

This is a repository copy of *Structure and assembly of the S-layer determine virulence in C. difficile*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/167704/

Version: Submitted Version

Article:

Banerji, O., Lanzoni-Mangutchi, P., Vaz, F. et al. (12 more authors) (Submitted: 2020) Structure and assembly of the S-layer determine virulence in C. difficile. In Review. (Submitted)

10.21203/rs.3.rs-79088/v1

© 2020 The Authors. This work is licensed under a CC BY 4.0 License (https://creativecommons.org/licenses/by/4.0/).

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

- 1 Structure and assembly of the S-layer determine virulence in *C. difficile*
- 2

3	Oishik Banerji ^{2*#} , Paola Lanzoni-Mangutchi ^{1*} , Filipa Vaz ^{4*‡} , Anna Barwinska-Sendra ^{1*} , Jason
4	Wilson ² *, Joseph A. Kirk ^{2,3} , Shauna O'Beirne ^{2,3} , Arnaud Baslé ¹ , Kamel El Omari ⁵ , Armin
5	Wagner ⁵ , Neil F. Fairweather ⁶ , Gillian R. Douce ⁴ , Per A. Bullough ² , Robert P. Fagan ^{2,3§} , Paula
6	S. Salgado ^{1§}
7	
8	¹ Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
9	² Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield,
10	Sheffield, UK
11	³ Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield,
12	Sheffield, UK
13	⁴ Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences,
14	University of Glasgow, Glasgow, UK
15	⁵ Diamond Light Source, Oxfordshire, UK
16	⁶ Dept. Of Life Sciences, Imperial College London, London, UK
17	[#] Current address: Institute of Structural and Molecular Biology, Department of Biological Sciences,
18	Birkbeck, University of London, London, UK
19	$_{\ddagger}$ Current address: Department of Immunology, Oslo University Hospital, Oslo, Norway
20	
21	* These authors contributed equally
22	
23	§ Corresponding authors: Address: ¹ Biosciences Institute, Faculty of Medical Sciences,

24 Newcastle University, Newcastle upon Tyne, UK. Telephone: +44 (0)191 208 7432;

- 25 <u>paula.salgado@newcastle.ac.uk</u> or ² Department of Molecular Biology and Biotechnology,
- 26 University of Sheffield, Sheffield, UK. Telephone: +44 (0)114 222 4182;
- 27 <u>r.fagan@sheffield.ac.uk</u>

29 Many bacteria and archaea possess a cell surface layer - S-layer - made of a two-30 dimensional protein array that covers the entire cell. As the outermost component of the 31 cell envelope, S-layers play crucial roles in many aspects of cell physiology¹. Importantly, 32 many clinically relevant bacterial pathogens possess a distinct S-layer that forms an initial 33 interface with the host², making it a potential target for development of species-specific 34 antimicrobials. Targeted therapeutics are particularly important for antibiotic resistant 35 pathogens such as *Clostridioides difficile*, the most frequent cause of hospital acquired 36 diarrhea, which relies on disruption of normal microbiota through antibiotic usage³. 37 Despite the ubiquity of S-layers, only partial structural information from a very limited number of species is available⁴⁻¹⁰ and their function and organization remains poorly 38 39 understood.

40 Here we report the first complete atomic level structure and in situ assembly model of an 41 S-layer from a bacterial pathogen and reveal its role in disease severity. SlpA, the main C. 42 difficile S-layer protein, assembles through tiling of triangular prisms abutting the cell 43 wall, interlocked by distinct ridges facing the environment. This forms a tightly packed array, unlike the more porous S-layer models previously described^{4,5,8,11}. We report that 44 45 removing one of the SIpA ridge features dramatically reduces disease severity, despite 46 being dispensable for overall structure and S-layer assembly. Remarkably, the effect on 47 disease severity is independent of toxin production and bacterial colonization within the mouse model of disease. 48

Our work combines X-ray and electron crystallography to reveal a novel S-layer organization in atomic detail, highlighting the need for multiple technical approaches to obtain structural information on these paracrystalline arrays. These data also establish a direct link between specific structural elements of the S-layer and virulence for the first

time, in a crucial paradigm shift in our understanding of *C. difficile* disease, currently
 largely attributed to the action of potent toxins³.

55 This work highlights the crucial role of S-layers in pathogenicity and the importance of 56 detailed structural information for providing new therapeutic avenues, targeting the S-57 layer. Understanding the interplay between S-layer and other virulence factors will 58 further enhance our ability to tackle pathogens carrying an S-layer. We anticipate that this 59 work provides a solid basis for development of new, *C. difficile*-specific therapeutics, 50 targeting SlpA structure and S-layer assembly to reduce the healthcare burden of these 51 infections.

62 Introduction

63 The surfaces of most bacteria and archaea are covered with a proteinaceous coat, the 64 surface or S-layer, that is formed through the self-assembly of individual protein subunits into a regularly spaced, two-dimensional array². The tendency of S-layer proteins to 65 66 spontaneously form two-dimension (2D) assemblies has hampered structure determination 67 and restricted understanding of both their function and architecture. Partial S-layer structures determined from a limited number of species^{4,5,7,9,10} showcase the huge diversity 68 69 in sequence and structure of S-layer proteins and their arrangements, providing some 70 insights into the mechanisms of anchoring and structural organization. However, no 71 complete X-ray structure has been presented for any major S-layer protein, despite the 72 ubiquity of this type of array, particularly among the medically-important Firmicutes such as 73 *Clostridioides difficile*. This Gram-positive opportunistic pathogen is the leading cause of 74 hospital-acquired, antibiotic-associated diarrheal disease globally³. 75 C. difficile infection (CDI) causes substantial morbidity and mortality with severe disease 76 characterized by intestinal inflammation, resulting in extensive damage to the colon and 77 even death³. This pathology has largely been attributed to the direct action of two potent 78 toxins, that also initiate a proinflammatory response via activation of the inflammasome¹². 79 Other less studied factors, including the S-layer, contribute to the recruitment of neutrophils, via a TLR/Myd88 dependent signaling pathway^{13,14}. However, the exact role of 80 81 the S-layer remains unclear. In C. difficile, the S-layer largely consists of a major S-layer 82 protein, SlpA (Fig. 1a), responsible for S-layer assembly into a paracrystalline array. Minor 83 components of the S-layer, belonging to a family of 28 cell wall proteins (CWPs), are 84 inserted in the array, comprise an estimated 5-10% of the S-layer and provide additional functions². Recently, we reported that an S-layer-null mutant of C. difficile was avirulent in 85

86 the acute hamster model of disease, despite apparent normal colonization of the caecum and colon¹⁵. Notably, absence of a functional SIpA resulted in a range of pleiotropic effects, 87 including reduced toxin production. Although this work suggested a role for S-layer in C. 88 89 *difficile* disease, reduced toxin expression made it impossible to establish a direct effect. 90 To fully interrogate the role of the S-layer in pathogen survival and host disease severity, we 91 need a complete, high resolution S-layer structure. Moreover, the uniqueness of each 92 species' S-layer makes these arrays attractive targets for therapeutic interventions, provided 93 sufficient structural and functional characterization is available. Here we present the first 94 complete atomic level model of an S-layer, that of C. difficile, generated by combining high-95 resolution X-ray crystallography with electron microscopy. 96 Using this structural information, we uncover elements of SIpA that play an essential role in 97 C. difficile pathogenicity. We demonstrate that an intact wild type S-layer is an absolute 98 requirement for full disease severity, in a mechanism unrelated to toxin production or host 99 colonization.

100

101 *C. difficile* major S-layer component forms an intricate complex

102 In order to address the knowledge gap on the C. difficile S-layer, we first sought to 103 determine the structure of its main component, SlpA, which is post-translationally cleaved 104 into two S-layer proteins (SLPs); the high molecular weight (HMW) and low molecular weight (LMW)¹⁶, herein referred to as SLP_H and SLP_L, respectively. These subunits then form 105 106 a complex (referred to as H/L) that is incorporated in the S-layer (Fig. 1a). The structure of 107 the full-length H/L complex was determined by X-ray crystallography to an overall resolution 108 of 2.55 Å (PDB ID: 7ACY) by combining single anomalous dispersion sulphur data (S-SAD) and 109 molecular replacement using substructures of the interacting domains (LMW SLP interacting

110 domain, LID, and HMW SLP interacting domain, HID; PDB ID: 7ACW) and SLP_L/HID (PDB ID: 111 7ACV) (Fig. 1). Our H/L structural model reveals three distinct regions: the pseudo-threefold 112 SLP_H tile, an intricate LID/HID interacting motif and a third region composed of two 113 domains, D1 and D2, of SLP_L (Fig. 1b). These regions define two separate planes, with the 114 SLP_L spanning ~35 Å above the SLP_H plane (Fig. 1b), linked by the LID/HID motif. 115 SLP_H is composed of the three conserved cell wall binding motifs - CWB2 - that define the C. 116 *difficile* cell wall protein (CWP) family², and the HID. The three CWB2 motifs form a 117 triangular prism and adopt an intertwined fold, with a β -strand from one CWB2 inserting 118 into the neighbouring domain to complete a β -sheet, sandwiched between two α -helical 119 regions (Extended Data Fig. 1a). At the core of the tile sits a helical bundle with each 120 individual CWB2 contributing one α -helix, while two α -helices define the vertices of the 121 pseudo-threefold arrangement (Extended Data Fig. 1a). 122 The HID motif interlocks with LID in an intricate arrangement, reminiscent of a paperclip; 2 123 α -helices from LID and one from HID pack against a β -sheet formed by insertion of one HID 124 between two LID β-strands (Fig. 1c, Extended Data Fig. 2b, PDB ID: 7ACW). This novel 125 structural motif locks SLP_L and SLP_H in a tight heterodimer, providing a structural basis for 126 the stability of the H/L complex⁶.

127

In order to identify residues essential for interaction of the two subunits, we analyzed H/L
complex formation in an ELISA-based assay with a panel of individual point mutants (Fig. 1d,
comprehensive list of tested mutants in Extended Data Fig. 2, see Methods for details).
Mutations of a single amino acid within LID (F274A) or HID (Y27A) were sufficient to
destabilize the H/L complex. Moreover, expression of either point mutant in an SlpA-null
background resulted in SLPL shedding from the cell surface of *C. difficile* and detection of a

fraction of SLP_H in the culture supernatant. Loss of SLP_L also resulted in partial degradation
of SLP_H (Fig. 1e); N-terminal sequencing revealed truncation of the HID, indicating that this
region is unstable in the absence of the LID/HID interaction (Fig. 1e).

137

138 Our structural model shows that SLP_L protrudes from the interacting motif, with D1 closest 139 to the SLP_H plane and D2 extending outwards at an angle of ~120°, away from the long axis 140 of D1. Whilst D1 is well ordered, formed by a 5-strand β -sheet packed against two α -helices, 141 D2 is predominantly composed of long, flexible loops, particularly at the externally-exposed 142 face (Fig. 1b); it is characterized by high B-factors (Extended data Fig. 1b) and weaker 143 electron density. Structural flexibility accommodates high sequence variability observed 144 across different strains of *C. difficile*, with 13 SlpA cassette types (SLCTs) currently 145 identified¹⁷. Residues with high B-factor map almost identically to sequence variation 146 hotspots in D2 (Extended Data Fig. 1b, 1c). 147 Conformational flexibility in the organization of SIpA is further demonstrated by different 148 arrangements observed in the structure of a truncated derivative of SlpA (SLP_L/HID) and the 149 H/L complex. In the structure of the truncated SLP_L/HID complex (PDB ID: 7ACV), the D1-D2 150 domains exhibit an orientation relative to the interacting domains different from that seen 151 in the corresponding H/L complex (R7404 strain, SLCT-7b, PDB ID: 7ACX) (Extended Data Fig. 152 2a). Our models indicate the presence of a hinge, formed by the D1-LID linker (Extended 153 Data Fig. 2a, SI). Analysis of interdomain dynamics also reveals increased mobility within D2. 154 The fact that we observed this conformational flexibility in our crystal models, with no 155 apparent effect on the fold of individual regions, suggests how the effector domains of 156 other CWPs inserted in the functional S-layer can be accommodated by flexible 157 rearrangement of D2 (see SI discussion).

158

159 Crystal lattice reflects *in situ* S-layer assembly

160 Due to the natural tendency of SIpA to form 2D crystal arrays, we hypothesized that the 161 packing of our crystal structures might reflect the in situ S-layer arrangement. Two H/L 162 complexes, related by pseudo-twofold symmetry, are present in the P1 asymmetric unit, 163 packed in a 2D planar array. The 2D lattices are then stacked to extend the crystal into the 164 third dimension (Extended Data Fig. 3a). The 2D lattice is achieved by tiling of SLP_H, with 165 interlocked ridges of SLP_L molecules covering gaps between the tiles, creating a tightly 166 packed layer (Fig. 2). Lattice contacts between CWB2 motifs of neighbouring SLP_H molecules 167 involve helix-helix interactions between the symmetry-related copies of helix 12 (see 168 topology in Extended Data Fig. 1), as well as electrostatic interactions generating a tightly 169 bonded network (Fig. 2a and Extended Data Fig. 4). The charge distribution generated by 170 the trimeric arrangement of the CWB2s provides complementary charges across the lateral 171 faces of the SLP_H triangular prism tile (Extended Data Fig. 3b and 5a), allowing these 172 interactions to be established (Extended Data Fig. 4). The pseudo-threefold organization of 173 the CWB2s that define the CWP family is also seen in other minor constituents of the S-layer whose structures have been determined¹⁸. Analysis of the charge distribution in Cwp6 and 174 175 Cwp8 CWB2s (Extended Data Fig. 5) indicates that charge complementarity could play a role 176 in interaction between lateral faces of CWB2s triangular prisms from different CWPs and SLP_H within a mature S-layer. The environment- and cell-facing sides of SLP_H exhibit 177 178 considerable charge differences, with a mostly negatively charged external surface and a 179 largely non-polar cell wall-facing base, decorated by positive patches (Extended Data Fig. 180 5a). The positive patches at the cell-wall base could provide the mechanism for anchoring

181 SlpA to the cell wall via interactions with the anionic secondary cell wall polymer PSII¹⁹.

182

Other S-layer proteins have been proposed to create relatively permeable arrays^{8,11}, with 183 pores ranging from ~30 to up to 80 Å and possibly wider^{5,10,20}. In contrast, tiling of SLP_H and 184 185 the SLP_L ridges generates a compact lattice apart from two distinct pores in the C. difficile S-186 layer array. Pore 1 (Fig. 3b, between molecules 1 and 3) is approximately 20 Å across the 187 widest point at the environment-facing surface and is partially occluded by the LID/HID 188 motif narrowing it down to an 11 Å wide cavity. The interlocked D2 domains of adjacent SLP_L molecules cap this pore, further reducing access from the external environment to the 189 190 cell wall (Fig. 3b, molecules 1 and 3, and Extended Data Fig. 3c). The second pore, formed 191 between two SLP_H (Fig. 3b, molecules 1 and 2) is fully accessible at both faces of the layer 192 and has a width of approximately 11 Å (pore 2, Fig. 2b), but is narrowed to 8 Å by two 193 pseudo-symmetry equivalent arginine residues within 10 Å of the pore outward side 194 (Extended data Fig. 3c). 195 196 We next investigated if the planar crystal packing observed in the X-ray structure reflects 197 the in situ packing of the native S-layer assembly. Intact S-layer extracted from C. difficile 198 vegetative cells (native S-layer ghosts) formed collapsed capsules. These double-layered 2D 199 crystals were interrogated by electron crystallography, with rotationally separated 200 diffraction patterns observed from images of the superimposed layers (Fig. 2c). As we had 201 hypothesized, the p2 symmetric 2D lattices of native S-layer ghosts (a = b = 85 Å, $\gamma = 100^{\circ}$) 202 were consistent with unit cell parameters of the stacked lattices in the 2D plane of the X-ray 203 crystals (b = 78 Å, c = 80 Å, $\alpha = 100^{\circ}$), pointing towards a similar packing arrangement (Fig. 204 2c, Extended Data Fig. 6a). The 3D reconstruction from images of the native ghosts revealed 205 a molecular envelope with a staggered ridged surface on one face of the S-layer, with deep 206 grooves between the parallel ridges, and an opposing surface defined by paired, globular 207 domains arranged in rows (Fig. 2d). These features recapitulate the surface characteristics 208 of the H/L array in the X-ray crystal structure, with the ridge-like arrangement of the SLPL 209 above the SLP_H globular rows. Indeed, manual fitting of the 2D X-ray lattice as a single rigid 210 body into the EM density matches the ridged surface to SLP_L, with the paired globular 211 domains on the opposite face corresponding to the SLP_H CWB2 motifs (Fig. 2d). The ridges 212 are also observed in cryo-electron microscopy (cryo-EM) side views of intact cells (Fig. 2c). 213 This confirms that the X-ray crystal lattice of the H/L complex has the same overall 214 arrangement as the *in situ* lattice of a mature S-layer in intact cells, therefore establishing 215 our crystallographic model as a template for interrogating S-layer assembly in C. difficile. To 216 our knowledge, this is the first time that X-ray structural models of a full-length S-layer 217 protein reflect the observed S-layer assembly in situ.

218

219 **Probing the S-layer assembly model**

220 In order to further test our S-layer assembly model, we sought to generate an altered, yet 221 functional S-layer. The observed interactions for assembly involve mainly the SLP_H tiles and 222 D1 in SLP_L. Moreover, these regions are conserved across different SLCTs (Extended data Fig. 223 4 and SI). We therefore hypothesized that the structurally flexible and less conserved D2 224 domain (Extended data Fig. 1b, 1c) might be dispensable for maintaining S-layer assembly 225 and engineered a mutant strain devoid of D2 - R Δ D2 (producing SlpA_{R Δ D2}; see Methods). The 226 X-ray crystal structure of the H/L complex from SlpA_{RAD2} (Fig. 3c and Extended Data Fig. 7, 227 PDB ID: 7ACZ) superimposes readily onto the full-length model (backbone RMSD 1.09 Å), 228 with the absence of D2 not perturbing the overall protein fold. Moreover, the crystal lattice

is similar to wild type, with equivalent interactions between SLP_H tiles and D1 domains
(Extended Data Fig. 7). Importantly, the absence of D2 exposes pore 1 between SLP_H tiles
(Fig. 3d and Extended Data Fig. 7c), which is occluded by interlocking D2 domains in the fulllength structure. This creates two openings in the array of about 16 Å, with potential
functional implications as it could indicate a more permeable S-layer than in the wild type
structure, with twice as many pores, of slightly increased size.

235 Analysis of native S-layer ghosts from bacteria producing the SlpA_{RAD2} revealed that, despite

lacking nearly half of SLP_L (145 of 318 amino acids), an S-layer with identical lattice

parameters to the wild type is still formed. The calculated molecular envelope retains the

paired globular domain organization (Fig. 3a) but the opposing face lacks the staggered

ridge feature seen in the wild type EM reconstruction (Fig. 3a), confirming our assignment of

this missing density to the D2 domain. This is further validated by difference maps of cryo-

241 EM projections for full-length SlpA_{R20291} and SlpA_{RΔD2} showing a region of significant

242 difference density matching the position of D2 in the complete structure (Extended Data Fig.

243 **6**).

Together, the structural models of SIpA_{RAD2} and the corresponding S-layer reconstruction

245 confirm our model for S-layer assembly, where SLP_H tiling and SLP_L D1 domains provide the

246 key contacts for paracrystalline array formation.

247

248 An altered S-layer surface reduces *C. difficile* virulence

249 The retention of S-layer integrity, despite loss of an exposed structural domain, provided an

unprecedented opportunity to directly assess the role of SlpA in *C. difficile* infection. We

- 251 employed the mouse model of acute disease, which allows a nuanced analysis of
- colonization and pathology, typified by weight loss and caecal and colon inflammation²¹.

253 Animals infected with the wild type strain R20291 (producing SlpA_{WT}) lost on average 8% of 254 their body weight within 24 h of infection and 12% by the peak of infection at 48 h, before 255 returning to pre-infection weights approximately 4 days after infection. In contrast, 256 infection with $R\Delta D2$ (producing SlpA_{RAD2}) resulted in little apparent disease; animals 257 displayed only a 1% weight loss after 24 h and 5% after 48 h, before a gradual return to pre-258 infection weight (Fig. 4a). As RAD2 was derived from our previously characterized slpA 259 mutant FM2.5¹⁵, a control for any potential background genetic variation was needed. A previously characterized strain FM2.5RW¹⁵ contains a watermarked copy of the wild type 260 261 *slpA* gene (encoding SlpA_{RW}) and R Δ D2 was constructed in a similar way but contains a 262 truncated version of *slpA* (see Methods for details). Animals infected with FM2.5RW strain 263 showed similar patterns of disease as those infected with wild type. 264 To determine if the surprising loss of virulence seen for RDD2 could be attributed to 265 impaired colonization, we quantified C. difficile present in faeces collected each day post-266 infection (Fig. 4b) and in intestinal contents post-mortem (Extended Data Fig. 8). No 267 statistically significant differences in bacterial recovery were observed, demonstrating that, 268 although D2 is surface-exposed in the S-layer, it is not required for efficient colonization. 269 RAD2 sporulated normally in vitro (Extended Data Fig. 9a), but displayed an increased 270 sensitivity to lysozyme in comparison to the wild type strain R20291 (Extended Data Fig. 9b). 271 As the perceived dogma is that the intestinal pathology and symptoms associated with CDI 272 are largely toxin-driven, we next examined toxin expression and activity in vitro (Extended 273 Data Fig. 9c, 9d) and in intestinal contents (Fig. 4c and Extended Data Fig. 8f). Surprisingly, 274 no toxin production defect was observed, suggesting the decrease in disease severity seen 275 with R∆D2 is a direct consequence of the loss of the surface-exposed D2 domain. Strikingly, 276 although toxin activity was equivalent in all strains, a reduced level of epithelial damage was

277 observed in tissue from RAD2-infected mice. Indeed, assessment of other markers including 278 the extent of inflammatory infiltrate, tissue edema and crypt length measurements 279 indicated that damage was reduced in RAD2 infected mice when compared with animals 280 infected with WT or control strain at the acute point of infection (48 h post-infection; Fig. 4d 281 and Extended Data Fig. 8c). 282 Together, these observations demonstrate that the S-layer contributes directly to C. difficile 283 disease severity, in a toxin-independent manner. Importantly, our data also reveal that the 284 most surface-exposed domain of SIpA is dispensable for effective colonization, suggesting 285 that other regions of the protein or other CWPs are likely to be involved in direct host-286 pathogen interactions required for colonization. 287 288 Discussion 289 Here we report the first experimentally determined structure of a complete S-layer protein 290 from a medically important human pathogen, which allows us to observe the organization 291 of the paracrystalline array at an atomic level. The tight packing of H/L complexes in the 292 crystal replicates assembly into the functional S-layer which we observe in situ by electron 293 microscopy. The repeating crystallographic array is created by tiling of one of the subunits 294 (SLP_H), which also anchors the S-layer to the cell wall. Most other S-layers characterized to 295 date are composed of distinct domains that contribute either to lattice formation 296 (crystallization domain) or cell surface attachment (anchoring domain)². In the C. difficile S-297 layer, the crystallization and anchoring functions are combined in the SLP_H, with assembly 298 relying on contacts between adjacent tiles. Moreover, contacts between SLPL and 299 neighbouring H/L complexes further expand the S-layer assembly network. The SLP_L ridges 300 are also important for generating a structure impermeable to the majority of folded

301 proteins such as lysozyme and other large molecules as it covers the pores present within 302 the packing of the triangular prism SLP_H tiles. This tight packing raises the question of how large molecules such as the *C. difficile* toxins²² are exported to the environment. 303 304 Furthermore, S-layers must be able to accommodate cell growth and division and this array 305 needs to adapt to the curvature of the cell poles. Having tightly packed core subunits or 306 domains, maintained by interchangeable electrostatic interactions, that are then decorated 307 with more flexible regions is a simple, yet seemingly effective, way to achieve both 308 requirements. Points of mismatched symmetry as observed by tomography (Extended Data 309 Fig. 10) could provide increased flexibility and permeability, creating discrete points for 310 export of larger molecules (see SI Discussion). Incorporation of other CWPs within the 311 crystalline array involves interactions of the conserved CWB2 domains that define C. difficile 312 cell wall proteins², while the flexibility of the D2 domain allows packing of other effector 313 CWP motifs present in the minor constituents of the S-layer (see SI discussion). 314 Our investigation of the functional role of the S-layer revealed that toxins are necessary but 315 not sufficient for full disease severity, a paradigm shift in our understanding of C. difficile 316 infections. Despite being dispensable for protein fold or even S-layer assembly, D2 seems to 317 confer a functional role to SLP_L and its absence leads to reduced disease severity. 318 Surprisingly, this is not due to changes in colonization of the gut, suggesting other domains 319 or S-layer proteins are involved in this type of interaction with the host. Instead, the 320 presence of D2 is associated with increased levels of inflammation when compared to the 321 full-length protein (Fig. 4). In C. difficile infections, tissue inflammation has been associated 322 with activation of additional immune pathways that results in enhanced disease²³. The high 323 sequence variability and structural flexibility of the D2 domain, in contrast to the conserved 324 and relatively rigid SLP_H, could therefore confer an immune-evasion mechanism as a result

325	of the evolutionary pressure of the dynamic environment of the gut. It is therefore tempting
326	to speculate that D2 is directly involved in the activation of the host immune response,
327	however, the molecular mechanisms involved remain to be elucidated (see SI discussion).
328	Importantly, we have established a direct link between the S-layer and disease severity and
329	our characterization of S-layer assembly in C. difficile reveals new potential therapeutic
330	avenues. The interacting $\ensuremath{SLP}\xspace_{H}$ subunits and the flexible D2 domains present key targets for
331	disruption of the S-layer, and molecules that affect S-layer assembly are attractive
332	therapeutic agents.

334 References

- 335 1 Sleytr, U. B., Schuster, B., Egelseer, E. M. & Pum, D. S-layers: principles and
- 336 applications. *FEMS Microbiol Rev* **38**, 823-864, doi:10.1111/1574-6976.12063 (2014).
- 337 2 Fagan, R. P. & Fairweather, N. F. Biogenesis and functions of bacterial S-layers. *Nat*
- 338 *Rev Microbiol* **12**, 211-222, doi:10.1038/nrmicro3213 (2014).
- 339 3 Smits, W. K., Lyras, D., Lacy, D. B., Wilcox, M. H. & Kuijper, E. J. Clostridium difficile
- 340 infection. *Nat Rev Dis Primers* **2**, 16020, doi:10.1038/nrdp.2016.20 (2016).
- 341 4 Baranova, E. *et al.* SbsB structure and lattice reconstruction unveil Ca2+ triggered S-
- 342 layer assembly. *Nature* **487**, 119-122, doi:10.1038/nature11155 (2012).
- 343 5 Bharat, T. A. M. *et al.* Structure of the hexagonal surface layer on *Caulobacter*
- 344 *crescentus* cells. *Nat Microbiol* **2**, 17059, doi:10.1038/nmicrobiol.2017.59 (2017).
- 345 6 Fagan, R. P. *et al.* Structural insights into the molecular organization of the S-layer
- 346 from Clostridium difficile. Mol Microbiol 71, 1308-1322, doi:10.1111/j.1365-
- 347 2958.2009.06603.x (2009).
- 348 7 Fioravanti, A. *et al.* Structure of S-layer protein Sap reveals a mechanism for
- 349 therapeutic intervention in anthrax. *Nat Microbiol* **4**, 1805-1814, doi:10.1038/s41564-019-
- 350 0499-1 (2019).
- 351 8 Gambelli, L. *et al.* Architecture and modular assembly of *Sulfolobus* S-layers revealed
 352 by electron cryotomography. *Proc Natl Acad Sci U S A* **116**, 25278-25286,
- 353 doi:10.1073/pnas.1911262116 (2019).
- Sychantha, D. *et al.* Molecular basis for the attachment of S-layer proteins to the cell
 wall of *Bacillus anthracis*. *Biochemistry* 57, 1949-1953, doi:10.1021/acs.biochem.8b00060
 (2018).
- 357 10 von Kugelgen, A. *et al. In situ* structure of an intact lipopolysaccharide-bound

- 358 bacterial surface layer. *Cell* **180**, 348-358 e315, doi:10.1016/j.cell.2019.12.006 (2020).
- 359 11 Pum, D., Toca-Herrera, J. L. & Sleytr, U. B. S-layer protein self-assembly. *Int J Mol Sci*360 14, 2484-2501, doi:10.3390/ijms14022484 (2013).
- 361 12 Ng, J. *et al. Clostridium difficile* toxin-induced inflammation and intestinal injury are
- 362 mediated by the inflammasome. *Gastroenterology* **139**, 542-552, 552 e541-543,
- 363 doi:10.1053/j.gastro.2010.04.005 (2010).
- 364 13 Cowardin, C. A. *et al.* Inflammasome activation contributes to interleukin-23
- production in response to *Clostridium difficile*. *mBio* **6**, doi:10.1128/mBio.02386-14 (2015).
- 366 14 Ryan, A. *et al.* A role for TLR4 in *Clostridium difficile* infection and the recognition of
- 367 surface layer proteins. *PLoS Pathog* **7**, e1002076, doi:10.1371/journal.ppat.1002076 (2011).
- 368 15 Kirk, J. A. *et al.* New class of precision antimicrobials redefines role of *Clostridium*
- 369 *difficile* S-layer in virulence and viability. *Sci Transl Med* 9,
- doi:10.1126/scitranslmed.aah6813 (2017).
- 371 16 Calabi, E. *et al.* Molecular characterization of the surface layer proteins from
- 372 *Clostridium difficile. Mol Microbiol* **40**, 1187-1199 (2001).
- 373 17 Dingle, K. E. et al. Recombinational switching of the Clostridium difficile S-layer and a
- 374 novel glycosylation gene cluster revealed by large-scale whole-genome sequencing. J Infect
- 375 *Dis* **207**, 675-686, doi:10.1093/infdis/jis734 (2013).
- 376 18 Usenik, A. *et al.* The CWB2 cell wall-anchoring module Is revealed by the crystal
- 377 structures of the *Clostridium difficile* cell wall proteins Cwp8 and Cwp6. *Structure* 25, 514-
- 378 521, doi:10.1016/j.str.2016.12.018 (2017).
- 379 19 Willing, S. E. *et al. Clostridium difficile* surface proteins are anchored to the cell wall
- using CWB2 motifs that recognise the anionic polymer PSII. *Mol Microbiol* **96**, 596-608,
- 381 doi:10.1111/mmi.12958 (2015).

- 382 20 Farci, D. *et al.* Structural insights into the main S-layer unit of *Deinococcus*
- 383 radiodurans reveal a massive protein complex with porin-like features. J Biol Chem 295,

384 4224-4236, doi:10.1074/jbc.RA119.012174 (2020).

- 385 21 Jukes, C. A. *et al.* Bile salt metabolism is not the only factor contributing to
- 386 Clostridioides (Clostridium) difficile disease severity in the murine model of disease. Gut
- 387 *Microbes* **11**, 481-496, doi:10.1080/19490976.2019.1678996 (2020).
- 388 22 Pruitt, R. N. & Lacy, D. B. Toward a structural understanding of *Clostridium difficile*
- 389 toxins A and B. *Front Cell Infect Microbiol* **2**, 28, doi:10.3389/fcimb.2012.00028 (2012).
- 390 23 Saleh, M. M. & Petri, W. A., Jr. Type 3 Immunity during *Clostridioides difficile*
- 391 Infection: Too Much of a Good Thing? *Infect Immun* **88**, doi:10.1128/IAI.00306-19 (2019).

- 393
- 394
- 395

396 Acknowledgements

397 FV, ABS, JAK were supported by a Wellcome Trust Collaborative Award (204877/Z/16/Z) 398 awarded to GRD, PSS, RPF. JW was supported by a BBSRC grant (BB/P02002X/1) awarded to 399 PAB and RPF. PLM, OB and SOB were supported by an FMS Newcastle PhD studentship, a 400 University of Sheffield Imagine: Imaging Life initiative PhD studentship and a University of 401 Sheffield PhD studentship, respectively. We thank Diamond Light Source for access to 402 beamlines I23, I04, and I24 (lb15523-6, mx18598-24, mx18598-14, through the 403 "Macromolecular Crystallography at Newcastle, Durham, Lincoln and Durham" BAG) and 404 eBIC (through the EM19832 "Northern England Cryo-EM consortium" BAG). We thank Dr. 405 Svetomir Tzokov for supporting EM data collection in the University of Sheffield Electron 406 Microscopy Facility and Dr. Giuseppe Cannone for help with EM data collection at the MRC 407 Laboratory of Molecular Biology, Cambridge. The contents of this work are solely the 408 responsibilities of the authors and do not reflect the official views of any of the funders, 409 who had no role in study design, data collection, analysis, decision to publish, or preparation 410 of the manuscript.

411

412 Author contributions

413 OB, JW carried out EM experiments, collected and analyzed data, revised the manuscript.

414 PLM, ABS carried out X-ray crystallographic experiments, collected and analyzed X-ray data,

- 415 determined and refined X-ray structural models, wrote and revised the manuscript. ABS
- 416 carried out ELISA experiments and analyzed data. FV carried out *in vivo* experiments,
- 417 analyzed data, wrote and revised manuscript. JAK, SOB carried out *in vitro* experiments,
- 418 analyzed the data and revised the final manuscript. ABS, JAK, OB, RPF and SOB constructed
- 419 plasmids and strains. AB collected, analyzed X-ray data and supervised. KEO, AW collected

420	and analyzed the S-SAD data and revised the final manuscript. NF designed and supervised
421	initial structural studies, revised the manuscript. GRD designed, supervised and carried out
422	in vivo experiments, analyzed the data, wrote and revised the manuscript. PAB designed,
423	supervised and analyzed EM studies, wrote and revised the manuscript. RPF designed the
424	study, prepared samples, collected X-ray data, analyzed data, supervised the study, wrote
425	and revised the manuscript. PSS designed the study, prepared samples, collected, analyzed
426	and determined X-ray structures, interpreted data, supervised the study, wrote and revised
427	the manuscript.
428	
429	Competing interest declaration
430	The authors have no competing interests as defined by Nature Research, or other interests
431	that might be perceived to influence the interpretation of the article.
432	
433	Additional information
434	Supplementary Information is available for this paper:
435	SI Discussion, SI Tables, SI Data, SI files (movie).
436	
437	Correspondence and requests for materials should be addressed to:
438	Paula S. Salgado, Biosciences Institute, Faculty of Medical Sciences, Newcastle University,
439	UK. paula.salgado@ncl.ac.uk
440	or
441	Robert P. Fagan, Department of Molecular Biology and Biotechnology, University of
442	Sheffield, UK. r.fagan@sheffield.ac.uk

Fig. 1: Architecture and key interactions in *C. difficile* SLP_H/SLP_L (H/L) complex

a, SlpA arrangement on the cell surface (left; SLP_L colored in gold and SLP_H in slate blue) with detailed organization of protein building blocks in its primary sequence (middle) and quaternary structure (right). Numbering based on the subunits of SlpA from strain CD630, S-layer cassette type 7 (SCLT-7), PBD ID: 7ACY.

b, Cartoon representation of H/L complex as viewed from the external environment (top view, left) and side (right). The SLP_L protrudes above the SLP_H subunit, creating a two-plane

arrangement. Three distinct structural features are observed: SLP_H , D1 and D2, and LID/HID (regions highlighted in gray).

c, 'Paperclip' organization of the interacting domains LID/HID is maintained by a range of interactions, with selected interface residues identified in strain R7404 (SCLT-7b, PDB ID: 7ACW) depicted as sticks. 2mFo-DFc electron density map is shown on the interacting amino acid pairs as a grey mesh contoured at 1.5 σ . Specific interatomic interactions identified with PDBePISA are represented as a dashed line (more details on Extended Data Fig. 2).

d, Probing of CD630 H/L complex interactions *in vitro* with ELISA, comparing effects of intact SLP_L (gold circles), SLP_H (slate blue circles), variants lacking interacting domains (black squares) and substitution mutants of F274A (structurally equivalent to F270 in R7404 LID/HID depicted in **c**, dark green triangles) and Y27A (light green triangles) on H/L complex formation. Graphs represent mean ± standard deviation (SD) of n = 3 experiments, with least squares curve fit of product formed upon interaction of the two subunits.

e, Western blot of cell surface extracts and culture supernatants, detecting (black arrowhead) SLP_H (left) and SLP_L (right) in strains devoid of endogenous *slpA* and expressing plasmid-borne SlpA_{CD630} native protein or variants with either F274A_L or Y27A_H substitution mutants in SLP_L or SLP_H (denoted in subscript), respectively. Detected product of partial degradation of HMW indicated with an asterisk.

Fig. 2: Planar crystal packing in the X-ray structure fits the *in situ* packing of the native Slayer

a, 2D schematic of H/L complex crystal packing, indicating the interaction network linking a single SLP_L (gold)/ SLP_H (slate blue) complex with six other molecules in a planar arrangement generated by SLP_H tiling. Array is depicted as seen from the extracellular environment, with symbols representing key interaction types in the crystal lattice, shown in detail in Extended Data Fig. 4.

b, Cartoon representation of the H/L planar array (PDB ID 7ACY, colored as in **a**, views as defined in **Fig. 1b**).

c, Native *C. difficile* S-layer ghosts (electron micrograph, negatively stained, left. Scale bar: 2 μ m) were used to compute Fourier transforms (middle). Typically spots from two or more lattices were observed. Reciprocal lattice axes (red and white axes) are indicated for two observed lattices (scale bar 0.0125 Å⁻¹). Intact frozen hydrated *C. difficile* cells, examined by

cryo-electron microscopy (right), show distinctive ridged surface indicated by red arrows (scale bar 50 nm).

d, Orthogonal views of the 3D reconstruction of negatively stained S-layer ghost indicating the overall envelope in the native lattice. A rigid body fit of the structure of H/L complex determined by X-ray crystallography (PDB ID: 7ACY, cartoon representation, SLP_L - gold, SLP_H - slate) indicates a similar arrangement in the native S-layer ghosts and crystal packing. Reconstruction is shown from the environment (top left) and cell wall (top right), and side views in the 2D plane (bottom panels).

Fig. 3: The flexible D2 domain is dispensable for S-layer assembly

a, Superimposition of the 3D reconstruction of negatively stained S-layer ghost containing SlpA devoid of domain D2 (SlpA_{RAD2}, light blue solid surface) on the reconstruction of native wild type S-layer ghost (SlpA_{R20291}, grey mesh). The missing density can be largely ascribed to that of the missing D2 domain (indicated with black arrowheads). Views are as described in **Fig. 2d**.

b, Fit of the SlpA_{RΔD2} structure determined by X-ray crystallography (colored as in **c**) into the S-layer (gray) reconstruction indicates a similar arrangement in the crystal packing and the native array. Views as in **a**.

c, Cartoon representation of the SlpA_{RΔD2} H/L complex crystal structure (slate blue and gold, PDB ID: 7ACZ), superimposed onto SlpA_{CD630} H/L complex structure (PDB ID: 7ACY, gray). Deleted D2 region is marked with a dashed line on the CD630 structure and corresponding schematic representation of the complex. Views as in **Fig. 1b**. **d**, Surface representation of wild type H/L (7ACY, left) and SlpA_{RΔD2} H/L(7ACZ, right) crystal packing showing pores in the 3D crystal lattice (top). Positions of pores marked with arrowheads (pore 1 in magenta, pore 2 in cyan) are equivalent in both lattices.

Fig. 4: In vivo evaluation of C. difficile strains producing a modified S-layer a, Relative percentage weight loss of antibiotic-treated animals infected with R20291 (SlpA_{WT}, black triangle), R Δ D2 (SlpA_{R Δ D2}, blue triangle), FM2.5RW (SlpA_{RW}, orange triangle) and antibiotic-treated uninfected animals (Uninfected, yellow triangle). **b**, Total *C*. *difficile* counts (CFU ml⁻¹) recovered from faeces at 24, 48 and 72h post infection. c, Measurement of toxin activity in filtered caecal extracts from individual animals. Annotations as in a. d, Hematoxylin and eosin stained

caecal histological sections from animals 48 h post infection with *C*. *difficile*, representing acute disease. Arrowheads highlight the margination and tissue infiltration of polymorphonuclear cells (PMNs) and the breached epithelial barrier (indicated with asterisk). The extent of tissue edema between basal membrane and musculature is highlighted (line). Crypt hyperplasia is discernible in tissue from R20291 (SlpA_{WT}) and FM2.5RW (SlpA_{RW}) infected animals, compared to antibiotic-treated uninfected animals or those infected with R Δ D2 (SlpA_{R Δ D2}).

Data analysis represents a total of up to 15 mice per strain tested from 3 experiments expressed as mean (\pm SEM) **a** (10-15 mice), **c** (5 mice); or as violin plots showing medians (solid lines), upper and lower quartile (dashed line) and max/min range (top and base of the plot) **b**, (min 5 mice). Non-parametric, non-paired Mann-Whitney statistical tests were performed with differences of *p = <0.05, ****p = <0.0001 indicated (**a**, **c**). Scale bars of 100mm are shown (**d**).

Extended Data Fig. 1: H/L complex organization and conservation

a, Topology of the mature SlpA_{CD630} H/L complex, retrieved from structure analysis with PBDsum and Coot. SLP_L represented in gold and SLP_H colored in blue. Color shading represents different domains/motifs. Numbering of secondary structure components based on PDB ID 7ACY, subscripts indicate the relevant subunit. **b**, Putty representations of SIpA_{CD630} H/L complex showing B-factors ranging from low (blue and narrow) to high (red and wide). High B-factors are indicative of disorder/flexible regions.

c, Conservation of the SlpA sequence across annotated SlpA Cassette Types (SLCTs) depicted on putty representations of SlpA_{CD630} H/L complex, colored from conserved (purple) to variable (cyan). Conservation was calculated using Consurf web server (see Methods for details).

Extended Data Fig. 2: Interdomain interfaces of H/L complex

a, Superimposing structures of SLP_L/HID (gold/slate blue, PDB ID: 7ACV) onto the native complex of SlpA_{R7404} (SLCT-7b, PDB ID: 7ACX) (blue/white) reveals flexibility of the LID-D1 linker, as illustrated by rotation of D1-D2 domains in relation to fixed position of LID/HID motif (left). The hinge loop enabling this conformational flexibility (determined by DynDom6D) is colored in red. The backbone displacement (colored from blue – low, to red – high C α displacement deviation) is shown on the alignment of D1-D2 region of both structures (middle; SLP_L/HID – opaque, H/L – semi-transparent) with the rotation angle of

the LID/HID motif indicated with an arrow. Structural dynamics (right) of the SLP_L/HID represented as increasing mobility (colored blue – rigid, to red - mobile) calculated based on elastic network models implemented in DynOmics ENM version 1.0 server.

b, Key interactions identified at the interface of the LID/HID complex from strain R7404 (SLCT-7b) (left; identified with PDBePISA in PDB ID: 7ACW) informed site directed mutagenesis for functional assessment by ELISA. Effects of point substitution mutations in SLP_L (middle) or SLP_H (right) on complex formation were tested. Graphs represent mean ± SD of n = 3 experiments, with least squares curve fit.

Extended Data Fig. 3: SLP_H tiling and SLP_L interactions create a tightly packed array

a, 3D crystal packing of SIpA showing the planar layer of a H/L array in slate blue and gold cartoon representation stacked between symmetry-related layers represented as white surface.

b, Tiling of SLP_H CWB2 motifs via charge complementarity across each triangular prism face. Poisson-Boltzmann electrostatic potential calculated for SlpA_{CD630} SLP_H, represented as a charge distribution (positive in blue and negative in red, as per electronegativity gradient key) on the surface representation of SLP_H array, as defined in Fig. 2. Interacting surfaces between molecules 1-2, defined by pseudo-symmetry related CWB2₃-CWB2₁, and between molecules 1-3, defined symmetry-related CWB2₃ triangular prism faces, are labelled. Cavity between symmetry-related CWB2₁-CWB2₂ surfaces, represented by green arrows (left) is partially obstructed by HID domains (electrostatic potential surface representation, right) and completely occluded by SLP_L (gold) as shown on the right panel. A long cavity of ~70 Å at the CWB2₂ vertices represented by purple arrow (left) is also occluded by HID domains and interacting SLPL molecules (right).

c, Zoomed in view of the pores generated by SlpA_{CD630} multimerization. Pore 1, uncovered top view, as defined in Fig. 1 (top), top view covered by D2 (middle, gold). Pore 2 – top view (bottom). Widest openings are labelled for each pore.

d, Cross section views of pore 1 (top, uncovered by removing domain D2 from structural model; middle, covered by D2 in crystal structure, gold) and pore 2 (bottom). Neighbouring SLP_H (slate blue) and SLP_L (gold) molecules that create the pores are shown in surface representation.

e, Hydrophobicity characteristics of the residues lining pore 1 (top) and 2 (bottom)
calculated in ChexVis (see Methods for details) according to Kyte-Doolittle scale, ranging
from hydrophilic (green) to hydrophobic (blue), as per hydrophobicity gradient key (middle).
f, Poisson-Boltzmann electrostatic potential calculated for residues lining pore 1 (top) and 2
(bottom) represented as a charge distribution (positive in blue and negative in red, as per
electronegativity gradient key). Views are as in d, (left) and as a slice across the largest pore
surface (right). Pseudo-symmetry related lysine residues at the top and arginine residues at

Extended Data Fig. 4: Interactions between neighbouring molecules in S-layer packing

a, Details of the interaction network between 7 SlpA_{CD630} H/L complexes within the 2D array, with each molecule represented as cartoon, interacting residues as sticks (colored as in schematic for molecule 1, white for neighbouring residues, with molecule number identifier

in parenthesis) and interactions as dashed lines. The interface depicted in each panel is marked by a corresponding box within the array representation. Interaction types are shown as bars (salt bridges), circles (hydrogen bonds) and diamonds (between D2 domains) in the central schematic.

b, Clustermap of predicted conservation across known SLCTs for sidechain-sidechain interactions found in SlpA_{CD630} H/L. Representatives of each SLCT were aligned (SI data),
SWISS-MODEL structural homology models were generated and superimposed. The residues corresponding to interactions identified in SlpA_{CD630} H/L were analyzed and interaction conservation compared to SLCT-7 is depicted based on residue conservation and prediction of similar or different type of possible interaction. Key: 0 – no residue conservation; 1 – one conserved residue, unstructured region; 2 – no residue conservation, no interaction; 3 – one conserved residue, no predicted interaction; 4 – no residue conservation, different interaction type; 5 – one conserved residue, different interaction type; 6 – no residue conservation, same interaction type; 7 – one conserved residue, same interaction type; 8 – residues and interaction conserved.

Extended Data Fig. 5: Charge distribution across CWB2 motifs in SLP_H and two minor components of the *C. difficile* S-layer

Comparison of the Poisson-Boltzmann electrostatic potential calculated for CWB2 motifs from SlpA_{CD630} (**a**), Cwp6 (**b**) and Cwp8 (**c**). The triangular CWB2 motifs of each CWP were superimposed onto the SlpA_{CD630} CWB2s to determine orientation of Cwp6 and Cwp8. Views are shown from the extracellular and cell wall surfaces, followed by side views of the lateral faces defined by two interacting CWB2s, as per SlpA_{CD630} H/L complex orientation at the cell surface.

Extended Data Fig. 6: Cryo-electron microscopy of wild type and SIpA_{RAD2} S-layer ghosts.

a, Projection map of frozen hydrated native S-layer ghost from strain R20291 at 8.7 Å
 resolution. Contours represent density greater than mean density, contour interval 0.5 RMS
 density, as per gradient.

b, Superimposition of the reconstruction of negatively stained native S-layer (gray surface) on the projection in **a**.

c, Projection map at 8.7 Å resolution of frozen hydrated *C. difficile* S-layer ghost containing SIpA_{RAD2}, depicted as in **a**.

d, Wild type minus $\text{SlpA}_{R\Delta D2}$ difference projection map. Positive difference density is seen to correspond with the projection of the ridge-like density in the 3D reconstruction depicted in .

b.

e, Superposition of isolated domain D2 crystal structure (gold surface) on the difference projection map in **d**. Pseudo-symmetrically related structures are shown together in the central density.

Extended Data Fig. 7: Absence of D2 generates a more porous H/L packing

a, 2D tiling representation of SIpA_{RAD2} assembly in crystal packing (PDB ID: 7ACZ), with

identified interactions represented as symbols defined in the key (as in Fig. 2).

b, Cartoon representation of the SlpA_{R $\Delta D2}$ array (SLP_L colored in gold and SLP_H in slate blue) in top and a side view (as defined in **Fig. 2**).</sub>

c, Zoomed in view of the pores generated by SIpA_{RΔD2} multimerization. From top to bottom: pore 1 - top view and cross-section, pore 2 - top view and cross-section. Widest points are marked in each view (black arrows).

Extended Data Fig. 8: In vivo phenotypic characterization of RAD2

a, and **b**, Total *C. difficile* CFUs recovered from the lumen (**a**) and tissue (**b**) of dissected caeca of animals euthanized 48 and 96 h post-infection.

c, Quantification of histological sections harvested 48 h post-infection. Three independent sections from two animals from each infection group were single blind scored on four independent criteria (epithelial damage, neutrophil margination and tissue infiltration, haemorrhagic congestion and tissue edema, crypt hyperplasia). Scores were assigned for each feature ranging from 1 for no change to 4 indicating substantial change, and cumulative scores calculated.

d, and **e**, Total *C*. *difficile* CFUs in the lumen (**d**) and tissue (**e**) from dissected colons of animals euthanized 48 and 96 h post-infection.

f, Toxin B activity in filtered luminal contents of the colon. Monolayers of Vero cells were incubated with serial dilutions of filtered luminal contents from individual animals. Toxicity

is represented as the maximum fold dilution at which toxicity was observed using samples from animals during the acute phase of infection (48 h) and during recovery (96 h). Data analysis represents a total of 10 mice per strain from 2 independent experiments as violin plots showing medians (solid lines), upper and lower quartile (dashed line) and max/min range (top and base of the plot) for panels **a-b**, **d-e** (min 5 mice per group), calculated means (\pm SEM) from histology scoring (2 mice/ 3 sections) in panel **c** or mean toxin activity (\pm SEM, min 5 mice per group tested in duplicate) for panel **f**. Non-parametric, non-paired Mann-Whitney statistical tests were performed with differences of *p = <0.05, ** p=<0.005 indicated (**e**, **f**).

Extended Data Fig. 9: In vitro phenotypic characterization of RAD2

a, Sporulation. Stationary phase cultures were incubated for 5 days anaerobically at 37°C. Total CFUs were enumerated on BHI-S agar supplemented with taurocholate (0.1% v/v), while spores were enumerated on the same solid medium following incubation at 65°C for 30 min to kill vegetative cells. **b**, Lysozyme resistance. Cultures were inoculated at an OD_{600nm} of 0.05 and grown anaerobically at 37°C with hourly OD_{600nm} measurements. Where indicated, lysozyme (500 µg ml⁻¹) was added after 2.5 h growth. **c**, Toxin B activity *in vitro. C. difficile* strains were grown for the indicated time in TY broth. Monolayers of Vero cells were incubated with serial dilutions of culture supernatants. Toxicity was determined by observation of the integrity of the monolayers through Giemsa staining. **d**, Detection of Toxin B in culture supernatant by western immunoblot. *C. difficile* strains were grown in TY broth for 48 h and secreted toxin B was detected using a monoclonal antibody following SDS-PAGE and electrotransfer to PVDF membrane. Data are presented as mean values (\pm SD) from 3 biological replicates, assayed in duplicate (a-b) or the mean maximum dilution (\pm SEM) at which toxicity was observed from six independent experiments (c).

Extended Data Fig. 10: Patches of S-layer present in cryo-electron tomographic slice of

extracted S-layer ghosts

a, Distinct S-layer lattice patches can be seen in tomographic slices of S-layer ghosts, with

'fault lines' present where patches intersect (white arrows).

b, Annotated patches (dotted lines) have distinct orientations on the surface, with unit cell

axes of the different lattices highlighted (black arrows). Scale bar: 25nm.

1 Methods

2 Strains and growth conditions

3 C. difficile and E. coli strains are described in Table 1. E. coli strains were routinely grown at 4 37 °C in LB broth and on LB agar (VWR or Fisher Scientific). C. difficile strains were routinely 5 grown under anaerobic conditions at 37 °C on BHI (Oxoid) or BHI-S¹ agar and in TY broth². 6 Growth media were supplemented with chloramphenicol (15 μ g ml⁻¹), thiamphenicol (15 μ g 7 ml⁻¹) or kanamycin (50 µg ml⁻¹) as required. For detection of *C. difficile* in mouse faeces and 8 tissues, samples were cultured on Brazier's agar supplemented with 5% (v/v) egg yolk 9 (LABM, Neogen), 10% (v/v) defibrinated horse blood (TCS Biosciences) and 10 cycloserine/cefoxitin (LABM, Neogen). For detection of R∆D2, samples were additionally 11 plated on ChromID[®] C. difficile (Biomerieux) chromogenic agar plates. 12 13 Construction of R∆D2 14 DNA oligonucleotides are described in Table 2. Plasmid pRPF233, containing a copy of the 15 complete slpA gene from C. difficile strain R20291 was modified by inverse PCR using

16 oligonucleotides RF102 and RF103 to delete the coding sequence of SlpA residues 115-259

17 and replace with GGAGGT, encoding two glycine residues. The resulting plasmid, pOB001,

18 was transferred to the *C. difficile* S-layer mutant strain FM2.5³ by conjugation⁴. FM2.5

19 displays an aberrant colony morphology that is easily distinguished from wild type C.

20 *difficile*. Recombination between the plasmid-borne *slpA* gene and the mutated copy on the

21 chromosome was detected by reversion to normal colony morphology. Plasmid curing was

22 confirmed by loss of thiamphenicol resistance, the chromosomal location of the engineered

23 slpA gene was confirmed by PCR and the resulting protein profile was determined by SDS-

24 PAGE of S-layer proteins isolated using standard methods (see below).

25 Plasmid construction

26	For crystallization studies, fragments of R7404 <i>slpA</i> , encoding mature HID (residues 1-41)
27	and SLP _L (residues 1-316) or LID (residues 240-316) were amplified from genomic DNA and
28	cloned into pACYC-Duet1 yielding plasmids pJAK149 and pJAK147, respectively. C-terminally
29	6x His-tagged HID was amplified using RF1396 and RF1397 and cloned into pACYC-Duet
30	(MCS1) linearized using RF1398 and RF1400 by Gibson assembly, and SLP $_{ m L}$ or LID were
31	amplified using RF1394 and RF1395 or RF1395 and RF1396, respectively, and cloned into
32	MCS2 using Ndel-KpnI restriction cloning.
33	To study protein-protein interactions in vitro, DNA encoding mature SLP _L or SLP _H of CD630
34	and R7404 was amplified using Q5 (NEB) PCR and cloned into pET28a using Ncol-Xhol
35	restriction cloning, in frame with a C-terminal 6x His-tag. Deletion variants (see Table 1 for
36	construct details) lacking HID or LID, or point mutants within HID and LID were constructed
37	by inverse PCR, using primers listed in Table 2, as previously described ⁵ .
38	To study the impact of individual LID and HID point mutations on H/L complex assembly in C.
39	<i>difficile</i> , codons for SLP _L F274 or SLP _H Y27 in pRPF170 were mutated to GCA (Ala) by inverse
40	PCR cloning, yielding plasmids pRPF209 and pJAK186, respectively.
41	
42	Protein expression and purification
43	S-layer was extracted as previously described ⁶ . Briefly, 400 ml of <i>C. difficile</i> CD630, R7404,

44 R Δ D2 16-hour culture were harvested by centrifugation at 4,696 × g for 30 min at room

45 temperature. Cells were washed with 20 ml of phosphate buffered saline (PBS) pH 7.4,

46 centrifuged for 10 min at 4,696 × *g*, and resuspended in 5 ml of 0.2 M glycine-HCl pH 2.2.

47 Cell suspension was centrifuged at 21,100 × g for 10 min, and recovered supernatant was

48 neutralized with 2 M Tris-base. S-layer extract was then filtered and resolved onto a

Superdex 200 26/600 column using an ÄKTA Pure FPLC system (GE Healthcare) in 10 mM
Tris-HCl pH 7.5, 100 mM NaCl, 5 mM EGTA buffer. Protein eluate was analyzed by 12% SDSPAGE.

52 BL21 (DE3) cells transformed with plasmids pJAK149 or pJAK147 were used to co-express 53 HID-6x His-tag and SLP_L or HID-6x His-tag and LID, in Auto Induction Media TB (Formedium) 54 supplemented with 30 μ g ml⁻¹ chloramphenicol. Cells from 1 L of culture grown for 18h at 55 37 °C were harvested by centrifugation at 4,000 × *g*, 4 °C for 30 min. Pellets were washed 56 with PBS and frozen at -20 °C.

Variants of SlpA subunits (Table 1) for interaction studies were expressed in Rosetta (DE3)
cells, in 50 ml of Merck Novagen Overnight Express Instant TB Medium, supplemented with
50 μg ml⁻¹ kanamycin and 15 μg ml⁻¹ chloramphenicol for 18 hours at 37 °C. Harvested cells
were washed with PBS and frozen at -20 °C.

61 Cell lysis for crystallography of recombinant proteins and interaction studies was performed 62 using BugBuster Protein Extraction Reagent (Novagen). Pellets were resuspended to 63 homogeneity in lysis buffer (50 mM Tris-HCl pH 8.0, 250 mM NaCl, 1x cOmplete EDTA-free 64 protease inhibitors (Roche), 100 µg ml⁻¹ lysozyme, 10 µg ml⁻¹ DNase I, 1x BugBuster) and 65 incubated at room temperature for 30 min. Extracts were centrifuged at 20,000 \times g for 30 66 min, supernatant was filtered and separated on a 5 ml HisTrap (GE Healthcare) column in 50 67 mM Tris-HCl pH 8.0, 250 mM NaCl, 10 mM imidazole, with a linear gradient of imidazole (10-68 500 mM). Eluate fractions were further purified using size exclusion chromatography on 69 Superdex 75 (GE Healthcare) in 50 mM Tris-HCl pH 7.5, 150 mM NaCl. 70 Variants of SLP_H were recovered by affinity chromatography from isolated purified inclusion

bodies, solubilized in 50 mM Tris-HCl pH 7.5, 500 mM NaCl and 8 M urea for 20 min at room
temperature. Solubilized, cleared supernatant was loaded onto 5 ml HisTrap (GE Healthcare)

column in solubilization buffer, and column-bound protein was refolded in 50 ml of 50 mM
Tris-HCl pH 7.5, 500 mM NaCl, 0.1% Triton X-100, followed by 50 ml of 50 mM Tris-HCl pH
7.5, 250 mM NaCl, 5 mM β-cyclodextrin. Affinity purification was performed in 50 mM Tris
pH 8.0, 250 mM NaCl, 10 mM imidazole, with protein elution by a linear gradient of
imidazole (10-500 mM). Each chromatographic step was followed by analysis of the eluate
by 12% SDS-PAGE.

79

80 Protein analysis by western immunoblotting

81 For analysis of H/L complex interactions on the surface of C. difficile, plasmids carrying a 82 tetracycline-inducible copy of CD630 *slpA* (pRPF170) or derivatives with a point mutation in 83 the LID (F274A, pRPF209) or the HID (Y27A, pJAK186) were transferred into the *slpA*-null 84 strain FM2.5 by conjugation⁴. Strains were grown to an OD_{600nm} of ~0.4 in TY broth and 85 induced with anhydrotetracycline (20 ng ml⁻¹). Surface-localized H/L subunits were extracted 86 using low pH glycine as described above and normalized to an equivalent OD_{600nm} of 25. 87 Culture supernatants were filtered, concentrated to an equivalent OD_{600nm} of 50 using a 88 Vivaspin column with a 10 kDa MWCO. Samples were then subjected to SDS-PAGE and 89 western immunoblotting using polyclonal antibodies specific for the CD630 SLP_H or SLP_L⁵. 90

91 Analysis of protein-protein interactions by enzyme-linked immunosorbent assay (ELISA)

The assays were performed as previously described⁵. Briefly, Maxisorp microtiter plates (Nunc) were coated with 10 μ g ml⁻¹ of SLP_L or SLP_H and their variants (Table 1), blocked with 3% (w/v) milk in PBS with 0.05% (v/v) Tween-20, and overlaid with respective interacting partner, SLP_L or SLP_H, across 0.0001-100 μ g ml⁻¹ range. Binding was assessed with polyclonal rabbit primary antibodies against the overlay protein. Detection was carried out

97 spectrophotometrically by monitoring formation of product of horse radish peroxidase

98 (HRP-conjugated secondary anti-rabbit antibody) with *o*-phenylenediamine dihydrochloride

99 (OPD) upon addition of hydrogen peroxide to the reaction mix, with maximum of

100 absorbance at 490 nm using Biotek ELx800 plate reader.

101

102 X-ray crystallography

103 Purified and concentrated proteins (recombinant LID/HID-6x His-tag at 38 mg ml⁻¹ and

104 SLP_L/HID-6x His-tag at 20.9 mg ml⁻¹, CD630, R7404 and R Δ D2 H/L at 10 mg ml⁻¹) were

105 subjected to crystallization using a Mosquito liquid handling robot (TTP Labtech), with the

106 sitting drop vapor-diffusion method at 20 °C. Native H/L complex crystallized in 0.1 MES pH

107 6.0, 1.25 M lithium chloride, 16 PEG 6,000 and 10 % glycerol (v/v). Recombinant $SLP_L/HID-6x$

108 His-tag produced diffraction quality crystals in 0.2 M ammonium sulphate, 0.1 M MES pH

109 6.5, 35% (v/v) MPD, while LID/HID-6x His-tag was crystallized in 1.6 M sodium citrate tribasic

110 dihydrate pH 6.5. Data were collected on the IO4 (λ = 0.98 Å), I23 (λ = 2.75 Å) and I24 (λ =

111 0.93 Å) beamlines at the Diamond Light Source Synchrotron (Didcot, UK) at 100 K. The data

112 were acquired from the automatic software pipeline xia2 within the Information System for

113 Protein Crystallography Beamline (ISPyB), processed with XDS⁷, iMosflm⁸ or DIALS⁹ and

114 scaled with Aimless¹⁰ within CCP4i¹¹ or CCP4i²¹² software suites. When needed, density

115 modification was performed with PARROT¹³.

116 The structure of LID/HID-6x His was solved *de novo* using Arcimboldo_lite¹⁴ within CCP4i,

117 starting from several 10-14 residues-long polyalanine models of α-helices. Automatic model

118 building was performed with Buccaneer¹⁵, followed by manual building with Coot¹⁶ and

119 refinement with Phenix refine¹⁷.

120 The structure of SLP_L/HID-6x His-tag was determined by sequential molecular replacement 121 in Phaser¹⁸ searching first for SLP_L D1-D2 domains model (PDB ID: 3CVZ⁵), followed by the 122 search with LID/HID structure into a fixed SLP_L solution, and subsequent manual building 123 (COOT) and refinement (Phenix_refine). 124 Initial attempts to solve the substructure of the complete H/L complex by S-SAD provided 125 only weak phases, and were improved by combining molecular replacement in Phaser using the CWB2 domain core of *C. difficile* Cwp8 (PDB ID: 5J6Q¹⁹) with sulphur anomalous 126 difference Fourier maps using Anode²⁰. This solution was used for MR-SSAD in 127 Phenix.autosol and cycles of manual building in COOT and density improvement were used 128 129 to improve the electron density maps and the model of the core SLP_H. A complete H/L 130 model was obtained by successive molecular replacement runs using Phaser in CCP4i2 combining the SLP_H model with the obtained LID/HID (PDB ID: 7ACW), D2 from SLP_L/HID 131 132 structure (PDB ID: 7ACV) and D1 (loops removed) from CD630 SLP_L (PDB ID: 3CVZ). Presence 133 of non-water solvent molecules was investigated with CheckMyBlob²¹. Final models were 134 obtained after iterative cycles of manual model building with Coot and refinement in Phenix refine and REFMAC5²², with a final optimization step using PDB-REDO²³, where 135 136 relevant. Applied strategies included refinement of XYZ coordinates, real space, individual B-137 factors, TLS parameters and occupancies. Structure of LID/HID consisted of 100% 138 Ramachandran favored rotamers, SLP_L/HID consisted of 98% Ramachandran favored and 2% 139 Ramachandran allowed rotamers. Native protein structures of CD630, R7404 and R∆D2 H/L 140 were modelled to 98%, 96%, 96% of Ramachandran favored and 0.2%, 0.2%, 0.1% of 141 Ramachandran outlier rotamers, respectively. Full data collection and refinement statistics 142 are summarized in SI Table 1. Validation of final models was performed using COOT and Phenix internal tools, as well as MOLPROBITY ²⁴ web server. All structural models were 143

144	validated using wwPDB validation server prior to deposition of files. Data collection and
145	refinement details are summarized in SI Table 1. Structural representations were generated
146	using PyMOL Molecular Graphics System (Schrödinger, LLC) or Chimera ²⁵ .

147

148 Electron crystallography data collection

149 To allow visualization by electron microscopy, S-layers were either removed from C. difficile 150 cells in a single piece following peptidoglycan digestion (S-layer ghosts) or cells were 151 mechanically fragmented (S-layer/cell wall fragments). C. difficile cells were harvested by 152 centrifugation and resuspended to an OD₆₀₀ of 10 in 20 mM HEPES pH 7.5, 150 mM NaCl, 153 500 mM sucrose. For S-layer ghosts, cell walls were digested using purified φCD27 endolysin 154 for 30 min at 37 °C²⁶. The resulting membrane-bound spheroplasts were removed from the 155 sample by centrifugation at 2,000 \times g for 2 min and the supernatant, containing S-layer 156 ghosts, was retained for imaging. 5 μl of S-layer ghosts were loaded on glow-discharged, 157 amorphous carbon-coated 300 mesh copper EM grids and stained with 2% uranyl acetate, 158 as previously described²⁷. Samples were examined on a Phillips CM200 FEG transmission 159 electron microscope at 200 kV. Images were collected on a 4096 x 4096 pixel Gatan 160 UltraScan 4000SP Model 890 CCD camera (Gatan Inc.), with 15 µm pixel size. A total of 36 161 micrographs of R20291 and 29 micrographs for RΔD2 S-layer extracts were collected at a 162 magnification of 82351 x and defocus range from -800 to -2200 nm. The specimen tilt angle 163 ranged from -55° to +55° in increments of 10°.

164

For cryo-EM, fragments of S-layers were generated by mechanical disruption. Briefly, 60 ml of *C. difficile* cells at OD_{600nm} 0.6 - 0.8 were centrifuged at 2,000 × *g* for 15 min at 4 °C. The cell pellet was washed twice in cold deionized water and combined with an equal volume of

168 pre-cooled acid-washed glass beads (Sigma) and homogenized in a Braun MSK homogenizer 169 for 30 s. The homogenate was cooled and centrifuged at $800 \times g$ for 10 min to remove glass 170 beads and unbroken cells. S-layer fragments were then harvested at $3000 \times q$ for 10 min, 171 washed with cold 1 M NaCl and resuspended in cold 2% (v/v) Triton X-100. 2.5 µl of the S-172 layer fragments were added to glow-discharged Quantifoil[®] 2/2 grids. The grids were then 173 blotted for 30 s and plunged into liquid ethane, using a Vitrobot Mark III (FEI). The frozen 174 grids were stored in liquid nitrogen for later observation. Micrographs, at 68,000 x 175 magnification and defocus range of -2000 to -3000 nm, were obtained on a Falcon II direct 176 electron detector (FEI) using a Tecnai F20 microscope (FEI) operating at 200 keV.

177

178 Electron crystallography data processing

Images were initially processed using the 2dx suite²⁸⁻³⁰. Most micrographs of S-layer ghosts 179 180 showed two rotationally separated lattices in Fourier transforms and these were indexed 181 independently. Images were masked based on crystal size and good crystalline order and 182 subjected to two cycles of unbending using the programs QUADSEARCH and CCUNBEND. 183 The symmetry was determined from images of untilted crystals using ALLSPACE³¹. Phase 184 origins for individual images were refined against each other using ORIGTILTK, sequentially 185 adding images of higher tilt to the refinement. Crystal tilt angles were estimated from lattice distortion. LATLINE³² was used to determine interpolated amplitudes and phases on a 186 regular lattice of $1/160 \text{ }^{-1}$ in the z^* direction. A Gaussian tapered real-space envelope of 187 188 width slightly larger than that of the H/L complex estimated from the X-ray crystal structure 189 (70 Å for wild type and 60 Å for $R\Delta D2$) was applied. The phase origin and tilt parameters 190 were further refined using the output interpolated lattice lines as reference. The variation of 191 amplitude and phase along 0,0,1 was estimated by examining a plot of maximum contrast on

each Z-section in real space³³. The final structure factors were sampled from the
interpolated lattice lines³² and a 3D map generated within the CCP4 suite of programs^{11,28}.
Cryo-EM micrographs of untilted R20291 and RΔD2 samples were processed similarly to
generate 2D projection maps. B-factors were calculated using SCALIMAMP3D with
bacteriorhodopsin diffraction amplitudes as reference³⁴. Data collection, processing and
analysis details are summarized in SI Tables 2 and 3.

198

Fitting X-ray structures to EM density

The coordinates of R20291 and RΔD2 H/L complex X-ray structural models were fitted using Chimera 1.13.1²⁵ into the wild type and mutant electron microscopy reconstructions. The extended lattice of each H/L complex was generated by calculating symmetry-related molecules from the crystal packing in PyMOL, and then manually orienting them in the EM density, based on the known surface orientation *i.e.* SLP_L facing the environment, and SLP_H facing the cell wall. The 'Fit in map' function was then used to calculate the highest correlation to a map simulated from the X-ray structure coordinates at 20 Å resolution.

207

208 Tomography

For cryo-electron tomography (cryo-ET), the homogenized S-layer ghost sample used in electron crystallography was mixed with an equal volume of 10 nm BSA-treated nanogold beads, and 3 µl of this mixture was applied to a glow discharged lacey carbon with ultra-thin carbon 300 mesh grid, blotted for 3 s and plunged into liquid ethane, using a Leica EM GP. The frozen grids were stored in liquid nitrogen temperature for later observation. Tilt series were collected on a Titan Krios microscope operating at 300 keV with a GIF Quantum energy filter, Volta phase plate, and K2 camera operating in super-resolution mode. Micrographs

were collected using SerialEM, at a pixel size of 5.47 Å, with each tilt series covering ± 60° with a tilt increment of 3°, and collected with a grouped dose-symmetric acquisition scheme and group sizes of 4. Samples from each tilt series received 100 e/Å² total dose with 20 frames per tilt. Tomograms were constructed using the IMOD package³⁵. Tilt series were tracked and aligned based on fiducial markers, and then tomograms were reconstructed by weighted back projection with 1x binning.

222

223 Analysis of sporulation and resistance to lysozyme

224 Quantitative analysis of sporulation efficiency was performed as described previously³⁶.

225 Overnight stationary phase cultures were first diluted to an OD_{600nm} of 0.01, grown for 8

hours before a second dilution to an OD_{600nm} of 0.0001. Following overnight growth, the

resulting stationary phase culture (T=0) was then incubated. After 5 days, the proportion of

vegetative cells and spores was determined; total and heat-resistant (65 °C for 30 min)

colony forming units (CFUs) were enumerated in BHI-S agar supplemented with 0.1% (w/v)

taurocholate. Assays were repeated in triplicate with biological triplicates.

231 To assess resistance to lysozyme, overnight C. difficile cultures were grown in TY broth,

subcultured to an OD_{600nm} of 0.05 in 1 ml fresh TY in a 1.5 ml cuvette and then grown for 8 h

233 with hourly OD_{600nm} measurements. Where appropriate, lysozyme (500 µg ml⁻¹) was added

after 2.5 h growth. Experiments were performed in triplicate on biological duplicates and

235 data expressed as the mean and standard deviation.

236

237 Animal experiments

All procedures were performed in strict accordance with the Animals (Scientific Procedures)
Act 1986 with specific approval granted by the Home Office, UK (PPL60/8797). C57/BI6

240 specific pathogen free female mice aged 6 - 8 weeks were supplied by Charles River 241 (Edinburgh). Animals were housed within individual sterilized ventilated cages (IVCs) in 242 groups of five. Sterilized food and water were provided ad libitum and animals kept at a 243 constant room temperature of 20 - 22 °C with a 12 hour light/dark cycle. To limit the impact 244 of cage effects, experiments (n = 5 mice) were performed at least in duplicate using animals 245 delivered on different dates. Animals were prepared for *C. difficile* challenge by provision of an antibiotic cocktail (0.035 mg ml⁻¹ gentamycin, 0.4 mg ml⁻¹ kanamycin, 850 U ml⁻¹ colistin, 246 247 0.215 mg ml⁻¹ metronidazole, 0.045 mg ml⁻¹ vancomycin) administered *ad libitum* in the drinking water for 3 days³⁷. Clindamycin (150 mg kg⁻¹) was then given by oral gavage the 248 249 following day. Mice were rested for two days without antibiotic administration before 250 challenge of each animal with 10⁶ spores of *C. difficile* delivered by oral gavage. Daily 251 relative weight loss was determined by dividing individual daily weights by the weight of 252 each mouse prior to challenge. Animals with a weight loss greater than 15% were culled. C. 253 *difficile* colonization was quantified through the serial dilution and culturing of fresh faecal 254 material collected from individual animals or from caecal and colonic samples prepared at 255 the time of cull. These were generated by opening the tissue longitudinally and recovering 256 the contents by washing the tissue in 5 ml or 2 ml of PBS. respectively. Colony forming units 257 were calculated from counts generated from diluted samples from individual animals and 258 results reflect the median of a minimum of n = 5 mice at each time point.

259

260 Tissue histology

Histological samples were harvested from the cecum at 48 h (peak of infection) and
immediately fixed in 10% formalin. Embedded tissue sections were cut and stained with
hematoxylin and eosin. The histological severity was graded using an adapted scoring

system accounting for: a. epithelial damage, b. neutrophil margination and tissue

265 infiltration, c. hemorrhagic congestion and tissue edema, and d. crypt hyperplasia. At least

six independent fields of view (a maximum of three taken from any individual animal) were

267 examined. Scores for each parameter were assigned for each feature (1, mild; 2, moderate;

268 3, significant; 4, severe). Cumulative scores reflect the sum of each scored feature.

269

270 **Toxin activity**

271 Toxin activity in caecal and colonic contents collected at post-mortem was determined by

272 measurement of cytotoxic activity on cultured cells. Activity of the toxins produced in vitro

was also analyzed from spent culture supernatant taken from TY culture at 5, 24 and 48 h.

274 Samples from both *in vivo* and *in vitro* experiments were filtered (0.2 μm), serially diluted

and applied to monolayers of Vero cells (Toxin B), as described previously³⁸. Each sample

was analyzed minimally in two independent experiments, with samples collected from a

277 minimum of n = 5 mice per time point.

For direct detection of toxin *in vitro*, 48 h culture supernatants were filtered using a 0.44 μm
filter and concentrated to an equivalent OD_{600nm} of 50 using a Vivaspin column with a 10

280 kDa MWCO. Concentrated samples were separated by SDS-PAGE, electroblotted to PVDF

281 membrane and probed using a specific mouse monoclonal antibody (Toxin B: MA1-7413,

282 Thermo Fisher).

283

284 **Other methods**

PDBeFold³⁹ was used to search for homologous structures and to compare the similarity
 between models determined in this study. PISA⁴⁰, PDBSum⁴¹ and LigPlot⁺⁴² were used to
 investigate interdomain and protein-protein interfaces. Structural flexibility of models was

- assessed by DynDom6D (v1.0 with default settings⁴³), HingeProt webserver⁴⁴ and the
- 289 components of DynOmics webserver.
- 290 Evolutionary conservation of SlpA across the unique annotated SLCTs retrieved from the
- 291 *Clostridioides difficile* Multi Locus Sequence Typing database
- 292 (https://pubmlst.org/bigsdb?db=pubmlst cdifficile seqdef&page=alleleQuery&locus=slpA&
- 293 submit=1) was performed in the ConSurf version 3.0 server⁴⁵, using the structural model of
- the CD630 H/L complex (PDB ID: 7ACY) to map the conservation scores onto 3D crystal
- 295 structure. Conservation scores were calculated with the Bayesian method, using the WAG
- 296 model of amino acid substitution (selected based on ProtTest 3.4.1).
- 297 Representatives of each SLCT, as defined previously³, were used to analyze conservation of
- 298 structural features and H/L interactions. Sequences were aligned using Clustal Omega, with
- 299 secondary structure assignment from the CD630 H/L structural model as defined in
- 300 PDBSUM. Structural models for SLCT representatives were generated with SWISS-MODEL
- 301 webserver using the H/L complex crystal model as a user provided template. Structural
- 302 alignments between homology model and template were performed using SSM algorithm in
- 303 Coot. Data was mined using Numpy (v1.16.6)⁴⁶ Pandas (v0.24.2)⁴⁷ and the heatmap
- 304 generated with Seaborn (v0.10.1)⁴⁸.
- 305 For SI SLCT sequence alignment, protein sequences for SIpA representatives used to
- 306 generate homology models were aligned in Clustal Omega⁴⁹ with default settings.
- 307 Secondary structure information from CD630 H/L complex was added to alignment by
- 308 ESPript3⁵⁰. Manual annotations were added to the figure for clarification on subunits,
- 309 domains and position of interacting residues.
- 310 Analysis of pores in the H/L array was carried out using ChexVis⁵¹ and hydrophobicity
- 311 patterns for residues lining each pore calculated using the Kyte-Doolittle scale⁵².

312

313 Data availability

- 314 Crystal structures were deposited in Protein Data Bank with PDB IDs 7ACW (LID/HID), 7ACV
- 315 (SLP_L/HID), 7ACX (H/L, R7404), 7ACY (H/L, CD630) and 7ACZ (H/L, $R\Delta D2$).

316

317 Statistical analysis

- 318 Statistical analysis was carried out in GraphPad Prism 8. Non-parametric, non-paired Mann-
- 319 Whitney test results were considered.

320 References

322	1	Sorg, J. A. & Dineen, S. S. Laboratory maintenance of <i>Clostridium difficile</i> . <i>Curr Protoc</i>
323		Microbiol Chapter 9, Unit9A 1, doi:10.1002/9780471729259.mc09a01s12 (2009).
324	2	Dupuy, B. & Sonenshein, A. L. Regulated transcription of Clostridium difficile toxin
325		genes. <i>Mol Microbiol</i> 27 , 107-120, doi:10.1046/j.1365-2958.1998.00663.x (1998).
326	3	Kirk, J. A. et al. New class of precision antimicrobials redefines role of Clostridium
327		difficile S-layer in virulence and viability. Sci Transl Med 9,
328		doi:10.1126/scitranslmed.aah6813 (2017).
329	4	Kirk, J. A. & Fagan, R. P. Heat shock increases conjugation efficiency in Clostridium
330		<i>difficile</i> . <i>Anaerobe</i> 42 , 1-5, doi:10.1016/j.anaerobe.2016.06.009 (2016).
331	5	Fagan, R. P. et al. Structural insights into the molecular organization of the S-layer
332		from <i>Clostridium difficile. Mol Microbiol</i> 71 , 1308-1322, doi:10.1111/j.1365-
333		2958.2009.06603.x (2009).
334	6	Calabi, E., Calabi, F., Phillips, A. D. & Fairweather, N. F. Binding of Clostridium difficile
335		surface layer proteins to gastrointestinal tissues. Infect Immun 70, 5770-5778,
336		doi:10.1128/iai.70.10.5770-5778.2002 (2002).
337	7	Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta
338		Crystallogr D Biol Crystallogr 66 , 133-144, doi:10.1107/S0907444909047374 (2010).
339	8	Battye, T. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. iMOSFLM: a
340		new graphical interface for diffraction-image processing with MOSFLM. Acta
341		Crystallogr D Biol Crystallogr 67 , 271-281, doi:10.1107/S0907444910048675 (2011).
342	9	Winter, G. et al. DIALS: implementation and evaluation of a new integration package.
343		Acta Crystallogr D Struct Biol 74 , 85-97, doi:10.1107/S2059798317017235 (2018).

344	10	Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution?
345		Acta Crystallogr D Biol Crystallogr 69, 1204-1214, doi:10.1107/S0907444913000061
346		(2013).
347	11	Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta
348		Crystallogr D Biol Crystallogr 67, 235-242, doi:10.1107/S0907444910045749 (2011).
349	12	Potterton, L. et al. CCP4i2: the new graphical user interface to the CCP4 program
350		suite. Acta Crystallogr D Struct Biol 74 , 68-84, doi:10.1107/S2059798317016035
351		(2018).
352	13	Cowtan, K. Recent developments in classical density modification. Acta Crystallogr D
353		Biol Crystallogr 66 , 470-478, doi:10.1107/S090744490903947X (2010).
354	14	Rodriguez, D. D. et al. Crystallographic ab initio protein structure solution below
355		atomic resolution. Nat Methods 6, 651-653, doi:10.1038/nmeth.1365 (2009).
356	15	Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein
357		chains. Acta Crystallogr D Biol Crystallogr 62, 1002-1011,
358		doi:10.1107/S0907444906022116 (2006).
359	16	Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta
360		Crystallogr D Biol Crystallogr 60, 2126-2132, doi:10.1107/S0907444904019158
361		(2004).
362	17	Headd, J. J. et al. Use of knowledge-based restraints in phenix.refine to improve
363		macromolecular refinement at low resolution. Acta Crystallogr D Biol Crystallogr 68,
364		381-390, doi:10.1107/S0907444911047834 (2012).
365	18	McCoy, A. J. et al. Phaser crystallographic software. J Appl Crystallogr 40, 658-674,
366		doi:10.1107/S0021889807021206 (2007).

- 367 19 Usenik, A. *et al.* The CWB2 cell wall-anchoring module Is revealed by the crystal
- 368 structures of the *Clostridium difficile* cell wall proteins Cwp8 and Cwp6. *Structure* **25**,
- 369 514-521, doi:10.1016/j.str.2016.12.018 (2017).
- Thorn, A. & Sheldrick, G. M. ANODE: anomalous and heavy-atom density calculation.
- 371 *J Appl Crystallogr* **44**, 1285-1287, doi:10.1107/S0021889811041768 (2011).
- 372 21 Kowiel, M. *et al.* Automatic recognition of ligands in electron density by machine
- 373 learning. *Bioinformatics* **35**, 452-461, doi:10.1093/bioinformatics/bty626 (2019).
- 374 22 Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal
- 375 structures. Acta Crystallogr D Biol Crystallogr 67, 355-367,
- 376 doi:10.1107/S0907444911001314 (2011).
- Joosten, R. P., Long, F., Murshudov, G. N. & Perrakis, A. The PDB_REDO server for
 macromolecular structure model optimization. *IUCrJ* 1, 213-220,
- doi:10.1107/S2052252514009324 (2014).
- 380 24 Chen, V. B. *et al.* MolProbity: all-atom structure validation for macromolecular
- 381 crystallography. Acta Crystallogr D Biol Crystallogr 66, 12-21,
- 382 doi:10.1107/S0907444909042073 (2010).
- 38325Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory research
- 384 and analysis. *J Comput Chem* **25**, 1605-1612, doi:10.1002/jcc.20084 (2004).
- 385 26 Peltier, J. *et al. Clostridium difficile* has an original peptidoglycan structure with a
- 386 high level of N-acetylglucosamine deacetylation and mainly 3-3 cross-links. J Biol
- 387 *Chem* **286**, 29053-29062, doi:10.1074/jbc.M111.259150 (2011).
- 388 27 Ball, D. A. *et al.* Structure of the exosporium and sublayers of spores of the *Bacillus*
- 389 *cereus* family revealed by electron crystallography. *Mol Microbiol* **68**, 947-958,
- 390 doi:10.1111/j.1365-2958.2008.06206.x (2008).

- 391 28 Crowther, R. A., Henderson, R. & Smith, J. M. MRC image processing programs. J
 392 Struct Biol 116, 9-16, doi:10.1006/jsbi.1996.0003 (1996).
- 393 29 Gipson, B., Zeng, X. & Stahlberg, H. 2dx_merge: data management and merging for
- 394 2D crystal images. *J Struct Biol* **160**, 375-384, doi:10.1016/j.jsb.2007.09.011 (2007).
- 395 30 Henderson, R., Baldwin, J. M., Downing, K. H., Lepault, J. & Zemlin, F. Structure of
- 396 purple membrane from *Halobacterium halobium*: recording, measurement and
- 397 evaluation of electron micrographs at 3.5 Å resolution. *Ultramicroscopy* **19**, 147-178,
- 398 doi:10.1016/0304-3991(86)90203-2 (1986).
- 399 31 Valpuesta, J. M. a., Carrascosa, J. L. & Henderson, R. Analysis of electron microscope
- 400 images and electron diffraction patterns of thin crystals of Ø29 connectors in ice.
- 401 *Journal of Molecular Biology* **240**, 281-287, doi:10.1006/jmbi.1994.1445 (1994).
- 402 32 Agard, D. A. & Moody, M. F. A least-squares method for determining structure
- 403 factors in three-dimensional tilted-view reconstructions. *Journal of Molecular*

404 *Biology* **167**, 849-852, doi:10.1016/S0022-2836(83)80114-4 (1983).

- 405 33 Amos, L. A., Henderson, R. & Unwin, P. N. Three-dimensional structure
- 406 determination by electron microscopy of two-dimensional crystals. *Prog Biophys Mol*
- 407 *Biol* **39**, 183-231, doi:10.1016/0079-6107(83)90017-2 (1982).
- 408 34 Havelka, W. A., Henderson, R. & Oesterhelt, D. Three-dimensional structure of
- 409 halorhodopsin at 7 A resolution. J Mol Biol 247, 726-738,
- 410 doi:10.1006/jmbi.1995.0176 (1995).
- 411 35 Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-
- 412 dimensional image data using IMOD. J Struct Biol 116, 71-76,

413 doi:10.1006/jsbi.1996.0013 (1996).

- 414 36 Dembek, M. *et al.* High-throughput analysis of gene essentiality and sporulation in
 415 *Clostridium difficile. MBio* 6, e02383, doi:10.1128/mBio.02383-14 (2015).
 416 37 Theriot, C. M. & Young, V. B. Interactions between the gastrointestinal microbiome
- 417 and *Clostridium difficile*. *Annu Rev Microbiol* **69**, 445-461, doi:10.1146/annurev-
- 418 micro-091014-104115 (2015).
- 419 38 Buckley, A. M., Spencer, J., Candlish, D., Irvine, J. J. & Douce, G. R. Infection of
- 420 hamsters with the UK *Clostridium difficile* ribotype 027 outbreak strain R20291. J

421 *Med Microbiol* **60**, 1174-1180, doi:10.1099/jmm.0.028514-0 (2011).

- 422 39 Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast
- 423 protein structure alignment in three dimensions. *Acta Crystallogr D Biol Crystallogr*

424 **60**, 2256-2268, doi:10.1107/S0907444904026460 (2004).

- 425 40 Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline 426 state. *J Mol Biol* **372**, 774-797, doi:10.1016/j.jmb.2007.05.022 (2007).
- 427 41 Laskowski, R. A., Jablonska, J., Pravda, L., Varekova, R. S. & Thornton, J. M. PDBsum:
- 428 Structural summaries of PDB entries. *Protein Sci* 27, 129-134, doi:10.1002/pro.3289
 429 (2018).
- 430 42 Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand-protein interaction

431 diagrams for drug discovery. J Chem Inf Model **51**, 2778-2786,

- 432 doi:10.1021/ci200227u (2011).
- 433 43 Veevers, R. & Hayward, S. Methodological improvements for the analysis of domain
- 434 movements in large biomolecular complexes. *Biophys Physicobiol* **16**, 328-336,
- 435 doi:10.2142/biophysico.16.0_328 (2019).

- 436 44 Emekli, U., Schneidman-Duhovny, D., Wolfson, H. J., Nussinov, R. & Haliloglu, T.
- 437 HingeProt: automated prediction of hinges in protein structures. *Proteins* **70**, 1219-
- 438 1227, doi:10.1002/prot.21613 (2008).
- 439 45 Ashkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and
- 440 visualize evolutionary conservation in macromolecules. *Nucleic Acids Res* 44, W344-
- 441 350, doi:10.1093/nar/gkw408 (2016).
- 442 46 Walt, S. v. d., Colbert, S. C. & Varoquaux, G. The NumPy array: A structure for
- 443 efficient numerical computation. *Computing in Science & Engineering* **13**, 22-30,
- 444 doi:10.1109/MCSE.2011.37 (2011).
- 445 47 McKinney, W. Data structures for statistical computing in python. *Proceedings of the*
- 446 9th Python in Science Conference (2010).
- 447 48 Waskom, M. *et al.* mwaskom/seaborn: v0.11.0 (September 2020).
- 448 doi:10.5281/ZENODO.4019146 (2020).
- 449 49 Madeira, F. *et al.* The EMBL-EBI search and sequence analysis tools APIs in 2019.
- 450 *Nucleic Acids Research* **47**, W636-W641, doi:10.1093/nar/gkz268 (2019).
- 451 50 Robert, X. & Gouet, P. Deciphering key features in protein structures with the new
- 452 ENDscript server. *Nucleic Acids Research* **42**, W320-W324, doi:10.1093/nar/gku316
- 453 (2014).
- 454 51 Masood, T. B., Sandhya, S., Chandra, N. & Natarajan, V. CHEXVIS: a tool for molecular
- 455 channel extraction and visualization. *BMC Bioinformatics* **16**, 119,
- 456 doi:10.1186/s12859-015-0545-9 (2015).
- 457 52 Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of
- 458 a protein. *J Mol Biol* **157**, 105-132, doi:10.1016/0022-2836(82)90515-0 (1982).

- 459 53 Wust, J., Sullivan, N. M., Hardegger, U. & Wilkins, T. D. Investigation of an outbreak
- 460 of antibiotic-associated colitis by various typing methods. *J Clin Microbiol* **16**, 1096-
- 461 1101, doi:10.1128/JCM.16.6.1096-1101.1982 (1982).
- 462 54 Stabler, R. A. *et al.* Comparative genome and phenotypic analysis of *Clostridium*
- 463 *difficile* 027 strains provides insight into the evolution of a hypervirulent bacterium.
- 464 *Genome Biol* **10**, R102, doi:10.1186/gb-2009-10-9-r102 (2009).
- 465 55 Stubbs, S. L., Brazier, J. S., O'Neill, G. L. & Duerden, B. I. PCR targeted to the 16S-23S
- 466 rRNA gene intergenic spacer region of *Clostridium difficile* and construction of a
- 467 library consisting of 116 different PCR ribotypes. *J Clin Microbiol* **37**, 461-463,
- 468 doi:10.1128/JCM.37.2.461-463.1999 (1999).

- 470 Table 1. Bacterial strains and plasmids used in x-ray crystallography and protein-protein
- 471 interaction studies.

Strain or	Description	Reference/ Source	
plasmid		Application	
C. difficile strains			
CD630	Ribotype 012, SLCT-7	53	
R20291	Ribotype 027, SLCT-4	54	
FM2.5	R20291 slpA 282_283insA	3	
R∆D2	FM2.5 <i>slpA</i> ΔD2	This study	
R7404	Ribotype 017, SLCT-7b	55	
E. coli strains		-	
NEB5a	fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80 Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17	New England Biolabs	
BL21 (DE3)	E. coli str. B F– ompT gal dcm lon hsdSB(rB–mB–) λ(DE3 [lacl lacUV5-T7p07 ind1 sam7 nin5]) [malB+]K-12(λS)	Novagen	
Rosetta (DE3)	F- <i>ompT hsdSB(rB- mB-) gal dcm</i> (DE3) pRARE (CamR)	Novagen	
Plasmids			
pOB001	pMTL960-Ptet-slpA∆D2 (R20291)	This study. RF102/ RF103	
pRPF170	pMTL960-Ptet-slpA (CD630)	This study. NF1414/ NF1415	
pRPF233	pMTL960-Ptet-slpA (R20291)	3	
Plasmids for reco	mbinant expression of mature protein	1	
pABS17	pET28a-LMW-6xHis-tag (R20291)	This study. LMW of R20291; oABS46/ oABS47	
pABS18	pET28a-HMW-6xHis-tag (R20291)	This study. HMW of R20291; oABS44/ oABS45	
pABS19	pET28a-LMW-6xHis-tag (R7404)	This study. LMW of R7404; oABS1/ oABS2	
pABS20	pET28a-HMW-6xHis-tag (R7404)	This study. HMW of R7404; <i>Ncol/Xho</i> l subcloning from pJAK148 into pET28a	

pABS21	pET28a-LMWDLID-6xHis-tag (R20291)	This study. LMW of R20291; oABS31/oABS48
pABS22	pET28a-HMWDHID-6xHis-tag (R20291)	This study. HMW of R20291; oABS15/oABS16
pABS23	pET28a-LMWDLID-6xHis-tag (R7404)	This study. LMW of R7404; oABS31/oABS32
pABS24	pET28a-HMWDHID-6xHis-tag (R7404)	This study. HMW of R7404; oABS39/oABS16
pHMW630	pET28a-HMW-6xHis-tag (CD630)	⁵ HMW of CD630
pHMW∆1-40	pET28a-HMW∆LID-6xHis-tag (CD630)	⁵ HMW of CD630 lacking the N terminal HID
pLMW630	pET28a-LMW-6xHis-tag (CD630)	⁵ LMW of CD630
pLMW∆260-321	pET28a-LMW∆HID-6xHis-tag (CD630)	⁵ LMW of CD630 lacking the C terminal LID
pJAK149	pETDuet-1-HID-6xHis-tag – LMW (R7404)	This study. Recombinant co- expression of mature LMW/HID of R7404; RF1396/ RF1397, RF1398/ RF1400, RF1394/ RF1395
pJAK147	pETDuet-1-HID-6xHis-tag – LID (R7404)	This study. Recombinant co- expression of mature LID/HID of R7404; RF1396/ RF1397, RF1398/ RF1400, RF1395/ RF1396
Plasmids for expression of the mature protein with a point mutation in the interaction domain, as specified in subscript		
	•	

pABS1	pET28a-LMW _{F274A} -6xHis-tag (CD630)	This study. oABS33/ oABS34
pABS2	pET28a-HMW _{Y27A} -6xHis-tag (R20291)	This study. oABS37/ oABS38
pABS3	pET28a-LMW _{F273A} -6xHis-tag (R20291)	This study. oABS35/ oABS36
pABS4	pET28a-HMW _{Y27A} -6xHis-tag (R7404)	This study. oABS5/ oABS6
pABS5	pET28a-LMW _{F270A} -6xHis-tag (R7404)	This study. oABS21/ oABS22
pABS6	pET28a-HMW _{N19A} -6xHis-tag (R7404)	This study. oABS3/ oABS4
pABS7	pET28a-HMW _{D29A} -6xHis-tag (R7404)	This study. oABS7/ oABS8

pABS8	pET28a-HMW _{L31A} -6xHis-tag (R7404)	This study. oABS9/ oABS10
pABS9	pET28a-HMW _{N35A} -6xHis-tag (R7404)	This study. oABS11/ oABS12
pABS10	pET28a-HMW _{S39A} -6xHis-tag (R7404)	This study. oABS13/ oABS14
pABS11	pET28a-LMW _{D254A} -6xHis-tag (R7404)	This study. oABS17/ oABS18
pABS12	pET28a-LMW _{1259A} -6xHis-tag (R7404)	This study. oABS19/ oABS20
pABS13	pET28a-LMW _{Y279A} -6xHis-tag (R7404)	This study. oABS23/ oABS24
pABS14	pET28a-LMW _{G300A} -6xHis-tag (R7404)	This study. oABS25/ oABS26
pABS15	pET28a-LMW _{F306A} -6xHis-tag (R7404)	This study. oABS27/ oABS28
pABS16	pET28a-LMW _{R309A} -6xHis-tag (R7404)	This study. oABS29/ oABS30
pHMW_Y27A	pET28a-HMW _{Y27A} -6xHis-tag (CD630)	This study. NF1386/ NF1387
pJAK186	pMTL960 Ptet-slpA HMW _{Y27A} (CD630)	This study. NF1386/ NF1387
pRPF209	pMTL960-Ptet-slpA LMW _{F274A} (CD630)	This study. NF1189/ NF1190

476 Table 2. Oligonucleotides used in this study.

Name	Sequence	Application
oABS1	GATCCCATGGCAGATAGTAC	Amplification of LMW R7404
OABSI		with Ncol site forward primer
0AB52		Amplification of LMW R7404
UABSZ	GATCCTCGAGAGATTTAGTTTC	with Xhol site reverse primer
04052		Introduction of N19A point
UADSS	GCTAAATTAAAAGATTAAAAGATTATGTAG	mutation in R7404 HMW
OV DS 4		Introduction of N19A point
UAD34	AGCITIAIAGITATITIAGCIGG	mutation in R7404 HMW
OVE		Introduction of Y27A point
UABSS	GETGTAGATGATTTAAAAACATAC	mutation in R7404 HMW
OVBS6		Introduction of Y27A point
UAD30		mutation in R7404 HMW
oABS7	GCTGATTTAAAAACATACAATAATAC	Introduction of D29A point
UAB37	GEIGATTIAAAAACATACAATAATAC	mutation in R7404 HMW
04059		Introduction of D29A point
UADJO		mutation in R7404 HMW
OV BSO	GCTAAAACATACAATAATACTTACTCAAATG	Introduction of L31A point
04035		mutation in R7404 HMW
0ABS10	ΑΤCATCTACATAATCTTTTAAATCTTTTAATTTATTAG	Introduction of L31A point
UADSIO		mutation in R7404 HMW
0ABS11	GCTAATACTTACTCAAATGTTGTAAC	Introduction of N35A point
UADSII		mutation in R7404 HMW
04BS12	GTATGTTTTTAAATCATCTACATAATC	Introduction of N35A point
0/(0512		mutation in R7404 HMW
04BS13	GCAAATGTTGTAACAGTAGCAG	Introduction of S39A point
0/(0010		mutation in R7404 HMW
04BS14	GTAAGTATTATTGTATGTTTTTAAATCATC	Introduction of S39A point
0/(001+		mutation in R7404 HMW
oABS15	GCGCGCACAGTAGCAGGAGAAGATAGAATAG	Deletion of HID in R7404 HMW
04BS16		Deletion of HID in HMW (R7404,
0/(0010		R20291)
04BS17	GCTTCAAGTTCATATATTAGTGC	Introduction of D254A point
0,0517		mutation in R7404 LMW
04BS18		Introduction of D254A point
0/10010		mutation in R7404 LMW
oAB\$19	GCTAGTGCTGAAAATTTAGC	Introduction of I259A point
		mutation in R7404 LMW
0AB\$20	ATATGAACTTGAATCCACATC	Introduction of I259A point
0, 00020		mutation in R7404 LMW
oABS21	GCTAATCCTAAAGAGGTTTCTG	Introduction of F270A point
-------------	-----------------------------------	------------------------------------
		mutation in R7404 LMW
oABS22		Introduction of F270A point
		mutation in R7404 LMW
0AB\$22	CCTAATCCAATACTTCCATTAC	Introduction of Y279A point
0,0525		mutation in R7404 LMW
οΔBS24	AGCTTCAGAAACCTCTTTAGG	Introduction of Y279A point
UAB324		mutation in R7404 LMW
oABS25	GCAAAATATCAAGTTATTTTCTATCC	Introduction of G300A point
UADJZJ		mutation in R7404 LMW
οΔBS25	ΑΤΤΑΑCΤΑΑΤΤGTACTAAATCAGATTC	Introduction of G300A point
UADJZJ		mutation in R7404 LMW
0AB\$27	GCTTATCCAGAAGGAAAAGATTAG	Introduction of F306A point
040327		mutation in R7404 LMW
04BS28		Introduction of F306A point
UABSZO		mutation in R7404 LMW
oABS29	GCATTAGAAACTAAATCTCTCG	Introduction of R309A point
		mutation in R7404 LMW
o A D C 2 O	TTTTCCTTCTCCATACAAAATAAC	Introduction of R309A point
UABSSU		mutation in R7404 LMW
oABS31	GCGCGCCTCGAGCACCACCACCAC	Deletion of LID in LMW (R7404,
		R20291)
oABS32	TTTTATAGTACCTGTTGCAGCCATATC	Deletion of LID in R7404 LMW
0AB222		Introduction of F274A point
UAD333		mutation in CD630 LMW
0AB524	TACATATCTTTTAGCTAAATTTTCAGC	Introduction of F274A point
0AD554		mutation in CD630 LMW
04BS44	GATCCCATGGCTGCAAAGGCTTCAATTGCTG	Amplification of HMW R20291
070344		with Ncol site forward primer
οΔBS45	GATCCTCGAGCATACTTAATAAATCTTTT	Amplification of HMW R20291
070343	AATTTATTATAACTG	with Xhol site reverse primer
0ABS/16	GATCCATGGCAGAAGATATGTCGAAAGTTG	Amplification of LMW R20291
046540		with 5 Ncol site
0ABS/17	GATCCTCGAGACTCTTAGTTGTAACTCTTTTCC	Amplification of LMW R20291
UABS47		with 3 Xhol site
oABS48	AGTTATTACTGGGCTTCCAGATTGTG	Introduction of deletion of LID in
		R20291 LMW
oABS35	GCTAATAAAACAGATTTAAATACTCTTTAC	Introduction of F273A point
		mutation in R20291 LMW
oABS36	TACATATTTTTAGCTAAATCTTGTGCTG	Introduction of F273A point
		mutation in R20291 LMW
0AB637	GCTGTGGATGATTTAAGAACATATAATAATG	Introduction of Y27A point
oABS37		mutation in R20291 HMW

oABS38		Introduction of Y27A point
	ATCHTHAAGTCHTCHCHATCIGAC	mutation in R20291 HMW
oABS39	GCGCGCGAAGTAGCAGGAGAAGATAG	Deletion of HID in R20291 HMW
oABS40		Introduction of L31A point
		mutation in R20291 HMW
0ABS/11		Introduction of L31A point
0AD341		mutation in R20291 HMW
oABS42	GCTAAAACATATAATAATACTTATTC	Introduction of L31A point
		mutation in CD630 HMW
oABS43	ΑΤCΑΤCΤΑCΑΤΑΑΤCΤΤΤΤΑΑΑΤC	Introduction of L31A point
		mutation in CD630 HMW
NF1189	GCAGATCCAGATGAAATTTCTGAAGC	Introduction of F274A point
111105		mutation in CD630 LMW
NF1190	ΤΑΓΑΤΑΤΟΤΤΤΤΑΘΟΤΑΑΑΤΤΤΤΟΔΟΟΤΟ	Introduction of F274A point
111190		mutation in CD630 LMW
NF1386	GCAGTAGATGATTTAAAAACATATAATAATACTTAT	Introduction of Y27A point
1111300	TC	mutation in CD630 HMW
NE1207	ΑΤCTTTTAAATCTTTTAATTTATTAGCTTTTATAAC	Introduction of Y27A point
1111307		mutation in CD630 HMW
NE1/11/	GATCGAGCTCTATAATGTTGGGAGGAATTTAAGAA	Amplification of <i>slpA</i> from CD630
111 1 1 1 1 1	ATG	with 5 Sacl site
NF1415	GATCGGATCCTTACATATCTAATAAATCTTTCATTTT	Amplification of <i>slpA</i> from CD630
111115	G	with 3 BamHI site
PE102	GGTTCTGGAAGCCCAGTAATAACTAAAC	Replacement of coding sequence
11102		of LMW domain 2 with GGA GGT
RF103	TCCAGAGCTTATTAAGAAATCTACATAATCC	Replacement of coding sequence
11105		of LMW domain 2 with GGA GGT
RF1393	GATCCATATGGCAGATAGTACTACGCCAGG	Amplification of LMW for
1113555		insertion into pACYC-Duet1
RF1394	GATCGGTACCTTAAGATTTAGTTTCTAATCTTTTCC	Amplification of LID and LMW for
111 200 1	TTCTG	insertion into pACYC-Duet1
RF1395	GATCCATATGGTTAGAGTTACAAGTGCAAAAGAAG	Amplification of LID for insertion
VLT222		into pACYC-Duet1
RF1396	CATGGTATATCTCCTTATTAAAGTTAAAC	Linearization of pACYC-Duet1 for
		insertion of HID
RF1397		Linearization of pACYC-Duet1 for
		insertion of HID
RF1398	TGTTTAACTTTAATAAGGAGATATACCATGGCAGAT	Amplification of HID for insertion
	ATAATAGCTGATGCAG	into pACYC-Duet1
RE1400	ATCTCAGTGGTGGTGGTGGTGGTGCTCGAGTACAA	Amplification of HID for insertion
KF1400	CATTTGAGTAAGTATTATTGTATG	into pACYC-Duet1

1

Supplementary Information – Discussion

2

Our structural models and functional analysis of the S-layer of *C. difficile* provide the first
detailed insights of this important layer in a human pathogenic bacterium. This work allows
us to explore this array in unprecedented detail, both elucidating key features and raising
new questions requiring further investigation.

7

8 S-layer assembly: how can a 2D crystal array remain flexible?

9 A degree of conformational flexibility is required to accommodate the wrapping of the 2D S-10 layer lattice around the curved surface of the C. difficile cell. Indeed, dynamic flexibility 11 between S-layer protein domains has been shown to promote efficient crystal nucleation on 12 the curved cellular surface in *Caulobacter crescentus*¹. Our recent work showed formation of 13 C. difficile S-layer at specific sites coinciding with cell wall synthesis², suggesting discrete S-14 layer assembly points. Furthermore, Fourier analysis of S-layer ghosts and tomographic 15 imaging (Extended Data Fig. 10) indicates a highly mosaic surface, with many crystal defects, 16 particularly at the cell poles, where the paracrystalline array must be disrupted to allow for 17 cell curvature. The pattern of crystalline patches with grain boundaries observed is 18 consistent with the random secretion of S-layer protein monomers and self-assembly of 2D 19 crystals occurring at gaps and grain boundaries within the curved S-layer, as proposed for other organisms³⁻⁵. 20

21

While increasing numbers of S-layer structural models are available⁶⁻¹¹, to our knowledge,
 this is the first report of a complete X-ray structure of a major S-layer protein where the
 crystal lattice mimics S-layer assembly in the cell. This indicates that S-layer assembly in *C*.

difficile does not require an underlying ordered polysaccharide array, unlike the apparent organization observed in LPS-mediated S-layer anchoring in the Gram-negative *C. crescentus*¹⁰. As the *C. difficile* S-layer is anchored via interactions of the CWB2 motifs with PSII¹², a much simpler glycan that is unlikely to be ordered at the cell surface, it is not surprising that the protein can assemble independently. In order to elucidate the anchoring mechanisms of *C. difficile* S-layer, we are investigating the interactions of SPL_H and the H/L complex with PSII using a combination of biochemical, biophysical and structural methods.

33 SlpA is the main component of the S-layer in C. difficile but additional proteins, which 34 together correspond to an estimated 10% of the protein molecules forming the array, must 35 be accommodated within the layer. Our assembly model suggests that tiling of the CWB2 triangular prism present in SLP_H and in all minor cell wall proteins (CWPs)¹³, is a mechanism 36 37 that allows insertion of these proteins while maintaining the crystalline arrangement. In our 38 crystal structure, SLP_H tiling is maintained by charge complementarity of interacting 39 triangular prism surfaces (Extended Data Fig. 3b). Our structural analysis of homology 40 models of other SLCTs suggests that most of the interactions between neighbouring H/L 41 complexes which define those interfaces are conserved across different SLCTs (Extended 42 Data Fig. 4), indicating that they are likely to be important for *C. difficile* S-layer assembly. It 43 is worth noting that the most conserved interactions are at the interface of neighbouring 44 CWB2₃-CWB2₁ motifs and around pore 2, and involve residues from both SLP_H and SLP_L 45 (Extended Data Fig. 4b, top 6 rows). This conservation across SLCTs suggests that SLP_L is also 46 important to maintain the S-layer assembly and that these interactions could be potential 47 targets for disrupting the array.

Our analysis of the charge distribution of the CWB2 motifs in Cwp6 and Cwp8, the only other CWB2-containing proteins whose structures have been determined to date¹⁴, indicates that the charge complementarity between H/L complex and these minor S-layer components would also be possible, supporting our proposed global assembly model. The specific insertion points of additional CWPs are yet to be determined and it is possible that these regions could create other mismatch points that would allow growth, accommodate curvature and confer flexibility to the S-layer.

55 This proposed model for insertion of additional proteins via tiling of CWB2 motifs raises the 56 question of how the accessory domains in CWPs are incorporated in the SLP_L ridge features. 57 Homology between CWPs and SlpA is restricted to the CWB2 trimeric motif as CWPs have distinct accessory domains replacing the SLPL¹³. These structurally diverse domains have to 58 59 be accommodated in the S-layer, in order to maintain the integrity of the crystalline array. 60 Based on the observation that most of the X-ray crystallographic model of the H/L complex 61 fits well into the envelope defined by the EM reconstruction, with the exception of the D2 62 domain, we speculate that this region of SLP_L might confer further flexibility to the 63 assembled S-layer. It is also possible that D2 adopts a slightly different position relative to 64 SLP_H in the mature S-layer as it could be better accommodated into the EM envelope, in the 65 region corresponding to missing density in the SIpARAD2 reconstruction, by a shift of 10° 66 relative to D1 (Extended Data Fig. 6). Indeed, strikingly different conformations of the D1-D2 67 domains in SLP_L are observed in the H/L and SLP_L/HID structural models (Extended Data Fig. 68 2). Analysis of the architecture and simulated motions (DynDom6D v1.0) in these models 69 identified regions of D1-D2 and LID/HID as two dynamic domains, with the linker between the D1 C-terminal β -strand and LID N-terminal β -strand acting as interdomain hinge 70 71 residues (Extended Data Fig. 2). The calculated rotation angle of the centers of mass of the

D1-D2 region relative to LID/HID of 166° suggests a high degree of flexibility of these
regions, at least in the absence of the CWB2-containing SLP_H core, with minimal effects on
the fold of each individual domain. Together, these observations suggest that D2 could
adopt a number of conformations in the mature S-layer, therefore facilitating the insertion
of other S-layer proteins.

77

78 S-layer as a molecular sieve: how do molecules go in or out?

S-layers have been proposed to act as a molecular filter¹⁵ but the bulk of the *C. difficile* cell 79 80 surface seems virtually impenetrable to large molecules, even though cells appear to be 81 able to secrete toxin even in the absence of cell lysis¹⁶. The pores we observe *in situ* would 82 not allow for most proteins to directly diffuse in or out. Whether mismatch regions in the 2D 83 paracystalline array (Extended Data Fig. 10) are sufficient for access and how these 84 processes can be controlled are key questions to pursue to further our understanding of S-85 layer in *C. difficile*. 86 The pores observed in our crystal lattice (Fig. 3) are highly hydrophilic (Extended Data Fig. 87 3e), suggesting most small charged molecules could diffuse into the cell. Pore 1, mostly 88 occluded by D2 in the full H/L complex, has a mixed charged distribution, with patches of 89 both positive and negative charges throughout (Extended Data Fig. 3f), suggesting 90 important metabolites such as ATP (negatively charged) or metal ions (positively charged) 91 could have access. In contrast, the fully exposed pore 2, is mostly negatively charged, 92 indicating that positively charged small metabolites could preferably be diffused via this 93 pore. The presence of a positive patch formed by two pseudo symmetry-related lysines 94 covering the outermost opening of this pore (Extended Data Fig. 3f) could provide a gating 95 mechanism for these metabolites.

96 It is worth noting that interacting D1 domains from neighbouring SLP_L molecules completely 97 cover the widest cavity in the SLP_H CWB2s tiling. This interface, defined by neighbouring 98 CWB2₁-CWB2₂ motifs, at around 20 Å wide but spanning over 100 Å across the triangular 99 prism tiles, is also hydrophilic, with complimentary charges (Extended Data Fig. 3b). The 100 SLP_H CWB2 motifs tiling also creates a cavity of approximately 70 Å between symmetry-101 related molecules which is partly occluded by the HID and LID domains, with the 102 interlocking D1 domain ridges covering this gap (Extended Data Fig. 3b). If the interacting D1 103 domains are flexible and can at least partially expose these cavities, it could potentially 104 allow diffusion of larger molecules through the S-layer. 105 Absence of D2 creates a more permeable S-layer as it exposes pore 1 in the SLP_H tiling (Fig. 106 3, Extended Data Fig. 3). Moreover, many of the residues lining the two exposed pores in 107 this lattice are not resolved in the electron density of the SIpA_{RAD2} and could not be 108 modelled, suggesting weaker interactions. A scenario where D1-LID/HID interactions with 109 the CWB2s are less stable and could allow access to the wider openings in the CWB2s tiles 110 would possibly explain the susceptibility to lysozyme seen in the RAD2 strain (Extended Data 111 Fig. 8). It would also point to a role of the D2 domain in preventing access of at least some 112 antimicrobials and this could relate to the reduced disease severity observed for R Δ D2. 113

114 S-layer role in disease: potential mechanism

Our work with RΔD2 strain, producing a modified S-layer is, as far as we are aware, the first example of a *C. difficile* strain exhibiting both similar toxin and colonization levels but reduced disease severity in a mouse model. The reduction in weight loss upon infection with a strain of *C. difficile* lacking the surface-exposed D2 domain of SLP_L suggests that the S-layer and toxins act synergistically to mediate epithelial damage, highlighting the possible

120 contribution of the S-layer in delivery of toxin and enhancement of cellular responses 121 important for disease severity. Toxins have been shown to be essential for C. difficile disease^{17,18} and their role in glucosylation of small GTPases and key structural features have 122 been elucidated¹⁹. Toxin activity has also been linked to inflammatory influx through 123 124 activation of the inflammasome²⁰. While the specific contribution of the D2 domain and S-125 layer in disease remains unclear, several possibilities exist to explain their functional role. 126 One explanation is that modification to the S-layer alters the capacity of the bacteria to 127 adhere to the epithelial barrier, limiting proximity and impact of localized toxin on release. 128 This would reduce the overall impact of toxins on both barrier integrity and inflammasome 129 activation and hence limit tissue damage and disease. While this is feasible, the equivalence 130 of toxins detected in filtered gut washes from R∆D2 versus WT infected animals and the 131 epithelial cellular susceptibility to purified toxins, suggests this explanation is unlikely. 132 Alternatively, reduction in disease severity seen in mice infected with RDD2 may be linked to 133 failure of host cells to effectively signal an immune response. The evidence that TLR (Toll-134 like receptor) signaling is important in C. difficile disease is now significant, with several 135 studies showing that signaling through a MyD88 dependent pathway is essential in immune protection^{21,22}. The S-layer has been implicated in activation of this pathway through 136 activation of TLR4²³ and it is tempting to speculate that the D2 domain is important for this 137 138 function. In vitro, S-layer signaling in both mouse and human dendritic cells induces the 139 production of proinflammatory cytokines including IL-23, and enhances the activity of the toxin-activated inflammasome²³. However, as MyD88 and TLR4 -/- mice appear more 140 141 susceptible to disease, the failure of the modified S-layer (SlpA_{RAD2}) to signal through this 142 pathway should lead to enhanced disease. This is in contrast to our results, in which animals 143 infected with $R\Delta D2$ showed reduced pathology.

144 Another possibility is that modifications in S-layer-mediated signaling influences the 145 downstream generation of specific proinflammatory cytokines such as IL-23. Infection of IL-146 23 -/- mice with C. difficile resulted in limited tissue edema, reduced inflammatory influx and less epithelial damage²⁴; mirroring the observations in animals infected with the 147 148 modified RDD2 strain in this study. Further, in vitro, a combination of cell filtrates and toxin 149 but not toxin alone, was required to stimulate the expression of IL-23 in both mouse and human bone marrow-derived macrophages²⁵. As these filtrates are likely to contain high 150 151 levels of SIpA, it could be speculated that IL-23 expression relies on two independent 152 signals, the first provided by the toxin (through inflammasome activation) and the second, a 153 MyD88-dependent event implicating TLR signaling, possibly involving SlpA. Therefore, if the 154 D2 domain is essential for TLR signaling, reduction of disease could be linked to prevention 155 of downstream IL-23 mediated events such as enhancement of inflammation and sustained 156 barrier damage. 157 While the specific mechanism by which S-layer is able to modify the severity of toxin 158 mediated-disease is currently unclear, we now have the tools and structural knowledge to 159 allow us to dissect and determine the relevance of the S-layer structure in C. difficile

disease.

161

162 **References**

- 163 1 Herrmann, J. *et al.* A bacterial surface layer protein exploits multistep crystallization
- 164 for rapid self-assembly. *Proc Natl Acad Sci U S A* **117**, 388-394,
- 165 doi:10.1073/pnas.1909798116 (2020).
- 166 2 Oatley, P., Kirk, J. A., Ma, S., Jones, S. & Fagan, R. P. Spatial organization of
- 167 *Clostridium difficile* S-layer biogenesis. *Sci Rep* 10, 14089, doi:10.1038/s41598-020 168 71059-x (2020).
- 169 3 Comerci, C. J. *et al.* Topologically-guided continuous protein crystallization controls
- bacterial surface layer self-assembly. *Nat Commun* **10**, 2731, doi:10.1038/s41467-
- 171 019-10650-x (2019).
- 172 4 Garcia, N. A., Pezzutti, A. D., Register, R. A., Vega, D. A. & Gomez, L. R. Defect
- formation and coarsening in hexagonal 2D curved crystals. *Soft Matter* 11, 898-907,
 doi:10.1039/c4sm02234c (2015).
- 175 5 Garcia, N. A., Register, R. A., Vega, D. A. & Gomez, L. R. Crystallization dynamics on
- 176 curved surfaces. *Phys Rev E Stat Nonlin Soft Matter Phys* **88**, 012306,
- 177 doi:10.1103/PhysRevE.88.012306 (2013).
- 178 6 Baranova, E. *et al.* SbsB structure and lattice reconstruction unveil Ca2+ triggered S-
- 179 layer assembly. *Nature* **487**, 119-122, doi:10.1038/nature11155 (2012).
- 180 7 Bharat, T. A. M. *et al.* Structure of the hexagonal surface layer on *Caulobacter*
- 181 *crescentus* cells. *Nat Microbiol* **2**, 17059, doi:10.1038/nmicrobiol.2017.59 (2017).
- 182 8 Fioravanti, A. *et al.* Structure of S-layer protein Sap reveals a mechanism for
- 183 therapeutic intervention in anthrax. *Nat Microbiol* **4**, 1805-1814,

184 doi:10.1038/s41564-019-0499-1 (2019).

- 185 9 Sychantha, D. *et al.* Molecular basis for the attachment of S-layer proteins to the cell
- 186 wall of *Bacillus anthracis*. *Biochemistry* **57**, 1949-1953,

187 doi:10.1021/acs.biochem.8b00060 (2018).

- 188 10 von Kugelgen, A. *et al. In situ* structure of an intact lipopolysaccharide-bound
- 189 bacterial surface layer. *Cell* **180**, 348-358 e315, doi:10.1016/j.cell.2019.12.006
- 190 (2020).
- 191 11 Farci, D. *et al.* Structural insights into the main S-layer unit of *Deinococcus*
- 192 *radiodurans* reveal a massive protein complex with porin-like features. *J Biol Chem*

193 **295**, 4224-4236, doi:10.1074/jbc.RA119.012174 (2020).

- 194 12 Willing, S. E. *et al. Clostridium difficile* surface proteins are anchored to the cell wall
- 195 using CWB2 motifs that recognise the anionic polymer PSII. *Mol Microbiol* **96**, 596-
- 196 608, doi:10.1111/mmi.12958 (2015).
- 197 13 Fagan, R. P. & Fairweather, N. F. Biogenesis and functions of bacterial S-layers. *Nat*

198 *Rev Microbiol* **12**, 211-222, doi:10.1038/nrmicro3213 (2014).

- 199 14 Usenik, A. *et al.* The CWB2 cell wall-anchoring module Is revealed by the crystal
- 200 structures of the *Clostridium difficile* cell wall proteins Cwp8 and Cwp6. *Structure* **25**,
- 201 514-521, doi:10.1016/j.str.2016.12.018 (2017).
- 202 15 Sara, M. & Sleytr, U. B. S-Layer proteins. J Bacteriol 182, 859-868,
- 203 doi:10.1128/jb.182.4.859-868.2000 (2000).
- 204 16 Wydau-Dematteis, S. *et al.* Cwp19 Is a novel lytic transglycosylase involved in
- 205 stationary-phase autolysis resulting in toxin release in *Clostridium difficile. mBio* 9,
- 206 doi:10.1128/mBio.00648-18 (2018).
- 207 17 Kuehne, S. A. *et al.* The role of toxin A and toxin B in *Clostridium difficile* infection.
- 208 *Nature* **467**, 711-713, doi:10.1038/nature09397 (2010).

- 209 18 Lyras, D. *et al.* Toxin B is essential for virulence of *Clostridium difficile*. *Nature* **458**,
- 210 1176-1179, doi:10.1038/nature07822 (2009).
- 211 19 Pruitt, R. N. & Lacy, D. B. Toward a structural understanding of *Clostridium difficile*
- toxins A and B. *Front Cell Infect Microbiol* **2**, 28, doi:10.3389/fcimb.2012.00028
- 213 (2012).
- Ng, J. *et al. Clostridium difficile* toxin-induced inflammation and intestinal injury are
 mediated by the inflammasome. *Gastroenterology* 139, 542-552, 552 e541-543,
 doi:10.1053/j.gastro.2010.04.005 (2010).
- 216 doi:10.1053/j.gastro.2010.04.005 (2010).
- 217 21 Jarchum, I., Liu, M., Shi, C., Equinda, M. & Pamer, E. G. Critical role for MyD88-
- 218 mediated neutrophil recruitment during *Clostridium difficile* colitis. *Infect Immun* **80**,
- 219 2989-2996, doi:10.1128/IAI.00448-12 (2012).
- 220 22 Mamareli, P. *et al.* Epithelium-specific MyD88 signaling, but not DCs or
- 221 macrophages, control acute intestinal infection with *Clostridium difficile*. *Eur J*

222 *Immunol* **49**, 747-757, doi:10.1002/eji.201848022 (2019).

- 223 23 Ryan, A. *et al.* A role for TLR4 in *Clostridium difficile* infection and the recognition of
- 224 surface layer proteins. *PLoS Pathog* **7**, e1002076, doi:10.1371/journal.ppat.1002076
- 225 (2011).
- 226 24 McDermott, A. J. *et al.* Interleukin-23 (IL-23), independent of IL-17 and IL-22, drives
- 227 neutrophil recruitment and innate inflammation during *Clostridium difficile* colitis in
- 228 mice. *Immunology* **147**, 114-124, doi:10.1111/imm.12545 (2016).
- 229 25 Cowardin, C. A. *et al.* Inflammasome activation contributes to interleukin-23
- production in response to *Clostridium difficile*. *mBio* 6, doi:10.1128/mBio.02386-14
- 231 (2015).

60 70 80 90	
ANKKADRDAAAEKLYNLŴNTQĹDKĹCOĞD/ŸYDFSVDYNLEN SGAKKADRDAAAEKLYNLŴNTQĹDKĹCOĞD/YDFLEIVYUSLQDG SGAKKADRKDELFRLŴDAKLDGLGOGDVOFTVHYAGDAC DTTGTTSTKEELASALLKTTWNDKLDNLGOĞDVOFTVHYAGDAC DTKGTTSTKEELASALLKTTWNDKLDNLGDĞDVOFTVHYAGDAC DTKGTSTKEELASALLKTTWNDKLDNLGDĞDVOFTVHYAGDAC AAAATKLKSLVIDDKLDNLGDĞDVOFTVHYVGAAL DTKGTSTKEELASALLKTTVNDKLDNLGDĞDVVDFDLTTVVGAAL DTKGTSTKE	KITNDKLAA GGALTAA.KT GGALTA.KT GGALTIF GGALTF KD KD KD KD KD KD KD KD KD KD KD KD KD
SISSLEASQISYVKDEIKDLKAGEVAKISVKITDG. VLNCEDSEDFDAVKAKMNDLDPGEFVDFIVGGQETV ©©	TEK
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 200
GS.EDTGYVVEM.KA.GAVEDKYGKVGDSTAGI.AINLFST.GLE) GS.EDTGYVVEM.KA.GAVEDKYGKVGDSTAGI.AINLKDSST.F GS.DDSGYSIAK.PTEKTTSLLYGTVGDATAGK.AITWKDSST.F GNGVVLTLQDSLSYVKGEVKASANTYT.VTKWAFDDNNTLTKT. GNTLTVSL.KAS.DATKIGKEDEDNST.ATDWTFKDDAA.KIS GNNLTISL.KAS.DATKIGKEDEDNST.ATDWTFKDDAA.KIS GNNLTISL.KAA.PSKVGVIGANNDT.LADWTFADDA.KIS TGVLKAEPTSKW.SAGKVQGLKYGNTGATNYTSGA.EISWPTTGLTLT GYKLTATPIADAQLATLKATYKYANNTKV.EFASAT.ELAAT FATAVKLTIKDAMKTKKFGLVDGTTYSTGL.QFADGKTEKIVM NGGYKLSI.TAKTISDVKYGTIGAGKYPDAK.VITATGTDA GSNKVUTISAAGLSGFSYGTLKDT.GASSU.VDAITL.DTTNATIT KVTWSFAEPSTGKVLTDAANT.TVESSGVKNKISAEFANAKITI. GNNATGTVAITATYADAVAGA.IKLKYDTQAAVAPTLDLTAVAS.L GSNSILLYTGTDPKVALTASNNLGEFFEAE.VVFDTNNLVATATIKF	YAGKG PTGCKG VSVGDD VSVGDT VSVGDT ATDCS KLGCKG TECC KALVKG TECC KALVKG TECC KALVKG TECC K K C K K K K K K K K K K K K K K K
$\begin{array}{c} \text{LID} \\ \alpha 5 \\ \underline{\beta 20} \\ \underline{\beta 20} \\ \underline{\beta 21} \\ \underline{\beta 22} \\ \beta $)
280 290 300 300 310 320 1200000000000000000000	D N E G. D Q AS QAS QAS A S KDEAE KDEAE KDEAE KDEAE KDEAE KYV.E
$\begin{array}{c} \text{CWB2}_{1} \\ \alpha_{3} \\ \alpha_{2} \\ \alpha_{2} \\ \alpha_{2} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \\ \alpha$	٩٩
VAS DIASENTA DILLISK DKLDSSVKS EIKR WINLKSDTGINTS KKVYLAGGVN VAS DIASENTA DILLISK DKLDSSVKSEIKR WINLKSDTGINTS VAS DIASENTA DILLISK DKLDSSVKSEIKR WINLKSDTGINTS VAS DIASENTA DILLISK DKLDSSVKSEIKR WINLKSDTGINTS VAS DIASENTA DILLISK DKLDSSVKSEIKR WINLKSDTGINTS VAS DIASENTA DILLISK DKLDSSVKSEIKR WINLKSTGINS VAS DIASENTA DILLISK DKLDSNVKSEIKR WINLKSTGINTS VAS DIASENTA DILLISK DKLDSNVKSEIKR WINLKSTTGINTS VAS DIASENTA DILLISK DKLDSNVKSEIKR WINLKSTTGINTS VAS DIASENTA DILLISK DKLDSSVKSEIKR WINLKNTTGINSK KVYLAGGVN VAS DIAAENTA DILLISK DKLDSSVKSEIKR WINLKNTTGINSK KVYLAGGNN	STSKKEREEDEED SSSIISKKEREEDEES SSSIISKKEREEDEES SSSIISKKEREEDEES SSSSIISKKEREEDEES SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
	A NKKADR A

Sequence alignment of representatives of each S-layer Cassete Type (SLCT) using CD630 as a reference. Secondary structural elements identified in the H/L CD630 complex (PDB ID: 7ACY) are indicated by looped lines – α-helices and arrows – β-sheets. SLP_L D1, D2 and LID domains and SLP_H HID domain and CWB2 motifs are highlighted, colored as in Fig. 1. Residues involved in the interactions depicted in Extended Data Fig. 4a are marked as per key, with interacting residues marked with the same color. Analysis of conservation of both residue and potential interaction across these SlpA variants is summarised in the clustermap in Extended Data Fig. 4b. Strictly conserved residues across all SLCTs are highlighted in black background, similar (partially conserved) groups are delimited by a box, with residues conserved within each group highlighted in bold, as per default in ESPript3¹ (http://espript.ibcp.fr). Reference **SLCT7 - strain CD630**; SLCT1 - strain 1912; SLCT2 - strain 0x858; SLCT3 - 0x1121; **SLCT4 - strain R20291**; SLCT5 - 0x1437a; SLCT6 - strain 19123; SLCT6/H2 - strain M120; **SLCT7b - R7404**; SLCT8 - 0x1396; SLCT9 - strain TL178; SLCT10 - strain Liv22; SLCT11 - strain 0x247; SLCT 12 - strain CD062; SLCT13 - strain 19142. Bold indicates strains with structural models included in this work.

1 Robert et al. Nucleic Acids Res. 42, W320–W324, 2014

	LID/HID	SLP _L /HID	H/L R7404 S-SAD	H/L R7404 ¹	H/L CD630	H/L R∆D2
Data collection						
Space group Cell dimensions	С2	С2	P21	P21	P1	P1
a, b, c (Å)	73.3, 56.7, 61.8	172.9, 29.5, 144.3	76.7, 134.7, 83.9	78.1, 137.9, 84.7	72.7, 78.3, 81.6	52.8, 80.4, 81.9
α, β, γ (°)	90.0, 122.7, 90.0	90.0, 94.2, 90.0	90.0, 100.8, 90.0	90.0, 100.7, 90.0	81.9, 67.0, 65.3	97.0, 90.2, 90.2
Wavelength (Å)	0.975	0.969	2.755	0.928	0.969	0.969
Resolution (Å)	41.74- 1.50 (1.55-1.50)	86.20-2.40 (2.49-2.40)	47.70-3.00 (3.16-3.00)	83.26-2.65 (2.75-2.65)	52.30-2.55 (2.65-2.55)	52.74-3.50 (3.63-3.50)
l/σl	8.1 (2.3)	5.5 (1.9)	16.5 (1.2)	12.0 (1.4)	7.0 (1.5)	10.0 (2.5)
CC1/2	0.998 (0.975)	0.979 (0.713)	0.998 (0.707)	0.712 (0.360)	0.992 (0.732)	0.616 (0.438)
Completeness (%) Redundancy	99 (97) 3.4 (2.6)	100 (100) 5.1 (5.2)	91 (80) 6.4 (6.1)	100 (100) 48.0 (43.0)	96 (97) 3.3 (3.4)	99 (97) 3.4 (3.5)
Anomalous completeness			91.2 (79.7)	ζ, γ	~ ,	
Anomalous multiplicity			3.3 (3.3)			
Refinement						
Resolution (Å)	41.74- 1.50	86.20-2.40		83.26-2.65	52.50-2.55	52.74-3.50
No. reflections	33987	29330		51027	47183	16607
Rwork / Rfree	18.1/21.0	25.2/30.1		22.6/27.8	23.0/25.7	28.4/31.4
No. atoms						
Protein	1709	3477		9945	10306	7890
Ligand/ion	-	-		40	15	5
Water	107	217		111	97	7
B-factors						
Protein	33.11	42.01		71.87	60.21	38.01
Ligand/ion	-	-		71.79	123.30	94.83
Water	37.55	39.32		59.43	45.98	8.48
Ramachandran %						
favoured	100.0	98.2		97.2	98.5	96.4
allowed (0.0	1.8		2.6	1.5	3.6
outliers (%)	0.0	0.00		0.4	0.00	0.0
R.m.s. deviations						
Bond lengths (Å)	0.009	0.005		0.007	0.007	0.006
Bond angles (°)	1.14	0.98		1.19	1.11	0.97
PDB ID	7ACW	7ACV		7ACX	7ACY	7ACZ

Table 1 - Data collection and refinement statistics

*Values in parentheses are for highest-resolution shell.

¹Two crystals were used to determine the structure of H/L complex R7404. All others required one crystal only.

Table 2 - EM data and reconstruction statistics

	SIpA _{r20291}	SIpA _{RΔD2}
3D merging statistics (EM reconstructions; negative staining)		
Resolution limit (Å)	20	20
No. structure factors	1085	667
Overall R-factor	0.33	0.33
Overall phase residual (°)	22.3	13.9
Phase residuals in CryoEM projections (p2-averaged Fourier terms)		
No. independent phases Resolution shell (Å) ∞ – 15 15 - 11 11 - 8.7 8.7 – 7.5	43 42 47 44	43 42 45
Mean value phase error [*] Resolution shell (Å) ∝ – 15 15 - 11 11 - 8.7 8.7 – 7.5	15.3 22.9 32.2 36.8	21.5 28.7 33.8
Standard error (°) Resolution shell (Å) ∞ – 15 15 - 11 11 - 8.7 8.7 – 7.5	2.4 2.8 3.6 3.9	3.5 4.1 3.6

*Mean value phase error against symmetry-imposed phase of 0° or 180° (45° is expected for random phases ¹).

Plane Group ¹	Phase residual (°) (random = 90°)	Target residual ² (°)
p1	27.0	-
p2*	37.5	39.7
p12b	77.6	29.8
p12a	55.1	29.8
p121b	57.2	29.8
p121a	51.0	29.8
c12b	77.6	29.8
c12a	55.1	29.8
p222	67.7	33.6
p2221b	52.7	33.6
p2221a	47.5	33.6
p2221a	62.2	33.6
c222	67.7	33.6
р4	46.8	33.6
p422	61.9	30.1
p4212	63.5	30.1
р3	52.5	27.0
p312	60.4	27.7
p321	63.0	28.5
р6	50.4	31.6
p622	58.1	29.3

Table 3 – Symmetry table for cryo-EM reconstruction of SIpAR20291

*Represents most likely plane group

¹a and b represent the respective symmetry axis for the plane group

²Target residual indicates the expected phase residual of each symmetry group based on the signal-tonoise ratio of the respective reflections ².

1 Bullough, P. A. & Henderson, R. Phase accuracy in high-resolution electron microscopy of trigonal and orthorhombic purple membrane. *Biophys J* 58, 705-711, doi:10.1016/S0006-3495(90)82413-9 (1990).

2 Valpuesta, J. M. a., Carrascosa, J. L. & Henderson, R. Analysis of electron microscope images and electron diffraction patterns of thin crystals of Ø29 connectors in ice. *Journal of Molecular Biology* **240**, 281-287, doi:10.1006/jmbi.1994.1445 (1994).