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ABSTRACT

MART (Micro-activity Retrieval Task) was a NTCIR-15 collabora-

tive benchmarking pilot task. The NTCIR-15 MART pilot aimed

to motivate the development of first generation techniques for

high-precision micro-activity detection and retrieval, to support

the identification and retrieval of activities that occur over short

time-scales such as minutes, rather than the long-duration event

segmentation tasks of the past work. Participating researchers devel-

oped and benchmarked approaches to retrieve micro-activities from

rich time-aligned multi-modal sensor data. Groups were ranked in

decreasing order of micro-activity retrieval accuracy using mAP

(mean Average Precision). The dataset used for the task consisted of

a detailed lifelog of activities gathered using a controlled protocol

of real-world activities (e.g. using a computer, eating, daydreaming,

etc). The data included a lifelog camera data stream, biosignal ac-

tivity (EOG, HR), and computer interactions (mouse movements,

screenshots, etc). This task presented a novel set of challenging

micro-activity based topics.
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1 INTRODUCTION

Extracting insightful or actionable information from personal sen-

sor data (lifelogs) holds promise to improve an individual’s pro-

ductivity, health, and enable new application domains that use

wearable sensor data [4, 5]. A core component of all these efforts

is the detection of human activities, which is a pre-requisite for

many lifelog applications. While activity segmentation approaches

have been widely explored on lifelog data [6], the approaches taken

have focused on identifying broad human activities of daily liv-

ing (e.g. walking, eating, resting). Less attention has been given to

micro-activities requiring high temporal precision, such as seman-

tic workplace activities (e.g. pondering a problem, or having a short

watercooler conversation), or information access/creation activities

(e.g. writing an email, searching on the WWW). The MART pilot

task aimed to motivate the development of a first generation of

techniques for high-precision micro-activity detection and retrieval

of micro-activities of daily living. This would support the identifi-

cation and retrieval of activities that occur over short time-scales,

such as minutes, rather than the long-duration event segmentation

tasks of the past work.

Segmentation of personal sensor data (lifelogs) into indexable

units is a key component of any functional lifelog retrieval system

[7]. Any retrieval or activity-support tools for lifelog data need

an accurate segmentation and retrieval model as a necessary un-

derlying component for many use-cases. Research in this space

heretofore has focused on temporal segmentation of macro rather

than micro-activities (or events) as the related datasets are typically

considered to be easier to collect and label. Existing experimental

paradigms group activities together into large retrievable units in a

process called event segmentation, which act as a blunt model for

retrieval in that the detected real-world events are unlikely to be

useful for many information retrieval challenges. It is our conjec-

ture that Activities of Daily Living (at the macro-level) are more

aligned with research into pervasive computing [18, 19], rather than

information retrieval. Micro-activities, however, are more aligned

with conventional information retrieval tasks and the proposed

use-cases of lifelogs [7]. The challenge of identifying and retriev-

ing micro-activities from multimodal data streams has heretofore

lacked a rigorous investigative focus, particularly when the data

is multi-modal involving bio-signals and other passively captured

media. Notably however, a number of research efforts have been

undertaken investigating a variety of sensor sources in isolation

for activity detection [2, 12, 21]. It is our prediction that retrieval

of micro-activities of daily life will be a key underlying mechanism

supporting the use of lifelogs/worklogs for workplace/productivity

enhancement, health-related applications and for personal produc-

tivity tools in general in the future [1, 14, 16].

In this paper, we describe a new pilot task, that released a novel

multi-modal micro-activity test collection for use by the IR com-

munity. Without running such a task, it is unlikely that many

research groups would focus on this activity because such rich mul-

timodal data is challenging to gather, understand and work with.

Hence, we proposed this pilot task to motivate the exploration of

new approaches supporting information access to micro-activities.

Participating teams developed and benchmarked approaches to

retrieve micro-activities from the rich time-aligned multi-modal

sensor dataset employed for the task. This dataset was collected

from individuals that followed a pre-defined protocol of real-world

activities (e.g. using a computer, solving a problem, drinking, clean-

ing, etc) in a controlled environment. This allowed for a wide range



NTCIR 15, 8-11 December 2020, Tokyo, Japan Healy et al.

of consistent behaviours across the volunteers to be induced (e.g.

reading, talking, etc). This was particularly important, as previous

efforts to use multi-modal sensor data for lifelog data have relied

upon the retroactive labelling of the collected data, which intro-

duces inherent errors and problems with assigning labels. By design,

this task did not require retrospective labelling, and in turn made

each volunteer consistent in the data that was generated. Similarly,

this enabled a large number of consistent induced micro-activities

to be captured.

2 DATASET COLLECTION

The datasets used in NTCIR-15 MART were captured by instru-

menting volunteers with a suite of multi-modal sensors alongside

capturing computer interactions (via Loggerman software1) as they

completed 20 pre-defined activities. The details of the protocol, the

sensor signals captured during each experiment and the released

data are detailed in this section.

2.1 Sensors Used

Each experimental volunteer (N=7) was equipped with a variety

of sensors for data recording that included: (A) a lifelog camera

capturing first-person perspective images at a rate of 2-3 images

per minute using an Autographer wearable digital camera (worn

on a lanyard), (B) EOG (Electrooculogram) capturing electrical sig-

nals associated with vertical (V-EOG) and horizontal (H-EOG) eye

movements (direction and time) via a NeuroElectrics bluetooth

amplifier, (C) heart rate via a pulse oximeter placed on the ear

lobule, (D) tri-axial accelerometer readings from 3 locations (left

forearm, right forearm and head) via a LSM9DS1 9DoF intertial

measurement unit2, and (E) detailed computer interaction using

the Loggerman software. All sensor data was captured such that it

could be accurately co-registered across time by using a common

data recording computer. The forearm accelerometer sensors were

attached to volunteers using customised Velcro straps. The Rasp-

berry Pi and battery pack was either kept in the volunteer’s pocket

or attached to their belt. Loose cables were secured using Velcro.

Volunteers reported that this setup did not restrict their movement

and they were in fact able to move freely as they would to complete

the activities.

2.2 Activity Structure

Each data collection session with a volunteer lasted approximately

three hours, where the volunteers completed a range of predefined

micro-activities (three repetitions of 20 different micro-activities)

in a controlled environment, as per a pre-defined data gathering

protocol, with variation in the sequencing of the different micro-

activities. This allowed for a wide range of consistent behaviours

across volunteers to be induced (e.g. reading, talking, etc). Each

activity was performed continuously for ninety seconds. The ex-

perimenter in each case guided volunteers on when to start and

when to stop an activity. In total data 420 activities (across the seven

volunteers) were recorded.

1http://loggerman.org/
2the heart rate and forearm accelerometer sensors were connected to a Raspberry
Pi 4 powered by a portable battery pack where readings were transmitted in real-
time over a wireless network to the data recording computer to ensure proper time
synchronisation.

The 20 activities completed by each volunteer in the ex-

periment were:

• Act01: Writing/replying to an email.

• Act02: Reading text on screen (news websites and articles

were not used).

• Act03: Editing a presentation on the computer.

• Act04: Zoning out while staring at a point in the room.

• Act05: Finance management (specifically using a calculator

to total numbers present on paper or screen).

• Act06: A physical precision task that required both hands

e.g. manipulating a circuit board.

• Act07: Document organisation where the subject needed

to organise A4 sheets into a particular order e.g. by page

number.

• Act08: Reading text on paper (written or printed).

• Act09: Counting/arranging physical currency (money).

• Act10: Writing with pen on paper e.g. on a blank sheet of

paper or writing notes with a pen on printed text.

• Act11: Watching a YouTube video.

• Act12: Browsing (any) news website.

• Act13: Having a conversation with another person in the

room (they could be directly facing this person or they might

be out of view in the room).

• Act14: Making a telephone call (holding a cellular phone

with either hand to their ear).

• Act15: Drinking/eating (eating or drinking anything).

• Act16: While seated, the subject closed their eyes and re-

frained from any movement for 90 seconds.

• Act17: Cleaning e.g. with a broom/hoover/cloth.

• Act18: Physical exercise. In this activity the subject was

instructed to repeatedly sit up-and-down from their chair.

• Act19: Hand-eye coordination activity. In this task the sub-

ject was instructed to use both hands to ‘play’ with a tennis

ball e.g. passing/throwing it between their hands.

• Act20: Walking/pacing around. In this task, the subject was

instructed to pace the room continuously.

2.3 Released Data and Resources

The released dataset consisted of two components:

(1) Training set: 66% (280 activities) of the dataset with a set of

training topic/activity descriptions.

(2) Test set: containing the remaining 33% (140 activities) and

test topic/activity descriptions. Ground truth labels were

withheld and used only by the organisers when evaluating

the submissions. One sample of each activity (20) for each

volunteer (7) was used for the test set.

Datasets were made available in a number of formats and con-

figurations to promote accessibility and use i.e. both aggregated

pre-processed data over the 90 second period for each activity and

raw sensor data was provided. A baseline system was also devel-

oped and freely shared with participating researchers in order to

provide a starting point fromwhich they can build their own system.

These are both detailed in the Appendix.
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Table 1: mAP (mean Average Precision) evaluation results

for the highest scoring submitted runper participating team.

"mAP (Best)" shows the highest mAP achieved in the formal

submission period by each team. *indicates a unique RunID

was not provided by the team for the submission.

Team Name mAP (Best) RunID Total runs

THUIR[11] 0.950 1 7

DCU[10] 0.901 9 10

NLP301[3] 0.851 * 10

UHAIK[20] 0.717 1,5 8

TMU19[13] 0.465 1 9

3 THE MART EVALUATION TASK

Groups participating in MART used the training data set to develop

their automatic or interactive system approaches. A withheld test

set was used in order to evaluate submissions. In total 7 groups

signed up to MART but only 5 groups submitted valid runs: THUIR

(Information Retrieval Group, Department of Computer Science

and Technology, Tsinghua University, China), DCU (Dublin City

University, Ireland), NLP301 (Department of Computer Science

and Information Engineering, National Taiwan University, Taiwan),

UHAIK (KDDI Research, University of Hyogo, Japan) and TMU19

(TMU-NLP, Taipei Medical University, Taiwan).

3.1 Evaluation Methodology

There were 140 activities in the test set (across all experimental vol-

unteers), thus each query result for submission provided a ranked

list of 140 activity id codes for that query. Since there were 20

queries in total (one for each activity), the submission provided

for each run by a participating team had 2,801 rows (first row was

for team id and the submission password). Submissions were made

using a HTTP GET/POST to an online evaluation system. AP (aver-

age precision) was computed on the ranked list submitted for each

query (in the order they were ranked in the submission), and the

mean of the APs was calculated across all queries (e.g. act01, act02,

act03). If a group made a submission with a ranked list for a query

that was less than 140 (say only for a ‘top 7’ for each activity), the

ranked list was extended to pad the difference (using the remaining

activity-prediction labels in a randomized order).

4 EVALUATION RESULTS

A wide variety of approaches were investigated by the 5 active

participating teams in MART. Notably, none the best ranked ap-

proaches used an interactive system, and instead relied on auto-

mated (machine-learning) methods to complete the task.

In Table 1, a ranked list is shown of the mAP (mean Average

Precision) evaluation results for the highest scoring submitted runs

per participating team. The first-ranked team (THUIR)[11] achieved

a mAP of .95 on the withheld test set where the approach in their

best submitted run used a combination of correlation-based feature

selection and a rule-based GBDT (Gradient Boosting Decision Tree)

classifier. The second-ranked team (DCU)[10] achieved a mAP of

.901 on the withheld test set where the approach for their best

Table 2: Average Precision evaluation results for the high-

est scoring submitted runs per participating team (per activ-

ity/topic). Note: THU=THUIR, TMU=TMU19, UHA=UHAIK,

NLPX=NLP301 and DCU=DCU.

Act ID THU DCU NLP UHA TMU Mean

Act01 1.000 0.825 1.000 0.909 0.494 0.846

Act02 0.845 0.581 0.802 0.705 0.130 0.613

Act03 1.000 1.000 0.921 0.770 0.757 0.890

Act04 0.816 0.606 0.632 0.675 0.601 0.666

Act05 1.000 1.000 0.920 0.706 0.225 0.770

Act06 1.000 1.000 1.000 0.765 0.456 0.844

Act07 0.982 1.000 0.897 0.426 0.848 0.831

Act08 0.810 1.000 0.913 0.623 0.367 0.743

Act09 0.933 1.000 1.000 0.706 0.475 0.823

Act10 1.000 1.000 1.000 0.820 0.912 0.946

Act11 0.982 1.000 0.871 0.620 0.098 0.714

Act12 0.884 0.877 1.000 0.403 0.036 0.640

Act13 1.000 1.000 1.000 0.732 0.445 0.835

Act14 0.962 0.660 0.573 0.413 0.501 0.622

Act15 1.000 0.837 0.675 0.957 0.934 0.881

Act16 0.812 0.638 0.336 0.522 0.211 0.504

Act17 0.982 1.000 0.848 0.824 0.913 0.913

Act18 1.000 1.000 0.868 0.847 0.323 0.808

Act19 1.000 1.000 0.908 0.968 0.460 0.867

Act20 1.000 1.000 0.846 0.948 0.106 0.780

Mean 0.950 0.901 0.851 0.717 0.465 0.777

submitted run used an Image-Tabular Pair-wise Similarity Model

(IT-PS). The third-ranked team (NLP301)[3] achieved a mAP of

.851 on the withheld test set, where the approach in their best

submitted run used a supervised-based model that incorporated

visual and biosignal features, along with a GRU network to capture

slight variations in user’s movements in the time-series data, and

RoI (Region of Interest) features to detect computer activities. The

fourth-ranked team (UHAIK)[20] achieved a mAP of .717, where the

approach in their best submitted run used Super-LCC for feature se-

lection and a SVM (Support Vector Machine). The fifth-ranked team

(TMU19)[13] achieved a mAP of .465, where the approach in their

best submitted run used a combination of image feature extraction

and a BiLSTM (Bidirectional Long Short-Term Memory). Further

details on the approaches explored by each team are available in

the task participant papers [3, 10, 11, 13, 20].

5 DISCUSSION

In Table 2, we show the average precision scores per activity/topic

for the best submission for each team. Taking the mean of the aver-

age precision scores per activity (for each team’s top performing

submission), it can be seen that some activities were more difficult

than others to correctly rank. For example, Act16 (closed eyes while

seated) had the worst performance, as this was a difficult activity

to correctly rank and distinguish from other activities. In Figure 1,

we can see Act16 (’closed eyes and sitting still’) was often confused

with Act02 (’reading text on screen’), Act04 (’zoning out’) and Act08
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Figure 1: Averaged confusionmatrix for best approach from

each of the 5 participating teams. The first 7 predictions in

the ranked list submitted for each activity were used to gen-

erate the plot. A perfect accuracy for all submissions for ac-

tivities across all teams would appear as a 7 along the diago-

nal.

Figure 2: The baseline system which offers free-text search,

displays activity’s autographer/screenshot images with cor-

responding metadata and allows interactive ordering to ar-

range activity type prediction.

(’reading text on paper’). Insights like these are important when

designing future tasks in order to guide the focus of participating

researcher’s efforts by posing difficult to classify activity/topics

that will encourage the development of techniques and models that

can successfully leverage multi-modal signal sources in tandem for

activity classification.

Another important observation from Table 2, is that while the

best submitted run per participating team may have performed

differently in terms of average precision across the activity/topics,

for sixteen of the twenty of these, at least one submitted run scored

perfect performance in terms of AP (i.e. AP=1). Only four activi-

ties/topics had a max performance (from the best submitted runs

per team) with an average precision less than 1, namely: Act02

(’reading text on screen’), Act04 (’zoning out’), Act14 (’telephone

call’) and Act16 (’closed eyes and sitting still’). This indicates there

is potential to combine the various approaches taken by different

teams into a unified solution that could achieve a greater overall

mAP for MART. Recalculating the mAP using the best average pre-

cision from the best submitted runs from teams for activities/topics,

this new overall mAP score would be .972.

6 CONCLUSION

Five teams submitted runs along with a paper to NTCIR-15 MART

although more teams signed up to participate. It is noteworthy that

none of the best submitted runs from a team used an interactive

system, and instead relied on automated techniques to automatically

perform the task using labelled example training data. Of the five

participating teams, the first-ranked team was THUIR [11] who

achieved a mAP of .95 on the withheld test set.

Given the success of MART, future versions of this task will focus

on developing a new larger dataset that incorporates more complex

and diverse human activities. In particular, further sensor sources

will be incorporated including EEG (Electroencephalography) as

has been used in the prior NTCIR-13 task NAILS [9], along with

data from other camera streams that will capture the environment

[15] and the participants’ facial expressions as they interact with

the computer [17]. Future versions of MART will also incorporate

an event segmentation task, where the time index and length of

activities are not already pre-identified, in combination with retriev-

ing activities of different time spans. Importantly, future versions of

MART will incorporate a subject-independent retrieval task where

unlike this pilot task, task participants will be required to build

systems that can retrieve activities where training data may not be

available for particular subjects.

In this paper we have described the creation of theMART dataset,

including a description of the motivation and reasoning behind its

construction. This was an initial pilot task for NTCIR-15, with a

focus on topic/activity detection from rich multi-modal data.

7 APPENDIX

7.1 Data Pre-processing

In order to lower the barrier for participation in MART, we provided

additional pre-processed metadata that included features extracted

from each sensor source used for an activity. These features were

by no means exhaustive and instead were intended to facilitate par-

ticipation. Since each sensor source captured discrete time-series

values for the time period of the activity, a set of summary statis-

tics were calculated for each activity’s time-series including: (A)

the minimum value, (B) the maximum value, (C) the median value,

(D) the mean value and (E) the standard deviation. As participat-

ing teams were provided with the raw signal data (e.g. sensor and

images) for each activity, they were able to generate additional
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summary statistics and features as they needed. Many participating

teams reported that they used these pre-processed features.

Summary statisticswere calculated on the pre-processed val-

ues for each sensor source:

Visual - Autographer - The ResNet101[8] pre-trained deep Con-

volutional Neural Network was used to extract predictions for 1,000

classes (ImageNet) on the Autographer images captured during the

activity. Pre-processed features (in the form of summary statistics)

were generated on the softmax values for each class over the time

period of the activity.

Heart Rate - Instantaneous heart rate values were extracted (1 Hz)

from the pulse oximeter signal using an approach based on signal

autocorrelation with a sliding window (4 seconds). The heart rate

for the window was calculated via the peak autocorrelative lag.

Acceleromator - X,Y and Z acceleromator readings from each sen-

sor were processed to extract the time-series magnitude values. A

gravity constant (of 1) was subtracted from the magnitude values.

Electroocugraphy - Raw HEOG and VEOG signals were band-

passed filtered between 2 Hz and 20 Hz in order to remove slow-

drift type artefacts in the signals.

LoggerMan - From the mouse movement data the pixel distance

travelled (via Euclidean distance), the time lag between mouse

movements and the instantaneous velocities were calculated, and

summary statistics were generated for each of these. Preprocessing

or feature extraction was not carried out on the LoggerMan screen-

shots.

Preprocessed features were provided in a csv file for each activity X

volunteer combination, which could be easily loaded using a data

manipulation tool such as python-pandas.

7.2 Baseline System

A baseline system was also provided to participating researchers,

which was intended to support data exploration while providing

the basis for a basic interactive search engine upon which task

participants could build their approach. The system comprised a

user interface and an API server which indexed the dataset based

on the semantic metadata (preprocessed features) as described in

section 7.1.

Task participants could use the baseline to easily navigate through

the dataset by executing a text query in the baseline system. By

doing this, one can investigate the dataset activity-by-activity and

recognise the differences between activities, as a way to help to

develop insights and design suitable approaches for the task. The

system presents the activities in blocks, each showing images from

the Autographer and LoggerMan screenshots, and corresponding

metadata, as shown in Figure 2.

The source code for the baseline system was made available

to the participants, and in particular to support the development

of interactive retrieval system approaches. It was intended that a

team would able to leverage the API server to return customised

results to the interface, where the interface already had a built-in

interactive ranking functionality allowing a user to easily adjust

their prediction order. The baseline system also had functionality

to generate a submission file that aggregated the prediction results

of all activities in test dataset for run submissions for MART.
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