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Abstract
Motivation: We present flexiMAP (flexible Modeling of Alternative PolyAdenylation), a new beta-
regression-based method implemented in R, for discovering differential alternative polyadenylation 
events in standard RNA-seq data.
Results: We show, using both simulated and real data, that flexiMAP exhibits a good balance 
between specificity and sensitivity and compares favourably to existing methods, especially at low 
fold changes. In addition, the tests on simulated data reveal some hitherto unrecognised caveats of 
existing methods. Importantly, flexiMAP allows modeling of multiple known covariates that often 
confound the results of RNA-seq data analysis.
Availability: The flexiMAP R package is available at: https://github.com/kszkop/flexiMAP

Scripts and data to reproduce the analysis in this paper are available at: 

 https://doi.org/10.5281/zenodo.3689788

Contact: Irene Nobeli, i.nobeli@bbk.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction 
Alternative polyadenylation (APA) is the selection of alternative 
cleavage and polyadenylation sites during transcription of eukaryotic 
genes, resulting in isoforms with distinct lengths. APA has been shown 
to be prevalent in mammalian transcripts and alternative isoforms are 
linked to different stages of development, cell types and disease status 
(Elkon et al., 2013; Szkop et al., 2017). APA events can be identified on 
a genome-wide scale using 3’ end-focused sequencing (e.g. QuantSeq 
(Moll et al., 2014)) or, more recently, long-read sequencing (Iso-seq 
(Anvar et al., 2018) and nanopore-based sequencing (Garalde et al., 

2016)). However, as these methods are still not widely used and many 
legacy transcriptome surveys were carried out using standard RNA-seq 
sequencing instead, it would be useful to have computational methods 
that can identify differential APA in RNA-seq data. A few such methods 
exist already (Xia et al., 2014; Grassi et al., 2016; Ha et al., 2018; Ye et 
al., 2018; Arefeen et al., 2018) but they have caveats (Szkop and Nobeli, 
2017). For example, all methods must solve the problem of how to deal 
with biological replicates; some test the replicates individually, losing 
the advantage of having replicates in the first place; others, average 
values from replicates, effectively losing track of the within-group 
variability. In designing a method for differential APA analysis, we 
considered the following: a) the reconstruction and quantification of the 
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individual isoforms is both challenging and not strictly necessary for this 
task; b) the errors in modeling RNA-seq read counts are neither normal 
nor Poisson-distributed; c) multiple covariates can affect APA.

Inspired by the use of Generalized Linear Models (GLMs) in differential 
gene expression (Robinson et al., 2010; Love et al., 2014) we present 
here a regression-based method and associated pipeline (flexible 
modeling of APA or flexiMAP) that satisfactorily addresses the above 
requirements. We show, using simulated data, that the method is both 
sensitive and specific across a range of fold changes and numbers of 
samples and that its performance is superior to two alternatives (DaPars 
(Xia et al., 2014), and APAtrap (Ye et al., 2018)) in most tests we 
carried out. FlexiMAP is also outperforming both these methods and 
Roar (Grassi et al., 2016), when additional covariates confound changes 
to the isoform ratios. Tested on real RNA-seq data, flexiMAP is slightly 
less specific than the other methods tested but outperforms all methods 
when the Matthews Correlation Coefficient is used as the measure of 
performance, indicating a better overall balance between specificity and 
sensitivity.  
The method is available as an R package from: 
https://github.com/kszkop/flexiMAP

2 Methods
Our method can be applied to all pairs of polyadenylation sites in 
a gene, where one site is considered “distal” (i.e. located furthest 
away from the end of the coding region) and one is “proximal” 
(Supp. Fig. 1). Given a list of sites provided to the program, pairs 
of sites will be considered in turn, the most downstream site of the 
transcript being the distal site in all pairs. The proximal site 
separates the 3’ UTR into two regions: the “short” region, starting 
at the end of the coding region and ending at the proximal site, 
and the “long” region starting at the proximal site and ending at 
the end of the transcript (Supp. Fig. 1). Assuming the separation 
of samples into groups based on the condition of interest, the 
question we want to answer is: given a total number of reads 
falling in the 3’ UTR, is the proportion of reads falling in the long 
region dependent on the sample group membership? 
We count RNA-seq reads falling in the “long” and “short” regions 
of the 3’ UTR (Nlongij and Nshortij respectively), and define the ratio, 
R, for gene i in sample j as:

 (1)Rij =
Nlong𝑖𝑗

Nshort𝑖𝑗 + Nlong𝑖𝑗

Reads falling in the long region can only originate from transcripts 
using the distal site, whereas reads falling in the short region may 
come from transcripts using either the distal or the proximal site. 
The ratio Rij is the proportion of reads falling in the long region and 
is thus strictly contained in the interval [0,1]. We note that the 
extreme value of zero is only encountered in the complete 
absence of a long isoform, whereas values greater than 0.5 would 
be observed only in cases where the long region is longer than 
the short region, or where strong 3’ biases in the read coverage 
are observed. 
Our initial tests modeling APA events using logistic regression 
with quasi-binomial error distribution (within the Generalised 
Linear Model framework) showed that this approach was not 
sensitive enough for small numbers of samples or small fold 

changes. To allow more flexibility in modeling errors, we adopted 
instead a model where the response variable is assumed to be 
beta-distributed. This beta-regression model was implemented 
using the betareg package in R (Cribari-Neto and Zeileis, 2010). 
In addition, the quasi-binomial GLM is implemented in our 
software and used for transcripts where the number of reads 
falling in the long region is zero, as the ratio in these cases falls 
outside the permitted values for modelling with beta regression. 
Finally, our method incorporates two filtering steps to improve 
accuracy, employing TIN (=Transcript Integrity Number) values 
(Wang et al., 2012, 2016) to filter on transcript integrity and 
removing transcripts with too few reads mapping to the short 
region (see Supplemental Methods for details). 

3 Results

We compared flexiMAP to three existing methods for APA analysis 
(DaPars (Xia et al., 2014), Roar (Grassi et al., 2016) and APAtrap (Ye et 
al., 2018)) using simulated data we produced with the polyester R 
package (Frazee et al., 2015) (see Supplementary Methods for details). 
In these tests, our method is specific (none of the transcripts with no 
APA events are predicted as having such events) and outperforms in 
sensitivity DaPars and APAtrap up to a fold change of 4 (Fig. 1A, Supp. 
Fig. 2). For larger fold changes, all methods appear to perform equally 
well. Surprisingly, the application of post-detection filters recommended 
by the developers of both DaPars and APAtrap appear to remove the 
majority of significant events across all fold changes, which renders 
questionable the usefulness of these filters (Supp. Fig. 2). In these 
simulations, Roar is more sensitive than flexiMAP at small fold changes 
but it is also the least specific, having the largest number of false 
positives of all methods compared. We note that the performance of Roar 
is dependent on the parameter value that controls the filtering of 
significant events (nUnderCutoff; set here to 50%) and that the 
specificity of the method can be improved by increasing this parameter, 
albeit at a great cost in sensitivity at low fold changes (Supp. Fig. 2). 

All methods, including flexiMAP, were sensitive to the expression level 
of the transcript tested for differential polyadenylation (Supp. Fig. 3). 
APA events that were missed originated in transcripts of lower overall 
expression but the beta-regression approach displayed improved 
sensitivity over all of the other methods, except Roar. Unlike methods 
that average across samples from the same condition, the performance of 
flexiMAP depends on the number of samples available in each group, as 
expected for a method that needs to model the variance within each 
group (see Supp. Fig. 4). However, flexiMAP is much more sensitive 
than the GLM-quasi-binomial method at small sample sizes (<6), often 
encountered in RNA-seq datasets. Finally, flexiMAP’s sensitivity does 
not seem to be affected by the length of the 3’ UTR (Supp. Fig. 5).

Although simulated datasets are important for benchmarking tests, 
eventually methods are only useful if they can be applied to real data. 
The dataset we used here is the same used by both DaPars and APAtrap 
in their respective publications and contains RNA-seq data from the 
Human Brain Reference and the Universal Human Reference MAQC 
samples (Bullard et al., 2010). 3’ sequencing data (PolyA-seq) for the 
same samples was downloaded from the UCSC genome browser 
(processed with an independent method, DEXSeq (Anders et al., 2012), 
to call the “true” differential polyadenylation events, as described in 
Supplementary Methods). The results of applying all methods to this 
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dataset (Fig. 1B) demonstrate that all four miss a large number of events 
called by DEXseq but flexiMAP is the most sensitive method as well as 
the one with the highest Matthews Correlation Coefficient (MCC; 0.27 
for flexiMAP as compared with 0.23 (Roar), 0.15 (APAtrap) and 0.1 
(DaPars)). FlexiMAP’s specificity is lower in this dataset compared with 
other methods but remains over 0.9. Given these results, we believe that 
although filters or more conservative cut-offs for significance could 
reduce the number of false positive events called by flexiMAP, they may 
only be useful in practice when very high specificity is required. 

The development of flexiMAP was primarily driven by the need to 
model multiple known covariates in APA analysis. Indeed, flexiMAP 
successfully discriminates between the effect of the condition of interest 
and that of an additional covariate in a simple simulated scenario of 
imbal

anced datasets, where APA originates from the sex attribute of the 
samples rather than the condition of interest (Fig. 1C-D). Similar results 
are obtained with a more complex simulated dataset with two covariates 
(see description in Supplementary Methods and results in Supp. Fig. 6). 
Clearly, this is still an artificially simple scenario and one would expect 
more false positives in real data where at least some of the batch effects 
might be unknown and hence not included in the modelling. In addition, 
many real RNA-seq datasets still do not have enough samples to allow 
successful modelling of multiple covariates so flexiMAP’s accuracy as 
measured in these simulations is likely to be lower with real data. 
However, it is clear that methods that are not designed to take into 

account multiple covariates will naturally misinterpret the origin of the 
variation, resulting in increased false positive rates.

4 Conclusion

We presented here flexiMAP, a beta-regression-based method for 
detecting alternative polyadenylation events in RNA-seq data, given a 
list of putative polyadenylation sites. Our method is both sensitive and 
specific, even when small numbers of samples are used, and has the 
distinct advantage of being able to model contributions from known 
covariates that would otherwise confound the results of APA analysis. 
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FlexiMAP compares favourably with existing alternatives in tests 
involving simulated datasets. Importantly, these tests have highlighted 
some hitherto overlooked caveats of existing methods. Real datasets 
remain a challenge for all methods, not least because it is difficult to 
define objectively the ground truth, but flexiMAP is still outperforming 
other methods, when both specificity and sensitivity are taken into 
account using the Matthews Correlation Coefficient.

Fig. 1.  flexiMAP detects differential polyadenylation events with a good balance of 
specificity and sensitivity. a) Receiver operating characteristic (ROC) curves 
representing the accuracy of detecting differential alternative polyadenylation events 
using flexiMAP, DaPars, APAtrap and Roar. DaPars and APAtrap make their own 
prediction of polyadenylation sites, not always agreeing with the annotated sites used in 
this study. To avoid inflating the error rate of these programs by including sites that do 
not map the annotation (and hence, differential events called at these sites would be 
automatically considered as false positives), only transcripts where the polyadenylation 
site was correctly predicted by DaPars and APAtrap are included in this plot. FlexiMAP 
clearly outperformed DaPars, APAtrap and Roar by perfect specificity and improved 
sensitivity in this simulated experiment. Although application of the DaPars’ PDUI (= 
Percentage of Distal polyA site Usage Index) post-hoc filter (dark blue) and APAtrap’s 
PD (= Percentage Difference) filter (dark red) corrected the false positives problem of 
these methods, they did so at a heavy cost on sensitivity. b) Venn diagram showing the 
overlap of “true” differential polyadenylation events in the MAQC samples PolyA-seq 
data (as called by DEXSeq; grey) with predictions from all four methods tested here: 
flexiMAP (orange), DaPars (light blue), APAtrap (pink) and Roar (green). c) Example 
from the imbalanced simulated dataset of a situation where a covariate of no interest (in 
this case, sex) affects the ratio of reads assigned to short and long isoforms. Male samples 
display much higher expression of the short region of transcript NM_003613 compared 
with female ones, regardless of the condition group samples belong to. In addition, the 
dataset is imbalanced, with more males present in condition 1 than condition 2. The mean 
expression for condition 1 is thus higher than the mean for condition 2, but the effect is 
due to the covariate sex, not the condition to which the samples belong to. d) DaPars, 
APAtrap and Roar report a large number of false positives for an imbalanced simulated 
dataset. In contrast, flexiMAP reports only one false positive in this case, highlighting its 
main advantage over alternative approaches.
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