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Equivalence between vortices, twists and chiral gauge fields in Kitaev’s honeycomb

lattice model

Matthew D. Horner,1, † Ashk Farjami,1, † and Jiannis K. Pachos1

1School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom

(Dated: October 5, 2020)

We demonstrate that Z2 gauge transformations and lattice deformations in Kitaev’s honeycomb
lattice model can have the same description in the continuum limit in terms of a chiral gauge field.
The chiral gauge field is coupled to the Majorana fermions that satisfy the Dirac dispersion relation in
the non-Abelian sector of the model. For particular values, the effective chiral gauge field becomes
equivalent to the Z2 gauge field, enabling us to associate effective fluxes to lattice deformations.
Motivated by this equivalence, we consider Majorana-bounding π vortices and Majorana-bounding
lattice twists and demonstrate that they are adiabatically connected to each other. This equivalence
opens the possibility for novel encoding of Majorana-bounding defects that might be easier to realise
in experiments.

I. INTRODUCTION

Identifying the effective quantum field theory descrip-
tion of condensed-matter systems offers a simple and
powerful way to understand their properties and predict
their behaviour. For example, two-dimensional lattice
models, such as graphene1–3, with a low-energy descrip-
tion in terms of Dirac fermions can be understood in
terms of the powerful formalism of relativistic physics.
Such an effective description of a model determines the
main properties of its ground state and it can reveal the
nature of its low-lying excitations. Similar to graphene,
Kitaev’s honeycomb lattice model4 (KHLM) has a low-
energy limit described by the Majorana version of the
Dirac equation5.

The main interest in the KHLM is that vortices im-
printed in the system trap localised Majorana zero modes
that behave as non-Abelian anyons4,6–16. This property,
together with the possibility of realising this model in the
laboratory with crystallised materials17–20, makes KHLM
of interest to anyonic quantum computation6,21,22 as well
as to the investigation of fundamental physics of materi-
als that support non-Abelian anyons.

Although materials which display the properties of a
pure Kitaev model are far off, there have been many stud-
ies introducing strains and defects in candidate materials
such as ruthenium chloride23–26. Recently, it has been
shown that not only vortices but twists in the form of
lattice deformations can trap Majorana zero modes27–29

exhibiting the same non-Abelian statistics. This gener-
alises the ways we have in realising Majorana anyons and
the possible ways we can use to manipulate them. Never-
theless, lattice twists and vortices do not appear to have
any connection between them apart from their common
characteristic of trapping Majorana zero modes.

Field theory provides an analytically tractable means
to study lattice models and reveals the underlying rela-
tivistic and geometric description. Recently, these tech-
niques have been applied to the KHLM5, topological su-
perconductors30,31 and Weyl superfluids31, revealing the
Riemann-Cartan (RC)32 nature of the continuum limit.

In this paper, we propose to build upon these studies by
considering chirality and chiral gauge fields, which is a
rather exotic concept of high energy physics that perme-
ates to condensed matter systems. Massless fermions in
3 + 1 dimensions can be described by spinors which are
reducible into a pair of Weyl fermions of opposite chi-
rality. This chirality, either left-handed or right-handed,
signals how these objects transform under Lorentz trans-
formations. The weak interaction of the Standard Model
is chiral in nature as its interactions treat left- and right-
handed particles differently33. Chirality also arises nat-
urally in lattice gauge theories34 and condensed matter
systems such as Weyl semimetals whose low-energy ex-
citations are described by Weyl fermions. There is an
intimate relationship between chiral gauge fields and tor-
sion in the continuum limit which allows one to produce
strain-induced gauge fields by inserting deformations to
the lattice35–42. Upon coupling to gauge fields, these sys-
tems can exhibit the chiral anomaly35,38,40,43,44, where
chiral symmetry is broken resulting in a non-conserved
current and a generalised quantum Hall effect45. Chiral-
ity has also been discussed in the context of graphene46,
phase transitions47, and Landau levels35,39,48.

As Majorana fermions are charge-neutral they cannot
couple to a U(1) electromagnetic gauge field, however
they can interact with a U(1)A chiral gauge field. These
chiral gauge fields naturally generalise the Z2 gauge field
that can be present only at the lattice level of the KHLM
to the continuum limit. Indeed, we apply techniques
from lattice gauge theory to demonstrate the equiva-
lence between Z2 gauge fields on the lattice and U(1)A
chiral gauge fields in the continuum, generalising the
results of the U(1) lattice gauge theory description of
graphene1,49,50. Moreover, we show these chiral gauge
fields also provide a faithful encoding of lattice deforma-
tions such as dislocations and twists in the continuum
level, while preserving the relativistic description of the
model. Hence, we are able to demonstrate that in the
continuum limit of the model the lattice twists are equiv-
alent to Z2 gauge transformations.

This opens up the exciting possibility that localised
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Z2 gauge fields and localised twists that can trap Majo-
rana zero modes are physically equivalent. To verify this,
we show that Majorana zero modes trapped in Z2 vor-
tices are adiabatically connected to Majorana zero modes
trapped by twists. As a result, any lattice realisation of
the chiral gauge field like twists, vortices or a hybrid of
the two can trap Majorana zero modes. This opens up
the possibility to experimentally realise Majorana zero
modes with a wide variety of defects.

This paper is organised as follows. In Sec. II, we review
the KHLM and its corresponding relativistic continuum
limit in the form of a Dirac Hamiltonian. In Sec. III, we
discuss a possible generalisation of the Dirac action by
upgrading its U(1)A chiral symmetry to a local symme-
try with the introduction of chiral gauge fields. We then
provide a general discussion of the relationship between
gauge fields and Fermi points of lattice models, specif-
ically how the insertion of a gauge field has the effect
of shifting the Fermi points. In Sec. IV, we apply this
interpretation to the KHLM with a Z2 gauge field and
two types of twists in the honeycomb lattice, and identify
the corresponding continuum limit chiral gauge fields for
each case. In particular, we identify that the continuum
limit of a global Z2 gauge field and a particular type of
twist in the lattice yields the same continuum limit. Fi-
nally, in Sec. V we demonstrate that when the Z2 gauge
field and twists are inserted locally, they produce identi-
cal zero modes. We end the paper with a conclusion and
Appendices containing further discussions of material in
the paper for the interested reader.

II. THE KITAEV HONEYCOMB LATTICE

MODEL

In this section we shall provide a brief introduction to
the KHLM and its continuum limit.

A. Fermionisation

KHLM is an exactly solvable model describing spin- 12
particles residing on the vertices of a honeycomb lattice4.
These spins are coupled via two- and three-body interac-
tions with respective coupling constants {Jx, Jy, Jz} and
K. By employing an appropriate fermionisation pro-
cedure, the spin Hamiltonian can be re-expressed as a
tight-binding Hamiltonian describing Majorana fermions
ci hopping on the vertices i of a honeycomb lattice cou-
pled to a Z2 gauge field uij which lives on the links (i, j),
see (A1). In the Majorana picture, the two- and three-
body interactions become nearest and next-to-nearest-
neighbour hopping terms, with corresponding hopping
amplitudes {Jx, Jy, Jz} and K, respectively. The Z2

gauge field has the interesting property that its vortices
trap Majorana zero modes that behave as non-Abelian
anyons.

We define the no-vortex sector of the model as the case
where the Z2 gauge field takes the trivial configuration
of uij = +1 for all links. In this case, the system is
translationally invariant with respect to a unit cell con-
sisting of two neighbouring vertices, say a and b, that
form the triangular sub-lattices A and B, respectively,
of the honeycomb lattice. The Hamiltonian of the sys-
tem H =

∑

〈i,j〉 hijc
a
i c

b
j can be diagonalised via a Fourier

transform to yield

H =
1

4

∫

d2qψ†
qh(q)ψq, (1)

where

h(q) =

(

∆(q) −f(q)
−f∗(q) −∆(q)

)

(2)

is the single-particle Hamiltonian and ψq = (caq icbq)
T,

with caq and cbq being the momentum space Majorana
fermions residing on the corresponding sub-lattice. The
entries of h(q) are given by f(q) = 2(Jxeiq·n1+Jyeiq·n2+
Jz), and ∆(q) = 2K[− sin(q·n1)+sin(q·n2)+sin(p·(n1−
n2))], where n1 = (

√
3/2, 3/2) and n2 = (−

√
3/2, 3/2)

are the honeycomb lattice basis vectors, and the corre-
sponding dispersion relation is given by

E(q) = ±
√

|f(q)|2 +∆2(q). (3)

The single-particle Hamiltonian Eq. (2) has the sym-
metries σxh(q)σx = h(−q) and σyh∗(q)σy = −h(q),
which are parity and particle-hole symmetries, respec-
tively. The first symmetry imposes the constraint E(q) =
E(−q) on the dispersion and the second symmetry tells
us that the upper and lower bands come in ± pairs, which
is seen explicitly in (3).

B. Continuum Limit

We are interested in investigating the properties of the
ground state or low-lying excited states of the model that
can reveal the phase of the system as well as its possible
anyonic excitations. Similar to graphene, this model has
two independent, isolated Fermi points q = P± in the
Brillouin zone for which the dispersion E(q) takes its
minimum value. Around these points, the dispersion is
linear in momentum so describes relativistic excitations.
For the case of K = 0, the Fermi points satisfy E(P±) =
0. For the isotropic case with Jx = Jy = Jz ≡ J , the
Fermi points are given by

P± = ±
(

4π

3
√
3
, 0

)

. (4)

A non-zero K simply opens a gap in the dispersion at the
Fermi points. The parity symmetry of the Hamiltonian
implies that the Fermi points always come in ± pairs,
i.e., P+ = −P−.
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The effective description of the model about the
ground state, where all negative energy states (valence
band) are occupied, is obtained by restricting momenta
to lie in a small neighbourhood of the two Fermi points
as q = P± + p. For each Fermi point, we define the
two-component Weyl spinors ψ±(p) ≡ (ca±(p) ic

b
±(p)),

where c
a/b
± (p) ≡ c

a/b
P±+p, and the corresponding low-

energy Hamiltonians h±(p) ≡ h(P± + p), to first order
in p.
One can consider both Fermi points simultaneously by

regarding excitations about the two Fermi points as two
chiral degrees of freedom. We achieve this by combining
the pair of two-component Weyl spinors ψ± into a sin-
gle four-component Dirac-like spinor with the definition
Ψ(p) = (ψ+, σ

xψ−)
T = (ca+, ic

b
+, ic

b
−, c

a
−)

T. We then take
the direct sum of h+(p) and h−(p) in their respective
bases defined by Ψ(p) to yield the total 4 × 4 Hamilto-
nian,

hKHLM(p) = 3Jγ0(γ1px − γ2py)− i3
√
3Kγ1γ2, (5)

which takes the form of a massless Dirac Hamiltonian
defined on a (2 + 1)-dimensional Minkowksi space-time
with torsion5. The continuum limit has provided us with
a representation of the gamma matrices given by

γ0 =

(

0 I

I 0

)

= σx⊗I, γ =

(

0 −σ
σ 0

)

= −iσy⊗σ, (6)

where σ = (σx, σy, σz) are the Pauli matrices and I is
the two-dimensional identity, which obey the (3 + 1)-
dimensional Clifford algebra {γA, γB} = 2ηAB , where
ηAB = diag(1,−1,−1,−1) is the Minkowski metric. We
also define the fifth gamma matrix,

γ5 = iγ0γ1γ2γ3 =

(

I 0
0 −I

)

= σz ⊗ I, (7)

which obeys {γ5, γA} = 0 for all gamma matrices. This
particular representation of the gamma matrices is known
as the chiral representation. Note that, despite working
on a (2 + 1)-dimensional space, we are able to define a
(3+1)-dimensional representation as we are working with
4× 4 matrices, however at this stage γ3 is redundant. In
this paper, we use the notation that early upper-case
Latin indices A,B, . . . range over 0, 1, 2, 3, while early
lower-case Latin indices a, b, . . . range over 0, 1, 2. These
are orthonormal frame indices and we refer to any gamma
matrices with such indices as flat space gamma matrices
to contrast with the curved space gamma matrices to
be defined later. Moreover, the single-particle Hamilto-
nian h(p) has charge-conjugation symmetry. More de-
tails about the derivation of the continuous limit of the
KHLM can be found in Appendix A.
An important observation to make is that the four-

dimensional spinor Ψ(p) = (ψ+, σ
xψ−)

T is a Majorana
spinor, i.e., charge neutral33. This is due to the fact
that the two-component Weyl spinors ψ± about each
Fermi point P± are not independent. In general, charge

conjugation in momentum space is defined as Ψ(c)(p) =
CΨ†(−p), where C is the unitary charge conjugation ma-
trix obeying C†γAC = −(γA)∗ for all gamma matrices
and † denotes taking the Hermitian conjugate of each
component without taking the transpose of the spinor.
In our chiral representation Eqs. (6), the charge conju-
gation matrix is given by C = −σy ⊗ σy = −iγ2. We
observe that the spinor Ψ(p) is a Majorana spinor, i.e.
Ψ(c)(p) = Ψ(p), which is shown using the fact that in mo-

mentum space Majorana modes obey c†±(p) = c∓(−p).

III. CHIRAL GAUGE FIELDS IN THE

CONTINUUM

The continuum limit of the isotropic KHLM is de-
scribed by the Majorana version of the Dirac Hamilto-
nian given by Eq. (5). While Majorana fermions do not
couple to U(1) gauge fields, they can be coupled to a
U(1)A chiral gauge field. In this section, we investigate
how one could realise chiral gauge fields in the continuum
limit of a lattice model.

A. The Dirac action formalism

The most general continuum limit of the KHLM is
not only relativistic but is defined on a space-time with
both curvature and torsion5. Such general space-times
are called Riemann-Cartan space-times which are char-
acterised by a nontrivial metric gµν and affine connec-
tion Γρ

µν
32. For the purposes of defining spinors on a

Riemann-Cartan space, we translate to the equivalent
language of dreibein e µ

a and spin connection ωa
µb whose

Latin indices are with respect to a local orthonormal
frame. For brevity, we present only the relevant material
in this paper and point the reader to a self-contained re-
view of Riemann-Cartan theory applied to the KHLM in
Ref. 5. We use the notation that Greek letters µ, ν, . . .
represent (2+ 1)-dimensional general coordinate indices,
whilst later lower-case Latin indices i, j, . . . represent the
spatial coordinate indices only.
The action for a spin- 12 particle ψ of massm on a static

(2+1)-dimensional Riemann-Cartan space-timeM = R×
Σ is given by5

SRC =

∫

M

d2+1xΨ̄

(

iγµ∂µ − i

8
φγ0γ1γ2 +

i

2
∂iγ

i −m

)

Ψ.

(8)
where {γµ = eµaγ

a} are the curved space gamma matri-
ces, φ is the torsion pseudoscalar related to the torsion
of the space-time by Tabc = φ

3!ǫabc, Ψ =
√

|e|ψ is the
spinor density obeying flat-space anti-commutation rela-
tions, |e| = det[eaµ] is the determinant of the dreibein

and Ψ̄ = Ψ†γ0 is the Dirac adjoint. The Hamiltonian
density corresponding to the action Eq. (8) is given by
H = Ψ†hΨ, where h is the single-particle Hamiltonian
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given by

h(p) = e i
a γ

0γapi +
i

8
φγ1γ2 − i

2
∂ie

i
a γ

0γa +mγ0, (9)

which is given explicitly in terms of the dreibein and the
flat-space gamma matrices. A comparison of Eq. (9)
with Eq. (5) reveals that the continuum limit of the
isotropic and homogeneous case is described by a mass-
less Dirac Hamiltonian on a Minkowski space-time with
torsion. Further discussion of the dreibein of more gen-
eral continuum limits is provided in Appendix A.

B. Gauging the chiral symmetry

The continuum limit of the KHML has provided us
with four-component Majorana spinors. A U(1) trans-
formation is not compatible with a Majorana spinor Ψ
because it does not preserve the Majorana reality con-
dition Ψ(c) = Ψ, i.e., if Ψ is a Majorana spinor, then
Ψ′ = eiαΨ is not a Majorana spinor. For this reason, we
cannot couple Majorana spinors to a U(1) gauge field and
therefore these particles are electrically neutral. How-
ever, the massless action (8) has a global and internal
U(1)A chiral symmetry33 which is compatible with Ma-
jorana spinors, where the subscript A stands for axial. A
U(1)A transformation is defined by

Ψ(x) → eiαγ
5

Ψ(x), Ψ̄(x) → Ψ̄(x)eiαγ
5

, (10)

where α ∈ R. This chiral transformation preserves the
reality condition, i.e., if Ψ is a Majorana spinor, then

Ψ′ = eiαγ
5

Ψ is also a Majorana spinor. In the chiral rep-
resentation of the gamma matrices Eqs. (??), we see that
a chiral transformation simply corresponds to two oppo-
site U(1) transformations of each Weyl spinor component
of Ψ. Note that the names “chiral” and “axial” are used
interchangeably in the literature. The term chiral in our
context refers to anything associated with γ5.
We upgrade this chiral symmetry to a local symmetry

by introducing the gauge field Aµ with a corresponding
gauge-covariant derivative,

DA
µΨ = ∂µΨ+ iAµγ

5Ψ, (11)

which transforms as DA
µΨ → eiαγ

5

DA
µΨ under the simul-

taneous transformation Ψ → eiαγ
5

Ψ and Aµ → Aµ−∂µα,
for a space-dependent parameter α(x). Replacing the
partial derivatives in the massless version of the action
Eq. (8) with covariant derivatives yields the single-
particle Hamiltonian

h(p) = e i
a γ

0γa
(

pi +Aiγ
5
)

+A0γ
5+

i

8
φγ1γ2− i

2
∂ie

i
a γ

0γa.

(12)
It is worth noticing that the temporal component of the
chiral gauge field A0γ

5 commutes with all the other terms
in the Hamiltonian Eq. (12). Hence, its presence does

not influence any of the physical observables and can be
neglected. The temporal component also has no dreibein
coefficient as the only non-zero temporal dreibein on a
static space-time is given by e t

0 = 1.
Appendix B presents all possible terms one can add to

the Majorana version of the Dirac Hamiltonian to gener-
alise it, including the chiral term presented here.

C. Gauge fields and Fermi points

In lattice gauge theory, there is a general approach for
minimally coupling a matter field living on the vertices
i of a lattice to a gauge field living on the links (i, j).
This is achieved by multiplying the tunnelling couplings
of the matter field in the many-body Hamiltonian by Wil-

son lines of the form uij = exp(ie
∫ j

i
dl · A), where uij

is an element of a Lie group, A is an element of the
corresponding Lie algebra and e is the charge of the mat-
ter field49–53. This is sometimes called a Peierls sub-

stitution. When taking the continuum limit of the lat-
tice model, the Peierls substitution becomes equivalent to
the usual minimal coupling prescription of substituting
p → p+eA. Hence, for lattice models like graphene that
give rise to a Dirac equation in the continuum limit, the
minimal coupling is manifested by a shift of the model’s
Fermi points in a parallel fashion by −eA54.
The KHLM is comprised of Hermitian Majorana

modes ci that are charge neutral, c.f. Eq. A1. Hence,
they can only couple to a gauge field that has real-valued
Wilson line elements, e.g., uij ∈ Z2 = {1,−1}. How-
ever, due to the parity symmetry of the KHLM, these
real-valued Wilson lines will cause the Fermi points of
the model to shift in an anti-parallel fashion, resulting in
an emergent U(1)A chiral gauge field in the continuum
limit. To see this, consider the single-particle Hamilto-
nian Eq. (2) of the KHLM. When taking the continuum
limit, we Taylor expand about the Fermi points of the
model. In lattice models these Fermi points always come
in pairs55, which is seen explicitly in the KHLM as we
have two inequivalent Fermi points P± in the Brillouin
zone. We define the effective continuum limit Hamiltoni-
ans about each Fermi point by restricting the momenta
q to take values q = P± + p, for small p, as

h±(p) ≡ h(P± + p) = p ·∇h(P±) +O(p2). (13)

Modifications to the model that preserve the form of the
Hamiltonian Eq. (2), such as varying the strength of
the couplings {Ji}, inserting a Z2 gauge field or adding
in extra couplings, will have the effect of modifying the
single-particle Hamiltonian as h(q) → h′(q). In general,
the new Fermi points P ′

± will be different giving rise to
a shift

∆P± = P ′
± − P±. (14)

By restricting momenta to take small values about the
new Fermi points as q = P ′

± + p′, the continuum limit
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Hamiltonians about the new points are given by

h′±(p
′) ≡ h′(P ′

± + p′) = p′ ·∇h′(P ′
±) +O(p′

2
). (15)

In general, p 6= p′, so direct comparison of the continuum
limits Eqs. (13) and (15) cannot be done. Nevertheless,
employing the relation p′ = p−∆P± the expansion Eq.
(15) becomes

h′±(p) = (p−∆P±) ·∇h′(P ′
±) +O(p′2). (16)

Now that both Hamiltonians Eqs. (13) and (16) are writ-
ten down in the same coordinate system, one can com-
pare them. We see that the shift in the Fermi points
∆P± appears in the Hamiltonian in the same way that a
gauge field would appear if we were to apply the minimal
coupling prescription.
As the Fermi points of the KHLM are always ± sym-

metric due to parity symmetry, the Fermi points shift
oppositely as ∆P+ = −∆P−, which means the gauge
field about each Fermi point is given by A± = −∆P±

(take the charge e = 1). We see the gauge field couples
chirally to each Fermi point, i.e., with a sign depending
upon the Fermi point, so when h′+(p) and h

′
−(p) are com-

bined to give a 4 × 4 Hamiltonian, the generated gauge
field is a chiral gauge field of the form Aγ5, where

A = −∆P+. (17)

In the following we will consider particular modifications
in the couplings of KHLM and determine the resulting
chiral gauge fields.

IV. CHIRAL GAUGE FIELDS FROM THE

LATTICE MODEL

We now modify the lattice model to obtain a chi-
ral gauge field Aµ in the continuum limit. In this sec-
tion we search for the corresponding terms in the lattice
model which produce the spatial components Ai of Eq.
(12). Appendix D provides a way to generate the tem-
poral component A0 in continuum limit of the KHLM,
although this term commutes with the rest of the Hamil-
tonian and cannot affect any physical observables.

A. Continuum limit of the Z2 gauge field

Consider coupling the KHLM to a homogeneous Z2

gauge field uij . The many-body Hamiltonian for K = 0
is given by

H =
i

4

∑

〈i,j〉

2Jijuijcicj , (18)

where 〈i, j〉 is a sum over nearest neighbour pairs (links),
cf. Eq. (A1). We focus on the isotropic case, Jx = Jy =
Jz = 1, and introduce a gauge field uij taking values −1

BZ

P 0
+

<latexit sha1_base64="oWRlBAT6G8oDhSTcXGsfERGAfVs=">AAAB+nicbVDNS8MwHE3n15xfnR69BIcoCKOVgfM 28OJxgvuArZQ0TbewNClJqoy6P8WLB0W8+pd4878x3XrQzQchj/d+P/LygoRRpR3n2yqtrW9sbpW3Kzu7e/sHdvWwq0QqMelgwYTsB0gRRjnpaKoZ6SeSoDhgpBdMbnK/90CkooLf62lCvBiNOI0oRtpIvl0dBoKFahqbK2vPzvwL3645dWcOu ErcgtRAgbZvfw1DgdOYcI0ZUmrgOon2MiQ1xYzMKsNUkQThCRqRgaEcxUR52Tz6DJ4aJYSRkOZwDefq740MxSpPZyZjpMdq2cvF/7xBqqOml1GepJpwvHgoShnUAuY9wJBKgjWbGoKwpCYrxGMkEdamrYopwV3+8irpXtbdRv36rlFrNYs6yuA YnIBz4IIr0AK3oA06AINH8AxewZv1ZL1Y79bHYrRkFTtH4A+szx8c9ZPj</latexit>

P 0
−

<latexit sha1_base64="gbB9eveEUZF0A918tDX507oD enw=">AAAB+nicbVDNS8MwHE3n15xfnR69BIfoxdHKwHkbePE4wX3AVkqapltYmpQkVUbdn+LFgyJe/Uu8+d+Ybj3o5 oOQx3u/H3l5QcKo0o7zbZXW1jc2t8rblZ3dvf0Du3rYVSKVmHSwYEL2A6QIo5x0NNWM9BNJUBww0gsmN7nfeyBSUcHv 9TQhXoxGnEYUI20k364OA8FCNY3NlbVnZ/6Fb9ecujMHXCVuQWqgQNu3v4ahwGlMuMYMKTVwnUR7GZKaYkZmlWGqSI LwBI3IwFCOYqK8bB59Bk+NEsJISHO4hnP190aGYpWnM5Mx0mO17OXif94g1VHTyyhPUk04XjwUpQxqAfMeYEglwZpND UFYUpMV4jGSCGvTVsWU4C5/eZV0L+tuo35916i1mkUdZXAMTsA5cMEVaIFb0AYdgMEjeAav4M16sl6sd+tjMVqyip0j 8AfW5w8f/ZPl</latexit>

P−
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FIG. 1. The Brillouin zone (BZ) of the honeycomb lattice
with two Fermi points, P+ and P− corresponding to the
isotropic couplings Jx = Jy = Jz = 1. Continuously chang-
ing the coupling Jz from +1 to −1 everywhere on the lattice
shifts the Fermi points along the x-direction to the positions
P

′
+ and P

′
−, as shown by the horizontal solid arrow. Due to

the parity symmetry of the model, the shift is anti-parallel
so ∆P+ = −∆P−, which gives rise to the chiral gauge field
A =

(

2π/(3
√
3), 0

)

. The final configuration of the Fermi
points can also be viewed as an anti-parallel shift of the Fermi
points from outside the Brillouin zone in the y-direction as
shown by the vertical dashed arrows. This shift yields the
chiral gauge field A = (0, 2π/3).

on all z links and +1 on all x and y links. Equivalently,
this gauge field can be simply encoded on the values of
the couplings themselves by setting uij = +1 for all links,
then taking Jx = Jy = 1 and allowing Jz to take a value
of −115, which is the method we use in this section.
We can generate the change in sign of Jz with a con-

tinuous transformation by allowing Jz to take values in
the interval Jz ∈ [−1, 1] across all z links. Using the gen-
eral result Eq. (A12), the Fermi points of this model are
given by

P±(Jz) = ± 2√
3

(

arccos

(

−Jz
2

)

, 0

)

. (19)

From this formula, we see that when we switch on the
Z2 gauge field by changing Jz from +1 to −1, the Fermi
points transform as

P± = ±
(

4π

3
√
3
, 0

)

7→ P ′
± = ±

(

2π

3
√
3
, 0

)

. (20)

Therefore, upon interpreting the gauge field as the shift
of the Fermi points, we conclude from the general for-
mula Eq. (17) that this corresponds to the chiral gauge

field Aγ5 with A =
(

2π/(3
√
3), 0

)

. This x-direction
gauge field corresponds to the anti-parallel displacement
of the Fermi points ∆P± horizontally in the x-direction
as shown in Fig. 1.

The particular transformation of the Fermi points
given by Eq. (20), corresponding to Jz changing from +1
to −1, can have an alternative representation. One can
obtain the same final configuration of the Fermi points
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from the initial configuration with an anti-parallel trans-
portation vertically in the y-direction. If we shift P+

up by (0, 2π/3) and shift P− down by (0,−2π/3), the
Fermi points shift into neighbouring Brillouin zones and
we arrive at the final configuration, as can be seen in
Fig. 1. Note that under this transformation the initial
points P± from neighbouring Brillouin zones are mapped
to the final points P ′

∓, therefore our shift is given by
∆P± = P ′

± − P∓ = ∓ (0, 2π/3). Using the general for-
mula Eq. (17), this interpretation corresponds to a chiral
gauge field pointing in the y-direction given by

A =

(

0,
2π

3

)

. (21)

In other words, for the transformation of the Fermi points
given by Eq. (20), one can equivalently interpret it as an
anti-parallel shift of the Fermi points in the x direction
or as an anti-parallel shift of the Fermi points in the y
direction. The possibility to interpret the final configu-
ration of the Fermi points in these two equivalent ways
is due to the periodicity of momentum space.
The corresponding 4×4 continuum limit Hamiltonian,

with the interpretation that the Fermi points have shifted
anti-parallel in the y-direction, is given by

hz(p) = 3γ0
[

γ1px + γ2
(

py +
2π

3
γ5
)]

, (22)

which is the original isotropic case Eq. (5) coupled to a
chiral gauge field with a non-zero y component. The sign
of the y component kinetic term has flipped relative to
Eq. (5), which can be attributed to a non-trivial dreibein.
These sign flips will not alter the continuum limit geom-
etry of the model because the dreibein are only defined
up to a Lorentz transformation, as gµν = eaµe

b
νηab. This

is discussed further in Appendix A and Ref. [5].
The representation of the Fermi point transformation

in terms of a chiral gauge field in the y direction will
help the interpretation of the transformation in terms
of a generated flux in the continuum representation of
the model, which will be presented in the next section.
This latter interpretation follows the equivalence between
Peierls substitution and minimal coupling of lattice gauge
theories. A detailed discussion of this point is given in
Appendix C.
Note that one might be tempted to interpret the dis-

placement of the Fermi points due to the change of Jz
couplings from +1 to −1 as a U(1) gauge field. Indeed,
the final position of the Fermi points can be obtained
from the initial by a parallel shift in the y direction,
i.e. where both Fermi points shift in the same direction,
which is how a U(1) phase would shift the dispersion for
graphene. However, we discard this possibility as the re-
sulting 4× 4 Hamiltonian density in the continuum limit
would have a term of the form Hint = AµΨ̄γ

µΨ, which
vanishes for the case of Majorana spinors Ψ. This is be-
cause jµ = Ψ̄γµΨ is the electric current density due to
U(1) symmetry and under charge conjugation Ψ → Ψ(c)

this quantity changes sign. Therefore, for a Majorana
spinor, where Ψ = Ψ(c), this quantity vanishes. On
the other hand, the U(1)A interpretation would yield
the term Hint = AµΨ̄γ

µγ5Ψ, where jµA = Ψ̄γµγ5Ψ is
the axial vector current. This does not vanish for Majo-

rana spinors and is explicitly given by jµA = 2e µ
a ψ

†
+σ

aψ+,
where ψ+ is the Weyl spinor about the Fermi point P+

and σa = (I, σx, σy).

B. Twists in the lattice

In this section we modify the couplings of the isotropic
model by adding and removing links on the honeycomb
lattice. We consider two particular lattice deformations.
First, we consider a lattice deformation that has an equiv-
alent representation in the continuum limit as the Z2

gauge field. Second, we employ a lattice twist similar to
twists that have been considered in the literature in the
context of KHLM27,56. Twist defects are of interest as
they have been shown to support Majorana modes57,58.

1. Twists of Type I

First, we modify the isotropic model by removing all z
links and adding two diagonal links across each plaquette
of the honeycomb lattice. The corresponding Hamilto-
nian for K = 0 is given by

HI =
i

4

∑

r∈B

2cbr
(

car+n1
+ car+n2

+ car+n1−n2

)

+2cbr+n1−n2
car +H.c., (23)

The red links of the top right honeycomb of Fig. 4 show
an example of these modified couplings inserted locally.
This lattice modification does not change the Brillouin
zone as the lattice retains its periodicity. This modifies
f(q) → fI(q) of the single-particle Hamiltonian Eq. (2),
where

fI(q) = 2
[

eiq·n1 + eiq·n2 + 2 cos(q · (n1 − n2))
]

. (24)

The Fermi points of this model are given by

P I
± = ±

(

2π

3
√
3
, 0

)

, (25)

which are the same Fermi points as the ones obtained
from a global Jz sign change given by Eq. (20). We
again interpret the shift in the Fermi points relative to the
isotropic case as a displacement in the y direction which
therefore yields the same chiral gauge field Eq. (21) in
the continuum limit. The corresponding Hamiltonian is
given by

hI(p) = 3γ0
[

3γ1px + γ2
(

py +
2π

3
γ5
)]

. (26)
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If we compare Eq. (26) to Eq. (22), we see that the
continuum limits look identical, apart from a factor of
3 in front of the x component kinetic term. The emer-
gent chiral gauge fields are the same as the Fermi points
of both models have shifted by the same amount rela-
tive to the isotropic case. The factor of 3 is the result
of the additional next-to-next-to-nearest-neighbour cou-
plings that changed the geometry of the lattice. Its ef-
fect is to scale the x direction of the continuum limit and
can be absorbed in the dreibein of the continuum limit.
For this reason, we conclude that both lattice models are
equivalent as they yield the same continuum limits up to
a smooth deformation of the dreibein, so correspond to
the same phase.

2. Twists of Type II

Now consider the case where we modify the isotropic
model by removing all z links and inserting a single new
link across each plaquette, which is similar to what has
been used in the literature27,56. The Hamiltonian then
becomes

HII =
i

4

∑

r∈B

2cbr
(

car+n1
+ car+n2

+ car+n2−n1

)

. (27)

The red links of the top right honeycomb of Fig. 5 show
an example of these modified couplings inserted locally.
This modifies f(q) → fII(q) of the single-particle Hamil-
tonian Eq. (2), where

fII(q) = 2
(

eiq·n1 + eiq·n2 + eiq·(n2−n1)
)

. (28)

The Fermi points of this model are given by

P II
± = ±

(

2π

3
√
3
,
2π

9

)

. (29)

which yields a shift in the Fermi points of ∆P± =
±
(

−2π/(3
√
3), 2π/9

)

, however there is no alternative in-
terpretation of this shift as we had before. The corre-
sponding 4× 4 continuum limit is given by

hII(p) = γ0γx
(

px +Axγ
5
)

+ γ0γy
(

py +Ayγ
5
)

, (30)

which is in Riemann-Cartan form with, using formula
Eq. (17), a chiral gauge field Aγ5, where A =
(

2π/(3
√
3),−2π/9

)

. The curved space gamma matrices
are given by

γx = e x
a γ

a =
1

2

(

9γ1 −
√
3γ2
)

, (31)

γy = e y
a γ

a =
1

2

(

3
√
3γ1 + 3γ2

)

, (32)

which signifies a non-trivial dreibein e µ
a . This non-trivial

dreibein corresponds to a non-trivial metric in the con-
tinuum limit. This is to be expected, as the twists have
changed the geometry of the honeycomb lattice.

C. Transforming between Z2 gauge field and twists

We now consider the continuous transformation be-
tween the two modified Hamiltonians, Hz with a global
Z2 gauge field manifested by Jz = −1 [see Eq. (A3)] and
HI with type I twists as defined in Eq. (23), and trace the
motion of the Fermi points. We define the Hamiltonian

H(λ) = (1− λ)Hz + λHI, λ ∈ [0, 1], (33)

such that when we change λ from 0 to 1, we transform the
Hamiltonian from Hz to HI. The single-particle Hamil-
tonian corresponding to H(λ) is given by Eq. (2), where
f(q) is now given by

f(q, λ) = 2
[

eiq·n1+eiq·n2+2λ cos(q ·(n1−n2))+(λ−1)
]

.
(34)

and ∆(q) = 0 as we keep for convenience K = 0. The
corresponding dispersion relation is given by E(p, λ) =
±|f(q, λ)| and has the Fermi points given by

P±(λ) = ±
(

2π

3
√
3
, 0

)

. (35)

We observe that the Fermi points are independent of the
value of λ, remaining fixed at their corresponding val-
ues, cf. Eqs. (25) and (20). As a result, the global Z2

gauge field can be continuously deformed to a global lat-
tice modification of the form given by Eq. (23) without
changing the corresponding chiral gauge fields.
A natural question to ask is whether these two modi-

fications are equivalent locally. In the continuum limit,
such local modifications are expected to correspond to lo-
cally varying chiral gauge fields giving rise to non-trivial
chiral fluxes. From the lattice description, we know that
local Z2 transformations give rise to Majorana bounding
vortices, while local lattice deformations of the form Eq.
(23) can also trap Majorana zero modes. As they both
correspond to the same chiral gauge field, we expect them
to give rise to the same Majorana zero modes. This will
be explicitly verified in the following.

V. CHIRAL GAUGE FIELDS AND MAJORANA

ZERO MODES

In this section we investigate the relation between lo-
cal chiral gauge fields and Majorana zero modes. We
have seen that homogeneous Z2 gauge fields on the links
of the honeycomb lattice and homogeneous lattice de-
formations of the form Eq. (23) give rise to the same
continuum limit up to a rescaling of the dreibein. This
result suggests that both models are equivalent at the
lattice level too. In this section we test this numerically
by introducing the deformations and Z2 gauge fields lo-

cally along a finite path through the lattice. We demon-
strate both models are adiabatically connected and pro-
duce non-trivial fluxes at the endpoints of the path which
trap zero modes in the same way, allowing us to conclude
that both models are equivalent at the lattice level too.
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FIG. 2. The configuration of the chiral gauge field of the form
A(r)γ5 = Aθ(x − x0)δ(y − y0)γ

5 confined in the y direction
along the path P that starts at the point r0 = (x0, y0) and
extends to infinity in the x direction. Along the path, the
gauge field takes value A = (0, π), while it takes the value
A = (0, 0) outside the path. This configuration of Aγ5 gives
rise to a flux Φ =

∮

C
dl ·A = π going through the loop C that

encloses r0.

A. Flux of chiral gauge fields

If a Z2 gauge field is inserted on the lattice of the
KHLM by flipping the gauge field from +1 to −1 locally,
one can produce π-vortices which trap Majorana zero
modes4. For example, if we inserted a gauge field taking
values −1 on all z links along a path P and +1 on all
other links, then one finds vortices localised at each end
of the path. A natural question to ask is whether such
vortices appear in the continuous representation of the
model. In particular, we want to investigate whether the
chiral gauge field associated with local configurations of
the Z2 gauge field can give rise to the same π fluxes that
trap Majorana zero modes in the continuum13,59.

In Sec. IV, we deduced that a global Z2 gauge field tak-
ing values −1 on all z links and +1 on all x and y links
yields a chiral gauge field in the continuum limit of the
form Aγ5, where A =

(

0, 2π3
)

. If we were to perform the
same calculation on the brick wall lattice representation
of the honeycomb lattice, the resulting chiral gauge field
is given byA = (0, π), as shown in Appendix C. This is in
agreement with the equivalence between Peierls substitu-
tion and minimal coupling. Nevertheless, this is not the
case in the honeycomb lattice model. The discrepancy
is due to the fact that x and y links of the honeycomb
lattice have a spatial y component when oriented in the
honeycomb lattice configuration, yet they receive no con-
tribution from the gauge field. Hence, the value 2π/3 is
obtained from an average along strips in the y-direction
of length 1 with phase π (z links) and of length 1/2 with
phase 0 (x and y links). As the argument below is con-
cerned with horizontal paths P , which are well-localised
in the y direction crossing z links that contribute a π
phase, we will take the corresponding chiral gauge field
to be A = (0, π).

Suppose we insert the Z2 gauge field locally along a
horizontal straight path P starting at the point r0 =
(x0, y0) heading off to infinity in the x direction, as shown
in Fig. 2. In the continuum limit, this would be described

by a chiral gauge field

A(r)γ5 = Aθ(x− x0)δ(y − y0)γ
5, (36)

where A = (0, π). The “magnetic field” of this gauge
field configuration is given by

Bγ5 = ∇×A(r)γ5 = πδ(x− x0)δ(y − y0)γ
5ẑ. (37)

The phase along a loop C that surrounds the endpoint
r0 of P is given by

Φ =

∮

C

dl ·A =

∫

S

dS ·B = π, (38)

where S is the surface enclosed by the path C. Hence,
the configuration Eq. (36) of the chiral gauge field gives
rise to a chiral π flux. Similarly, if we insert the twists of
type I from the previous section locally, along the same
path P , we achieve the same gauge field Eq. (36) and
π flux Eq. (38). This suggests that the Majorana zero
modes produced by the twists are equivalent to the Ma-
jorana zero modes trapped by Z2 vortices. Indeed, when
inserting this gauge field into the Dirac Eq. (12), it is
known that vortex profiles will trap zero modes13.
In the following, we first consider the generation of

Majorana zero modes when local Z2 gauge fields or local
twists are created. Then we adiabatically connect these
zero modes, thus demonstrating that they are equivalent.

B. Majorana zero modes

While the Z2 values of the links can change through a
discrete process, it is possible to implement it in a con-
tinuous way. We observe the formation of zero modes
throughout this continuous process by studying the be-
haviour of the energy spectrum and wave functions. For
example, consider an initial Hamiltonian H0, where all
the gauge degrees of freedom have value uij = +1. Con-
sider also a final Hamiltonian HP

v , where the vertical z
links along a local path P in the x-direction take the op-
posite sign uij = −1, as shown in Fig. 3. We label the
links along this path as uz. To shift from one Hamilto-
nian to the other we consider the interpolating Hamilto-
nian

HP
v (λ) = (1− λ)H0 + λHP

v , λ ∈ [0, 1]. (39)

The result is a continuous change in the value of uz from
uz = 1 for λ = 0 to uz = −1 for λ = 1. Thus, we
expect to see Majorana zero modes appearing at the end
points of P as λ approaches 1. All numerical simulations
presented in this section are for models with periodic
boundary conditions, system size L = 30, isotropic J = 1
and K = 0.1.
The generation of localised Majorana zero modes is

shown in Fig. 3 as λ increases in discrete steps demon-
strating that the local Z2 gauge field creates π-vortices.
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FIG. 3. The formation of zero modes inHP
v (λ). Top: A sketch

of HP
v (λ) at λ = 0 and λ = 1 for a smaller system size. The

path P , indicated by a dashed grey line, runs perpendicular
to the z-links of the lattice and has a length L/2. Black
links take the value uij = +1, red links take the value uij =
−1. The black dots in the centre of plaquettes indicate the
approximate position of vortices. Middle: The energy gap of
HP

v (λ) as a function of λ for a system with linear dimension
L = 30, isotropic J = 1, and K = 0.1. Zero modes are
created with an energy gap above them as the sign of uz

flips, i.e, at λ ≈ 0.5. Bottom: The continuous profile of the
wave function |ψ(r)|2 of the gradually generated localised zero
modes at λ ≈ 0.4, 0.6, 1. The size and shape of the vortices
are characterised by finding the set of points where |ψ(r)|2 =

10−3/2, as illustrated by the red boundary line.

The single particle Hamiltonian Hvortex(λ) is diago-
nalised for each discrete value of λ and the energies E0

and E1 of the two lowest eigenstates are plotted in Fig. 3.
At λ = 0 the model is clearly gapped with no zero energy
modes, while at λ = 1 there is a clear zero energy mode
with a gap above it. The gap between E0 and E1 forms
at a transition point around λ ≈ 0.5. From the diago-
nalisation of Hvortex(λ), we also obtain the probability
density at each lattice site |ψi|2 for the lowest energy
eigenstate. We call this the spatial wave function of the
vortices. To visualise the shape of the zero modes, we
approximate them with a continuous function as shown
in Fig. 3 (bottom) [see Appendix E]. As we approach the
transition point λ ≈ 0.5 a single fermion mode appears
over the length of the path P . This mode splits into two
Majorana zero modes as λ increases, becoming exponen-
tially localised at the end points of P as we approach

| |
10−2 10−12× 10−2 3× 10−2 4× 10−2 6× 10−2

|ψ(x, y)|2

|ψ(x, y)|2 = 10−3/2

|ψ(x, y)|2 = 10−3/2

|ψ(x, y)|2 = 10−3/2

FIG. 4. The formation of zero modes in HP
I (λ). Top: A

sketch of HP
I (λ) at λ = 0 and λ = 1 for a smaller system. The

path P , indicated by a dashed grey line, runs perpendicular
to the z links of the lattice and has a length L/2. The new
next-to-next-to-nearest neighbour couplings are highlighted
in red. The black dots in the centre of plaquettes indicate the
approximate position of vortices. Middle: The energy gap of
HP

I (λ) as a function of λ for a system with linear dimension
L = 30, isotropic J , and K = 0.1. Zero modes are created
with an energy gap above them at λ ≈ 0.4. The behaviour of
the gap is similar to the gap observed as the sign of the Z2

gauge field flips in Fig. 3. Bottom: The continuous profile of
the wave function |ψ(r)|2 of the gradually generated localised
zero modes at λ ≈ 0.4, 0.6, 1. The size and shape of the
vortices are characterised by finding the set of points where
|ψ(r)|2 = 10−3/2, as illustrated by the red boundary line.

λ = 1.
We now consider the isotropic vortex-free KHLM

Hamiltonian H0 and we create a non-zero chiral gauge
field by introducing lattice deformations of type I as the
ones in Hamiltonian (23). We consider these deforma-
tions along a horizontal path P that result in the cre-
ation of twists at the endpoints of the path, as shown
in Fig. 4. We denote the resulting Hamiltonian as HP

I .
We use the same method as above to continuously shift
between these two Hamiltonians:

HP
I (λ) = (1− λ)H0 + λHP

I , λ ∈ [0, 1]. (40)

Figure 4 shows the energies of the two lowest eigenstates
of the single particle Hamiltonian produced by varying λ
as well as the continuous approximations of the spatial
wave function as vortices are produced. Similar to the
vortex creation, we observe that the formation of twists
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| |
10−2 10−12× 10−2 3× 10−2 4× 10−2 6× 10−2

|ψ(x, y)|2

|ψ(x, y)|2 = 10−3/2

|ψ(x, y)|2 = 10−3/2

|ψ(x, y)|2 = 10−3/2

FIG. 5. The formation of zero modes in HP
II(λ). Top: A

sketch of HP
II(λ) at λ = 0 and λ = 1 for a smaller system. The

path P , indicated by a dashed grey line, runs perpendicular
to the z-links of the lattice and has a length L/2. The new
next-to-next-to-nearest neighbour couplings are highlighted
in red. The black dots in the centre of plaquettes indicate the
approximate position of vortices. Middle: The energy gap of
HP

II(λ) as a function of λ for a system with linear dimension
L = 30, isotropic J and K = 0.1. Zero modes are created
with an energy gap above them at λ ≈ 0.5. The behaviour of
the gap is similar to the gap observed as the sign of the Z2

gauge field flips in Fig. 3. Bottom: The continuous profile of
the wave function |ψ(r)|2 of the gradually generated localised
zero modes at λ ≈ 0.4, 0.6, 1. The size and shape of the
vortices are characterised by finding the set of points where
|ψ(r)|2 = 10−3/2, as illustrated by the red boundary line.

give rise of stable Majorana zero modes as λ increases
and the gap begins to open. Hence, type I twists bound
Majorana zero modes much like the Z2 vortices do.

Finally, we consider the equivalent generation of twists
of type II along a horizontal path P . The resulting en-
ergies and wave functions are depicted in Fig. 5, demon-
strating that type II twists bound Majorana zero modes
in much the same way as Z2 vortices and type I twists.

C. Adiabatic equivalence between lattice twists

and vortices

We established in the previous section that string-like
configurations of twists in the lattice give rise to Majo-
rana zero modes at the end points of the string. This is
very similar to the zero modes trapped by string-like con-

| |
10−2 10−12× 10−2 3× 10−2 4× 10−2 6× 10−2

|ψ(x, y)|2

|ψ(x, y)|2 = 10−3/2

|ψ(x, y)|2 = 10−3/2

|ψ(x, y)|2 = 10−3/2

FIG. 6. The adiabatic equivalence of zero modes in HP
v-I(λ).

Top: A sketch of HP
v-I(λ) at λ = 0 and λ = 1 for a smaller

system size. The path P , indicated by a dashed grey line,
remains constant, runs perpendicular to the z links of the lat-
tice and has a length L/2. The modified links along the path
P are highlighted in red. The black dots in the centre of pla-
quettes indicate the approximate position of vortices. Middle:
The energy gap of HP

v-I(λ) as a function of λ that interpolates
between the two Z2 vortex configuration and lattice twists
configuration of type I, for a system with linear dimension
L = 30, isotropic J = 1, and K = 0.1. The gap remains al-
most constant for all values of λ, indicating stable zero modes
throughout the transition. Bottom: The continuous profile
zero modes at λ ≈ 0, 0.5, 1 shows they remain fixed in place
and well-localised throughout the adiabatic transition. The
shape of the zero modes at λ = 1 appear stretched in the x-
direction compared to λ = 0 due to the change in the dreibein
in Eq. (26). The size and shape of the vortices are charac-

terised by finding the set of points where |ψ(r)|2 = 10−3/2,
as illustrated by the red boundary line.

figurations of the Z2 gauge field that creates π flux vor-
tices at its end-points. Here we demonstrate that these
two apparently different ways of realising Majorana zero
modes, i.e., by changing the sign of certain links or by
modifying the connectivity of the lattice, are actually
physically equivalent. We demonstrate this by adiabati-
cally transforming between these two configurations and
considering both the behaviour of the energy spectrum
as well as the wave function of the zero modes.
We take the Hamiltonians HP

v and HP
I , defined in the

previous section and depicted in Fig. 3 (top, right) and
4 (top, right), respectively. We define the Hamiltonian

HP
v-I(λ) = (1− λ)HP

v + λHP
I , λ ∈ [0, 1]. (41)
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| |
10−2 10−12× 10−2 3× 10−2 4× 10−2 6× 10−2

|ψ(x, y)|2

|ψ(x, y)|2 = 10−3/2

|ψ(x, y)|2 = 10−3/2

|ψ(x, y)|2 = 10−3/2

FIG. 7. The adiabatic equivalence of zero modes in HP
v-II(λ).

Top: A sketch of HP
v-II(λ) at λ = 0 and λ = 1 for a smaller

system size. The path P , indicated by a dashed grey line, re-
mains constant, runs perpendicular to the z links of the lattice
and has a length L/2. The modified links along the path P are
highlighted in red. The black dots in the centre of plaquettes
indicate the approximate position of vortices. Middle: The
energy gap of HP

v-II(λ) as a function of λ that interpolates
between the two Z2 vortex configuration and lattice twists
configuration of type II, for a system with linear dimension
L = 30, isotropic J = 1, and K = 0.1. The gap remains al-
most constant for all values of λ, indicating stable zero modes
throughout the transition. Bottom: The continuous profile
zero modes at λ ≈ 0, 0.5, 1 shows they remain fixed in place
and well-localised throughout the adiabatic transition. The
asymmetry in the shape of the zero modes at λ = 1 compared
to λ = 0 is reflected in the asymmetry of the dreibein in Eqs.
(31) and (32). The size and shape of the vortices are charac-

terised by finding the set of points where |ψ(r)|2 = 10−3/2,
as illustrated by the red boundary line.

This allows us to adiabatically transition between the
two Hamiltonians by varying λ. The path P remains
fixed throughout this transition. Figure 6 shows the en-
ergy gap of the system and the continuous approximation
of the wave function of a pair of zero modes as we adi-
abatically transition between HP

v and HP
I . We observe

that the zero modes remain energetically separated from
the rest of the states for all λ with an energy gap that
remains more or less constant throughout the process.
Moreover, the zero modes of the model remain fixed in
place and well-localised throughout the adiabatic tran-
sition. Hence, the two ways of generating vortices are
physically equivalent. The shape of the zero modes of

HP
I appear stretched in the x direction compared to HP

v .
This is due to the change in the dreibein in Eq.(26). This
adiabatic process also demonstrates that there is a con-
tinuous family of lattice configurations given by HP

v-I(λ)
for λ ∈ [0, 1] that give rise to the same localised Majorana
zero modes.
Similarly, Majorana zero modes produced by twists of

type II are also adiabatically connected to zero modes
produced by Z2 vortices. This is shown explicitly in
Fig. 7. The asymmetry in the shape of the zero modes for
HP

II is reflected in the asymmetry of the dreibein in Eqs.
(31) and (32), which demonstrates that the continuum
limit geometry is scaled unevenly along each axis. How-
ever, the analysis of Sec. IVB2 concluded that twists of
type II do not yield a gauge field with exactly a π flux.
This is because the Fermi points of this model do not shift
in the same way as they did for the case of implement-
ing a Z2 gauge field. Therefore, Fig. 7 also demonstrates
that the zero modes are stable as the flux of the under-
lying gauge field changes adiabatically as we transition
between the two models.

VI. CONCLUSION

The generation and manipulation Majorana fermions
is one of the central problems in the current effort to un-
derstand the physics of non-Abelian anyons and employ
them for quantum technologies. Here we demonstrated
that two of the leading ways of trapping Majorana zero
modes, employing vortices and employing lattice twists,
are physically equivalent. We demonstrated this equiva-
lence by finding the appropriate representation of these
lattice defects in the continuum limit in terms of chiral
gauge fields. We showed analytically that both Z2 gauge
fields and lattice deformations have an equivalent rep-
resentation in the low-energy spectrum of the system in
terms of chiral gauge field coupled to the Majorana ver-
sion of the Dirac equation. As the two continuum limits
differed only by a smooth transformation of the dreibein,
this suggested that the lattice level Hamiltonians must
also be equivalent which we investigated numerically by
simulation local configurations of the Z2 gauge field and
lattice deformations.
We observed numerically that local configurations of

this chiral gauge field can create π flux vortices. Moti-
vated by this equivalence we investigated the possibility
of Majorana bounding twists being physically equivalent
to Majorana bounding vortices. We performed an adia-
batic transformation between Hamiltonians that encode
twists and vortices and showed that both the structure of
the energy spectrum as well as the localisation properties
of the Majorana zero modes remain invariant during the
adiabatic transformation.
Our investigation demonstrates that Majorana bound-

ing twists are physically equivalent to vortices even
though they do not have a gauge field representation in
the lattice level. Nevertheless, they give rise to a chi-
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ral gauge field with configurations that in the continuum
limit are equivalent to the Z2 gauge configurations. This
opens up a variety of possible investigations. First, it is
possible to realise gauge theories that do not necessar-
ily have a traditional interpretation in the lattice level
in terms of Wilson lines. This can give wider flexibil-
ity for the realisation of gauge theories in the laboratory,
e.g. with optical lattices60. Second, the adiabatic trans-
formation between vortices and twists created a continu-
ous spectrum of defects that can support Majorana zero
modes beyond the two limiting cases. The possibility of
having a wider range of Majorana bounding defects can

facilitate their experimental generation and detection.
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56 John Brennan and Jǐŕı Vala, “Lattice defects in the kitaev
honeycomb model,” The Journal of Physical Chemistry A
120, 3326–3334 (2016), pMID: 26886150.

57 Huaixiu Zheng, Arpit Dua, and Liang Jiang, “Demon-
strating non-abelian statistics of majorana fermions using
twist defects,” Phys. Rev. B 92, 245139 (2015).

58 H. Bombin, “Topological order with a twist: Ising anyons
from an abelian model,” Phys. Rev. Lett. 105, 030403
(2010).

59 C. Chamon, R. Jackiw, Y. Nishida, S.-Y. Pi, and L. San-
tos, “Quantizing majorana fermions in a superconductor,”
Phys. Rev. B 81, 224515 (2010).

60 E. Alba, X. Fernandez-Gonzalvo, J. Mur-Petit, J.J.
Garcia-Ripoll, and J.K. Pachos, “Simulating dirac
fermions with abelian and non-abelian gauge fields in op-
tical lattices,” Annals of Physics 328, 64 – 82 (2013).

61 Chris N.• Self, “Kitaev honeycomb in python,” https://

github.com/chris-n-self/kitaev-honeycomb (2019).
62 Paolo Maraner and Jiannis K. Pachos, “Yang–mills gauge

theories from simple fermionic lattice models,” Physics
Letters A 373, 2542 – 2545 (2009).

63 Zhi-Cheng Yang, Thomas Iadecola, Claudio Chamon, and
Christopher Mudry, “Hierarchical majoranas in a pro-
grammable nanowire network,” Phys. Rev. B 99, 155138
(2019).

Appendix A: The continuum limit of the most

general KHLM

1. The KHLM

In this Appendix, we shall provide a derivation of the
continuum limit of the KHLM. As shown in Ref. 4,

http://dx.doi.org/10.1088/1361-648x/aa8cf5
http://dx.doi.org/10.1088/1361-648x/aa8cf5
http://dx.doi.org/10.1103/PhysRevB.93.155143
http://dx.doi.org/10.1103/PhysRevB.93.155143
http://dx.doi.org/10.1103/PhysRevB.88.140405
http://dx.doi.org/10.1103/PhysRevB.90.134404
http://dx.doi.org/10.1103/PhysRevB.90.134404
http://dx.doi.org/ 10.1103/PhysRevB.84.115146
http://dx.doi.org/ 10.1103/PhysRevB.84.115146
http://dx.doi.org/ 10.1103/PhysRevB.98.064503
http://dx.doi.org/ 10.1103/PhysRevB.98.064503
http://dx.doi.org/ 10.1103/PhysRevLett.124.117002
http://dx.doi.org/ 10.1063/1.1665738
http://dx.doi.org/ 10.1063/1.1665738
http://arxiv.org/abs/hep-lat/9410008
http://arxiv.org/abs/2007.10682
http://dx.doi.org/ 10.1103/PhysRevLett.115.177202
http://dx.doi.org/10.1103/PhysRevLett.116.166601
http://dx.doi.org/10.5506/aphyspolb.47.2617
http://dx.doi.org/ 10.1103/PhysRevX.6.041046
http://dx.doi.org/ 10.1103/PhysRevX.6.041046
http://dx.doi.org/ 10.1103/PhysRevX.6.041021
http://dx.doi.org/10.1103/PhysRevLett.118.127601
http://dx.doi.org/10.1103/PhysRevLett.118.127601
http://dx.doi.org/ 10.1103/PhysRevLett.122.056601
http://arxiv.org/abs/2007.02944
http://dx.doi.org/ 10.1103/PhysRevB.87.235306
http://dx.doi.org/ 10.1103/PhysRevB.87.235306
http://dx.doi.org/10.1103/PhysRevLett.98.266402
http://dx.doi.org/10.1103/PhysRevB.81.245132
http://dx.doi.org/ 10.1103/PhysRevLett.116.167201
http://dx.doi.org/ 10.1103/PhysRevLett.116.167201
http://dx.doi.org/ 10.1103/PhysRevB.82.121418
http://dx.doi.org/ 10.1103/PhysRevB.82.121418
http://dx.doi.org/10.1142/S0217979207038022
http://dx.doi.org/10.1142/S0217979207038022
http://dx.doi.org/ https://doi.org/10.1016/j.crhy.2018.03.002
http://dx.doi.org/ https://doi.org/10.1016/j.crhy.2018.03.002
http://dx.doi.org/10.1142/8229
http://arxiv.org/abs/hep-lat/0012005
http://dx.doi.org/https://doi.org/10.1016/0550-3213(81)90524-1
http://dx.doi.org/https://doi.org/10.1016/0550-3213(81)90524-1
http://dx.doi.org/10.1021/acs.jpca.6b00149
http://dx.doi.org/10.1021/acs.jpca.6b00149
http://dx.doi.org/ 10.1103/PhysRevB.92.245139
http://dx.doi.org/ 10.1103/PhysRevLett.105.030403
http://dx.doi.org/ 10.1103/PhysRevLett.105.030403
http://dx.doi.org/10.1103/PhysRevB.81.224515
http://dx.doi.org/ https://doi.org/10.1016/j.aop.2012.10.005
https://github.com/chris-n-self/kitaev-honeycomb
https://github.com/chris-n-self/kitaev-honeycomb
http://dx.doi.org/ https://doi.org/10.1016/j.physleta.2009.05.029
http://dx.doi.org/ https://doi.org/10.1016/j.physleta.2009.05.029
http://dx.doi.org/10.1103/PhysRevB.99.155138
http://dx.doi.org/10.1103/PhysRevB.99.155138


14

FIG. 8. The honeycomb lattice with Majorana fermions tun-
nelling between nearest neighbouring sites with couplings Jx,
Jy, and Jz, depending on the direction of the link. Tunnelling
between next-to-nearest-neighbouring sites with coupling K
is also indicated. The honeycomb lattice comprises two tri-
angular sub-lattices, A and B, denoted by full and empty
circles, respectively. We take the unit cell along the z links.
The translation vectors between sites of the same sub-lattices
are n1 = (

√
3

2
, 3

2
) and n2 = (−

√
3

2
, 3

2
). The orientations of the

nearest tunnelings (from A to B sites) and next-to-nearest
tunnelings (anticlockwise) are indicated.

the KHLM Hamiltonian in the vortex-free sector can be
brought into the Majorana form

H =
i

4





∑

〈i,j〉
2Jijuijcicj + 2K

∑

〈〈i,j〉〉
uijcicj



 , (A1)

where {ci} are Majorana modes, uij ∈ Z2 are the link
operators, while 〈i, j〉 denotes a summation over pairs
of nearest neighbours and similarly 〈〈i, j〉〉 for next-to-
nearest neighbours. The orientation of the links is shown
in Fig. (8).
The honeycomb lattice can be generated by a unit cell

consisting of the pair of lattice sites connected via a z
link, together with the basis vectors

n1 =

(√
3

2
,
3

2

)

, n2 =

(

−
√
3

2
,
3

2

)

. (A2)

As shown in Fig. (8), the honeycomb lattice also contains
two triangular sub-lattices, A and B. As each unit cell
contains one site on A and one on B, we label the sites
of the honeycomb lattice by the pair (r, α), where r ∈ B
is the location of the site on sub-lattice B that the unit
cell overlaps and α ∈ (a, b) labels the site within the unit
cell.
To reflect this symmetry of the lattice, we relabel our

Majorana modes by defining cαr as the mode of lattice
site (r, α). With this relabelling, the Hamiltonian in the
vortex-free sector, where all link operators are uij = +1,
takes the form H = HJ +HK , where

HJ =
i

4

∑

r∈B

2cbr
(

Jxcar+n1
+ Jycar+n2

+ Jzcar
)

+H.c.

(A3)

and

HK =
iK

4

∑

r∈B

car
(

−car+n1
+ car+n2

+ car+n1−n2

)

+ cbr
(

cbr+n1
− cbr+n2

− cbr+n1−n2

)

+H.c.
(A4)

We now Fourier transform the Hamiltonian with the def-
inition cαr =

∫

d2qe−iq·rcαq , which yields

HJ =
1

4

∫

d2q
(

−if(q)ca†q cbq + if∗(q)cb†q c
a
q

)

, (A5)

HK =
1

4

∫

d2q∆(q)
(

ca†q c
a
q − cb†q c

b
q

)

, (A6)

where f(q) = 2(Jxe
iq·n1 + Jye

iq·n2 + Jz) and ∆(q) =
2K[− sin(q ·n1) + sin(q ·n2) + sin(p · (n1 −n2))]. If we
define the two-component spinor Ψq = (caq ic

b
q)

T, we can
write the total Hamiltonian H as

H =
1

4

∫

d2qΨ†
qh(q)Ψq, (A7)

where the single-particle Hamiltonian h(q) is given by

h(q) =

(

∆(q) −f(q)
−f∗(q) −∆(q)

)

. (A8)

2. Fermi points

From Eq. (A8), we find that the single-particle disper-
sion relation is given by

E(q) = ±
√

∆2(q) + |f(q)|2. (A9)

For now, we ignore the contribution of the K term to
the dispersion relation and first focus on the case where
E(q) = ±|f(q)|. The Fermi points of the dispersion rela-
tion are defined as the points {Pi} for which E(Pi) = 0.
The Fermi points of the model therefore solve the equa-
tions

Jx cos(Pi · n1) + Jy cos(Pi · n2) + Jz = 0, (A10)

Jx sin(Pi · n1) + Jy sin(Pi · n2) = 0. (A11)

The most general Fermi point was calculated in Ref. 5,
however, it only applies for positive values of the cou-
plings {Ji}. A minor modification to the formula allows
us to write down the Fermi point for the most general
case which handles both positive and negative values.
The Fermi point is given by

P± = ±
( 1√

3
(sgn(Jy) arccos(a) + sgn(Jx) arccos(b))

1
3 (sgn(Jy) arccos(a)− sgn(Jx) arccos(b))

)

,

(A12)
where

a =
J2
y − J2

x − J2
z

2JxJz
, b =

J2
x − J2

y − J2
z

2JyJz
(A13)

When reinstating the K term, the Fermi points are not
shifted from these points if we take K to be suitably
small.
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3. The continuum limit

We define the continuum limit about each Fermi point
P± by restricting the Hamiltonian Eq. (A8) to take val-
ues of momenta near the Fermi points as q = P±+p, for
small p. We define h±(p) ≡ h(P±+p) as our continuum
limit Hamiltonians about each Fermi point. We have

f(P± + p) = p · ∇f(P±) +O(p2)

= (∓A+ iB)px + iCpy
(A14)

where the coefficients are given by

A = sgn(Jx)sgn(Jy)

√

12J2
x − 3

(J2
y − J2

x − J2
z )

2

J2
z

(A15a)

B =
√
3
(J2

y − J2
x)

Jz
(A15b)

C = −3Jz (A15c)

Substituting Eq. (A14) into Eq. (A8) yields the two
continuum limits

h±(p) = (±Aσx +Bσy)px + Cσypy. (A16)

Now we consider the two Fermi points simultane-
ously by defining the four-component spinor Ψ(p) =

(ca+ icb+ icb− ca−), where c
a/b
± (p) = c

a/b
P±+p. We combine

the Hamiltonians h+(p) and h−(p) by taking their di-
rect sum with respect to the basis defined by Ψ. This
yields the total 4× 4 continuum limit Hamiltonian given
by

hKHLM(p) = h+(p)⊕ σxh−(p)σ
x

= (Aσz ⊗ σx +Bσz ⊗ σy) px + Cσz ⊗ σypy
(A17)

Note that we have rotated h−(p) with a σx rotation be-
fore combining it with h+(p) due to our definition of
Ψ(p).
This low energy limit given by Eq. (A17) suggests that

we use the Dirac α and β matrices,

α =

(

σ 0

0 −σ

)

= σz⊗σ, β =

(

0 I

I 0

)

= σx⊗I, (A18)

where σ = (σx, σy, σz) are the Pauli matrices and I is
the two-dimensional identity. The corresponding Dirac
gamma matrices are defined by γ0 = β and γ = β−1α
where

γ0 =

(

0 I

I 0

)

= σx ⊗ I, γ =

(

0 −σ

σ 0

)

= −iσy ⊗ σ.

(A19)
These matrices satisfy the Clifford algebra {γA, γB} =
2ηAB , where Latin indices A,B ∈ (0, 1, 2, 3) and ηAB =
diag(1,−1,−1,−1) is the Minkowski metric. Despite

working in (2 + 1)-dimensional space, the fact we are
working with a 4 × 4 representation allows us to define
γ3, however, at this stage γ3 is redundant. Using the
gamma matrices, the Hamiltonian Eq. (A17) becomes

hKHLM(p) =
(

Aγ0γ1 +Bγ0γ2
)

px + Cγ0γ2py. (A20)

Comparison of this model to the Riemann-Cartan Hamil-
tonian (9), we can interpret (A20) as a Dirac Hamilto-
nian defined on a Riemann-Cartan space-time with the
dreibein and metric

e µ
a =







1 0 0

0 A 0

0 B C






, gµν =







1 0 0

0 − 1
A2 − B2

A2C2

B
AC2

0 B
AC2 − 1

C2






.

(A21)

Appendix B: Generalised actions

The usual action of a spin- 12 particle ψ of mass m on
a (2 + 1)-dimensional spacetime M is given by

SRC =
i

2

∫

M

d2+1x|e|
(

ψ̄γµDµψ −Dµψγ
µψ + 2imψ̄ψ

)

,

(B1)
however is not the most general action that one could
write down for a spinor field. As we have seen in the
previous section, despite working in (2 + 1)-dimensional
space, the continuum limit of the KHLM has provided us
with a 4× 4 representation of the gamma matrices obey-
ing the (3 + 1)-dimensional Clifford algebra. It is known
from the theory of spinors in (3 + 1)-dimensional space-
times that the most general Lorentz invariant action one
could write down is formed from 16 spinor bilinears ψ̄Γψ,
where Γ is a matrix constructed from products of gamma
matrices33. We summarise the 16 possibilities in Table I.
Out of the 16 spinor bilinears, there are two types of

bilinears we do not expect to see in any continuum limit
of the KHLM: types 3 and 7 of Table I. Coefficients of
single gamma matrices are interpreted as momenta be-
cause they typically appear in the Hamiltonian as γµpµ.
For this reason, a bilinear of type 3 is interpreted as a
z component kinetic term. As we do not have access to
the z direction with our (2 + 1)-dimensional lattice, we
do not expect to see this term. A bilinear of type 7 is in-
terpreted as an anti-symmetric rank-2 tensor because it
transforms as one under Lorentz transformations. A bi-
linear of type 7 could arise in principle in our continuum
limit, however, it would require us to introduce additional
vector or tensor fields to the model to contract with the
bilinear to produce a Lorentz invariant, e.g. γµγνXµYν ,
γµγνMµν , etc.

62. For this reason, we do not expect to
see this term with only minor modifications to the lattice
Hamiltonian.
The remaining bilinears listed in Table I are possibil-

ities in the continuum limit of the KHLM and the cor-
responding lattice interpretation is listed. Indeed, the
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Type Spinor

bilinear

Single-particle

Hamiltonian form

QFT Interpretation Lattice Interpretation

1 ψ̄ψ γ0 Mass Kekulé distortion with real parameters

2 ψ̄γaψ γ0γa (2 + 1)D kinetic terms Nearest neighbour tunnelling (J)

3 ψ̄γ3ψ γ0γ3 (3 + 1)D z-direction kinetic term None

4 ψ̄γ5ψ γ0γ5 Pseudoscalar Kekulé distortion with imaginary parameters

5 ψ̄γaγ5ψ γ0γaγ5 (2 + 1)D chiral gauge field A chiral shift of the Fermi points P±

6 ψ̄γ3γ5ψ γ0γ3γ5 Torsion Next-to-nearest neighbour tunnelling (K)

7 ψ̄γaγbψ γ0γaγb Anti-symmetric rank 2 tensor None

TABLE I. The 16 possible spinor bilinears produced from the five gamma matrices {γa, γ3, γ5} obeying the (3+1)-dimensional
Clifford algebra, where a, b = 0, 1, 2, which are split up into seven types. From left to right, we list the spinor bilinears, how
they would appear in the single-particle Hamiltonian, their quantum field theory interpretation and finally the corresponding
lattice terms that produces this bilinear in the continuum limit. Note that the interpretation of each term applies to a (2+ 1)-
dimensional theory.

kinetic terms of type 2 correspond to the tunnelling cou-
pling J of Majorana between nearest neighbours, while
the torsion term of type 6 corresponds to the next-to-
nearest-neighbour tunnelling couplingK5. Moreover, the
mass term of type 1 and the pseudoscalar term of type 4
can be generated by appropriately tuned Kekulé distor-
tions of the nearest-neighbour tunnelling couplings14,63.

The remaining bilinear of type 5 has not been consid-
ered so far. This term correspond to a chiral gauge field

which is the focus of this paper.

Appendix C: Continuum limit of the Z2 gauge field

In this Appendix we expand upon the analysis in Sec.
IVA and provide a more detailed argument for how to
take the continuum limit of the KHLM coupled to a Z2

gauge field. To make the continuum limit analysis sim-
pler, we map the honeycomb lattice to a brick wall lattice,
as shown in Fig. 9. This ensures that the links of the
lattice align with the axes of the underlying Cartesian
coordinate system.

As discussed previously, we minimally couple a lattice
theory to a gauge field by multiplying the hopping terms
of the many-body Hamiltonian by link operators of the

form uij = exp(i
∫ j

i
dl · A), where A is an element of

the Lie algebra corresponding to the gauge Lie group.
For the KHLM, the many-body Hamiltonian coupled to
a gauge field is given by Eq. (A1). As Z2 is not a Lie
group, it has no corresponding Lie algebra, however it is
a subgroup of U(1) so we are still able to express its link
operators as uα = exp(iA · sα) for some suitable field
A, where α ∈ (x, y, z) labels the links of the lattice and
sx = (1, 0), sy = (−1, 0) and sz = (0,−1) are the three
link vectors, see Fig. 9.

The many-body Hamiltonian Eq. (A1) of the isotropic
KHLM, where Jx = Jy = Jz = 1 and K = 0, coupled to

FIG. 9. The brick wall lattice with Majorana fermions tun-
nelling between nearest-neighbouring sites with couplings Jx,
Jy, and Jz depending on the direction of the link. The brick
wall lattice has links of length 1 and comprises two square
sub-lattices, A and B, denoted by full and empty circles,
respectively. We take the unit cell along the z links. The
translation vectors between sites of the same sub-lattice are
n1 = (1, 1) and n2 = (−1, 1), while the translation vectors be-
tween sites of different sub-lattice are sx = (0, 1), sy = (−1, 0)
and (0,−1). The orientations of the nearest tunnellings (from
A to B sites) are indicated.

a Z2 gauge field is given by

H =
i

4

∑

r∈B

∑

α=x,y,z

2eiA(r)·sαcbrc
a
r+sα

+H.c.. (C1)

For the special case of constant A, the corresponding
single-particle Hamiltonian is given by Eq. (A8), where
f(q) is substituted for

fA(q) = 2
∑

α=x,y,z

ei(p+A)·sα . (C2)

We see that fA(q) = f(q +A), where f(q) is the func-
tion in the absence of a gauge field. It appears that the
gauge field has the effect of translating the entire dis-
persion relation E(q) = ±|f(q)| of the isotropic case by
−A. Consequently, one would conclude that both Fermi
points P± have shifted by −A. Note that A cannot be
arbitrary, but is heavily restricted to ensure that it ex-
ponentiates to an element of Z2. For this reason, these
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BZ

FIG. 10. The Brillouin zone (BZ) of the brick wall lattice with
two Fermi points, P+ and P− corresponding to the isotropic
couplings Jx = Jy = Jz = 1. Continuously changing the
coupling Jz from +1 to −1 everywhere on the lattice shifts
the Fermi points along the x-direction to the positions P

′
+

and P
′
−, as shown by the horizontal solid arrow. Due to

the parity symmetry of the model, the shift is anti-parallel
so ∆P+ = −∆P−, which gives rise to the chiral gauge field
A = (π/3, 0). The final configuration of the Fermi points can
also be viewed as an anti-parallel shift of the Fermi points
from outside the Brillouin zone in the y-direction, as shown
by the vertical dashed arrows. This shift yields the chiral
gauge field A = (0, π).

special values of A shift the Fermi points oppositely in
such a way that it appears that there has been a global
shift in one direction.
Consider the case of a global Z2 gauge field for which

ux = uy = +1 and uz = −1 everywhere. Solving for
the Fermi points before and after switching on the gauge
field, we find the Fermi points transform as

P± = ±
(

2π

3
, 0

)

7→ P ′
± = ±

(π

3
, 0
)

(C3)

so, looking at Fig. 10, this corresponds to a chiral shift
of π/3 in the x-direction. Using the formula A = −∆P+,
the corresponding chiral gauge field of the continuum
limit is given by Aγ5, where A = (π/3, 0).

However, there is an alternative interpretation. If we
look at Fig. 10, we can interpret the transformation Eq.
(C3) as shifting P+ up by (0, π) and shifting P− down
by −(0, π) into neighbouring Brillouin zones. Under this
transformation, the ± Fermi points are swapped as P± of
neighbouring Brillouin zones are mapped to P ′

∓, there-
fore we take our shift to be ∆P± = P± − P∓ = ∓(0, π)
and the corresponding gauge field is given by A = (0, π).
Working backwards, we see that upon exponentiation
uα = exp(iA · sα) does indeed give us the correct link
operators of ux = uy = 1 and uz = −1.

The corresponding continuum limit Hamiltonians
about each Fermi point, taking into account the shift

in the y direction, is given by

h±(p) = 2
[

±
√
3σxpx + σy(py ± π)

]

. (C4)

Combining these two Hamiltonians into a single 4 × 4
Hamiltonian yields

hz(p) = 2
[√

3γ0γ1px + γ0γ2(py + πγ5)
]

, (C5)

so we see that the Z2 gauge field arises as a chiral gauge
field in the continuum limit as expected.

Appendix D: Generating the time component A0 of

a chiral gauge field

To obtain A0 in the continuum limit one must modify
the K term of the original the KHLM. Note that this
term couples sites that live on the same sub-lattice, either
A or B, with the same tunnelling amplitude for both sub-
lattices. We modify this term so that there are different
tunnelling amplitudes Ka and Kb for each sub-lattice. In
this case, the contribution of the K term to the single-
particle Hamiltonian in momentum space becomes

hK(q) =

(

∆a(q) 0

0 −∆b(q)

)

, (D1)

where

∆a/b(q) = 2Ka/b[− sin(q · n1) + sin(q · n2)

+ sin(q · (n1 − n2))].
(D2)

These couplings do not shift the Fermi points so the anal-
ysis is straightforward.
We repeat the usual procedure by expanding the

Hamiltonian about the two Fermi points by defining
(hK)± ≡ hK(P± + p) to first order in p. As ∆a/b(P± +

p) = ∓3
√
3Ka/b +O(p2) we can combine the Hamiltoni-

ans of the two Fermi points into a single Hamiltonian as
before, which yields the total Hamiltonian

hK,total = 3
√
3

(

Ka −Kb

2
σz ⊗ I− Ka +Kb

2
I⊗ σz

)

.

(D3)
By a direct comparison with Eq. (12) and noting that
γ5 = σz ⊗ I, we have

A0 = 3
√
3

(

Ka −Kb

2

)

. (D4)

Moreover, the second part proportional to I ⊗ σz corre-
sponds to the torsion term of the Hamiltonian Eq. (12).

Appendix E: The shape of Majorana zero modes

For the purposes of visualising the localisation of zero
modes we approximate their profile on the lattice with
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a continuous distribution by replacing each lattice point
with two-dimensional Gaussians centred on each site,

|ψ(r)|2 =
∑

i

|ψi|2 δ(r − ri) →
∑

i

|ψi|2
2πǫ

e−
|r−ri|

2

2ǫ ,

where ǫ is taken to be similar to the lattice spacing so that
the Gaussians of neighbouring sites overlap. Figure 11 il-
lustrates this substitution. In the continuum, we expect
a single wave function exponentially localised at the po-
sition of the vortex. This continuous profile reduces the
discrete lattice effects allowing us to clearly observe the
localisation or delocalisation of zero mode excitations.

|ψ|2 = 10−3

(b)

10−4 10−3 10−2 10−1

|ψ(x, y)|2

(a)

10−4 10−3 10−2 10−1

|ψi|2

FIG. 11. Obtaining a continuous profile for the vortex and
extracting its dimensions. (a) The lattice probability den-
sity |ψi|2 of the wave function for a vortex, located on the
plaquette in the centre. (b) A continuous approximation of
the vortex probability distribution is constructed using two-
dimensional Gaussians centred on each lattice site, as de-
scribed in the text. The size and shape of the vortex are char-
acterised by finding the set of points where |ψ(r)|2 = 10−3,
as illustrated. Here we used L = 36, K = 0.125, and ǫ = 1.
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