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Enhancing Grasp Pose Computation in Gripper Workspace Spheres

M. Sorour, K. Elgeneidy, M. Hanheide, M. Abdalmjed, A. Srinivasan, and G. Neumann

Abstract— In this paper, enhancement to the novel grasp
planning algorithm based on gripper workspace spheres is
presented. Our development requires a registered point cloud of
the target from different views, assuming no prior knowledge
of the object, nor any of its properties. This work features
a new set of metrics for grasp pose candidates evaluation, as
well as exploring the impact of high object sampling on grasp
success rates. In addition to gripper position sampling, we now
perform orientation sampling about the x, y, and z-axes, hence
the grasping algorithm no longer require object orientation
estimation. Successful experiments have been conducted on
a simple jaw gripper (Franka Panda gripper) as well as a
complex, high Degree of Freedom (DoF) hand (Allegro hand)
as a proof of its versatility. Higher grasp success rates of
76% and 85.5% respectively has been reported by real world
experiments.

Index Terms— grasping, manipulation.

I. INTRODUCTION

Geometric based methods [1]–[4] along side deep learning

[5]–[9] can be considered the two most successful ap-

proaches in grasp planning problem, specially for unknown

objects among others [10]–[13]. On the one hand, deep

learning is able to model very complex systems, and has

become more affordable thanks to advances in hardware

computational power and indeed high grasp success rates has

been reported [14]. However, this approach require extensive

offline processing and sufficiently large training data sets,

and at the moment, versatility to different gripper structures

[15] remains a challenge, where most of the available works

focus on simple parallel jaw grippers. On the other hand,

geometry based approaches generally provide no sacrifice

on generality or success rates.

Grasp planning of unknown objects from point cloud data

is presented in [1], using geometric information to categorize

objects into shape primitives, with predefined strategies for

each. Success rate of 82% is achieved. This approach is

similar to the pioneering work in [2], [16] with the later

employing machine learning in grasp selection. In [17], sim-

ilar approach is employed, more suitable for generalization,

however, only simulations are provided with no real world

experiments. In [18], a set of contact points that fulfill certain

geometric conditions are computed for unknown objects in

point cloud, these are ranked to find the most stable grasp.

The algorithm is limited to 2 fingered grippers, and no data

regarding grasping success rate is presented.

In [3], object shape reconstruction is performed online

from successive image data, their method is general for
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Fig. 1: Gripper workspace spheres (right), for the Franka panda
gripper (upper) and the Allegro right hand (lower), featuring 10
spheres per finger with the color code: thumb(red), index(green),
middle(blue), and pinky(grey). The real hardware shown to the left,
fitted with the Intel Realsense d435 depth camera.

different kinds of multi-fingered hands, while in [19], fast

shape reconstruction algorithm is presented as means of

improving grasping algorithms. Other geometric approaches

are used to synthesize force balanced grasps as in [15], [20],

[21], however the work is mainly focusing on 2 fingered

grippers, the same issue can be found in [4], where a grasp

planner is designed to fit only a jaw gripper by searching for

two parallel line segments in the object image. In [22], the

authors presented a grasp planner using single depth image

of a non-occluded object. Their work, however, is limited to

2 fingered grippers as well as the geometry based planner in

[23]. Recently, the authors in [24] proposed a grasp planner

based on similarity metric of local surface features between

object and gripper’s finger surfaces. Experiments on heap of

objects were successfully conducted, however using only a 2

fingered gripper. Similar approach is presented in [25], with

rather more freedom to modify gripper shape to match that

of the object.

Few authors presented grasping algorithms suitable for

different gripper structures. In [26], a two-step cascaded

deep networks were used to detect grasping rectangle on

objects, the results were applied on 2 grippers, but both

are of parallel jaw structure. Grasp success reported was



84% with average per-object trials of 4, which is quite few.

In [27], learning based algorithm is developed and applied

to a parallel jaw gripper and a 2 DoF prosthetic hand, the

latter being controlled in 1 DoF treated as a complex shape

parallel jaw. Experiments were focusing on clearing a table

and emptying a basket with success rates within 87% to 94%.

For single object grasp, a success rate of 92% is reported

for a set of 10 objects with only 50 trials in total, which we

believe is quite low for evaluation. The success rate drops to

85% using the multi-DoF hand. In [28], a geometry based

grasping algorithm is presented, the development includes

some empirically tuned parameters, tailored for 2 fingered

grippers (grasp planning for 2 contact points), with adap-

tation for multi-fingered hands. This adaptation, however,

limits the performance of complex hands by treating it as

2 fingered. An average success rate of 86% was reported.

In this work, we present further enhancements to the

novel grasp planning algorithm previously introduced by the

authors in recent work [29], resulting in a boost of the

grasp success rate up to 76%, and 85.5% for multi-DoF

hand (Allegro hand), and the parallel jaw gripper (Franka

panda gripper) respectively. Our algorithm, based on gripper

workspace spheres (depicted in Fig. 1), takes an all-around

point cloud of the object (by registering 3 partial view point

clouds from various poses) as input, and outputs a 6D grasp

pose. The object bounding box dimensions are computed and

sampled into uniformly distributed points in x, y, and z-axes

serving as position anchors, where the gripper workspace

centroid is placed. At each of these positions, orientation

angles about x, y, and z-axes are sampled to provide further

orientation sampling, which serves as a new feature in the

current development. For each of these position/orientation

sample pair, the gripper pose is collision checked against

both the object plane (table) as well as the object itself.

Various evaluation metrics, newly introduced in this work,

are used to give each collision free gripper postures a

total score, the one with highest value is then selected for

execution.

The contribution of the work presented in this paper is

twofold:

• New evaluation metrics: specifically introducing the

gripper support regions, which increased the grasp con-

tact area and as such resulted in more stable grasps.

• Exploring higher sampling: with introducing orientation

samples in x, y, and z-axes instead of orientation about

the object major axis (in previous work). As such we

no longer require an estimate of the object orientation,

which is both difficult to obtain as well as meaningless

for irregular/complex shaped objects.

These contributions had a direct impact on boosting the grasp

success rate from 65% to 76%, and 85.5% for the Allegro

hand, and the Franka gripper respectively.

The paper is organised as follows: section II provides

a summary of the grasping algorithm. Newly developed

evaluation metrics are detailed in section III. Experimental

results, discussion, and future work are reported in section

IV. Conclusions are finally given in section V.

II. GRASPING ALGORITHM

In this section, we briefly describe the grasping algorithm

detailed in [29]. Figure 2 shows the coordinate frames of the

system components used in this development, namely the

camera Fc, end-effector FE , gripper Fg , object Fo, table

Ft frames, and the arm base F0 frame. The frames Fc and

Fg are fixed with respect to the end-effector frame FE , but

are justified, where the object point cloud is obtained in

Fc, the gripper point cloud and special ellipsoids are more

conveniently developed in Fg . In what follows, matrices and

vectors will be designated by bold uppercase and lowercase

letters respectively. Point clouds shall be indicated by the C
symbol. Sphere and special ellipsoid clouds with S and E
respectively, each is a point cloud containing the 3D offset

point, in addition to the 1D radius for a sphere, or the 3D
principal semi-axes parameters for a special ellipsoid (SE).

The left superscript shall indicate the frame of reference.

A. Preface

The grasping algorithm consists of few offline computa-

tions, that is done only once, per gripper, where first, the

3D CAD model is used to generate a downsampled gripper

point cloud gCg ∈ R
ng×3, where ng is the number of cloud

points. Second a set of special ellipsoids are constructed
gEg ∈ R

ne×6, with ne denoting the number of gripper

special ellipsoids, acting as shape approximation of the

gripper as seen in Fig. 3 (d,e). Third, to generate a point

cloud (sampling) of the workspace of each finger of the

gripper, and fill it with a set of spheres gSf ∈ R
nsp×4, with

f ∈ {2 . . . nf} denoting the gripper finger index, and nsp,

nf , the number of spheres and fingers respectively.

In this work, we approximate cuboid like shapes using

what we call ”special ellipsoid”, this is a variation of the

Fig. 2: System frames used in our algorithm.
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Fig. 3: Grasping algorithm described in this work. Object downsampled point cloud is shown in Magenta. Blue dots in (b,c) represent
object position samples, Allegro hand downsampled cloud shown in Cyan in (c), whereas in (d), gripper special ellipsoid representation
is shown in black, best gripper pose in (e) showing the active finger’s workspace spheres.

ellipsoid equation, given by:

(x− x0)
l

al
+

(y − y0)
l

bl
+

(z − z0)
2

c2
= 1, (1)

where a, b, c are the principal semi axes of the ellipsoid,

and x0, y0, z0 denote the offset from origin. As the power l

increases, better cuboid approximation is obtained. Equation

(1) will be referred to in the sequel for convenience by:

EvalSE(Eo, Ep, C, l), (2)

where Eo, Ep, C denote the special ellipsoid offset and semi-

principal vectors, and the cloud point(s) whose belonging

to the SE parameterized by Eo, Ep is to be evaluated

respectively. These are used to approximate the gripper shape

as well as the table as depicted in Fig. 3 and Fig. 4.

B. Object sampling

A complete point cloud is required by our algorithm, this

is done during experiments by registering a 3 view point

cloud of the object from different view angles. The object

cloud is then segmented from the table using random sample

consensus (RANSAC) [30], [31]. and both are downsampled

(see Fig. 3 (a)). The bounding box of the object is then

computed, which is then uniformly sampled into a sampling

cloud oCs ∈ R
ns×3, with predefined number of sample points

ns, these are visible as blue dots in Fig. 3 (b). A coordinate

frame Ft is assigned to the table point cloud, this is easily

done, by assuming the z-axis along the longest dimension,

perpendicular to which is the x-axis (same plane), then y-axis

is constructed to conclude the frame according to the right

hand screw rule. As such the y-axis is always perpendicular

to the table plane, along which the table special ellipsoid
tEt ∈ R

1×6 is constructed.

C. Collision check

The algorithm then searches for the best grasping pose, at

each iteration, the gripper workspace centroid point (visible

as yellow sphere in Fig. 4 (a,b) for allego hand, and franka

gripper respectively) is translated to the respective sample

point in the sampling cloud Cs. For each of these position

samples, several orientation sub-samples, with predefined

number nos are then applied and tested, each orientation

sub-sample represents a small increment in angle about

one axis. An orientation samples of nos = 64 means 90o

increments of orientation angle about x, y, and z-axes, thanks

to such addition, we no longer require estimation of the

object orientation that is usually inaccurate, as well as being

meaningless for objects with irregular geometry.

In a first step: for each position/orientation sample pair,

the gripper point cloud tCg is checked against the table

special ellipsoid tEt using EvalSE(tEto,
tEtp,

tCg, l), this

is done in the table coordinate frame (as evident by the

left superscript) where the table special ellipsoid is defined.

If any point of the gripper cloud lies inside the table SE,

this means collision with table at this pose sample of the

gripper, this is the case shown in Fig. 3 (c). In a second step:

for each gripper pose sample, the object point cloud gCo is

checked against the gripper set of special ellipsoids gEg using

EvalSE(gEgo,
gEgp,

gCo, l) in the gripper coordinate frame.

If any point of the object cloud lies inside any of the gripper

SE, this means collision with object at this pose sample of

the gripper, this is shown in Fig. 3 (d).

III. EVALUATION METRICS

If the gripper pose sample doesn’t collide with either

the table or the object, then it is considered a grasp pose

candidate, to be evaluated against several evaluation metrics

and receive a total score, that is in turn compared with that of

other pose candidates. The one with highest score is selected

for execution. Evaluation metrics used are listed in what

follows.

A. Distance to object centroid

The first metric measures how close the gripper workspace

centroid point (visible as solid yellow sphere in Fig. 4 (a,b)

for allegro hand and franka gripper respectively) to that of

the object point cloud (visible as solid cyan sphere in Fig.

4 (a-d)). A higher score is given for gripper pose candidates

nearer to the object centroid, computed as:

ψ1 =
1

doc + δ1
, (3)

doc =

√

(pxoc − pxgwc)
2
+ (pyoc − p

y
gwc)

2
+ (pzoc − pzgwc)

2

where ψ1 is the first metric value, doc is the Euclidean

distance between object centroid point poc and that of the

gripper workspace pgwc, and δ1 is a small positive scalar

limiting factor for the maximum values that can be obtained

from (3).
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Fig. 4: Grasp pose candidate evaluation metrics. The gripper whole workspace centroid is shown as solid yellow sphere in (a,b). Finger
workspace centroid is shown as solid red, green, blue, and black spheres in (c), and as green, red spheres in (d) for the Allegro hand and
Franka gripper respectively. Active workspace spheres depicted in (e), while gripper support regions are colored Orange in (f).

B. Object points in workspace spheres

The second metric measures the number of points of the

object cloud that reside the workspace spheres of each finger.

In contrast to our previous development, where the algorithm

forced the selection of grasp poses where at least one point

of the object cloud resides in the workspace of each finger,

here, we relax this constraint, where an object with smaller

size can be grasped without all fingers having access to it.

This metric is formulated as:

ψ2 =
∑

f

nf
o ∗ nf

sp, (4)

with ψ2 being the metric value, f = {t, i,m, p}, f =
{rf, lf} is the finger index vector for allegro hand and franka

gripper (rf and lf for right and left fingers) respectively, nf
o

is the number of points in object cloud accessible to finger f ,

and nfsp, the number of active spheres in finger f , these are

the ones that has at least one object point inside. The formula

in (4) will give more reward for more fingers to have more

than one contact solution to the object. The active workspace

spheres as well as the object points laying within are shown

in Fig. 4 (e) (upper) and Fig. 4 (e) (lower) for the allegro

hand and franka gripper respectively.

C. Object points in gripper support regions

This metric gives more reward if more object points are in

contact with the gripper base or the palm in case of robotic

hand, since this allows for more contact area between the

gripper and the object, which in turn results in a more stable

grasps. This is implemented as a set of special ellipsoids
gEsr ∈ R

nsr×6, designated by ”support regions,” depicted in

Algorithm 1: Multi-support region reward algorithm

1: i = 0
2: for each support region n in nsr do

3: if n
(n)
o then

4: i = i+ 1
5: end if

6: end for

7: ξ = ii

Fig. 4 (f) (upper) and Fig. 4 (f) (lower) for allegro hand and

franka gripper respectively in orange color, can be formulated

as follows:

ψ3 =

nsr
∑

n=1

n(n)
o + ξ, (5)

where ψ3 is the metric value, n
(n)
o is the number of object

cloud points residing in support region n, this is evaluated us-

ing (1) as EvalSE(gEsro,
gEsrp,

gCo, l), while ξ is the multi-

support region reward factor, computed using Algorithm 1.

In (5) we can observe, higher reward is obtained for gripper

poses where multiple support regions are in contact with

object, this can be very useful in finding poses that fulfill

local geometric similarity.

D. Object centroid encapsulation

The fourth metric encourages gripper poses that maintain

symmetry between the object and gripper workspace in

case of multi-DoF hands, where the object centroid point

is required to be positioned between the thumb workspace

spheres centroid (solid red sphere in Fig. 4 (c)) and those

of the index, middle and pinky fingers (solid green, blue,

and black spheres respectively in the same figure). This is

achieved along the z-axis in the gripper frame, as well as

pushing for poses close to the palm of the hand, by giving

more reward for poses moving along x-axis in the gripper

frame.

ψ4 =















1, if cond#1

2, if cond#1 ∧ cond#2

0, if otherwise

. (6)

cond#1 : pzoc > pztwc ∧ p
z
oc < pziwc

∧ pzoc < pzmwc ∧ p
z
oc < pzpwc,

cond#2 : pxoc ≤ pxtwc ∧ p
x
oc ≤ pxiwc

∧ pxoc ≤ pxmwc ∧ p
x
oc ≤ pxpwc,

where ψ4 is the fourth metric value, ptwc, piwc, pmwc, and

ppwc denote the thumb, index, middle, and pinky workspace

centroid points respectively. The same metric formula is



Fig. 5: Screenshots from allegro hand grasping experiments, featuring the objects: yellow pepper, toilet paper roll, soft ball, realsense box,
plant pot, croutons and bake rolls packages, apple in order from right to left. Upper screenshots show the pre-grasp pose output of the
algorithm, while the lower show the objects after the execution of a successful grasp.

applied to the 2 fingered franka gripper, with only the thumb

and index fingers active. Finally, the total metric score ψ is

evaluated as follows:

ψ =

4
∑

i=1

λiψi, (7)

where λ1...4 denote positive scalar values to provide different

weights for the corresponding metrics.

IV. EXPERIMENTS

In this section, the experimental results of the enhanced

grasping algorithm are presented and discussed, using the

system parameters provided in Table I. Two sets of exper-

iments have been performed, one per gripper type. Each

gripper was mounted to the Franka Emika arm (7 DoF),

controlled in real-time with Franka control interface. The

communication between the robot controller, the realsense

camera, and the grippers is done through ROS. Motion

planning is achieved using MoveIt! [32] based on the pose

targets generated by our algorithm. The algorithm is written

in C++, running on standard labtop with 8th generation core

i7 processor with no GPU.

Experiments feature 20 objects to be grasped with both

the Allegro right hand, and the Franka 2 finger gripper, the

objects we selected such that they are within the grasping

TABLE I: Grasping algorithm parameters

Parameter Allegro Hand Franka Gripper

ne (special ellipsoids) 7 5

ns (position samples) 1000 1000

nf (fingers) 4 2

nsp (workspace spheres) 10 10

ng (gripper cloud size in points) 500 500

no (object cloud size in points) ≤ 500 ≤ 500

nos (orientation samples) 5832 64

nsr (support regions) 4 2

λ1 (metric#1 weight) 1000 1000

δ1 (metric#1 limiting factor) 10−5 10−5

λ2 (metric#2 weight) 1.0 1.0

λ3 (metric#3 weight) 1000 1000

λ4 (metric#4 weight) 2000 2000

volume of each gripper while maintaining considerable vari-

ation in size/shape/texture. An almost complete point cloud

of the object is constructed from 3 view points using the

Intel RealSense-D435 depth camera [33], then the grasping

algorithm computes a grasping pose based on the generated

point cloud as well as the gripper model to be used. The arm

moves to this pose at an approach distance of 10 cm in z-axis,

the gripper then approaches the object before performing the

grasping action. The grasping action used in both grippers is

a simple position control to a closed fingers configuration.

To conclude each experiment, the arm moves upward for 20
cm. An object is marked as grasped if it remains in static

condition inside the gripper for more than 10 seconds.

A sample of the objects used in experiments is shown in

Fig. 6, screenshots of which in the pre-grasp pose generated

by the algorithm as well as after being grasped for the

Allegro right hand is shown in Fig. 5 (upper), Fig. 5 (lower)

respectively. Screenshots for the same objects being grasped

by the Franka gripper are shown in Fig. 7 (upper), Fig. 7

(lower) as well.

A. Discussion

The results of the experiments conducted is provided in

Table II for both gripper types, with average success rates of

Fig. 6: The set of objects used in evaluating the grasping algorithm.



Fig. 7: Screenshots from franka gripper grasping experiments featuring the same objects in Fig. 5.

76% and 85.5% for the Allegro hand and Franka gripper

respectively. The results show the positive impact of the

improved evaluation metrics and more importantly the effect

of using higher sampling in the quest for the most successful

grasp pose as compared to the results reported in [29]. The

downside is indeed the computation time, that can range from

5 to 15 minutes, depending on the object cloud size as well as

the gripper type. In Table II, we can see that our algorithm is

capable of grasping rigid/deformable objects like bake rolls,

croutons and cookies packages, these are inherently rigid

objects but packed in loose packaging material thanks to

adopting ”closure till force balance” grasp policy.

It can be observed that the Allegro hand has higher

grasp success rates for bulky objects, although very good

grasp poses are generated for small objects as well. This

happens due the fact that simple finger closure to a predefined

positions is limiting its capabilities and won’t be suitable

for all object sizes. Also increasing the force applied per

finger to obtain more stable grasps, requires higher value

for position control gains which results in oscillations in

the thumb configuration, that can sometimes displace the

TABLE II: Grasp success rate per gripper for different objects

Object Characteristic A. Hand F. Gripper

Storage bin rigid 70% 80%

Tooth paste rigid deformable 30% 100%

Dish brush rigid deformable 0% 100%

Plant pot rigid deformable 100% 80%

Handless cup rigid 90% 60%

Toilet paper roll soft 90% 90%

Realsense box rigid 100% 100%

Air duster rigid 60% 70%

Apple (large) rigid 90% 80%

Banana (medium) soft 20% 100%

Cereals box rigid deformable 70% 100%

Coffee jar rigid 80% 90%

Mug rigid 70% 0%

Sand bucket rigid deformable 90% 100%

Cookies package rigid deformable 90% 100%

Bake rolls rigid deformable 90% 80%

Pepper (yellow) soft 100% 100%

Croutons pack rigid deformable 100% 100%

Soft ball toy soft 90% 80%

Ketchup bottle soft 90% 100%

Average 76% 85.5%

object, resulting in failures. This is visible in the video

submitted with this paper. The Franka gripper showed high

grasping success rates for most of the objects except for the

”Mug” where the algorithm generated grasp poses for the

mug handle, given the low friction material of the gripper

along with the torque generated (due to mug’s weight) while

grasping from such location, grasp failure was the outcome.

B. Future Work

Following the successful validation of the impact of high

sampling on grasp success rate, the authors would like to

explore even higher sampling, with future goals of imple-

menting a deep convolution neural network to act as a

function approximator for the development in hand. The

input to which is the object point cloud as well as the

gripper type, with the grasp pose serving as the output.

As such, once tuned, the network would solve the problem

of large computation time. Once the grasp success rate of

the grasping algorithm reaches 95%, we plan to generate

automatically training data from simulation.

In order to leverage the true potential of our algorithm

with high DoF hands, extensions must be added for planning

grasp points on objects. This is hardly needed for simple

jaw grippers, and as such was avoided to maintain algorithm

generality, an action the authors plan to withdraw in future

work.

V. CONCLUSION

In this work, successful enhancement to the novel grasp-

ing algorithm based on finger workspace spheres has been

presented. Positive impact in terms of grasp success rate

has been reported, being applied to a complex hand with

16 DoF as well as a simple jaw gripper with 2 DoF,

maintaining the algorithm versatility. Successful experiments

have shown better results with the newly proposed grasp

candidate evaluation metrics and higher sampling in terms

of candidate position and orientation.
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