviously impossible product candidates, while at the same time it is important to

eliminate only those combinations that are absolutely sure to be impossible, to avoid

eliminating potentially good solutions. An exercise to reduce the pool was done and

achieved the final pool of candidates detailed in table 6.3

2.0 tons 270 combinations
2.5 tons 540 combinations
3.0 tons 900 combinations
3.5 tons 810 combinations
4.0 tons 1296 combinations
4.5 tons 1296 combinations
5.0 tons 1512 combinations
5.5 tons 1296 combinations
6.0 tons 1080 combinations
7.0 tons 1080 combinations
8.0 tons 864 combinations
9.0 tons 486 combinations

Table 6.3: Number of possible truck designs for each capacity after eliminating all the options
identified as non feasible by engineering judgement

Then the total number of possible ranges is reduced to 1.713 ∗ 1035, which rep-

resents an improvement of a factor of 6.87 ∗ 1017. An impressive reduction but still

far from making the problem solvable by brute force.

Varying the workflow

Each possible product is represented as a 5-element vector, for example (1,2,4,2,3)

refers to a product designed with engine (e) #1, pump (p) #2, gear (g) #4, tyres

(t) #2 and cylinder (c) #3. Each family candidate is then represented as a 12x5
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matrix in which each row is the design for each capacity from 2 tons to 9 tons in

the pre-determined steps. This is illustrated in the matrix below.



e2.0 p2.0 g2.0 t2.0 c2.0

e2.5 p2.5 g2.5 t2.5 c2.5

e3.0 p3.0 g3.0 t3.0 c3.0

e3.5 p3.5 g3.5 t3.5 c3.5

e4.0 p4.0 g4.0 t4.0 c4.0

e4.5 p4.5 g4.5 t4.5 c4.5

e5.0 p5.0 g5.0 t5.0 c5.0

e5.5 p5.5 g5.5 t5.5 c5.5

e6.0 p6.0 g6.0 t6.0 c6.0

e7.0 p7.0 g7.0 t7.0 c7.0

e8.0 p8.0 g8.0 t8.0 c8.0

e9.0 p9.0 g9.0 t9.0 c9.0


In a general genetic algorithm such as that one described in figure 6.15, the fitness

function is evaluated for all the members of the population at each iteration. In this

case, since each product candidate can be part of many families and then it is likely

to appear several times during the search, that would involve repeating the same

simulation many times. And since it has been observed that the simulation is the

longest part of the iteration in terms of computational time, it can be advantageous

to avoid that type of repetitions.

The method to avoid that repetition was to simulate all the possible products

beforehand. The total number of possible products according to table 6.3 is 11430,

and simulating the performance of each of them took around 9 hours with a Matlab

script that passed the parameters of each product to the relevant Simulink models.

This simulation exercise allowed a table to be written with the performance figures
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for each attribute for each possible product candidate for each application. Those

figures were also fuzzified and passed through the function to obtain the overall

product goodness. The last two steps are insignificant in terms of computational

time. Figures 6.16 and 6.17 show the difference between the original flow and the

improved flow, where the searching algorithm iterates over the results of the process

within the dashed line.

Figure 6.16: Original work flow

Figure 6.17: Alternative more efficient work flow

Some of the variants returned an individual goodness of zero due to the restriction

of equation 6.2, and they were eliminated from the database of possible variants.

The list was hence further reduced as shown in table 6.4. This further reduction

leaves the total number of candidate families as 6.0 ∗ 1029, which is a significant

improvement.

Once the overall goodness of each product candidate are tabulated, the objectives

function can evaluate in excess of 4000 family candidates per second, or 1.4 ∗ 107

per hour, which is 168000 times more than the original algorithm work flow. After

spending the 9 hours necessary to tabulate those goodnesses, the new work flow
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quickly reaches and leaves behind the performance of he original one. After 50 hours,

the original work flow will have evaluated approximately 4300 family candidates out

of 1.7 ∗ 1035, i.e. 1 in every 4 ∗ 1031. Whereas the new work flow will have done

so to 7.2 ∗ 108 out of 6 ∗ 1029, i.e. 1 in 8.3 ∗ 1020. This represents a 4.8 ∗ 1010 fold

improvement. For longer times, the improvement factor increases as the initial 9

hours become relatively less important. The factor by which the new method is

better than the original tends asymptotically to 4.8 ∗ 1010 , as shown by the parallel

logarithmic curves in the figure 6.18

2.0 tons 221 combinations
2.5 tons 168 combinations
3.0 tons 265 combinations
3.5 tons 645 combinations
4.0 tons 629 combinations
4.5 tons 464 combinations
5.0 tons 561 combinations
5.5 tons 369 combinations
6.0 tons 258 combinations
7.0 tons 180 combinations
8.0 tons 216 combinations
9.0 tons 156 combinations

Table 6.4: Number of possible trucks designs for each capacity after discarding all those hat
returned an individual performance value of zero
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Figure 6.18: Performance comparison between the original and new method. Both axes are
logarithmic scales

6.7 Summary

This chapter has shown the steps described in the previous chapter applied to a real

case. It has also discussed the process by which the search space has been reduced

and the flow improved before running the algorithm to improve the efficiency.

The next chapter will describe the low level details of the algorithm in terms of

how the population is chosen and sized, how it is recombined after each generation

and how the best candidates are stored. The results will also be shown.
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Chapter 7

Implementation and results

Chapters 6 described the case study, the modelling, the definition of the objectives

and introduced the searching algorithm. Now this chapter will first describe the

searching algorithm in detail as it was implemented, and then show the results

obtained. This chapter is one of a descriptive nature, the results will be shown but

neither validated nor discussed. The next two chapters afterwards will respectively

explain how the models were validated and provide a full discussion on the results

and the implication for the general purpose of this thesis.

7.1 Algorithm in R. Detailed description

The searching algorithm is separated into three main parts:

• Generating the workspace

• Setting the parameters

• Running the algorithm
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7.1.1 Generating the workspace

The first step is to load the data previously generated with the Simulink models.

There are 12 csv files, one for each application, with all the possible combinations

of components acceptable. Each row is one combination, and the columns are:

engine, pump, tyre, gear, cylinder, fuel consumption, maximum speed unladen,

maximum speed laden, maximum lifting speed unladen, maximum lifting speed

laden, drawbar pull unladen, drawbar pull laden, maximum gradient unladen and

maximum gradient laden. These databases are stored as p20, p25, p30 , p35 , p40

, p45 , p50 , p55 , p60 , p70 , p80 and p90. These files have the performance data

given in physical units.

The performance data in these p databases is given in physical units, and it

has to be transformed into goodness. Fvalues is a vector with the fuzzy level cuts

(0, 0.05, 0.2, 0.5, 0.8, 0.95, 1), and Fsetsdata a matrix read from a csv file with the

performance values corresponding to each level cut. Fsetsdata is divided in 12 blocks

(as many as applications) with nine rows each, one row per performance attribute.

The columns are the level cuts from 0 to 1, and each block is separated from the

next one by a NA row.

The information in Fsetsdata is rearranged into a 9x7x12 array named Fsets.

The indexes are:

• 1st index: Performance attribute

• 2nd index: Fuzzy level cut

• 3rd index: Application

e.g. The element Fsets(3, 2, 5) = 17.0875, this means that the maximum speed

unladen to score 0.05 in a 4 tons application is 17.0875 km/h.

A matrix is created for each application to store how each possible product

scores in each performance attribute. Those matrices are named g20, g25, g30, etc.
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This is done by interpolating the performance in each attribute between the closest

values for that application and that attribute in Fsets The original matrices with the

performance values in physical units is no longer necessary and therefore removed

from the workspace at this point.

Then a loop goes from bottom to top of each goodness matrix and deletes every

row in which at least one attribute is zero, as that product is deemed unacceptable.

The algorithm now calls the function Overall goodness for each remaining possi-

ble product of each application. The returned value is stored in 12 6-column matrices

named a20, a25, etc. where the first 5 columns are the components that define a

possible product and the 6th column is the overall goodness of that product. These

are the data matrices required to run the searching algorithm, and together with

aNames are kept in the workspace. All other variables can be cleared at this point

to keep it neater.

7.1.2 Setting the parameters

The searching algorithm is a multi-objective genetic algorithm based on two different

objectives. Each individual in a generation is a candidate family, i.e. 12 different

products destined to fulfil one application each. There is no a priori articulation of

preference and the outcome of the algorithm is a Pareto front. The first step is to

define some parameters:

• sPopulation: number of individuals, or candidate families, in each generation

• uParents: number of individuals in each generation generated by combinations

from existing parents

• Mutation: number of individuals in each generation coming from mutated par-

ents. A mutated parent is a family candidate in which some of the components

of some of the trucks are changed
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• Mutation chance: chance of mutation for each gen of the parents to be mutated

• nIterations: number of generations over which the algorithm will be run

• nRecord: number of historical Pareto fronts to be stored

A 12 elements vector - Sizes - is created with the length of each application

product database. This is necessary for the random selections that will occur later

on.

Each individual is a 12 element vector in which each element is the number that

a product occupies in its application database, e.g. the individual [35, 45, 65, 43,

45, 28, 76, 43, 46, 57, 86, 43] represents a candidate family composed of the product

in row 35 for the first application, product in row 45 for the second application, etc.

A generation is initially represented as a 12-column matrix in which each row is an

individual. There are as many rows as the parameter sPopulation indicates.

The Pareto front is a 14-column matrix where the 12 first columns represent

an individual with the convention explained above, and the latter two columns the

score in the two objectives. Each row is one of the Pareto efficient solutions found.

The Pareto front is initialized with one individual but can grow and shrink during

the execution of the script, the size will be stored in the variable sPareto. The

initialization is done with a random individual on which the function Objectives is

applied. Generation of a random individual is done by creating a 12 elements vector

in which each element is the ceiling of a random number between 0 and 1 multiplied

by the size of the corresponding product database.

The first generation is created by generating a sPopulation number of random

individuals. Then two columns with zeros are added to the end of the matrix in

which the scores in the two objectives will be stored.

The final step before starting running the genetic algorithm is to define the

Pareto historical set and which iterations will be stored in it. Due to the nature

164 Miguel Zapico



Chapter 7. Implementation and results

of the evolution of the found solutions, improving quickly at the beginning and

slowing down later on, it makes sense to record the Pareto fronts at longer intervals

as the algorithm advances in time. The chosen method was to record the front

in a logarithmic scale. A vector named Milestones is defined with the iteration at

which the fronts will be recorded. The Pareto historical is created as a nRecord x 2

matrix. Since the purpose of this record is only to show the evolution of the Pareto

front, it will store only the scores in the objectives, and not the family candidates

that achieved them. This matrix will grow in columns every time a recorded front

includes more points than the current size. The variable fill is the next row of

the Pareto historical that will be filled when the algorithm reaches the following

milestone.

7.1.3 Running the searching algorithm

The main body of the algorithm is a loop that runs from 1 to the number of iterations

previously selected. The first step is to run the function Objectives with the initial

generation as input. The score in the two objectives is stored in columns 13 and

14 of the matrix Population. Then the individuals are sequentially arranged into

four sequentially non-dominated fronts and the remainder of points. The first non-

dominated front is the Pareto front obtained from that generation. The second

non-dominated front is the Pareto front once the individuals belonging in the first

non-dominant front have been removed, and so on. For the first non-dominated

front two matrices are created named Non dominated1 and Remainder. A loop

runs through each individual with a nested loop comparing its objectives with those

of every other individual. The nested loop breaks if any point is found to be better at

the two objectives than the point under test, meaning that that point is dominated.

The point is then stored in Remainder. If the nested loop reaches the end without

finding a point that dominates the point under test, then that is a non-dominated

Miguel Zapico 165



Chapter 7. Implementation and results

point and it is stored in Non dominated1. The points in Remainder then go through

a similar process to define the second set of non-dominant points, and twice more

until all the points are classified into 1st, 2nd, 3rd, 4th non-dominant fronts and a

5th set with the remaining points. The points belonging in the remainder after this

process will be discarded for composing the next generation.

All the non-dominated fronts have 15 columns: 12 for the products that com-

pose the candidate family, 2 for the objectives and a 15th column to give a weight

depending on which non-dominated front they are. Those weights are 1, 0.8, 0.6

and 0.4 for the 1st, 2nd, 3rd and 4th non-dominated sets respectively. The weights

are later on used to bias the probability of being reproduced in the next generation

toward the best performers.

After this arranging process, the Pareto front is updated if any of the points in

the current generation is not dominated by any of the previous Pareto points. This

is done by checking the points of Non dominated1, since only points in that set can

be Pareto efficient. A loop goes through the points in Non dominated1 and a nested

loop tests each of those points against every point in Pareto. The result of each

match can be:

• Dominated: The point is not Pareto efficient and it is not stored in the Pareto

matrix. The nested loop breaks

• Dominates: The point dominates the current point of the Pareto front, so this

last point is removed from the set

• Redundant: The point is already repeated in the Pareto matrix, the loop

breaks

• None of the above

If the outer loop reaches the end and the point is not dominated by any, then that

point is added to the Pareto front matrix.
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Once the Pareto front is updated, if the iteration number is one of those identified

in Milestones, then the current Pareto set is also added to the Pareto historical set.

the Pareto historical rows represent the Pareto fronts at the different time milestones.

Each row has twice as many filled positions as the size of the Pareto front for that

iteration, the odd positions correspond to the first objective and the even positions

to the second objective.

Creating the next generation

Once the Pareto set has been updated, the next and last step of the iteration is to

create the next generation. For that, the points in the four non-dominated fronts

of the current generation are put together in a matrix named Parents. Then the

15th element of each row is multiplied by a random number between 0 and 1, and

the rows re-ordered according to the resulting number. This way the selection is

biased towards the points in the highest non-dominated fronts but all the points in

’Parents’ have a chance to be selected.

The size of the Parents matrix can be greater or lesser than the parameter

uParents, which is the preference for the number of children in a generation coming

directly from previous individuals without mutation. The algorithm then generates

the lesser of the two numbers as new individuals directly from existing parents.

The method to create these individuals is a loop that chooses two parents from

the Parents matrix, the first one sequentially and the second one randomly. Then

the new candidate family is built element by element with a 50 % chance of being

selected from either parent.

The next group of children to be created is the mutated ones, the number of

them is given by the parameter Mutation. Those are selected sequentially from the

Parents matrix, and each of the products of each individual has a change of being

mutated given by the parameter Mutation chance. For each product to be mutated
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the new choice is a random element of the corresponding database.

The remaining individuals necessary to fill the population are new random in-

dividuals. The next generation is then complete and the algorithm advances to the

next iteration.

It would be possible, and likely if no restrictions are in place, that after a num-

ber of iterations the individuals in the Parents matrix become very similar and

eventually repeated. To avoid this, a test was included to check whether there are

repeated individuals in the next generation and mutates everyone found. The test

runs only on the part of the generation that was created by crossing the parents

without mutation and consists on checking all the possible pairs. The test does not

consider the individuals created by mutation and those randomly generated. While

it is still possible that they are repeated, the probability is low, not worth the cost

of testing them, and they will not persist in following generations as they will either

be lost or become parents, in which case their children will be tested. The code for

the main algorithm as well as the auxiliary functions is included as an appendix at

the end of the thesis. The next two subsections describe those auxiliary functions

that are called by the main algorithm during execution.

7.1.4 Overall goodness function

The function named Overall goodness converts the goodness on every performance

attribute into a single number that reflects the goodness of a particular product.

It is a weighted sum with a parameter s to vary the degree of compensation al-

lowed between different attributes, i.e. how a poor score in one attribute can be

compensated by a high score in other attribute. The equation is:

Overall goodness =

[ 12∑
i=1

αi ∗ gsi
12∑
i=1

αi

] 1
s

(7.1)
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s > 1 High degree of compensation

s = 1 Normal weighted sum

s < 1 Low degree of compensation

Parameter s can be varied to observe how the solutions generated change with

it.

7.1.5 Objectives function

The objectives function is a one input two outputs function that takes a proposed

product family and returns its score in the two objectives under consideration. The

input is a 12 elements vector with the relative position of each product in its own

database. The function access each of those databases to fill a 12x6 matrix eFamily

where each row is one product, the first 5 columns are the components and the 6th

column is the overall goodness. The 12 elements vector Max number of products

gives the maximum number of products intended for production for each application,

and the other 12 elements vector Max sell prices shows the theoretical maximum

price at which the product for each application could be sold if the performance

for each attribute were ideal, i.e. the overall goodness equals 1. Then a 1-column

matrix is created for each component with as many rows as available options for

that component. The elements of those matrices are filled with a loop that goes

through every product in the family counting the number of the different component

options assuming the intended production numbers, e.g. if both trucks for 20 and 25

tons mount the engine #2, and their intended production are 5000 and 7000 units

respectively, then the second row of the Engine matrix will be 12000.

To calculate the costs of all the components there are three matrices with as

many rows as components in each product (5 in this case) and as many columns as

the options for the component with the higher number of them. Rows for which the
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component has less options than the length of the row can be filled with NA or 0.

• Base prices : minimum prices for each component when the purchased amount

is high enough

• Max prices : amount to add to the base prices when purchasing a single com-

ponent

• decay coefficients : exponential decay coefficient

A 5x1 matrix is created and named Cost, where element 1 is the total cost of all the

engines for the intended production, element 2 the total cost of all the pumps, etc.

One loop for each component calculates those figures going through all the options

for each component, calculating the price taking into account the exponential decay

function of that component option, and multiplied by the amount of that option in

the intended production. The sum of all elements of Cost is the objective 2, which

will have to be minimized. The objective 1, which unlike objective 2 will have to

be maximized, is the sum of each product maximum theoretical price multiplied by

the intended production and by the overall goodness. The two objectives are passed

back to the main algorithm as a 2 elements vector.

7.2 Results

This section shows the results after running the algorithm for 100000 iterations. The

results will be discussed in the chapter Evaluation and Discussion.

7.2.1 Choice of parameters

This subsection consists of a list of the values in the algorithm code that can be

parametrized. The values given to the parameters are the result of trial and error:
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• sPopulation: The number of individuals for each generation was set as 60,

or 5 times the number of genes of each candidate family as they appear in

the algorithm. Although the real number of variables is 60 itself. There is

no method to identify the best population size a priori, as it depends on the

particularities of each problem and their searching space, but a typical rule of

thumb to start is between 5 and 10 times the number of genes.

• uParents: 40 was selected as the number of individuals in each generation

coming as a combination of individuals from the previous generation. This

number ensures a good ratio of preservation and combination.

• Mutation: 10 is the number of individuals in each generation that come from

mutation of individuals in the previous generation

• Mutation chance: 0.15, this factor ensures the highest probability to have 1,

2 or 3 mutated genes in each individual. the probabilities are shown in figure

7.1. It can be noticed that there is a 14% chance of an element passing to the

next generation unchanged, however, as that will happen to approximately

only 1 in 7, it is more efficient to keep it rather that introduce a check to spot

it and force it to mutate.

• nIterations: The number of iterations or number of generations over which the

algorithm will be run. It was set as 100000.

• nRecord: The number of Pareto fronts that are recorded through the searching

evolution. This is only for evaluation purposes, and has no effect on the

performance. It was set as 50.

The final parameters are summarized in table 7.1.

Figure 7.1 shows the probability of having a number of mutations in a family

candidate that goes through the mutation process to the next generation.
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sPopulation 6
uParents 40
Mutation 10
Mutation chance 0.15
nIterations 100000

Table 7.1: Algorithm parameters
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Figure 7.1: Probability of mutating elements

The algorithm was run for 100000 iterations and the historical Pareto front is

shown in figure 7.2. It can be observed that the front evolves very little after 25000

iterations. The elapsed time for all the iterations was 3.8 hours, but a very close

result was recorded after only 1.4 hours. Another observable feature is that the

Pareto points are well distributed over the front, this provides confidence that the

algorithm is well balanced and efficient at searching the space, i.e. not focusing on

one particular region.

It is important to clarify that the plot in figure 7.2 shows the solution in the

objectives space, each point represents the score of the particular solution in both

objectives, but does not provide any information about the composition of the can-

didate family.
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Figure 7.2: Pareto front after 100000 iterations

7.2.2 Improving the Pareto front

To improve the coverage of the Pareto front, an exercise was conducted to find the

optimal of each objective separately. That point for the objective 1 - maximum -

is easy to find, as it is simply the family with the best performing individual for

each application, without any combinatorial involved. On the other hand, finding

the optimal for objective 2 - minimum - required a modification of the algorithm

to consider only the objective 2 of the fitness function and treat the search as a

single objective optimization. That algorithm was run for 10000 iterations and the

points are plotted in figure 7.3. The run took 25 minutes. The utopia point is

the combination of the best of both objectives, a normally unachievable point that

serves as a reference point against which the found solutions can be evaluated, as

was explained in the literature review.

Then the main algorithm was re-run for a further 10000 iterations starting with

the existing Pareto front and incorporating the extrema for the two objectives in the

initial population to ensure that the final Pareto front extends to both ends. The
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Figure 7.3: Pareto and objectives extrema - utopia point

run took 34 minutes and the new Pareto front is shown in figure 7.4

7.2.3 Commonality

A commonality index was calculated for all the families in the Pareto front. The

index is described by Martin and Ishii (1996) and the definition is:

CI =
u

vn∑
j=1

pj

(7.2)

Where u is the number of different parts in each family, pj is each product, and

vn the number of products in the family.

The higher the degree of commonality the lower the index CI is. The maximum

theoretical index for this case study is 0.683 if all the possible components are used

at least for one product, and the minimum 0.083 if all the products shared all the

components. For the families in the Pareto set the indices range from 0.300 to 0.467,

and figure 7.5 shows the index for the different solutions in the Pareto front ordered
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Figure 7.4: Pareto and objectives extrema - utopia point

with growing objective 1, the performance related objective. There is a correlation

coefficient of 0.60 and the best second degree polynomial is shown in red. It is clearly

seen in the plot that commonality tends to decrease for bigger scores in objective

1, which is to be expected as higher performance products can usually be achieved

by designing them more specifically. However, this relation still allows the existence

of relatively high degrees of commonality near the top end of highest performance

families.

Figure 7.6 shows the prevalence of different products for each application in the

Pareto front. The x-axis shows the applications and the y-axis the number allocated

to each possible product in its corresponding candidate product database. Bigger

circles mean that the particular product appears more frequently in the Pareto solu-

tions. However, the number only represents the position of a product in a database,

and does not provide specific information about the composition of that product.

This graph only shows the relative variety of products for each application but

without any reference to commonality, two distinct circles may equally refer to two

products almost identical or completely different. Figure 7.7 shows the same in-
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Figure 7.5: Commonality index of the Pareto front families

formation as figure 7.6 but without referencing each product to the position they

occupy in the databases. In this plot, lower reaching columns mean that the solu-

tions for that particular application tend to gravitate towards a reduced number of

products, whereas higher columns mean that the preferred options for that appli-

cation are more varied. In that figure, the grey filled circles show the prevalence

of each product and are flanked by a series of red circles to the left showing the

prevalence of those product in the half of the Pareto set with the poorest scores in

the revenue objective and best scores in the cost objective; and a series of green

circles to the right corresponding to the half of the Pareto set with the best scores

in the revenue objective and poorest scores in the cost objective. It can be observed

that some products have only one of the side circles, and therefore they only appear

in one of the halves of the Pareto front. This can be made clearer in figures 7.8

to 7.12, which show the prevalence of each component option for each application

with the same convention of a grey filled circle for the total, red circle on the left

for those solutions with better cost objective and green circles for those with better

revenue objective. All the products for applications t20 and t25 with the engine #2
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appear on the right hand side of the Pareto front, which can be expected as this is a

more powerful engine and is favoured in solutions with better performance. Another

interesting fact is that all the solutions use engine #4 for all the applications beyond

t50, whereas for applications t35, t40 and t45 most solutions employ engine #4 but

some use engine #3, and are located in the area of the Pareto front where the cost

objective is stronger. It can be observed that engines #5 and #6 are unused in the

entire set of Pareto solutions.
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Figure 7.7: Product prevalence in Pareto front irrespective of their positions in the databases
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Figure 7.8: Engine prevalence in Pareto front
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Figure 7.9: Pump prevalence in Pareto front

1
2

3
4

5

Application

C
om

po
ne

nt
 o

pt
io

n

t20 t25 t30 t35 t40 t45 t50 t55 t60 t70 t80 t90

Tyre prevalence

● ●● ●● ● ●● ●

●● ● ●● ●● ●● ●● ●● ●● ●

● ● ● ● ●● ●● ● ●● ● ●● ● ●● ● ●● ●●●●●● ●● ●

● ● ● ● ● ● ● ● ●● ● ●● ●

● ● ● ● ● ●

●

●

●

Pareto
Obj 1 Dominance
Obj 2 Dominance

Figure 7.10: Tyres prevalence in Pareto front
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Figure 7.11: Gears prevalence in Pareto front
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Figure 7.12: Cylinder prevalence in Pareto front
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7.3 Number of products

One of the main characteristics of this method is that the input is the applications to

be covered, rather than the products of the family. Table 7.2 shows the distribution

of the Pareto solutions according to the number of distinct products. the table reads

as:

• Column 1 (Distinct): Number of products composing the family

• Column 2 (Products): Number of Pareto solutions with the number of distinct

products specified in column 1

• Column 3 (Prod - Cyl): Same as column 2 but ignoring the cylinder to consider

the products equal

• Column 4 (Drivetrain): Same as column 2 but considering only the drive train,

i.e. engine, gearbox and tyres

• Column 5 (Engine/pump): Same as column 2 but considering only the engine

and the pump

Table 7.2: Solutions by number of products

Distinct Products Prod - Cyl Drivetrain Engine/pump
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 2
5 0 0 5 20
6 0 0 23 42
7 0 0 37 23
8 0 9 20 4
9 1 38 6 0
10 18 32 0 0
11 44 11 0 0
12 28 1 0 0
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It is observable that most Pareto solutions do not have a one to one map of

products to applications.

7.4 Solution selection

The Pareto front still has too many solutions for the decision maker to chose one.

Although not part of the target of this case study, this section will show a possible

way to filter some solutions so that the decision maker is presented a feasible prob-

lem. Figure 7.13 shows the Pareto front and the value for the revenue objective of

an existing product family with a blue line. If the target is to replace or compete

against that family, the suggested area where the solution can be chosen from can

be delimited by the orange dashed lines. In case the target were to move up the

market from that existing family, then the solutions should be picked from the region

strictly to the right of the blue line.

In the first case, the selection still shows 16 potential solutions. A possibility is

to consider the results shown in table 7.2 and assume that solutions with a reduced

number of different products will have an advantage in terms of development time,

apart from the parts cost reduction which is already computed. This is shown in

table 7.3.

The table shows four different criteria to count the number of different products

that compose the family. Each of those criteria consider that two products are equal

when:

• All components are the same

• All components are the same except the cylinder

• The components of the drivetrain are the same

• The engine and the pump are the same
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Figure 7.13: Pareto front and proposed region for choosing the final solution

Table 7.3: Solution subset showing number of products under several criteria

Obj1 Obj2 Products Prod - Cyl Drivetrain Engine/pump
615.1304 78.79901 10 9 7 4
615.3839 78.82706 12 11 8 6
617.6872 78.90973 12 10 8 6
617.8095 78.92783 11 9 7 6
618.4083 78.99226 12 8 6 6
618.9968 79.17926 10 9 7 4
619.1906 79.21132 12 9 7 7
620.0175 79.25061 11 9 8 5
620.0959 79.42224 11 10 6 6
620.1865 79.51168 11 10 9 5
620.9794 79.54349 10 8 6 7
621.646 79.61953 10 9 7 6

622.4619 79.7469 10 8 6 6
622.6426 80.09755 10 8 6 6
623.0333 80.16494 12 10 9 6
624.6233 80.38533 9 9 7 5
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Of those four criteria, the most reasonable to use is the second one, as the

cylinder is a customized component with little difference in terms of development

time and effort. According to that criterion, the most suitable solutions are those

in bold typeface, and table 7.4 shows the truck numbers for each application.

Table 7.4: Trucks in the selected solutions

t20 t25 t30 t35 t40 t45 t50 t55 t60 t70 t80 t90
33 15 170 125 392 162 155 140 91 55 19 1
33 50 170 125 460 230 155 120 91 56 19 1
61 50 46 566 460 230 86 120 91 56 19 4
61 50 46 566 460 230 86 120 91 56 19 22

Figure 7.14 shows the map between the original applications and components

for one of the proposed solutions as described in the figure 1.2 in the introduction

chapter.

Figure 7.14: Applications to components map for one of the proposed solutions
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7.5 Existing products

An alternative scenario is that one in which some products already exist and the

problem is how to fit the remaining products around it. For this case, the existing

product can be modelled and fixed while the search looks to optimize the whole

family with the constraint that one or more of those products are already defined.

The results are expected to be different and take into account the existing conditions.

To test this hypothesis, it was assumed that the product for the 8 tonnes application

is already existing and it mounts engine #5. This engine does not appear in any of

the solutions found in the original run, however, with the condition that it is already

part of the family, this now appears in some solutions for a product other than the

one that is fixed with it as it can be seen in figure 7.15. This happens thanks to the

cost reduction associated with increasing the number of those engines.
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Figure 7.15: Engine prevalence with a product already fixed

This chapter has shown the results for the case study and an analysis of those

results. the following chapter will provide a series of validation tests that use the

Pareto front obtained from this chapter as the main basis.
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Chapter 8

Validation

This chapter describes all the steps that were taken to validate the results of the case

study. Due to the problem nature, it is not possible to prove the results with the

rigour that would be required for a mathematical theorem. Instead, the validation

exercise consists of a set of tests intended to increase the confidence in all the steps

involved. The tests defined are:

• Performance model validation: comparison of test results for a known product

with the simulation results for that same product.

• Objectives validation: an exercise involving the manual ordering of several

products and families according to expert’s preferences and comparison with

the model ordering.

• Searching algorithm validation: analysis of the genetic algorithm performance.

• Solution analysis: analysis of the Pareto solutions against sanity tests designed

by engineers with expertise in the field.
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8.1 Performance model validation

The models were parametrized to replicate the characteristics of three existing prod-

ucts and the results of the simulation compared with the declared specifications

datasheet for those products. The differences are summarized in the table 8.1, and

the comparison for each product represented in the spider diagrams in figures 8.1 to

8.3. The red lines are the declared specifications and the black lines the simulation

data. The subsequent subsections discuss the accuracy and its significance.

Table 8.1: Performance model validation results

2.5 Tonnes 3.0 Tonnes 3.5 Tonnes
Specs Sim Diff (%) Specs Sim Diff (%) Specs Sim Diff (%)

Fuel (l/h) 3.1 3.2 2.2 3.5 3.5 -1.0 4.0 3.9 -3.0
SpeedU (km/h) 17.5 17.8 1.6 18.9 19.3 2.0 16.6 16.7 0.4
SpeedL (km/h) 17.3 17.2 -0.4 18.7 18.7 -0.2 16.2 16.1 -0.4

LiftU (m/s) 0.69 0.71 2.3 0.61 0.61 -0.1 0.56 0.58 4.4
LiftL (m/s) 0.66 0.66 -0.1 0.58 0.57 -2.1 0.52 0.54 4.7
DrawU (N) 12100 12434 2.8 13800 13929 0.9 14000 14924 6.6
DrawL (N) 14800 20357 37.5 13400 19029 42.0 17500 21461 22.6

GradU 0.31 0.31 2.4 0.31 0.31 3.1 0.28 0.31 12.3
GradL 0.15 0.32 106.4 0.12 0.25 101.7 0.15 0.25 67.4
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Figure 8.1: Performance validation 2 & 2.5 T

188 Miguel Zapico



Chapter 8. Validation
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8.1.1 Fuel consumption

The differences between simulation and specification are negligible, less than 5% in

all cases, which is lower than the differences that can be encountered between two

actual tests. Real tests involve human factors, no two drivers will get the same

results, and in addition, environmental conditions such as atmospheric pressure,

altitude, temperature, etc. have an impact on the figures that can add to 10% in

practice.

8.1.2 Maximum speed

The differences are minimal and acceptable according to engineering criteria. The

achieved figure in the tests is also dependable on environment conditions, to which

for this case should also be added the state of the tyres and the characteristics of

the test track and its effects on the rolling resistance. The biggest source of error

in general for maximum speed prediction for vehicles is the aerodynamic drag, and

this is not relevant for the speeds involved in this case.

8.1.3 Lifting speed

The most important potential source of error for this attribute is the characterization

of the hydraulic system and the pressure losses model. In this case, the errors are

contained within 5%, which makes them acceptable.

8.1.4 Drawbar pull

These results seem to be accurate for unladen cases, within 7%, and with a bigger

margin for laden cases.
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8.1.5 Gradeability

The results are similar to those for drawbar pull, acceptable for the unladen case

where the higher deviation is 12.3% and seemingly too high for the laden case.

Although the 12.3% maximum error may seem to be problematic, small differences

in the friction coefficient in the test and model can have a big effect in reported

values as it may make the truck skid despite still having enough torque available.

8.1.6 Addressing inaccuracy

Considering the issue with laden gradeability and drawbar pull, the objectives func-

tion was modified to ignore those specific attributes and the searching algorithm run

again. A new Pareto front was found with these new settings and the components

of its solutions compared with those in the original solution. Then the original ob-

jectives were calculated for the Pareto solutions found with the modified version.

This is shown in figure 8.4 and it is clearly observable that they do not match the

original Pareto front. This is expected, as the new solutions are optimized ignoring

two attributes, it would be a coincidence that they would match the solutions found

with a function that incorporates those attributes.

Figure 8.4 shows the Pareto points found with the alternative function and how

they perform in the original objectives compared to the original Pareto front.

Figure 8.5 shows the rate of occurrence of particular product candidates in the

original Pareto and the occurrence of the same candidates in the alternative version.

The different applications are separated by dark blue solid lines. Horizontal lines

where the black dot is too low or zero and the red cross is high, or vice versa indicate

that this particular product candidate is common in one set of solutions and not in

the other one. It is observable that there are many instances of that.

An additional analysis performed was to consider the individual components of

every family in the new Pareto front, find the family in the original Pareto front
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Figure 8.5: Rate of occurrence of product candidates in the original Pareto vs alternative Pareto
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that most closely matches it and count the number of equal components. The total

number of components in a family is 60. None of the families in the alternative

Pareto set was found to be repeated in the original Pareto set, and the number of

components common with a family in the original Pareto ranged between 43 and

51. Figure 8.6 shows the distribution.
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Figure 8.6: Closest match in original Pareto front by number of components

8.1.7 Conclusion

The accuracy of the simulation models with respect to the declared figures is high

with the exception of drawbar pull laden and gradeability laden. The reason for

inaccuracy in those attributes is the high sensitivity to small variations in the friction

coefficient which is difficult to control in testing. However, the models should predict

accurately the differences between two product candidates. It has also been shown

that the accuracy of these models is of critical importance for the whole method

as it can vary the solutions even in the case that the particular attribute has a low

relative importance.
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8.2 Objectives validation

Two sets of 10 product samples were selected, the first one for 3 tonnes and the

second one for 6 tonnes. The sets were given to experienced engineers and mar-

keting professionals and they were asked to order them from best to worst. The

only information they were presented was the performance specifications in the nine

attributes considered, no information about the components used for each example

was included. After ordering them, they were asked to go through the examples

in pairs, with the one that was ranked higher on top, and provide a measure of

confidence in the adequateness of the order:

• 3 - Sure the top product is better

• 2 - The top product is better but with doubts

• 1 - Not sure which product is better

Then the level of confidence for each pair was assessed against the difference in

the overall goodness between those products provided by the model, the results are

plotted in figure 8.7, the y-axis does not have any meaning, each point is plotted

at a random height for the sake of visual clarity and avoid overcrowding. It can

be appreciated that the majority of pairs with confidence level 3 corresponds with

positive differences in goodness, i.e. the model agrees with the response, whereas

rankings with lower level of confidence, or no confidence at all are located more

towards the 0 axis or to the left of it. A green cross to the left of the 0 axis

means that the respondent ranked that pair in the opposite direction with respect

to the model, but were not sure at all that their ranking was correct. It cannot be

expected that there would be a complete agreement between the responses and the

model ordering, as the orderings made by different people differ in some cases. This

is normal as there is not a single and undisputed way in which every decision agent

will incline towards one side or the other in front of a tight trade off. This is the
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main reason why this thesis focuses on a multi-objective approach with a posteriori

articulation of preferences.
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Figure 8.7: Confidence levels vs goodness difference

A similar exercise was attempted for the entire objective 1, i.e. evaluating fami-

lies, however, this was not successful as the respondents were not capable of compar-

ing two families and articulating their preferences when the trade-off involved 108

different attributes, except for cases where one family dominated the second one in

most of the objectives, which is not the general case among families belonging to

the Pareto front.

8.2.1 Conclusion

This test has shown a correlation between the order in which the model ranks a

number of sample products and the preferences of professionals with knowledge and

experience in the field. This ordering, or the assignment of a well-ordered score to

every product candidate is an important part of the method described in this thesis,

as it is the benchmark against which one of the two objectives of the problem is
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assessed, and hence the solutions chosen.

8.3 Search algorithm validation

8.3.1 Statistical test

A measure of distance to Pareto was defined as the distance from that solution to

the best values of the two objectives found in all the Pareto points that dominate

the given solution. Figure 8.8 shows an example solution compared to the Pareto

front. The red dotted lines mark the subset of the Pareto front that dominates

that sample solution, and dObj1 and dObj2 are the distances to consider. The

smaller those distances, the closer the solution will be to the Pareto front, and if

the distances happened to be negative, that would mean that the given solution

dominates a subset of the Pareto front. In that case, the solution would be a new

Pareto point that would replace all those that it dominates.
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Figure 8.8: Distance from a generic solution to the Pareto front

A random search was conducted to find 100000 solutions, and the distances
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dObj1 and dObj2 were computed for all of them. Table 8.2 shows the maximum,

minimum, average and standard deviation of the distances to the Pareto front for

that solutions sample set.

Table 8.2: Random solutions statistics

dObj1 dObj2
Max 349.16 17.26
Min 65.27 3.41
Avg 200.59 10.91
SD 35.36 1.89

The next step was plotting the distances probability density and compare it to

a normal distribution using the data of table 8.2 as parameters. This is shown in

figures 8.9 and 8.10 respectively for the objectives 1 and 2. The black dots are the

sample points and the red lines are the normal distributions calculated with the

mean and standard deviation taken from those samples.

Figure 8.9: Solution sample set dObj1 distribution

It appears clear that the distances to the Pareto front closely follow normal

distributions. Assuming this to be true, a statistical analysis follows:
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Figure 8.10: Solution sample set dObj2 distribution

Any point of the Pareto front will have distances dObj1 and dObj2 = 0, this is

5.67 and 5.76 standard deviations below the mean. Assuming the normal distribu-

tion rule holds for all the possible solutions, this implies a cumulative distribution

function value of 0.999999993 and 0.999999996 (Six Sigma Institute, 2019), and a

probability of randomly finding one of between 1 in 1.43 ∗ 108 and 2.5 ∗ 108. Since

the algorithm was run for 105 iterations and the number of candidates was 60 per

iteration, a total of 6∗106 families were evaluated. With this number of evaluations,

the probability of randomly finding at least one of the Pareto solutions in the range

found by the algorithm is 4.1% or approximately 1 in 24, and that of finding a front

with 91 elements falls to nearly zero, in the range of 7.7∗10−125%, or 1 in 1.3∗10126.

8.3.2 Pareto convergence

The algorithm was run two additional times with the same number of iterations and

the Pareto fronts compared. Figure 8.11 shows that the shape and position of the

three fronts is equivalent, which proves that the algorithm is consistently finding

points of that quality.
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Figure 8.11: Pareto comparison from 3 different runs

8.3.3 Conclusion

This test has compared the efficiency of the search algorithm with that of a random

search and bounded the improvement assuming a normal distribution is applicable

for all the searching space. Although it is not possible to know how much further

the absolute Pareto front could be, as the normal distribution law can break at that

kind of distance from the mean, it can be concluded that the searching algorithm

is efficient at finding a reasonably good set of solutions. Genetic algorithms are

heuristic methods for which finding a good solution is the target, they cannot find

exact solutions.

8.4 Industry designed tests

A set of tests was designed in collaboration with engineers with expertise in the

field as a sanity check of the families belonging to the Pareto front. Success in these

tests is intended to increase the confidence in the results, whereas failure of the tests
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would point to weakness and cast doubts on the validity of the method.

8.4.1 Dislocations

A dislocation is a case in which, within the same family, a product intended for a

lower rated capacity than other product mounts a bigger engine, pump or cylinder.

This is not a standard term, but an ad hoc definition for this validation exercise.

Intuitively, it is hard to find sense in these dislocations happening, a potential cus-

tomer would find it weird that a higher capacity product incorporates a smaller

engine for example. Their existence is an unexpected result from the logical point

of view, but not so much from a purely algorithmic point of view. This would not

make sense in the real world.

Procedure

49 out of the 91 families in the Pareto set showed at least one dislocation. Table

8.3 shows the distribution of families by number of dislocations, whereas table 8.4

shows the occurrence per component. It is observed that the rarest dislocation is

that one of an engine.

Table 8.3: Distribution of families by number of dislocations

Dislocations Instances %
None 42 46.1

1 37 40.6
2 10 11
3 1 1.1
4 1 1.1

5 or more 0 0

After finding these dislocations, a script was written to correct the families in

which they occurred, and check whether the corrected family would dominate the

current one. Two methods were defined to correct the dislocations:
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Table 8.4: Distribution of Components by number of dislocations

Component Instances
Engine 2
Pump 37

Cylinder 25

1. Going from lowest to highest capacity and upgrading any case of component

lower than the one in the previous product.

2. Going from highest to lowest capacity and downgrading any case of component

higher than the one in the previous product.

For each family showing dislocations, all the combinations of the two methods for

each component with a dislocation were checked. A total of 117 families were gen-

erated this way.

18 of the 49 families with dislocations were dominated by at least one of the

corrections done and were replaced in the Pareto front. Including those 18 families,

a total of 94 of the corrected families were non dominated by any of the existing

Pareto front, and hence worth to be added to that Pareto front. This represented

80.3% of the corrected families. After that, it was checked whether the new additions

to the Pareto front made any of its existing or new solutions dominated, the Pareto

front was finally reduced to 88 elements.

Only 7 solutions with dislocations remained in the Pareto front at this point.

Figure 8.12 shows a zoom of the Pareto front showing those solutions in black and

the neighbouring Pareto solutions in red. The dotted line is the linear fit between

the neighbouring solutions, and the limit for any intermediate solution for a convex

Pareto front, i.e. if the Pareto front is convex and continuous, any point behind

that dotted line cannot be a true Pareto solution, and although not found by the

algorithm, there exists a solution that dominates it. Due to the discrete character of

this problem, it cannot be assumed that the Pareto front is convex at every point,

and it is definitely not continuous, and hence it cannot be ruled out that those
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solutions with a dislocation be true Pareto points. In case they are true Pareto

points, the reason for they to appear lies with the choice of searching algorithm, as

genetic algorithms are capable to find such points, which can not be said of all other

possible methods. What can be said, however, is that those points are unlikely to

be good choices, as they represent a relatively big sacrifice in one objective for a

relatively small benefit in the other one. Normally a decision maker would opt for

one of the neighbouring red points rather than the black one.

With the exception of the points plotted in the rows 2 and 4 in the first column,

all the other solutions with a dislocation are of the type mentioned in the previous

paragraph.

Conclusion

The existence of dislocations in the Pareto solutions after the algorithm run is due

to the nature of the problem, and unavoidable without including some intelligence

in the algorithm to force a deviation from that kind of solutions.

When a dislocation is introduced over a non-dislocated Pareto solution, it is

very likely that one of the two objectives is improved at the expense of the other

one, i.e. the dislocated solution is not dominated by the non-dislocated solution

and hence both can be Pareto solutions, even though the dislocated one does not

appear to be reasonable. This has been an unexpected finding, and it is likely to

happen more and more often the higher the number of objectives that compose the

fitness function. From an industrial point of view, solutions with a dislocation are

not interesting, and should be eliminated from the Pareto set that is presented to

the decision maker.
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Figure 8.12: Remaining dislocations in context with the surrounding Pareto solutions
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8.4.2 Scenarios response

This test involves modifying the definition of the objectives and checking whether

the solutions change in the expected logical way. Two tests were performed:

• Varying price decay with volume

• De-selection of attributes

Varying price decay with volume

Three different tests were performed, the first one increasing the decay for high

volumes, the second one lowering it and the third one with no decay at all, i.e. fixed

price for each component independently of the volumes. The commonality index

(Martin and Ishii, 1996) was calculated for all the solutions in the Pareto fronts and

compared. The expected behaviour is that higher decays should result in families

with more commonality, i.e. lower index. The results are plotted in figure 8.13, and

they show a trend towards lower commonality indices for the solutions using high

decay price curves and towards higher commonality indices for the solutions with

both low decay and no decay at all.

An important point is that high decay in this context means that de price decay

is more pronounced in the range of the number of units that is likely to be used. If

the price curves are modelled as exponential decay, as is the case in this case study,

this is not synonymous with a higher decay rate curve in general. This is visually

explained in figure 8.14, the red dotted curve is a higher decay curve in general,

however, when the number of units is expected to range between 2000 and 6000, the

red dotted curve is actually less sensitive to volume in that range, i.e. it is a lower

decay curve for all effects in this context.
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De-selection of attributes

This test consists on disregarding the fuel consumption as a target and calculate a

new Pareto front. The expected behaviour is that the solutions should tend towards

bigger engines that favour the other attributes. The new Pareto solutions under this

condition were assessed against the original objectives, they are shown in red crosses

in figure 8.15, and compared with the original Pareto front in black circles. It is

clearly noticeable that the Pareto points found disregarding the fuel consumption

do not perform as well as the original Pareto points according to the complete

objectives, this is the expected behaviour.

350 400 450 500 550 600 650

75
80

85
90

Objective 1

O
bj

ec
tiv

e 
2

●
●

● ●● ●●●●●●●●● ●●●●●●●●●
●●●●●●
●●●●●●●●

●●●●
●●●●
●
●●●
●●●●
●●●●●●

●●●●●●
●●●●
●●●●
●●●●
●●●●
●●

●●
●●●●
●

●

Original objectives for no−fuel Pareto solutions

x xx xxxxxxxxxxxxx
xxx

x

xxxxxxx
xxxxx

x

x

x

x

x

xx

x

x

xxxx
xxx

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

o
x

Original
No Fuel

Figure 8.15: Pareto solutions with fuel deselected vs original Pareto

Then the prevalence of engines was compared to that one in the original Pareto,

this is shown in figure 8.16. The x axis is divided in the different applications and

each region has 6 lines, one for each engine type. The black dots show the ratio of

Pareto solutions that have that engine for that application, and the red dots show

the same for the Pareto solutions found disregarding fuel consumption. Observable

trends include:
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• Engines 5 and 6, the most powerful ones although expensive and less fuel

efficient, now appear in many Pareto solutions, whereas they were unused

in the original one. Engine 5 in particular starts appearing in the 4 tonnes

application.

• Engine 3 is now more common at the expense of engine 2 and 4. this engine

was very rare in the original Pareto due to its poor relative consumption.
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Figure 8.16: Engine prevalence original vs fuel attribute deselected

Conclusion

The variation in commonality depending on the slope of the price decay curves is

clearly noticeable in the solutions and agrees with the expected behaviour. The

second tests deselecting one attribute from the goodness function also agreed with

the expected behaviour, hence the scenarios tests are considered as successful.
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8.4.3 Matching a given family

This test consists in defining performance targets for every application and finding

the family architecture that best matches those targets. For that, the fuzzy sets

should be defined as very steep, and with a membership of 1 for the exact value of

the target. Figure 8.17 shows an example of a fuzzy set for an application in which

the fuel consumption target to match is 3.9 l/h.
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Figure 8.17: Fuzzy set to match a fuel consumption of 3.9 l/h

The targets were defined as shown in table 8.5. Then the fuzzy sets were defined

in the style illustrated by figure 8.17 and the goodness for each attribute recalculated

through all the possible products for each application. Two different criteria were

used to select which product is the best match for each application target:

• Maximize the sum of the goodness of all the attributes

• Minimum deviation in the lowest performing attribute

Figure 8.18 shows the Pareto front, the solutions are closer to the target the more

to the right they are located in the plot. This Pareto shows the trade-off between

getting close to the targets and cost.

208 Miguel Zapico



Chapter 8. Validation

Table 8.5: Target product family

T Fuel SpeedU SpeedL LiftU LiftL DrawU DrawL GradU GradL
2T 2.3 22 22 0.55 0.53 13000 15000 0.31 0.28
2.5T 2.5 22 22 0.55 0.53 13400 15100 0.31 0.28
3T 3.2 22 22 0.55 0.53 15300 19700 0.3 0.27
3.5T 3.4 22 22 0.55 0.53 16000 19700 0.28 0.24
4T 4.2 21 21 0.55 0.53 20500 23000 0.28 0.24
4.5T 4.4 21 21 0.55 0.53 21800 24000 0.28 0.24
5T 4.6 21 21 0.53 0.49 22200 25000 0.28 0.21
5.5T 6.7 21 21 0.53 0.49 25000 28000 0.28 0.21
6T 7.3 21 21 0.53 0.49 27000 30000 0.28 0.21
7T 7.8 21 21 0.53 0.49 29000 33000 0.28 0.21
8T 8.3 21 21 0.53 0.49 32000 35000 0.28 0.21
9T 8.8 21 21 0.53 0.49 35000 38000 0.28 0.21

The spider plots in figures 8.19 to 8.24 show the targets for each application

in black solid lines and the performance of the best matches, red dashed lines for

the first criterion and green dotted lines for the second criterion. It can be noticed

that the achieved values for some targets of some applications are exceeded and

some others are short. The former is not a problem as the objective was defined

as matching the targets, without penalizing an excess. The latter means that the

specified targets are not fully achievable with the available components.
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Figure 8.18: Pareto front for matching a target

Miguel Zapico 209



Chapter 8. Validation

2.0T

Fuel

SpeedU

SpeedL

LiftU

LiftL DrawU

DrawL

GradU

GradL

2.5T

Fuel

SpeedU

SpeedL

LiftU

LiftL DrawU

DrawL

GradU

GradL

Target
Criterion 1
Criterion 2

Figure 8.19: Targets vs achieved for 2T & 2.5T
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Figure 8.20: Targets vs achieved for 3T & 3.5T
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Figure 8.21: Targets vs achieved for 4T & 4.5T
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Figure 8.22: Targets vs achieved for 5T & 5.5T
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Figure 8.23: Targets vs achieved for 6T & 7T
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Figure 8.24: Targets vs achieved for 8T & 9T
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Conclusion

This test has shown that the objective function can be defined to obtain a specifically

given set of requirements for every product of the family. The result is a Pareto

front that allows the visualization of the trade-off between getting close to the set of

targets and reducing the costs in parts. The spider plots show the closest matches,

which correspond to the rightmost point in the Pareto front.

8.5 Validation conclusion

This chapter has shown a series of successful tests that build confidence in the

method described in this thesis. The tests have targeted the performance models,

the method to assign an overall goodness to each product candidate, the searching

algorithm, and the solution response to several changes. The validation strategy has

addressed the first three parts of the validation square:

• Theoretical structural validity. The logic in the method is a direct sequenc-

ing of steps and it has been tested that it provides qualitatively appropriate

solutions.

• Empirical structural validity. Characteristics of the case study have been

discussed throughout the thesis and argued to make it an appropriate problem.

• Empirical performance validity. The case study and the results have been

thoroughly and successfully tested.

The conclusion is that the confidence in the method is high as long as the dif-

ferent parts that compose it are well design and validated. The fourth part of

the validation square refers to generalising method performance beyond the chosen

example. This would require testing several case studies from different industrial

sectors, acquiring deep knowledge of each problem, and considerable support from
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experienced engineers in each field. This can not be accomplished within a PhD

time frame.
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Chapter 9

Evaluation, discussion and

conclusions

This chapter revisits the original objectives of this thesis and the research ques-

tions and evaluates how the proposed method demonstrated over a case study in

the previous four chapters provides answers to them and makes a contribution to

knowledge. It also discusses some avenues for further work.

9.1 Research questions

The work presented in this thesis is intended to answer the research questions posed

in chapter 1 - Introduction - section 1.4.

9.1.1 Research question 1

How can a platform strategy improve product development processes?

This is a question of a general nature and its objective is to frame the main

problem and why this field is relevant. It has been addressed by a combination of

three different tasks: a literature review, an analysis of the industrial practice and

an exercise on a real case using the proposed method.
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There is an extensive body of literature supporting the advantages of platform

family design in terms of cost saving, lead times and easiness to develop a new prod-

uct and a reduction of risks due to the use of well tried technologies. Those advan-

tages come with some associated disadvantages such as possible under or overdesign

for some variants, cannibalization, platform limits and unexpected failures. This

combination of pros and cons makes platform family design a problem of balancing,

rather than an idealised one in which the objective was as simple as building the

product range with the minimum number of components.

The study of an industrial case and the feedback from expert engineers showed

that the idea of platform design is well understood and rooted in the industry.

There is consciousness that some form of strategy is necessary to be competitive

and this fact is reflected in the product line offers, but it does not appear to be

a unique or well defined way towards it. Another important point coming from

the interviews is that although a model based strategy for component commonality

would be welcome, the industry can be reluctant to show confidence in theoretical

models without proper validation. This can potentially be a vicious circle in which

the industry does not take a model due to lack of validation and the model can

never be validated due to lack of taking.

The conclusion is that platform strategies is a relevant field and its adoption

helps to improve the development process in many industries for all the mentioned

reasons, but it also comes with downsides, what makes it a fine balanced problem.

9.1.2 Research question 2

What are the barriers to industrial adoption of product platform strategies?

The answer to this question is an analysis of the current status in the industry

to find the reasons that make this problem still an ongoing area for research rather

than one that has been solved and widely accepted. This has been addressed by
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chapter 2 - Literature review - and chapter 4 - Industry justification -.

The industry faces several obstacles in the way of implementing platform strate-

gies, an important one is that most existing methods look at reduced scope problems

such as optimizing the size of a component so it can be shared by different products,

or minimizing the number of components upon which the family is built. Other

cases deal with relatively simple products in which some variables need to be scaled

up and down to meet the different product requirements. While those approaches

are valid, they are not addressing the problem as a whole, and require some pre-

assumptions such as knowing what components are to be made common. This is

an assumption necessary for any method with a priori platform identification, and

as it has been discussed throughout this thesis, such approaches introduce excessive

constraints that prevent some solutions from being considered. While this can be

reasonable in some cases, it is not so in general, and in particular for complex ma-

chines where the effect of restricting or allowing different components can be hard

to estimate. Ideally, in order to be adopted, a strategy should be flexible in that

aspect.

A second important obstacle is that it is hard to balance pros and cons of the large

number of possible commonality strategies across the family, and most proposed

methods do not address that balance, they rather focus on minimizing the number of

components or sizing some predetermined common components so that each product

meets their requirements. This approach is not enough in many real cases, as the

goal is not always to minimize the number of different components. A reduction of

different components is typically advantageous and a means to achieve a satisfactory

product family and reduce costs at the same time, but it is not the goal per se. For

the industry it is important that the commonality strategy is balanced with other

factors such as product performance, and a properly designed trade-off strategy is

a must.
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Another common feature shared by most existing methods is the two stage ap-

proach. This is an extension of a priori platform identification in which not only

the common parts are selected first, they are also designed or sized without taking

into account the variant parts. This approach reduces the problem computational

complexity in the way of drastically reducing the number of combinations that can

form a product family. However, this approach can also restrict the quality of the

solutions as it involves taking some decisions without the full view that single stage

methods allow, i.e. those in which all components are sized or selected at the same

time. Methods in which the common components are neither identified nor chosen

before the variants are more comprehensive and can offer potentially better solu-

tions that would be obscured when any of those tasks is done beforehand, but at

the expense of increased problem and computational complexity for solving it.

As mentioned in the answer to the research question 1, and perhaps the most

important barrier for any method to be adopted, is that the industry requires any

model based platform strategy to be somehow validated before it stands a chance

of being actually used. Without validation, any method can be dismissed as simply

theoretical or an idealization, and it will be hard for the decision makers to consider

their results over their educated solutions, or even dedicate resources to try them.

Summarizing, these are the barriers to industrial adoption of platform design

methods that have been identified in this thesis:

• Method validation and confidence.

• Applicability to real world cases.

• Methods designed for simplified problems with many assumptions.

• Pros and cons balancing.

• Two stage approaches require taking a priori decisions without a view of the

whole picture.
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• Single stage approaches are computationally expensive and hard to manage.

9.1.3 Research question 3

Can an alternative product platform strategy be devised that addresses these barriers?

This question is the most important one of the four, and the answer to it is the

main contribution claimed in this thesis. The proposed method has been explained

in chapter 5 - Developing a method to design product family architecture - and

shown over a case study in chapters 6, 7 and 8.

The method has been developed over a case that is more general and has a wider

scope than the typical cases found in the literature. Industrial trucks are complex

machines whose behaviour depend on the components chosen in complicated ways

and cannot be measured against a simple performance indicator. There are sev-

eral components to select and they are involved in different ways in the different

attributes under consideration. Some of the components are discrete, i.e. a choice

among a number of existing options, whereas others are quasi-continuous variables

such as the cylinders. Also, there is no platform architecture chosen a priori, the

algorithm has absolute freedom to choose what components will be made common to

what product variants, and even what products will exist, as the number of variants

is an output of the algorithm itself rather than an input as it is normally the case.

The proposed method generates an unspecified number of product variants to cover

a predefined set of applications using a pool of components, existing or hypothetical,

to build the product variants. This is a novel approach.

Other identified barrier is the way to define the objective of the platform strategy,

with commonly used objectives such as minimum number of different components

and the like. The method described in this thesis does not have any commonal-

ity objective, the target is to cover the predefined applications and represent the

trade-off between the desirability of the solution for each application and the costs
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associated with that product family. The desirability of each product for each ap-

plication has been assessed by selecting the most important performance attributes

for each application, calculating the figures that each design would achieve through

physics based modelling and simulation, and converting each figure to a degree of

goodness for each performance attribute for each application using fuzzy logic. At

the same time, the costs associated to each potential product family were also cal-

culated taking into account the relation between the cost of each component and

the number of components used.

A strongly argued point in this thesis is the need to compromise between con-

sidering each single objective independently and loosing detail and definition by

aggregating them into a scalar function. It is hard to define a single function that

truly incorporates several objectives and reflects the preference; and the spirit of

this thesis is to try and maintain the objectives as independent to generate solu-

tions and let the decision maker articulate their preferences a posteriori. However,

it is also a well known fact in optimization that keeping many objectives results

in Pareto fronts almost as large as the searching space itself, and this effectively

provides the decision maker with an excess of information and a lack of criteria to

discern interesting from non-interesting solutions. Hence the need for compromise

that this thesis has addressed by suggesting keeping the number of final objectives

to two or a maximum of three, and ensure that they are grouped by conflicting

interests, i.e. one of the final objectives can aggregate all those initial objectives

that when they are improved, it is likely to make worse those aggregated in the sec-

ond final objective. In the case study, those final objectives have been chosen as a

combination of performance attributes for all the products as objective one and the

cost of the components for objective two. The aggregation of performance to define

the objective one has been done incorporating information given by engineering and

marketing professionals in an attempt to capture their preferences.
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This compromise is necessary for the method to be usable, but it is also important

to point out that the decision maker can ’zoom in’ any solution to observe all the

individual objectives in detail.

One of the characteristics of the proposed method is that it is a single stage

method, i.e. both platform and variant specific components are selected at the same

time. This keeps the search open and make sure that no a priori decisions can

obscure potentially good solutions. This approach was deliberate as it is superior

in terms of its capability to theoretically find the best solutions, they are always

a superset of the solutions found by two stage methods. The problem with single

stage methods is that they are more complex to implement and time consuming as

they have to look through a much bigger searching space. This difficulty has been

addressed with three key points:

• Reduction of the searching space by eliminating unrealistic combinations. Due

to the combinatorial nature, this point can reduce the searching space by

several orders of magnitude.

• Design of an efficient searching algorithm and find appropriate parameters.

This requires trial and error, this thesis has proposed a genetic algorithm but

this is not a prescription.

• Improved workflow. By running simulations for all the possible combinations

and storing the results in tables, the searching algorithm can run much faster,

as the same simulation is never run in a redundant manner.

The final barrier, but possibly the most important one, is that the industry

requires some form of validation before embracing a new method. As it was explained

in chapter 3 - Methodology -, this is not a problem with a solution that can be

tested in a lab or proved mathematically like a theorem. The validation approach

followed in this thesis consisted on looking at every step and design tests to validate
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their output. Those tests were designed in collaboration with the industry where

appropriate, and their aim was to build confidence in the method. More detail on

the validation exercise is provided as the answer to the research question 4.

9.1.4 Research question 4

How well could this new strategy perform in a real world industrial context?

This research question is addressed in chapters 6, 7 and 8 through a case study

to test the proposed method.

The solution to the case study has shown a Pareto set of 88 product families, 44

of them are composed of 11 distinct products, 18 of 10 distinct products and 33 of 12

products. Those solutions with 10 or 11 products do not show a common clustering,

e.g. an 11 products solution can have the same product to cover 2 and 2.5 tonnes

while other 11 solution can have different trucks for those applications and the same

truck for 3 and 3.5 tonnes. This is a result that can only be achieved thanks to

the novel idea of designing a family to cover a number of applications instead of

a number of products, i.e. the product clustering and the platform architecture is

performed at the same time.

The problem that arises with this approach is the granularity of the applications

to be considered. In the case study, the applications have been considered by the load

being handled, which is a relatively high level granularity. Staying within the same

case, the application called 2.5 tonnes could have been further divided according to

the ratio between lifting and driving of their typical working cycles. Taken to the

extreme, there may be as many applications as products will be sold, i.e. thousands

of them, but increasing this number also increases the problem complexity as each

application requires an assessment of what performance attributes are relevant and

a quantification. This assessment involves discussions between several people and

takes a considerable amount of time. It may not be feasible to assess hundreds of
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applications, and hence a balance must be found between openness and feasibility

with an appropriate choice of applications.

The second decision that is often, but not always, taken a priori is deciding which

components will be made common to all or some of the products in the family. The

method proposed does not apply any restriction in that aspect, and the solutions

in the case study show many different ways in which the common components are

distributed across the family. Any method with a priori platform identification -

and that includes all two stage methods found in the literature - would be unable

to find the variety of solutions present in the Pareto front for this case study.

The fact that the case study has considered two objectives, one for performance

and one for costs, made the higher levels of commonality to appear mainly in the

expensive components, such as an engine, and not so much in relatively cheap com-

ponents such as cylinders, where the cost savings due to increasing commonality are

minimal and the reduction in performance can be noticeable. Designers are likely to

consider this point as obvious and probably would have focused their efforts on shar-

ing the expensive parts anyway, but it must be highlighted that using the proposed

method this behaviour appears as a result of the search, and not of any a priori

decision. The intention of this thesis is not to debunk typical a priori decisions, but

to arrive at solutions without assuming those typical decisions and hence restricting

the searching space.

The method to define the target specifications with fuzzy sets allows for sepa-

rating and ordering two possible families that would have otherwise checked all the

boxes of a traditional requirements list. The use of fuzzy sets also allows for compar-

ing different attributes of different products as they are measured in the same units,

i.e. how good they are according to a customized definition. Hence, different prod-

ucts of a family can also have completely different choices of performance attributes

and still be considered in the same objective function. Alternative methods such
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as measuring the percentage deviation from the ideal also allow to include different

kinds of attributes in the same fitness function, but they do not take into account

that a deviation of 10% is not necessarily twice as bad as a deviation of 5%, it may

be much worse, or unacceptable. This non-linearity is important for real industry

cases.

The case study has been validated with a series of tests to increase the confidence

in the results and the process that lead to them. Those steps were:

• Performance model validation: comparison between models of existing trucks

and test figures. It has also been argued and proved that model accuracy is

critical, as significant errors would lead to solutions that are not what they may

appear. Thanks to the improved workflow in which all simulations are done in

a pre-process rather than on demand as part of the fitness function during the

execution of the genetic algorithm itself, the importance of the computational

time to run the performance models is relatively low, since there is in general

not an unmanageable number of product candidates that need to be simulated,

and this process can benefit from parallelism. It is worth including all the

necessary complexity in the models to ensure a sufficient level of accuracy. For

example, in the case study there were 11430 product candidates to simulate,

even if each simulation took 10 minutes, which is a relatively long time, it

would still be possible to run all of them in 4 days with a 20 thread parallel

computing process, and this part of the process only needs to be run once,

independently of all the analyses and exercises that can be done later on with

the remainder of the process. If, on the other hand, the process had followed

the original workflow, the computation time for the simulation models would

become critical, and using long run models might become infeasible, with the

subsequent effect on the confidence in the solutions.

• Objectives validation: in the case study, it has been tested that the fuzzy
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performance evaluation method was capable of matching the preferences of

final products in a meaningful way and it is an integral part of the definition

of one of the final objectives. What was not possible to prove is the match

between the final aggregated objective for a whole family, as it was not possible

for a human decision maker to clearly rank entire families. It is important that

objective aggregation is reliable up to the point where it is feasible to be tested,

as this increases the confidence that the first non-testable step can be relied

upon.

• Searching algorithm validation: Statistical tests and re-runs showed Pareto

convergence and a very low probability of the real Pareto front being signifi-

cantly better than that one found by the algorithm.

• Dislocations: A test designed to find obvious irregularities in the solutions.

Those irregularities were analysed and their correction incorporated to the

algorithm as a post-process.

• Scenarios response: The algorithm was run against modified objectives and

the variation of results agreed with the logical expectations.

• Matching a given family: The algorithm was tested to match a family with

well defined performance requirements for each application and successfully

returned a Pareto front with products close to the required figures.

As a conclusion to answer question 4, the case study has shown that the proposed

method can be applied in a real industrial context.

9.2 Additional discussion

This section presents three extra features of the method that are not a direct answer

to the research questions but important nevertheless.
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• The products required for each application do not need to share a similar

architecture, each product candidate will have its own model with its own

performance attributes and goodness sets.

• When some products are already in production, they can be set as fixed and

the remainder of the family built around them. An example was done and

described in chapter 7 - Implementation and Results -, section 7.4. A product

was defined with an engine that does not appear in the original solutions,

and it was checked that this fact affected the new solutions to the point that

now they also included that particular engine for other products, not only the

existing one.

• If some attributes from a product in a selected region of the Pareto front do

not look good, the fuzzy sets can be revised and the search rerun. This method

is iterative, not necessarily gives the ideal solution at the first attempt. The

performance models, however, do not need to be re-run again unless additional

parts are incorporated. This is a considerable advantage and a consequence of

the improved workflow introduced in chapter 6 - Case Study - section 6.6.1 in

which the performance models are run before the optimization process rather

than during that process.

9.3 Contribution to knowledge

This thesis has analysed a real industrial case and proposed a method to find optimal

commonality strategies to design a product family considering:

• A computationally feasible multi-objective single stage method that includes

potentially good solutions that could remain unexplored with two stage ap-

proaches.
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• The method can be applied for product families designed from scratch, top-

down, as well as for new extensions based on existing products, bottom-up.

• The output of the method is a Pareto front of - normally - two or three

aggregated objectives that allows for exploring their trade-off. However, the

individual performance attributes of each product are not kept hidden, and

every solution can be retrieved and open to observe all of its performance

attributes for a better analysis.

• The method can be used iteratively by looking at the results and revising the

fuzzy sets that assess the performance attributes.

• A sub-method based on fuzzy assessment of performance to combine different

attributes and provide a meaningful set of solutions.

• Use of detailed dynamic simulations to assess all the product candidates and

a working flow in which this is performed as a pre-process before running

the searching algorithm, improving the overall efficiency. The simulations are

tailored for each product variant, and in combination with the fuzzy assessment

of performance they allow for including products with different architectures.

• A series of steps to build confidence in the method to make it attractive for

the industry.

9.4 Limitations and further work

The main limitations of the method, or points where care must be exercised include

the sensitivity to inaccuracies in the models that calculate the different performance

attributes and the residual degree of arbitrariness inherent to constructing the fuzzy

sets and the equations to combine the different objectives. Those two tasks are done

before the optimization and analysis of solutions, and it is important to dedicate
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the necessary effort to make them accurate as the quality and usefulness of the final

results depend on them.

Also, during the development of this project, some issues appeared to have a

clear potential for further research. The next subsections discuss some of those

issues.

9.4.1 Balancing the number of applications

This thesis has referred to an application as any intended use for a machine that

can be differentiated from other uses. This is a loose definition and it is not possible

to give hard rules to define where an application ends and another begins. The

proposed method starts with the set of such applications that needs to be covered,

and the case study has taken a predetermined set based on the author’s experience

with that particular type of machines. It has also been stated that the number of

applications considered affects the problem complexity and solvability, so there is a

balance to be found for each problem. This thesis has not addressed this issue and

cannot recommend any specific method to assess that balance, this is an interesting

problem on its own for further research.

9.4.2 Incorporate additional factors in the objectives

The case study has included a second objective named outgoing that includes the

associated costs that need to be minimized. The costs included were those regarding

the prices of the components considered in the problem, which are very dependent

on the degree of commonality of the family. Apart from those, there are more costs

involved that are harder to quantify, such as development time, storage, simplicity

of aftersales service, etc. As it is difficult to estimate those costs accurately, unlike

the costs considered in this case study which are relatively easy to measure, it is

likely to be convenient to build them into a third objective.
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9.4.3 Relate overall goodness with estimated selling prices

The case study has used a definition for the first objective that assumes the price

for which a product can be sold is proportional to the overall goodness of that

product as defined by the fuzzy sets, and then considers the overall impact on the

total sales. This definition is arbitrary, as there is no evidence to prove that linear

relation between the overall goodness and the selling price of the product, although

some relation certainly exists. An iterative process can potentially be followed to

adjust the fuzzification and/or the aggregation method so the relation between their

results and the estimated selling price reflects the truth.

9.5 Conclusion

The conclusion of this thesis is that the method presented can provide a set of solu-

tions on which the decision maker can articulate their trade-off preferences having a

clear picture of the families among which they are making the selection. This can be

done before any real development work is carried out and will provide the engineers

with a direction of how the products can achieve the required level of performance

while keeping the costs within the limits given by the selection.

The main strength of the method is the adaptability to different cases, the ca-

pability for incorporating any kind of objective that can be measured, and the

development over a complex and real industrial case.
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Appendix - R code

This appendix includes the code used for the main algorithm in the case study. The
databases used are not included. Some data has been obfuscated due to confiden-
tiality issues.
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# CODE FOR THE MAIN ALGORITHM AND NECESSARY FUNCTIONS
# SOME DATA VECTORS HAVE BEEN OBFUSCATED FOR CONFIDENTIALITY ISSUES

rm(list=ls())

## OVERALL GOODNESS FUNCTION #####################################################
# Function to calculate the overall goodness of a product candidate for a particular
# application
# 'product' is a vector with the 9 goodness attributes of a product candidate.
# 'application' is the application, used only if the weights are different for each 

Overall_goodness = function(Product, Application){
  
  Weights = c(10,6,6,4,5,2,2,1,1)
  s = 1
  
  a = Product ^ s;
  top = sum(a * Weights);
  bottom = sum(Weights);
  
  g = (top/bottom) ^ (1/s)
  
  return(g)
} 

#################################################################################

##  OBJECTIVES FUNCTION #########################################################
# Function to calculate the objectives of a family candidate
# The input is a 12 element vector with the position of each product in the 
# corresponding application set 

Objectives = function(Family){
  
  # eFamily is a 12x6 matrix where each row is a product and the columns are
  # the five components and overall goodness
  eFamily = matrix(0,12,6)
  for (v in 1:12){
    eFamily[v,] = eval(parse(text=aNames[v]))[Family[v],]
  }
  
  # Incoming
  Max_number_of_products = c(//OBFUSCATED 12 ELEMENTS VECTOR//) 
  # Number of products to be built for each application.
  Max_sell_prices = c(//OBFUSCATED 12 ELEMENT VECTOR//)
  #Maximum price for individual value = 1
  
  # Outgoing  Eng 6, pump 9, tyre 5, gear 7, cylinder 14
  # Create column matrices to store the amount of each component used 
  Engines = matrix(0,6,1)
  Pumps = matrix(0,9,1)
  Tyres = matrix(0,5,1)
  Gears = matrix(0,7,1)
  Cylinders = matrix(0,14,1)
  
  # Add the components of each product multiplied by the target production units
  for (z in 1:12 ){
    Engines[eFamily[z,1],1] = Engines[eFamily[z,1],1] + Max_number_of_products[z]
    Pumps[eFamily[z,2],1] = Pumps[eFamily[z,2],1] + Max_number_of_products[z]
    Tyres[eFamily[z,3],1] = Tyres[eFamily[z,3],1] + Max_number_of_products[z]
    Gears[eFamily[z,4],1] = Gears[eFamily[z,4],1] + Max_number_of_products[z]
    Cylinders[eFamily[z,5],1] = Cylinders[eFamily[z,5],1] + Max_number_of_products[z]
  }
  rm(z)
  
  # Minimum prices for each component assuming an infinite number of units
  Base_prices = matrix(c(//OBFUSCATED 70 ELEMENTS VECTOR//),14,5)
  
  # Max prices are the amount to add to the base prices when buying a single unit.
  # It is not necessarily equal to base prices as in this example
  Max_prices = Base_prices
  
  # Coefficients for the exponential decay function relating number of units 
  # with price per unit
  Decay_coefficients = 0.0005 * matrix(c(//OBFUSCATED 70 ELEMENTS VECTOR//),14,5)
  
  Cost = matrix(0,5,1)   # Total cost of components
  
  # Go through each component, calculate their cost and add them all
  for (w in 1:6){
    price = Base_prices[w,1] + 
      Max_prices[w,1] * exp(-Decay_coefficients[w,1] * Engines[w,1])
    Cost[1,1] = Cost[1,1] + price * Engines[w,1]
  }
  rm(w, price)



  for (w in 1:9){
    price = Base_prices[w,2] + 
      Max_prices[w,2] * exp(-Decay_coefficients[w,2] * Pumps[w,1])
    Cost[2,1] = Cost[2,1] + price * Pumps[w,1]
  }
  rm(w, price)
  for (w in 1:5){
    price = Base_prices[w,3] + 
      Max_prices[w,3] * exp(-Decay_coefficients[w,3] * Tyres[w,1])
    Cost[3,1] = Cost[3,1] + price * Tyres[w,1]
  }
  rm(w, price)
  for (w in 1:7){
    price = Base_prices[w,4] + 
      Max_prices[w,4] * exp(-Decay_coefficients[w,4] * Gears[w,1])
    Cost[4,1] = Cost[4,1] + price * Gears[w,1]
  }
  rm(w, price)
  for (w in 1:14){
    price = Base_prices[w,5] + 
      Max_prices[w,5] * exp(-Decay_coefficients[w,5] * Cylinders[w,1])
    Cost[5,1] = Cost[5,1] + price * Cylinders[w,1]
  }
  rm(w, price)
  
  # Objective 1
  Incoming = sum(eFamily[,6] * Max_number_of_products * Max_sell_prices)
  
  # Objective 2
  Total_cost = sum(Cost)  
  
  # Objectives are divided by 1e6 to keep them in more manageable numbers
  
  Ob1 = Incoming/1e6
  Ob2 = Total_cost/1e6
  Ob = c(Ob1, Ob2)
  return(Ob)
}

## END OF FUNCTIONS DECLARATION

## MAIN ALGORITHM ################################################################

# Load performance data 
setwd('D:/Location/Csvs')
p20 = read.csv('T20.csv')
p25 = read.csv('T25.csv')
p30 = read.csv('T30.csv')
p35 = read.csv('T35.csv')
p40 = read.csv('T40.csv')
p45 = read.csv('T45.csv')
p50 = read.csv('T50.csv')
p55 = read.csv('T55.csv')
p60 = read.csv('T60.csv')
p70 = read.csv('T70.csv')
p80 = read.csv('T80.csv')
p90 = read.csv('T90.csv')

pNames = c('p20', 'p25', 'p30', 'p35', 'p40', 'p45', 'p50', 'p55', 'p60', 'p70', 
           'p80', 'p90')
gNames = c('g20', 'g25', 'g30', 'g35', 'g40', 'g45', 'g50', 'g55', 'g60', 'g70', 
           'g80', 'g90')
aNames = c('a20', 'a25', 'a30', 'a35', 'a40', 'a45', 'a50', 'a55', 'a60', 'a70', 
           'a80', 'a90')

# pNames have the physical performance of the different attributes
# gNames have the goodness of the diferent performance attributes
# aNames have the components and overall goodness. This are the sets passed to 
# the searching algorithm

# Fuzzy level cuts
Fvalues = c(0,0.05,0.2,0.5,0.8,0.95,1)

# Read the data for each performance attribute of each application corresponding 
# to each level cut
Fsetsdata = read.csv('Fsets1.csv')
Fsetsdata = as.matrix(Fsetsdata)

# Re-arrange Fdatasets into a 9x7x12 array. 
# 1st index = performance attribute
# 2nd index = level cut
# 3rd index = application
Fsets = array(0,dim=c(9,7,12))



for (i in 1:12){
  Pos = 10*(i-1)+1 # Positions 1, 11, 21, 31, ...
  Fsets[,,i] = Fsetsdata[Pos:(Pos+8),1:7] # Database for each application
}
rm(Fsetsdata, Pos, i)

# Eval each of the 12 performance sets, 
for (i in 1:12){
  # Eval one application performance set
  pInst = eval(parse(text = pNames[i]))                   
  pInst = as.matrix(pInst)
  # One application goodness set
  gInst = matrix(0, nrow(pInst), ncol(pInst))
  colnames(gInst) = colnames(pInst)
  # Copy the component info
  gInst[,1:5] = pInst[,1:5]                               
  # Loop for all possible products of the application
  for (j in 1:length(pInst[,1])){                         
    # Loop for all performance features of that possible product
    for (k in 1:9){                                      
      # Interpolate the performance in the two closest goodness level cuts
      gInst[j,(k+5)] = approx(Fsets[k,,i],Fvalues, pInst[j,(k+5)], rule=2)$y
    }
    rm(k)
  }
  # Assign this goodness matrix to the corresponding application matrix
  assign(gNames[i], gInst)   
  rm(pInst, gInst, j)
}
rm(i)
rm(p20, p25, p30, p35, p40, p45, p50, p55, p60, p70, p80, p90) 

# Loop to delete products for which at least one attribute is zero
for (i in 1:12){
  gThis = eval(parse(text = gNames[i]))
  for (j in length(gThis[,1]):1){
    if (prod(gThis[j,6:14]) == 0){
      gThis = gThis[-j,]
    }
  }
  assign(gNames[i], gThis)
  rm(gThis,j)
}
rm(i)

# Call the overall goodness function for each possible product of each 
# application 
for (i in 1:12){
  gNow = eval(parse(text = gNames[i]))
  aNow = gNow[,1:5]
  aNow = cbind(aNow,0)
  colnames(aNow) = c(colnames(gNow)[1:5], 'OverallGoodness')
  for (j in 1:length(aNow[,1])){
    aNow[j,6] = Overall_goodness(gNow[j,6:14])
  }
  rm(j)
  assign(aNames[i], aNow)
  rm(aNow, gNow)
}
rm(i)
rm(g20, g25, g30, g35, g40, g45, g50, g55, g60, g70, g80, g90) 
rm(Fsets, Fvalues, gNames, pNames) # Clean workspace

# Workspace ready, start algorithm
#################################################################################
#################################################################################

# Genetic algorithm parameters
# Number of individuals in each generation
sPopulation = 60 
# Parameter to choose how many of the new gen come from crossing parents
uParents = 40 
# Paramenter to choose how many come from mutating existing parents
Mutation = 10 
# Parameter to choose the probability of mutation for each component in the 
# mutated offspring
Mutation_chance = 0.15 
# Number of iterations to run
nIterations = 100000
# Number of historical Pareto front to record
nRecord = 50

# Prepare initial data
# Size of each set of possible product to choose a random row
Sizes = c(nrow(a20), nrow(a25), nrow(a30), nrow(a35), nrow(a40), nrow(a45),



        nrow(a50), nrow(a55), nrow(a60), nrow(a70), nrow(a80), nrow(a90))

# Initialize pareto front with 1 random vector
Pareto = matrix(0,1,14)
colnames(Pareto) = c('t20', 't25', 't30', 't35', 't40', 't45', 't50', 't55', 't60',
                     't70', 't80', 't90', 'Obj1', 'Obj2')
First = ceiling(Sizes * runif(12))
Pareto[1,1:12] = First
Pareto[1,13:14] = Objectives(First)
# Size of the Pareto front 
sPareto = 1 
rm(First)

# Create first generation
Population = matrix(0,sPopulation,12)
for (i in 1:sPopulation){
  Population[i,] = ceiling(Sizes * runif(12))
}
rm(i)
Population = cbind(Population,matrix(0,sPopulation,2))

# Settings to record Pareto fronts at diferent points in history
# Geometric progression: nRecord elements from 1 to nIterations
k = nIterations ^ (1/(nRecord - 1))
Milestones = k^(seq(0,(nRecord-1)))
Milestones = ceiling(Milestones)

Milestones[nRecord] = min(Milestones[nRecord], nIterations)
# To avoid a numerical issue in which the final milestone was one 
# unit greater than nRecord
rm(k)

# Prevent two repeated milestones
for (i in 2:nRecord){
  if (Milestones[i] <= Milestones[i-1]){
    Milestones[i] = Milestones[i-1] + 1
  }
}
rm(i)

#####################################################################
#####################################################################
##### ALTERNATIVE LOGARITHMIC MILESTONES ############################
#ln = log(nIterations)
#temp = ln/nRecord
#Milestones =seq(1,nRecord) * temp
#Milestones = ceiling(exp(Milestones)) 
#rm(ln, temp)
#Milestones[nRecord] = min(Milestones[nRecord], nIterations) 
# To avoid a numerical issue in which the final milestone was one 
# unit greater than nRecord
#####################################################################
#####################################################################

# Initial Pareto plus each recorded iteration
Pareto_historical = matrix(NA,(nRecord),2) 
Pareto_historical[1,1:2] = Pareto[1,13:14]
fill = 2 # To start filling the Pareto historical in the second row

############### LOOP BEGINS HERE ###############################################
tic = Sys.time()

for (iter in 1:nIterations){
  # Run objectives function for each individual in the current population
  for (i in 1:sPopulation){
    Population[i,13:14] = Objectives(Population[i,1:12])
  }
  rm(i)
  
  # Add elements of this generation to Pareto front
  # Create matrix for the first non-dominated front
  # Create matrix for the points not belonging in the non-dominated front
  # 15th column will be a weigth: 1 for nondominated1, 0.8 for nondom2, 
  # 0.6 for nondom3 and 0.4 for nondom4 
  Non_dominated1 = matrix(0,sPopulation,15)
  Non_dominated1[,15] = 1
  Remainder = matrix(0,sPopulation,14)
  nondom1 = 1 # Variable representing the row of Non_dominated1 to be filled
  rem = 1 # Variable representing the row of Remainder to be filled
  
  # Find 1st front
  
  for (i in 1:sPopulation){



    # Each individual in this generation is checked agains every other until 
    # either other individual dominates it (Dominated will become 1) or the
    # while loop reaches the end of the generation. Dominated is set as 0 at 
    # the beginning
    Dominated = 0
    j = 1
    while (Dominated == 0 && j <= sPopulation){
      if (j != i){
        if (Population[i,13] < Population[j,13] && 
            Population[i,14] > Population[j,14]){
          Dominated = 1 
          # Condition for point i to be dominated by j breaks the loop
        }
      }
      j = j + 1
    }
    # Once the loop is broken, if the point is not dominated, add 
    # to Non_dominated1
    if (Dominated == 0){
      Non_dominated1[nondom1,1:14] = Population[i,]
      nondom1 = nondom1 + 1
    }
    else { # Else, add the point to Remainder
      Remainder[rem,] = Population[i,]
      rem = rem + 1
    }
  }
  rm(i,j)
  # Delete rows of Non_dominated1 and Remaninder not filled
  Non_dominated1 = Non_dominated1[Non_dominated1[,1] != 0, , drop = FALSE]
  Remainder = Remainder[Remainder[,1] != 0, , drop = FALSE]
  rm(nondom1)
  
  # Find 2nd front
  
  s2 = length(Remainder[,1])
  Non_dominated2 = matrix(0,s2,15)
  Non_dominated2[,15] = 0.8
  Remainder2  = matrix(0,s2,14)
  
  nondom2 = 1
  rem = 1
  
  if (s2 > 0){
  # This if was introduced to correct a bug in which the loop still 
  # executed once even though there was no row in Remainder 2 to 
  # allocate individuals
    for (i in 1:s2){
      Dominated = 0
      j = 1
      while (Dominated == 0 && j <= s2){
        if (j != i){
          if (Remainder[i,13] < Remainder[j,13] && 
              Remainder[i,14] > Remainder[j,14]){
            Dominated = 1
          }
        }
        j = j + 1
      }
      if (Dominated == 0){
        Non_dominated2[nondom2,1:14] = Remainder[i,]
        nondom2 = nondom2 + 1
      }
      else {
        Remainder2[rem,] = Remainder[i,]
        rem = rem + 1
      }
    }
    rm(i,j,s2)
  }
  Non_dominated2 = Non_dominated2[Non_dominated2[,1] != 0, , drop = FALSE]
  Remainder2 = Remainder2[Remainder2[,1] != 0, , drop = FALSE]
  rm(Remainder, nondom2)
  
  # Find 3rd front
  
  s3 = length(Remainder2[,1])
  Non_dominated3 = matrix(0,s3,15)
  Non_dominated3[,15] = 0.6
  Remainder3  = matrix(0,s3,14)
  
  nondom3 = 1
  rem = 1
  
  if (s3 > 0){



    for (i in 1:s3){
      Dominated = 0
      j = 1
      while (Dominated == 0 && j <= s3){
        if (j != i){
          if (Remainder2[i,13] < Remainder2[j,13] && 
              Remainder2[i,14] > Remainder2[j,14]){
            Dominated = 1
          }
        }
        j = j + 1
      }
      if (Dominated == 0){
        Non_dominated3[nondom3,1:14] = Remainder2[i,]
        nondom3 = nondom3 + 1
      }
      else {
        Remainder3[rem,] = Remainder2[i,]
        rem = rem + 1
      }
    }
    rm(i,j,s3)
  }
  Non_dominated3 = Non_dominated3[Non_dominated3[,1] != 0, , drop = FALSE]
  Remainder3 = Remainder3[Remainder3[,1] != 0, , drop = FALSE]
  
  rm(Remainder2, nondom3)
  
  # Find 4th front
  
  s4 = length(Remainder3[,1])
  Non_dominated4 = matrix(0,s4,15)
  Non_dominated4[,15] = 0.4
  Remainder4  = matrix(0,s4,14)
  
  nondom4 = 1
  rem = 1
  
  if (s4 > 0){
    for (i in 1:s4){
      Dominated = 0
      j = 1
      while (Dominated == 0 && j <= s4){
        if (j != i){
          if (Remainder3[i,13] < Remainder3[j,13] && 
              Remainder3[i,14] > Remainder3[j,14]){
            Dominated = 1
          }
        }
        j = j + 1
      }
      if (Dominated == 0){
        Non_dominated4[nondom4,1:14] = Remainder3[i,]
        nondom4 = nondom4 + 1
      }
      else {
        Remainder4[rem,] = Remainder3[i,]
        rem = rem + 1
      }
    }
    rm(i,j,s4)
  }
  Non_dominated4 = Non_dominated4[Non_dominated4[,1] != 0, , drop = FALSE]
  Remainder4 = Remainder4[Remainder4[,1] != 0, , drop = FALSE]
  
  rm(Remainder3, nondom4, Dominated, rem, Remainder4)
  # End of fronts search
  
  # Update Pareto - testing points of Non_dominated1
  sDom = length(Non_dominated1[,1])
  sPareto_0 = sPareto # Number of elements against which the points have to 
  # be checked, sPareto_0 is created as a local variable for this task, 
  # this may be unnecessary
    
  for (i in 1:sDom){
    # Measure point against all previous Pareto points.
    Dominated = FALSE
    Dominates = FALSE
    Redundant = FALSE
    
    j = 1
    while (Dominated == FALSE && Redundant == FALSE && j <= sPareto_0){ 
      # Dominated = TRUE breaks the loop, the point is discarded
      # Redundant = TRUE also does the same
      Dominated = (Non_dominated1[i,13] < Pareto[j,13]) && 



        (Non_dominated1[i,14] > Pareto[j,14])
      Redundant = prod(Non_dominated1[i,1:12] == Pareto[j,1:12]) 
      Dominates = (Non_dominated1[i,13] > Pareto[j,13]) && 
        (Non_dominated1[i,14] < Pareto[j,14])
      
      # if point i dominates point j
      if (Dominates == TRUE){
        Pareto = Pareto[-j,] # Remove point j from the Pareto front
        sPareto_0 = sPareto_0 - 1 # Decrease the count of the Pareto size
        sPareto = sPareto - 1 # Decrease the count of the Pareto size
      }
      else {
        j = j+1 # go to the next point j
      }
    }
    
    # The nested loop completed, now check if the point is dominated (it can 
    # only be by the last point j, otherwise the loop would have broken before) 
    if (Dominated == FALSE && Redundant == FALSE){
      # Add point i to the Pareto front
      Pareto = rbind(Pareto, Non_dominated1[i,1:14]) 
      # Increase the count of the Pareto size
      sPareto = sPareto + 1 
    }
  }
  rm(i,j, Redundant, Dominates, Dominated, sDom, sPareto_0)
  
  # Record everything
  if (sum(iter == Milestones) == TRUE && iter != 1){ # True if iter is equal to 
    # any element in Milestones except 1, which is already filled
    # l is the amount of columns that need to be added to Pareto historical
    l = 2 * sPareto - length(Pareto_historical[1,])
    if (l > 0){
      Pareto_historical = cbind(Pareto_historical, matrix(NA, (nRecord), l))
      }
    Paretoline = matrix(0,1,2*sPareto) # Line to be added to Pareto historical
    for (p1 in 1:sPareto){
      # Fill odd cells with objective 1
      Paretoline[1,(2*p1 - 1)] = Pareto[p1,13] 
      # Fill even cells with objective 2
      Paretoline[1,(2*p1)] = Pareto[p1,14] 
    }
    rm(p1)
    # Add the line to Pareto historical
    Pareto_historical[fill,1:(2*sPareto)] = Paretoline 
    rm(Paretoline)
    # Increase the row to which the next historical data will be added
    fill = fill +1 
  }
  
  # Create next generation here
  Parents = rbind(Non_dominated1, Non_dominated2, Non_dominated3, Non_dominated4)
  
  for (rParents in 1:length(Parents[,1])){
    Parents[rParents, 15] = Parents[rParents,15] * runif(1)
  }
  # Re-order Parents according to the 15th element
  Parents = Parents[order(Parents[,15], decreasing = TRUE),]
  
  # sOffspring is the mimimum of the size of parents and the setting for children 
  # coming directly from existing parents
  sOffspring = min(uParents, length(Parents[,1]))
  
  # Now create direct offspring
  Nextgen = matrix(0,sPopulation,14)
  for (offsp in 1:sOffspring){  # Crossing between parents
    # First parent is chosen sequentially second parent is chosen randomly
    Second_parent =  ceiling(length(Parents[,1])*runif(1)) 
    Offspring_line = matrix(0,1,12) # This child
    # Each product has a 50% chance of coming from the 1st or the 2nd parent
    for (comp in 1:12){
      rChoice = runif(1)
      if (rChoice > 0.5){
        Offspring_line[1,comp] = Parents[offsp,comp]
      }
      else {
        Offspring_line[1,comp] = Parents[Second_parent,comp]
      }
    }
    Nextgen[offsp,1:12] = Offspring_line 
  }
  rm(offsp,comp)
  # Now mutated indivuduals
  for (offsp in 1:Mutation){       
     Nextgen[(sOffspring+offsp),1:12] = 



       Parents[(((offsp - 1) %% length(Parents[,1])) + 1),1:12]
     for (mut in 1:12){
       mProb = runif(1)
       if (mProb < Mutation_chance){
         Nextgen[(sOffspring+offsp),mut] = ceiling(Sizes[mut]*runif(1))
       }
     }
  }
  rm(offsp,mut,mProb)
  # Now fill with random families
  for (offsp in (sOffspring + Mutation + 1):sPopulation){
    Nextgen[offsp,1:12] = ceiling(Sizes * runif(12))
  }
  
  
  # Test for repeated individuals
  for (i in 1:uParents){
    for (j in (i+1):uParents){
      if (prod(Nextgen[i,1:12] == Nextgen[j,1:12]) == 1){
        for (mut in 1:12){
          mProb = runif(1)
          if (mProb < Mutation_chance){
            Nextgen[j,mut] = ceiling(Sizes[mut]*runif(1))
          }
        }
      }
    }
  }
  
  Population = Nextgen

  if (iter %% 5000 == 0){
    toc1 = Sys.time() - tic
    print(toc1)
  }
  
} # End searching loop
rm(Nextgen, Non_dominated1, Non_dominated2, Non_dominated3, Non_dominated4,
   Offspring_line, Parents, Population, fill, i, iter, j, l, mProb, mut, Mutation,
   nRecord, offsp, rChoice, rParents, Second_parent, sOffspring, sPareto, sPopulation,
   toc1)

toc = Sys.time() - tic
print(toc)


