
This is a repository copy of Schedulability Analysis for Adaptive Mixed Criticality Systems 
with Arbitrary Deadlines and Semi-Clairvoyance.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/167645/

Version: Accepted Version

Proceedings Paper:
Burns, Alan orcid.org/0000-0001-5621-8816 and Davis, Robert Ian orcid.org/0000-0002-
5772-0928 (2020) Schedulability Analysis for Adaptive Mixed Criticality Systems with 
Arbitrary Deadlines and Semi-Clairvoyance. In: 2020 IEEE Real-Time Systems 
Symposium (Proceedings). 2020 IEEE Real-Time Systems Symposium, 01-04 Dec 2020 . 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Schedulability Analysis for Adaptive Mixed

Criticality Systems with Arbitrary Deadlines and

Semi-Clairvoyance

Alan Burns

Department of Computer Science, University of York, UK.

Email: alan.burns@york.ac.uk

Robert I. Davis

Department of Computer Science, University of York, UK.

Email: rob.davis@york.ac.uk

Abstract—This paper provides analysis of the Adaptive Mixed
Criticality (AMC) scheduling scheme for mixed-criticality systems
that include tasks with arbitrary deadlines and semi-clairvoyant
behavior. An arbitrary deadline task is one that can have a
deadline that may be greater than its period. A semi-clairvoyant
task is one that upon arrival of each job, reveals which of
its two WCET parameters will be respected. This enables an
earlier switch to be made from the normal mode of operation
to the abnormal mode. The previously published schedulability
test AMC-max is modified to cater for both of these extensions.
Evaluation shows that there is a significant improvement in
schedulability for semi-clairvoyant tasks over non-clairvoyant,
and for arbitrary-deadline tasks over considering those deadlines
as being constrained by the task’s period.

I. INTRODUCTION

Since the publication of Vestal’s model [30] there has been a
significant number of papers published on the scheduling of
Mixed Criticality Systems (MCS); these are summarised in a
comprehensive survey [16] published in 2017, and in a more
up-to-date review [17]. Many of these papers focus on schemes
based on Fixed-Priority Preemptive Scheduling (FPPS). Within
FPPS schemes, Adaptive Mixed Criticality (AMC) [8] is
widely regarded as the most effective approach [24], and has
been built upon to take account of additional aspects including:
preemption thresholds [32], [33], deferred preemption [14],
multiple criticality levels [22], criticality-specific periods [9],
[31], weakly-hard timing constraints [23], probabilistic task
models [28], and context switch costs [18]. An exact analysis
for AMC has also been developed [3] for periodic task sets
with offsets.

In the original paper on AMC [8] two forms of response-
time analysis were introduced: AMC-max and a less precise,
but computationally more efficient scheme called AMC-rtb.
In this paper we extend the schedulability analysis for AMC-
max to include two important characteristics of a more general
model of MCS, namely: tasks with arbitrary deadlines that
may be greater than their periods1 and tasks that exhibit
semi-clairvoyant behaviour. While most extensions to AMC
have been analysed using extensions to AMC-rtb, the two
characteristics considered in this paper require the use of the
more precise analysis, AMC-max.

Arbitrary-deadline tasks cater for situations where there is
some leeway in when a task must execute. For example, a
consumer task that reads items from a buffer must, over a
long time interval, consume items at the same rate as they are

1A preliminary version of this analysis appeared in a workshop paper [15]
at WMC 2017.

produced; however, the task can have response times that are
longer than its period, provided that the buffer has sufficient
space to store unread items. A task set may be unschedulable
if deadlines are constrained to be less than or equal to task
periods, but may meet all of its time constraints if tasks are
permitted to have longer, (i.e. arbitrary) deadlines.

A defining property of a MCS is that there is more than
one estimate of a task’s Worst-Case Execution Time (WCET).
Prior work on mixed-criticality scheduling theory assumes that
the actual execution time of a given invocation or job of a task
is only revealed by actually executing that job. Which WCET
estimate applies therefore only becomes known when the job
either terminates or has executed for a considerable time. In the
semi-clairvoyant model it is instead assumed that upon arrival,
a job reveals which of its WCET parameters it will respect.
The semi-clairvoyant scheduler thus has access to some limited
information about the future behavior of the task.

The notion of Semi-Clairvoyance was introduced by
Agrawal et al. [2] as an intermediate step between an ordinary
Mixed-Criticality (MC) scheduler and a clairvoyant scheduler
that has access to all future behaviors. A fully clairvoyant
scheduler is an idealized abstraction that cannot be realized
in practice; it serves as an unobtainable upper bound on what
any real scheduler can possibly achieve. A semi-clairvoyant
scheduler is, by contrast, a practical possibility; it only requires
information as to which mode of operation each job of a
task will invoke, and only needs that information to be made
available when the job arrives.

Agrawal et al. [2], in their introduction to semi-
clairvoyance, focused on scheduling finite sets of jobs, rather
than on scheduling tasks (i.e. recurring jobs). They proved
a number of significant properties. It had been previously
shown [6] that determining whether a set of jobs is MC-
schedulable is intractable (NP-hard in the strong sense) and
that no MC-schedulable algorithm can have a speedup factor
smaller than

(√
5 + 1

)

/2 ≈ 1.618; a bound that is now
known to be tight [1]. This speedup factor is with respect
to a clairvoyant scheduler. Agrawal et al. [2] derived a semi-
clairvoyant scheduling algorithm (LPSC) with a speedup factor
of 3

2 = 1.5, which was shown to be tight. LPSC was proven
optimal, with schedulability determined in polynomial time.

In this paper we derive analysis for mixed-criticality tasks,
and demonstrate that significant improvements in schedulabil-
ity can be achieved via a semi-clairvoyant AMC approach.

There are a number of potential characteristics of MCS that
could benefit from the semi-clairvoyant model:

• System developers may provide alternative implemen-



tations of a task: upon arrival of a job, the task
knows which implementation to execute under the
given circumstances.

• The task may normally be expected to deal with up
to say 10 objects in an image, if on arrival it is
known that there are more than 10 objects then a larger
WCET estimate will apply.

• One or more tasks may have parameterised (by mode)
WCET estimates. On arrival of a job, the current mode
is known; for example, fault recovery modes may
require the execution of extra fault mitigation code.

In general, the benefit of the semi-clairvoyant approach arises
when the execution time of the task’s code depends on the
state of the system at the time the job arrives, rather than on
some internal property that emerges as it executes.

The remainder of the paper is organized as follows. Section
II outlines the standard MCS model. Section III recaps on the
extended form of response-time analysis for arbitrary-deadline
tasks under FPPS. Section IV reviews existing schedulability
analysis for the Adaptive Mixed Criticality (AMC) scheme,
assuming tasks with constrained deadlines. The two main
contributions of the paper are presented in Section V, which
introduces schedulability analysis for arbitrary-deadline tasks
under AMC, and Section VI, which introduces analysis for
constrained and arbitrary-deadline semi-clairvoyant tasks again
under AMC. Section VII addresses priority assignment, while
Section VIII explores the dominance relationships between
semi-clairvoyant and non-clairvoyant AMC scheduling. Sec-
tion IX evaluates the performance of the various schemes and
schedulability tests, including comparisons against prior work.
Section X concludes.

II. SYSTEM MODEL, TERMINOLOGY AND NOTATION

In this paper, we are interested in the fixed priority preemptive
scheduling of a single processor system comprising a static set
of n sporadic tasks. Each standard single-criticality task, τi, is
defined by its period or minimum inter-arrival time, relative
deadline, Worst-Case Execution Time (WCET), and unique
priority: (Ti, Di, Ci, Pi). Task deadlines may be arbitrary,
i.e. less than, equal to, or greater than their periods.

We assume that each task, τi, gives rise to a potentially
unbounded sequence of jobs, with the release of each job
separated by at least the minimum inter-arrival time from the
release of the previous job of the same task. The worst-case
response time of task τi is denoted by Ri and corresponds to
the longest response time from release to completion for any
of its jobs. For tasks with arbitrary deadlines, more than one
job of the same task may be active at any given time. Among
jobs of the same task, those released earlier are executed first.

A Mixed-Criticality System (MCS) is assumed to be de-
fined over two criticality levels, HI and LO. Each LO-
criticality task τj is assumed to have a single estimate of its
WCET: Cj(LO), while each HI-criticality task τk has two
estimates: Ck(HI) and Ck(LO), with Ck(HI) ≥ Ck(LO).
(Note we drop the task index when using these and other
terms in a generic way, but include the index when referring
to the parameters of a specific task). In addition to these
criticality-specific execution time values, MCS tasks also have
the standard parameters: Ti, Di, and Pi.

Most scheduling approaches for MCS identify different
modes of behavior. In the LO-criticality (or normal) mode,
all tasks execute within their C(LO) bounds and all deadlines

are required to be met. At all times LO-criticality tasks are
constrained by run-time monitoring to execute for no more
than their C(LO) bound. In contrast, if a HI-criticality task
executes for C(LO) without signalling completion then the
system enters the HI-criticality (or abnormal) mode. In this
mode only HI-criticality tasks are required to meet their
deadlines. HI-criticality tasks are assumed to execute for no
more than C(HI). The response time of a task τi in the
LO-criticality mode is denoted by Ri(LO) and in the HI-
criticality mode by Ri(HI).

The system is assumed to execute on a single processor.
The approaches developed are, however, applicable to multi-
processor platforms that employ partitioned scheduling.

III. EXISTING ANALYSIS FOR FPPS
In this section, we recap existing analysis for constrained-
deadline tasks (Di ≤ Ti) in a single criticality level system,
scheduled according to FPPS. The response time of each
task τi can be computed as follows (see [25], [5] for a full
derivation):

Ri = Ci +
∑

j∈hp(i)

⌈

Ri

Tj

⌉

Cj (1)

where hp(i) is the set of tasks with higher priority than τi.
This and all subsequent response time equations can be solved
via fixed-point iteration. In this case, iteration starts with a
value of Ri = Ci and continues until convergence or until the
computed response time exceeds the task’s deadline.

For tasks with arbitrary deadlines (Di ≥ Ti) it is possible
in a schedulable system that Ri ≥ Ti. It follows that there
can be more than one job of task τi active within the same
priority level-i busy period2; any of these jobs can give rise
to the worst-case response time for the task. We use q as an
index to denote each job within the busy period, with q = 0
indicating the first job. The finish time of each job of the task,
fi(q) (0 ≤ q ≤ p), as measured from the start of the busy
period, can be computed as follows (see [29], [26] for a full
derivation):

fi(q) = (q + 1)Ci +
∑

j∈hp(i)

⌈

fi(q)

Tj

⌉

Cj (2)

The last job in the busy period is denoted by p, which is the
first value where completion of the job occurs before the next
release of the task, i.e. where fi(p) ≤ (p+1)Ti. The response-
time of each job q is calculated as follows,

∀q,0≤q≤p : Ri(q) = fi(q)− qTi (3)

with the worst-case response time of the task given by:

Ri = max
∀q,0≤q≤p

{Ri(q)} (4)

This analysis for FPPS scheduling of tasks can be applied
to MCS by simply assuming that all HI-criticality tasks have
a single execution time of C(HI) and all LO-criticality tasks
have a single execution time of C(LO). Similarly, the more
complex analysis for tasks with arbitrary deadlines can be
ignored, and (1) applied, via the expedient of reducing the

2A priority level-i busy period is a continuous interval of time [t1, t2)
during which there is always some pending (i.e. uncompleted) workload of
priority i or higher that arrived during the interval, and strictly before t2.



relative deadline of any task with D > T so that D = T .
In subsequent sections, we derive analyses that significantly
outperform these simple approaches.

IV. EXISTING ANALYSIS FOR AMC
In this section, we recap existing analysis for Adaptive
Mixed Criticality (AMC) [8] scheduling. With AMC, if a
HI-criticality task executes for C(LO) without completing,
then the system enters the HI-criticality mode. Previously
released jobs of LO-criticality tasks may be completed, but
subsequent releases of LO-criticality tasks are not started.
Only HI-criticality tasks are required to be schedulable in the
HI-criticality mode; however, the LO-criticality mode may
be re-entered when the processor becomes idle, or indeed
earlier [11].

In the original paper on AMC [8], two sufficient schedula-
bility tests were developed. The first approach, called AMC-
rtb, takes account of a bound on the duration over which LO-
criticality tasks can interfere. The second, more precise ap-
proach, called AMC-max, determines the worst-case response
time by taking into account all possible times at which the
criticality mode change could occur. In order to accommodate
the requirements of arbitrary deadlines and semi-clairvoyant
scheduling we later build upon the analysis for AMC-max.

The AMC-max analysis first computes the worst-case re-
sponse time for each task τi in the LO-criticality mode:

Ri(LO) = Ci(LO) +
∑

τj∈hp(i)

⌈

Ri(LO)

Tj

⌉

Cj(LO) (5)

AMC-max then computes the worst-case response time
Rs

i (HI) of HI-criticality task τi, assuming a mode change at
time s, and then takes the maximum of these values over all
possible values of s. A formulation for Rs

i is constructed from
the different forms of interference that task τi can experience,

Rs
i (HI) = Ci(HI) + IL(s) + IH(s,Rs

i (HI)) (6)

where IL(s) is the interference from higher priority LO-
criticality tasks, and hence is only a function of s. IH(s, t)
is the interference from higher priority HI-criticality tasks,
and hence is a function of s and t; the latter being the length
of the priority level-i busy period, which here equates to the
response-time.

As jobs of higher priority LO-criticality tasks are prevented
from being released after the mode change at time s, their
worst-case interference is upper bounded by:

IL(s) =
∑

j∈hpL(i)

(⌊

s

Tj

⌋

+ 1

)

Cj(LO) (7)

where hpL(i) is the set of LO-criticality tasks with higher
priority than τi; similarly, in the following, hpH(i) is the set
of HI-criticality tasks with higher priority than τi.

IH(s, t) is defined by considering the number of jobs of
each higher priority HI-criticality task τk that can execute in a
priority level-i busy period of length t, with the mode change
taking place at time s, with s < t. Those jobs that have some
part of their execution after time s can contribute interference
of C(HI), with the remainder contributing C(LO).

The maximum number of jobs of τk with Dk ≤ Tk that
can fit into an interval of length t− s is bounded by:

⌈

t− s+Dk

Tk

⌉

(8)

Equation (8) follows from the fact that the latest a job of
task τk can execute is at its deadline, while the earliest that
subsequent jobs can execute is at their arrival times. Equation
(8) can be pessimistic; including more jobs than can actually
arrive in an interval of length t. This is taken into account by
defining:

M(k, s, t) = min

{⌈

t− s+Dk

Tk

⌉

,

⌈

t

Tk

⌉}

(9)

where M(k, s, t) is the maximum number of jobs of task τk
that can exhibit HI-criticality behavior in a busy period of
length t with a transition to the HI-criticality mode at time s.
The interference term for higher priority HI-criticality tasks
in an interval of length t thus becomes [8]:

IH(s, t) =
∑

k∈hpH(i)

⌈

t

Tk

⌉

Ck(LO) +

∑

k∈hpH(i)

M(k, s, t) (Ck(HI)− Ck(LO)) (10)

Hence the worst-case response time with a mode change at
time s is given by [8]:

Rs
i (HI) = Ci(HI) +

∑

j∈hpL(i)

(⌊

s

Tj

⌋

+ 1

)

Cj(LO) +

∑

k∈hpH(i)

⌈

Rs
i (HI)

Tk

⌉

Ck(LO) +

∑

k∈hpH(i)

M(k, s, t) (Ck(HI)− Ck(LO)) (11)

The worst-case response time of the task is then the maximum
over all possible values of s:

Ri(HI) = max
∀s,s<Ri(LO)

{Rs
i (HI)} (12)

Note, for consistency with the derivations provided in sub-
sequent sections, the terms in (9), (10) and (11) have been
simplified or re-arranged with respect to how they appear
in [8].

Finally, it is necessary to limit the number of values of s
that are considered from the range of all possible values. In
(11), the hpL term increases as a step function with increasing
values of s, while the hpH term decreases. It follows that
Rs

i (HI) can only increase at values of s corresponding to
multiples of the periods of LO-criticality tasks, hence these
are the only values of s that need to be considered. Further,
the mode change must occur by Ri(LO), otherwise either
task τi completes or is itself responsible for causing the mode
change at that time. If so, then any LO-criticality job arriving
at exactly Ri(LO) will not be allowed to execute, and hence
s is restricted in (12) to the interval [0,Ri(LO)) [8].

Note that the AMC-max analysis recapped above does not
assume a synchronous arrival sequence for all tasks, as that
would not necessarily result in the worst-case response time.
Rather, the analysis accounts independently for the maximum
interference that can occur in two time windows, the first
of length s representing LO-criticality mode, and the second
of length t − s representing HI-criticality mode. This same
basic approach is used in the derivation of further analyses in
subsequent sections.



V. ARBITRARY-DEADLINE ANALYSIS FOR AMC
In this section, we introduce1 AMC-max-Arb analysis for

arbitrary-deadline tasks scheduled according to AMC.
First, we consider each task τi in the LO-criticality mode.

Building on the analysis for arbitrary-deadline tasks under
FPPS [29], [26] (recapped in Section III), the length fLO

i (q)
of the priority level-i busy period in LO-criticality mode, up
to the completion of job q of τi, is given by:

fLO
i (q) = (q + 1)Ci(LO) +

∑

j∈hp(i)

⌈

fLO
i (q)

Tj

⌉

Cj(LO)

(13)
The worst-case response time of each job in the LO-criticality
mode is therefore given by:

∀q,0≤q≤p : RLO
i (q) = fLO

i (q)− qTi (14)

and the worst-case response time of the task in the LO-
criticality mode is given by:

Ri(LO) = max
∀q,0≤q≤p

{

RLO
i (q)

}

(15)

As with the analysis for FPPS, iteration over the values of q
ends at p, the smallest value such that fLO

i (p) ≤ (p + 1)Ti,
indicating that fLO

i (p) corresponds to the end of the priority
level-i busy period in the LO-criticality mode.

We now consider the worst-case response-time of HI-
criticality tasks in the HI-criticality mode (including the
transition to it). It turns out that the derivation, recapped in
Section IV for the constrained-deadline case, applies with
some simple adaptations.

First, we compute the completion time fs
i (q) of the qth job

of task τi when the mode change occurs at time s, as follows:

fs
i (q) = x ·Ci(HI)+y ·Ci(LO)+IL(s)+IH(s, fs

i (q)) (16)

where x is the number of HI-criticality jobs, and y is the
number of LO-criticality jobs and hence x + y = q + 1. The
values of x and y are determined below.

Following the same argument as the original AMC-max
analysis [8], recapped in Section IV, we need to determine an
upper bound IH(s, t) on the interference that HI-criticality
tasks such as τk can cause in a priority level-i busy period of
length t if the mode change occurs at time s, with s < t. To
do so, we maximize the number of jobs of τk still potentially
active at time s, as all of these jobs can contribute interference
of Ck(HI), while all other jobs of τk contribute Ck(LO). In
an interval of length t− s there can be at most

⌈

t− s+Dk

Tk

⌉

(17)

active jobs of τk.
Equation (17) is identical to (8) that caters for tasks with

D ≤ T . Since (9) and (10) are derived from (8), and otherwise
depend only on the values t and s, they are also applicable to
tasks with D > T . Thus, (16) can be used to compute fs

i (q),
with IH(s, fs

i (q)) given by (10) and IL(s), the upper bound
on interference from LO-criticality tasks, given by (7).

The maximum number, x, of jobs of the task under
analysis, τi, that contribute Ci(HI) can be derived in a similar
way to (9). Accounting for the fact that there are at most q+1
jobs of task τi in the busy period, we have:

x = min

(⌈

t− s+Di

Ti

⌉

, q + 1

)

and since the total number of jobs is q + 1,

y = q + 1− x

Note, when x is substituted into (16), the value of t is given
by fs

i (q).
The next step is to consider all possible values for s:

fHI
i (q) = max

∀s,s<fLO
i

(q)
{fs

i (q)} (18)

As with the previous AMC-max analysis [8], it is necessary
to limit the number of values of s that are considered in (18).
The contribution to fs

i (q) from HI-criticality tasks, IH(s, t),
given by (10) and also the contribution from task τi itself
are decreasing in s, while the contribution from LO-criticality
tasks is an increasing step function. It follows that fs

i (q) can
only increase at values of s corresponding to multiples of the
periods of LO-criticality tasks, hence again these are the only
values of s that need to be considered. Further, by the time
fLO
i (q) (given by (13)), either the busy period has ended or

job q of task τi causes the mode change itself, hence s can be
restricted to the interval [0,fLO

i (q)).
Each job’s response time is given by:

∀q,0≤q≤v : RHI
i (q) = fHI

i (q)− qTi (19)

where v is the smallest value such that fHI
i (v) ≤ (v + 1)Ti.

Finally, the worst-case response time is given by:

Ri(HI) = max
∀q,0≤q≤v

{

RHI
i (q)

}

(20)

If a value of q considered in (20), (19), and hence in (18),
exceeds the maximum number of jobs p that can be present
in a LO-criticality mode priority level-i busy period (where p
is the smallest value such that fLO

i (p) ≤ (p+ 1)Ti), then the
value fLO

i (p) is used in place of fLO
i (q) to limit the range

of values of s that are checked. This holds because fLO
i (p)

is the maximum possible continuous interval of LO-criticality
mode execution, after which there can only be either a mode
change (caused by job p of task τi) or an idle instant.

VI. ANALYSIS FOR SEMI-CLAIRVOYANT SCHEDULING

In this section we develop analysis for mixed-criticality task
systems scheduled according to the rules for semi-clairvoyant
scheduling, as stated below:

• A job is defined as normal if it can execute for
no more than C(LO), otherwise it is defined as
abnormal and can execute for no more than C(HI).
Note, LO-criticality tasks are assumed to generate
only normal jobs, whereas HI-criticality tasks can
generate both normal and abnormal jobs.

• If all jobs that have arrived since the last idle instant
are normal then the mode of the system is normal;
otherwise it is abnormal.

• When normal mode applies, jobs of both LO-
criticality and HI-criticality tasks must meet their
deadlines.

• When abnormal mode applies, jobs of HI-criticality
tasks must still meet their deadlines; however, jobs
of LO-criticality tasks are not required to meet their
deadlines.

• On arrival, each job indicates to the scheduler whether
it is normal or abnormal.



Note a job’s actual execution time is not known before it
completes execution, all that is known is whether the job is
normal or abnormal, and hence whether a mode change is
required. The scheduler can therefore initiate a mode change at
the time the job arrives, rather than waiting until its execution
time reaches the C(LO) bound. With the semi-clairvoyant
AMC scheme, jobs of LO-criticality tasks that arrive during
abnormal mode are not executed.

The task’s indication must be safe, if a job declares that it is
normal but subsequently executes for more than C(LO), then
the analysis developed below would be invalid. However, a
job that indicates that it is abnormal, but then completes with
an execution time of less than C(LO) does not invalidate the
analysis. Both the job and the mode are abnormal, irrespective
of the fact that an abnormal job may sometimes complete in
less than C(LO).

In terms of implementation, the above rules mean that
the semi-clairvoyant AMC model does not necessarily require
execution time monitoring. For reasons of fault tolerance,
however, the implementation may be required to ensure that no
LO-criticality task executes for more than C(LO), and no HI-
criticality task executes for more than C(HI). The absence
of the requirement to identify when a HI-criticality task has
executed for more than C(LO) simplifies the implementation
of semi-clairvoyant AMC scheduling, compared to the non-
clairvoyant case, potentially reducing its run-time overheads.

The following two subsections introduce analysis for semi-
clairvoyant AMC scheduling. First, for constrained-deadline
task sets we have AMC-sem, which builds on the existing
AMC-max analysis, recapped in Section IV. Second, for
arbitrary-deadline task sets, we have AMC-sem-Arb, which
builds on the new analysis for arbitrary-deadline tasks sets
with non-clairvoyant behavior introduced in Section V.

A. Analysis for Semi-Clairvoyant Constrained-Deadline Tasks

For constrained-deadline tasks, considering normal mode, the
worst-case response time for all tasks is given by (5), as in the
non-clairvoyant case.

To analyse the response time of a HI-criticality task τi
in abnormal mode (including the transition to it), we again
consider a priority level-i busy period that starts at time 0,
ends at time t, and has a mode change at time s, with s < t.

We begin by considering the interference, IL(s), in the
busy period from higher priority LO-criticality tasks, and
similarly the interference, IH(s, t), from higher priority HI-
criticality tasks. Semi-clairvoyant scheduling causes no change
to the interference from LO-criticality tasks in the interval
[0, s], thus IL(s) is again given by (7). There are, however,
differences in the interference, IH(s, t), generated by higher
priority HI-criticality tasks. These tasks can release normal
jobs that arrive before s and execute for a maximum of C(LO),
and abnormal jobs that arrive at or after s and execute
for a maximum of C(HI). Unlike in the non-clairvoyant
case, no job that arrives before s can execute for more than
C(LO), even if some of its execution takes place after s. Since
abnormal jobs contribute a larger amount of interference, we
maximize the number of these jobs in the interval from [s, t).
IH(s, t) can thus be bounded by assuming interference of
C(LO) for the maximum number of jobs that arrive in the
interval [0, t), plus an extra C(HI)−C(LO) for the maximum
number of jobs that can arrive at or after s, i.e. in the interval
[s, t), hence:

IH(s, t) =

∑

j∈hpH(i)

(⌈

t

Tj

⌉

Cj(LO) +

⌈

t− s

Tj

⌉

(Cj(HI)− Cj(LO))

)

(21)
To derive the worst-case response time, we consider two

distinct cases for the HI-criticality task τi under analysis:

Case 1: Task τi gives rise to a normal job that executes for,
at most, Ci(LO). In this case, the worst-case response
time occurs when the job arrives at time 0. (If the job
arrived later within the busy period, then it would finish
at the same time, but its response time would be smaller).
Here, a job of some other HI-criticality task is assumed
to arrive at time s and trigger the mode change.

Case 2: Task τi gives rise to an abnormal job that executes
for Ci(HI). By definition of time s, this job arrives no
earlier than s. In this case, the worst-case response time
occurs when the job arrives at time s and causes the mode
change. (If the job arrived later within the busy period
than time s, then it would finish at the same time, but its
response time would again be smaller).

Note in Case 2 it is still necessary to compute the busy period
starting from time 0, rather than from time s when the job
of task τi arrives. This is because jobs of LO-criticality tasks
with higher priorities may “push” jobs of other HI-criticality
tasks that arrive before time s into executing after time s, thus
causing extra interference on task τi, increasing its response
time. If this occurs, then these jobs of HI-criticality tasks will
nevertheless only execute for a maximum of C(LO), since
they are normal jobs that arrive before time s.

The two cases impose different constraints on the values
of s that need to be considered.

In Case 1, as with AMC-max analysis for non-clairvoyant
scheduling recapped in Section IV, only values of s that
correspond to the arrival times of higher priority LO-criticality
tasks in the interval [0, Ri(LO)) need be checked. Here, any
value of s greater than or equal to Ri(LO) would mean that τi
had already completed execution (of its normal job) before the
mode change could happen, with a worst-case response time
of Ri(LO) that is already accounted for via analysis of the
normal mode.

In Case 2, since task τi arrives at time s, we need only
check values of s that correspond to the arrival times of higher
priority LO-criticality tasks in the interval [0, Si(LO)), where
Si(LO) corresponds to the worst-case start time of task τi in
normal mode. Here, any value of s greater than or equal to
Si(LO) would mean that at some point in the interval [0, s],
the busy period ended (i.e. there was no pending execution
left), and hence the interval [0, t) is not a valid busy period
that needs to be considered. Si(LO) can be determined as
follows [13]:

Si(LO) =
∑

τj∈hp(i)

(⌊

Si(LO)

Tj

⌋

+ 1

)

Cj(LO) (22)

The two cases give rise to re-formulations of (6) from the
original AMC-max analysis [8].

∀s,s≤Ri(LO) • Rs
i (HI)1 = Ci(LO)+IL(s)+IH(s,Rs

i (HI)1)
(23)

∀s,s≤Si(LO) • Rs
i (HI)2 = Ci(HI)+IL(s)+IH(s,Rs

i (HI)2)
(24)



where IL(s) is given by (7), and IH(s, t) is given by (21).

In Case 2, although the busy period starts at time 0, task τi
arrives no earlier than time s, and hence its worst-case response
time is given by Rs

i (HI)2−s. It follows that the overall worst-
case response time for task τi in abnormal mode is given by:

Ri(HI) =

max

{

max
s,s≤Ri(LO)

{Rs
i (HI)1} , max

s,s≤Si(LO)
{Rs

i (HI)2 − s}
}

(25)

where Rs
i (HI)1 is defined as follows by substituting IL(s)

from (7), and IH(s, t) from (21), into (23):

Rs
i (HI)1 = Ci(LO) +

∑

j∈hpL(i)

(⌊

s

Tj

⌋

+ 1

)

Cj(LO) +

∑

j∈hpH(i)

⌈

Rs
i (HI)1
Tj

⌉

Cj(LO) +

∑

j∈hpH(i)

⌈

Rs
i (HI)1 − s

Tj

⌉

(Cj(HI)− Cj(LO))

(26)

Rs
i (HI)2, defined in (24), expands in a similar way, with

Ci(HI) in the first line instead of Ci(LO).

B. Analysis for Semi-Clairvoyant Arbitrary-Deadline Tasks

In this section we combine the two main extensions introduced
in this paper: analysis for arbitrary-deadline tasks given in Sec-
tion V, and analysis for semi-clairvoyant constrained-deadline
tasks given in Section VI-A.

For semi-clairvoyant arbitrary-deadline tasks, considering
the normal mode, the worst-case response time for all tasks
is given by (15), as in the non-clairvoyant case.

To analyse the response time of a HI-criticality task τi in
abnormal mode (including the transition to it) we consider
priority level-i busy periods that start at time 0, end at some
time t, and have a mode change at time s, with 0 ≤ s < t.
In the arbitrary-deadline case, we need to consider a number
of jobs of task τi. Recall that we use q as the index to denote
each job within the busy period, with q = 0 indicating the first
job. In total, there are q+1 jobs of task τi in the busy period.
The maximum number of abnormal jobs is denoted by x and
the number normal jobs by y, with x+ y = q+1. The values
for x and y are determined below.

We begin by considering the interference, IL(s), from
higher priority LO-criticality tasks, and similarly the inter-
ference, IH(s, t), from higher priority HI-criticality tasks.
Since these terms do not depend on the parameters or jobs
of task τi, they are given by the same formulation used in the
semi-clairvoyant constrained-deadline case, i.e. IL(s) is given
by (7), and IH(s, t) is given by (21). Building on (26), we
therefore have the following formula for the length, fs

i (q), of
the busy period up to the completion of job q of task τi.

fs
i (q) = x · Ci(HI) + y · Ci(LO) +

∑

j∈hpL(i)

(⌊

s

Tj

⌋

+ 1

)

Cj(LO) +

∑

j∈hpH(i)

⌈

fs
i (q)

Tj

⌉

Cj(LO) +

∑

j∈hpH(i)

⌈

fs
i (q)− s

Tj

⌉

(Cj(HI)− Cj(LO))

(27)

To derive the worst-case response time for job q of HI-
criticality task τi with a mode change at time s, we again make
a case distinction:

Case 1: All jobs of task τi in the busy period are normal
jobs that execute for Ci(LO). In this case, the worst-case
response time for job q occurs when the first of these job
arrives at time 0, and subsequent jobs of task τi arrive as
early as possible thereafter. (If the jobs arrived later, but
still within the busy period, then job q would finish at
the same time, but its response time would be smaller).
Here, a job of some other HI-criticality task is assumed
to arrive at time s and trigger the mode change.

Case 2: At least one job of task τi is an abnormal job that
executes for Ci(HI). By definition of time s, this job
arrives no earlier than s.

Case 1: Every job of task τi contributes Ci(LO), hence we
have x = 0 and y = q + 1. The next step for job q is to
consider all possible values for s:

fHI
i (q)1 = max

∀s,s<fLO
i

(q)
{fs

i (q)} (28)

As with the arbitrary-deadline analysis for the non-clairvoyant
case, it is necessary to limit the number of values of s that
are considered in (28). The contribution to fs

i (q) (given by
(27)) from HI-criticality tasks is decreasing in s, while the
contribution from LO-criticality tasks is an increasing step
function. It follows that fs

i (q) can only increase at values of
s corresponding to multiples of the periods of LO-criticality
tasks, hence again these are the only values of s that need
to be considered. Further, given that in this case all jobs of
τi are normal jobs, then if there is no mode change by time
fLO
i (q) (given by (13)) then job q of task τi will have already

completed execution in normal mode, and hence s can be
restricted to the interval [0,fLO

i (q)).
Each job’s response time is given by:

∀q,0≤q≤v : RHI
i (q)1 = fHI

i (q)1 − qTi (29)

where v is the smallest value such that fHI
i (v)1 ≤ (v + 1)Ti.

Finally, the worst-case response time for Case 1 is given by:

Ri(HI)1 = max
∀q,0≤q≤v

{

RHI
i (q)1

}

(30)

If a value of q considered in (30), (29), and hence in (28),
exceeds the maximum number of jobs p that can be present
in a normal mode priority level-i busy period (where p is the
smallest value such that fLO

i (p) ≤ (p+ 1)Ti), then the value
fLO
i (p) is used in place of fLO

i (q) to limit the range of values
of s that are checked in (28). This holds because fLO

i (p) is
the maximum possible continuous interval of normal mode



execution, after which there must be an idle instant (given that
all jobs of task τi in the busy period are normal jobs). Thus
any value of s ≥ fLO

i (p) implies that there is an idle instant
in the interval [0, t) and hence the interval [0, t) is not a valid
busy period that needs to be considered.

Case 2: The number of normal and abnormal jobs of task
τi are dependent on the values of s, t, and q. Further, by the
case distinction, at least one job must be an abnormal job. In
the following, we maximize the number of abnormal jobs for
the given values of s and t, in order to obtain the worst-case
response time for job q.

The total number of jobs of task τi considered in the
busy period is q + 1, at least one of which is abnormal. The
maximum number x of abnormal jobs is therefore given by:

x = max

{

1,min

(⌈

t− s

Ti

⌉

, q + 1

)}

and the corresponding number of normal jobs is given by:

y = q + 1− x

Note, when x is substituted into (27), the value of t is given
by fs

i (q).
Next, all necessary values of s are considered:

fHI
i (q)2 = max

∀s,s<SLO
i

(q)
{fs

i (q)} (31)

As with Case 1, it is necessary to limit the number of values
of s that are considered in (31). The contribution to fs

i (q) from
HI-criticality tasks, including τi, is decreasing in s, while
the contribution from LO-criticality tasks is an increasing step
function. It again follows that fs

i (q) can only increase at values
of s corresponding to multiples of the periods of LO-criticality
tasks, hence these are the only values of s that need to be
considered.

By the case distinction, at least one job of task τi is
abnormal, hence in (31) we need only check values of s in
the interval [0, SLO

i (q)), where SLO
i (q) is the latest possible

start time of job q of task τi in normal mode given by the
following equation (derived from the analysis in [13]):

SLO
i (q) = qCi(LO) +

∑

j∈hp(i)

(⌊

SLO
i (q)

Tj

⌋

+ 1

)

Cj(LO)

(32)
Any value of s greater than or equal to SLO

i (q) would mean
that at some point in the interval [0, s], prior to the start of job
q of τi, the busy period ended and hence the interval [0, t) is
not a valid busy period that need be considered.

Each job’s response time is given by:

∀q,0≤q≤v : RHI
i (q)2 = min

{

fHI
i (q)2 − qTi, f

HI
i (q)2 − s

}

(33)
where v is the smallest value such that fHI

i (v)2 ≤ (v + 1)Ti.
Note that by the case distinction, at least one job of task τi is
abnormal, it therefore follows that the final job q cannot be
released prior to time s, and hence its response time is given
by the minimum of the two terms in (33).

The worst-case response time for Case 2 is given by:

Ri(HI)2 = max
∀q,0≤q≤v

{

RHI
i (q)2

}

(34)

If a value of q considered in (34), (33), and hence (31) exceeds
the maximum number of jobs p that can be present in a normal

mode priority level-i busy period (where p is the smallest value
such that fLO

i (p) ≤ (p+ 1)Ti and fLO
i (p) is given by (13)),

then the value SLO
i (p) is used in place of SLO

i (q) in (31) to
limit the range of values of s that are checked. This holds
because SLO

i (p) is the maximum possible continuous priority
level-i busy period of normal mode execution prior to starting
any job of task τi. Thus, for any value of s ≥ SLO

i (p) it follows
that there is some idle instant in the interval [0, t) and hence
that interval is not a valid busy period.

Combining Case 1 and Case 2: The overall worst-case re-
sponse time is given by combining (30) and (34).

Ri(HI) = max {Ri(HI)1, Ri(HI)2} (35)

VII. PRIORITY ASSIGNMENT

To maximize schedulability it is necessary to assign task pri-
orities in an optimal way [20]. For arbitrary-deadline task sets
scheduled under FPPS, and for constrained-deadline mixed-
criticality task sets scheduled under AMC and analysed using
AMC-max, it is known [8] that an optimal priority ordering can
be obtained via Audsey’s Optimal Priority Assignment (OPA)
algorithm [4].

It is proved in [19] that it is both sufficient and necessary
to show that a schedulability test meets three simple conditions
in order for Audlsey’s OPA algorithm to be applicable. These
three conditions require that schedulability of a task according
to the test is (i) independent of the relative priority order of
higher priority tasks, (ii) independent of the relative priority
order of lower priority tasks, (iii) cannot get worse if the task
is moved up one place in the priority order (i.e. its priority
is swapped with that of the task immediately above it in the
priority order).

We observe that these three conditions hold for the new
analyses derived for arbitrary-deadline task sets scheduled
under AMC (Section V), as well as for both constrained-
deadline and arbitrary-deadline task sets scheduled using semi-
clairvoyant AMC (Section VI), and thus Audsley’s OPA algo-
rithm is applicable.

VIII. DOMINANCE RELATIONSHIPS

In this section, we prove dominance relationships between
the analyses for semi-clairvoyant and non-clairvoyant mixed
criticality scheduling.

Definition 1. A schedulability test A dominates a schedu-
lability test B (denoted by A → B) if all task sets that
are schedulable according to test B are also schedulable
according to test A, and there exists at least one task set that
is schedulable by test A, but not by test B.

Theorem 1. The AMC-sem analysis dominates AMC-max.

Proof: First, we note that the analysis for LO-criticality
mode / normal mode is the same for both AMC-sem and
AMC-max, and is given by (5). Thus, to prove dominance,
we need only consider the analysis for HI-criticality mode
/ abnormal mode and the transition to it. Further, in both
cases, the analyses of HI-criticality mode / abnormal mode
are equivalent to considering all possible values for s. Hence,
without loss of generality, we can ignore the range of values
that s may take, and focus on proving dominance for any
arbitrary value of s (i.e. 0 ≤ s < t).



In order to ease comparison with AMC-max (12), we
simplify AMC-sem (25), forming a more pessimistic inter-
mediate schedulability test AMC-sem2 that is by construction
dominated by AMC-sem. AMC-sem2 is given by:

Ri(HI) = max
s,s≤Ri(LO)

{Rs
i (HI)2}

with Rs
i (HI)2 given by (26), with Ci(HI) in the first line

instead of Ci(LO). Since Rs
i (HI)2 ≥ Rs

i (HI)1 (see (26)),
and Ri(LO) ≥ Si(LO) (see (5) and (22)), it follows that the
response time given by AMC-sem2 is never less than that given
by AMC-sem, and hence AMC-sem dominates AMC-sem2.

Finally, to prove the theorem, we show that AMC-sem2
dominates AMC-max. To transform the analysis for AMC-
max, i.e. (11) into that given above for AMC-sem2, we need

only replace M(k, s, t) with
⌈

t−s
Tk

⌉

. Since

M(k, s, t) = min

{⌈

t− s+Dk

Tk

⌉

,

⌈

t

Tk

⌉}

≥
⌈

t− s

Tk

⌉

it follows that AMC-sem2 dominates AMC-max, and hence
AMC-sem dominates AMC-max. Strict inequalities are re-
quired in the above equation for dominance rather than equality
of AMC-sem versus AMC-max, however, these trivially occur
for valid parameter settings.

Theorem 2. The AMC-sem-Arb analysis dominates AMC-
max-Arb.

Proof: First, we note that the analysis for LO-criticality
mode / normal mode is the same for both AMC-sem-Arb
and AMC-max-Arb, and is given by (15). Thus, to prove
dominance, we need only consider the analysis for HI-
criticality mode / abnormal mode, including the transition to
it. Further, in both cases, the analyses of HI-criticality mode
/ abnormal mode are equivalent to considering all possible
values for s and all possible values for q. Hence, without loss
of generality, we can ignore the range of values that s and q
may take, and focus on proving dominance for any arbitrary
value of s (0 ≤ s < t) and q (q ≥ 0).

In order to ease comparison with AMC-max-Arb (20),
we simplify AMC-sem-Arb (35), forming a more pessimistic
intermediate schedulability test AMC-sem-Arb2 that is by
construction dominated by AMC-sem-Arb. AMC-sem-Arb2 is
formed from the analysis for AMC-sem-Arb as follows: First,
we remove the second term from the min() in (33), thus we
have RHI

i (q)2 = fHI
i (q)2−qTi. Second, we increase the range

of values of s considered in (31) to fLO
i (q) from SLO

i (q).
Now comparing fHI

i (q)2 with fHI
i (q)1 in (28), we note that

fHI
i (q)2 ≥ fHI

i (q)1, since x = 0 in fHI
i (q)1 whereas x ≥ 1

in fHI
i (q)2. Hence, we can eliminate any consideration of

fHI
i (q)1 and RHI

i (q)1 in AMC-sem-Arb2, simplifying the
entire schedulability test to:

x = max

{

1,min

(⌈

t− s

Ti

⌉

, q + 1

)}

y = q + 1− x

fHI
i (q)2 = max

∀s,s<fLO
i

(q)
{fs

i (q)}

Ri(HI) = max
∀q,0≤q≤v

{

fHI
i (q)2 − qTi

}

Finally, to prove the theorem, we show that AMC-sem-Arb2
dominates AMC-max-Arb. To transform the analysis for AMC-
max-Arb (i.e. (16) to (20)) into that for AMC-sem-Arb2 given
above, we need only replace the value of x given by

x = min

(⌈

t− s+Di

Ti

⌉

, q + 1

)

with

x = max

{

1,min

(⌈

t− s

Ti

⌉

, q + 1

)}

since the former is greater than or equal to the latter (given
Di > 0), it follows that the response time given by AMC-max-
Arb is never less than that given by AMC-sem-Arb2. Since
AMC-sem-Arb dominates AMC-sem-Arb2, in follows that
AMC-sem-Arb dominates AMC-max-Arb. Strict inequalities
are required between the above equations for x for dominance
rather than equality of AMC-sem-Arb versus AMC-max-Arb,
and trivially occur for valid parameters.

IX. EVALUATION

In this section, we present an empirical evaluation of the
schedulability tests introduced in this paper for mixed-
criticality tasks. Two groups of experiments were performed.
The first group focused on task sets with constrained deadlines
(Section IX-B) and the second group on task sets with arbitrary
deadlines (Section IX-C).

A. Task set parameter generation
The task set parameters used in our experiments followed the
approach described in [8], and were randomly generated as
follows:

• Task utilizations (Ui = Ci/Ti) were generated using
UUnifast [12], providing an unbiased distribution.

• Task periods Ti were generated according to a log-
uniform distribution [21] with a factor of 100 differ-
ence between the minimum and maximum possible
period. This represents a spread of task periods from
10ms to 1 second, as found in many real-time appli-
cations.

• Task deadlines Di were set equal to task periods Ti

for the group of experiments on constrained-deadline
task sets, and were generated according to a log-
uniform distribution in the range [0.25, 4.0]Ti for the
experiments on task sets with arbitrary deadlines.

• The LO-criticality execution time of each task was
given by: Ci(LO) = Ui · Ti.

• The HI-criticality execution time of each task was
given by: Ci(HI) = CF · Ci(LO) where CF is the
Criticality Factor, default CF = 2.0.

• The probability that a generated task was of HI-
criticality was given by the Criticality Proportion,
default CP = 0.5.

In our experiments, the task set utilization was varied from
0.05 to 0.953. For each utilization value, 10000 task sets were
generated, (1000 in the case of experiments using the weighted
schedulability measure [10]). The default cardinality of the task
sets was 20. Note, the graphs are best viewed on-line in colour.

In some figures, we show the weighted schedulability
measure Wy(p) [10] for each schedulability test y as a function
of some parameter p. For each value of p, this measure

3Utilization here is computed using the C(LO) values only.



combines results for all of the task sets τ generated for all
of a set of equally spaced utilization levels (0.05 to 0.95 in
steps of 0.05). Let Sy(τ, p) be the binary result (1 or 0) of
schedulability test y for a task set τ with parameter value p:

Wy(p) = (
∑

∀τ

u(τ) · Sy(τ, p))/
∑

∀τ

u(τ) (36)

where u(τ) is the utilization of task set τ .
The weighted schedulability measure reduces what would

otherwise be a 3-dimensional plot to 2 dimensions [10].

B. Experiments with constrained-deadline task sets

The experiments on constrained-deadline task sets investigated
the performance of the following schedulability tests:

(i) Clairvoyant: This test checks (using exact analysis of
FPPS [25], [5]) if all of the tasks are schedulable in
normal mode and if all of the HI-criticality tasks are
schedulable in abnormal mode with no LO-criticality
tasks executing. It ignores the mode switch, since the
clairvoyant scheduler knows for any given run of the
system whether the abnormal mode will be entered or
not, and hence whether it needs to execute any jobs of
LO-criticality tasks. This test provides an upper bound
on the performance of any fixed-priority fully-preemptive
scheduling scheme for mixed-criticality tasks. (We note
that clairvoyant corresponds to the UB-H&L necessary
test discussed in prior work [8]).

(ii) AMC-sem: introduced in Section VI.
(iii) AMC-max: defined in [8], and recapped in Section IV.
(iv) SMC: Static Mixed Criticality [7]: extends Vestal’s origi-

nal approach [30] with run-time monitoring. Under SMC,
LO-criticality tasks continue to be released and to execute
in HI-criticality mode; however, they are not required to
meet their deadlines in that mode.

(v) FPPS: Standard response time analysis for FPPS defined
in [25], [5]. This test requires that both LO-criticality
and HI-criticality tasks are schedulable in both modes.

In each case, Audsley’s Optimal Priority Assignment (OPA)
algorithm [4] was used to assign priorities, ensuring an optimal
assignment with respect to each schedulability test.

Figure 1 shows the percentage of task sets generated that
were deemed schedulable by each of the above schedulability
tests with the default parameters as described in Section IX-A.
The dominance relationships between the schedulability tests
are evidenced by the lines on the graph.

Observe that AMC-sem outperforms AMC-max by a sig-
nificant margin, roughly halving the difference in performance
between the theoretical and un-achievable Clairvoyant sched-
uler and AMC-max. This key observation is borne out in the
following figures showing how the weighted schedulability
measure varies with different task set parameters. Note, in each
of the weighted schedulability experiments the default settings
given in Section IX-A were used for all of the parameters that
were held constant.

Figure 2 shows the results of varying the Criticality Factor
(CF = C(HI)/C(LO), from 1.0 to 5.5. Observe that at very
low and very high values of CF , all of the mixed-criticality
scheduling policies and tests have similar performance. This
is because at low values of CF , schedulability is dominated
by the behavior in normal mode, while at high values it is
dominated by the behavior in the abnormal mode. In between,

the behavior and analysis of the mode change transition
becomes important and the differences between the mixed-
criticality scheduling policies and analyses becomes apparent.

Figure 3 shows the results of varying the proportion of HI-
criticality tasks from 5% to 95%. Observe, that if all of the
tasks were LO-criticality, or all were HI-criticality, then all of
the schedulability tests would have the same performance. The
largest differences occur when the proportion of HI-criticality
tasks is in the range 30% to 70%.

Figure 4 illustrates the impact of task set cardinality (varied
from 4 to 60) on schedulability test performance. In this
experiment, we fixed the number of HI-criticality tasks at
exactly 50% of the total, rather than using a probability of 0.5
that each task would be HI-criticality. This was done to avoid
a skew in the results for low numbers of tasks. For example,
with 4 tasks, there would otherwise be a 1 in 8 chance that
all tasks would be LO-criticality. This results in an 8-10%
increase in weighted schedulability for all methods for 4 tasks
and a 4-5% increase for 8 tasks above the values shown.

Figure 5 shows the effects of varying the range of task
periods (ratio of max/min possible task period) from 100.5 ≈ 3
to 104 = 10, 000. Here, it is interesting to note that with
a small range of task periods (and hence a small range of
deadlines), all of the mixed-criticality schedulability tests tend
towards the same relatively low level of performance. This
is partly because the interference effectively reduces to a
single job of each higher priority task regardless of the mixed-
criticality scheduling policy used. Nevertheless, one might
expect Clairvoyant to have an advantage as it does not have
to include both interference of C(HI) from higher priority
HI-criticality tasks and C(LO) from higher priority LO-
criticality tasks. Further, one might expect SMC to have lower
performance, since LO-criticality tasks continue to execute
in the abnormal mode causing interference on lower priority
HI-criticality tasks. However, given that the deadlines are all
very similar, the optimal priority assignment algorithm has
the scope to place HI-criticality tasks at higher priorities
than the LO-criticality tasks. This negates the differences in
interference between Clairvoyant, AMC-sem, AMC-max, and
SMC. As the range of task periods and deadlines increases,
OPA can no longer achieve a priority ordering that also reflects
criticality and so the relative performance of SMC degrades.

Finally, Figure 6 shows the results of varying task dead-
lines from 25% to 100% of the task’s period. As expected,
schedulability improves for all approaches as task deadlines
are uniformly increased.

C. Experiments with arbitrary-deadline task sets
The experiments on arbitrary-deadline task sets investigated
the performance of the following schedulability tests:

(i) Clairvoyant: As defined in the previous section, but using
the standard arbitrary-deadline analysis for FPPS [29],
[26] described in Section III.

(ii) AMC-sem-Arb: introduced in Section VI-B.
(iii) AMC-max-Arb: introduced in Section V.
(iv) SMC-Arb: Analysis for Static Mixed Criticality [7] using

a straightforward adaptation of the standard arbitrary-
deadline analysis for FPPS [29], [26].

(v) FPPS-Arb: The standard arbitrary-deadline analysis for
FPPS [29], [26] described in Section III. This test re-
quires that both LO- and HI-criticality tasks must be
schedulable in both modes.



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Sc
he

du
la

bl
e 

Ta
sk

se
ts

Utilisation

Clairvoyant

AMC-sem

AMC-max

SMC

FPPS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

W
ei

gh
te

d 
Sc

he
du

la
bi

lit
y

Criticality Factor

Clairvoyant

AMC-sem

AMC-max

SMC

FPPS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

W
ei

gh
te

d 
Sc

he
du

la
bi

lit
y

Proportion of HI-criticality tasks

Clairvoyant

AMC-sem

AMC-max

SMC

FPPS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

W
ei

gh
te

d 
Sc

he
du

la
bi

lit
y

Number of Tasks

Clairvoyant

AMC-sem

AMC-max

SMC

FPPS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

W
ei

gh
te

d 
Sc

he
du

la
bi

lit
y

Range of task periods 10r

Clairvoyant

AMC-sem

AMC-max

SMC

FPPS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

W
ei

gh
te

d 
Sc

he
du

la
bi

lit
y

Deadline as a proportion of period

Clairvoyant

AMC-sem

AMC-max

SMC

FPPS



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Sc
he

du
la

bl
e 

Ta
sk

se
ts

Utilisation

Clairvoyant
Clairvoyant (Suff.)
AMC-sem-Arb
AMC-sem-Arb (Suff.)
AMC-max-Arb
AMC-max (Suff.)
SMC-Arb
SMC (Suff.)
FPPS-Arb
FPPS (Suff.)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50

W
ei

gh
te

d 
Sc

he
du

la
bi

lit
y

Criticality Factor

Clairvoyant
Clairvoyant (Suff.)
AMC-sem-Arb
AMC-sem (Suff.)
AMC-max-Arb
AMC-max (Suff.)
SMC-Arb
SMC (Suff.)
FPPS-Arb
FPPS (Suff.)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

W
ei

gh
te

d 
Sc

he
du

la
bi

lit
y

Proportion of HI-criticality tasks

Clairvoyant Clairvoyant (Suff.)
AMC-sem-Arb AMC-sem (Suff.)
AMC-max-Arb AMC-max (Suff.)
SMC-Arb SMC (Suff.)
FPPS-Arb FPPS (Suff.)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

4 12 20 28 36 44 52 60

W
ei

gh
te

d 
Sc

he
du

la
bi

lit
y

Number of tasks

Clairvoyant Clairvoyant (Suff.)
AMC-sem-Arb AMC-sem (Suff.)
AMC-max-Arb AMC-max (Suff.)
SMC-Arb SMC (Suff.)
FPPS-Arb FPPS (Suff.)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

W
ei

gh
te

d 
Sc

he
du

la
bi

lit
y

Task period range 10r

Clairvoyant Clairvoyant (Suff.)
AMC-sem-Arb AMC-sem (Suff.)
AMC-max-Arb AMC-max (Suff.)
SMC-Arb SMC (Suff.)
FPPS-Arb FPPS (Suff.)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.25 0.35 0.50 0.71 1.00 1.41 2.00 2.83 4.00 5.66

W
ei

gh
te

d 
Sc

he
du

la
bi

lit
y

Deadlines log-uniform in range [0.25, x] times period

Clairvoyant
Clairvoyant (Suff.)
AMC-sem-Arb
AMC-sem (Suff.)
AMC-max-Arb
AMC-max (Suff.)
SMC-Arb
SMC (Suff.)
FPPS-Arb
FPPS (Suff.)



In addition to the above tests for arbitrary-deadline tasks,
we also explored the performance that could be obtained by
utilizing schedulability tests (e.g. AMC-sem, AMC-max [8],
SMC [7], FPPS [25], [5]) designed for constrained-deadline
task sets.

These methods can be used to provide approximate, suf-
ficient tests for arbitrary-deadline task sets via the simple
expedient of constraining any deadline that is greater than
the task’s period to be equal to that period. In the figures,
these methods are denoted by “(Suff.)” indicating a sufficient
approximation. They are shown using dotted lines, with the
same markers and line colors as the equivalent, more precise,
arbitrary-deadline tests.

In each case, Audsley’s Optimal Priority Assignment
(OPA) algorithm [4] was used to assign priorities, ensuring
an optimal assignment with respect to each schedulability test.

Figure 7 shows the percentage of task sets generated that
were deemed schedulable by each of the above schedulability
tests with the default parameters as described in Section IX-A.
The dominance relationships between the schedulability tests
are evidenced by the lines on the graph.

There are two important points to note from Figure 7.
First, taking arbitrary deadlines into account in the analysis
results in substantial improvements in schedulability when
compared to an equivalent sufficient test which makes the
simplifying approximation of constraining larger deadlines to
be no more than the task’s period. This is the case for all
of the schedulability tests considered. Stated otherwise, for
mixed-criticality systems scheduled using AMC-sem, AMC-
max, SMC, or FPPS, increasing task deadlines beyond their
periods can provide a substantial increase in guaranteed real-
time performance when the schedulability tests derived in this
and prior papers are employed. Second, as was the case with
constrained-deadline task sets, AMC-sem-Arb outperforms
AMC-max-Arb by a significant margin, roughly halving the
difference in performance between the theoretical and un-
achievable Clairvoyant scheduler and AMC-max-Arb. Both of
these two key observations are borne out in the following
figures showing how the weighted schedulability measure
varies with different task set parameters. Note, in each of the
weighted schedulability experiments the default settings given
in Section IX-A were used for all of the parameters that were
held constant.

Figure 8 shows the results of varying the Criticality Factor
(ratio of C(HI)/C(LO)) from 1.0 to 5.5. The case where
CF = 1.0 corresponds to a single criticality level system.
At that point, the performance of all of the schedulability
tests that cater explicitly for arbitrary-deadline task sets is
the same, similarly for the sufficient approximations assuming
constrained deadlines, but at a lower level. This illustrates
the underlying advantage of taking arbitrary deadlines into
account.

Figure 9 shows the results of varying the proportion of
HI-criticality tasks from 5% to 95%. Observe that if all of
the tasks were LO-criticality, or all of the tasks were HI-
criticality, then the group of more precise schedulability tests,
tailored to account for arbitrary deadlines, would have the
same performance. Similarly, all of the approximate (Suff.)
tests would also have the same, but lower performance.

Figure 10 illustrates the impact of task set cardinality

(varied from 4 to 60) on schedulability test performance. As
in the constrained-deadline case, we fixed the number of HI-
criticality tasks at exactly half of the total to avoid skew
in the results with small numbers of tasks. As expected for
fixed priority preemptive scheduling schemes, in all cases,
schedulability improves with an increasing number of tasks
and lower average per task utilization.

Figure 11 shows the effects of varying the range of task
periods (ratio of max/min possible task period) from 100.5 ≈ 3
to 104 = 10, 000. Observe that in the case of the sufficient
approximations, when the range of task periods is small, then
once constrained to the range [0.25, 1.0]Ti all of the task
deadlines are fairly similar and hence schedulability is low
compared to the situation with a much larger range of periods
(and deadlines). This is a well-known property of FPPS. It
happens when the total interference from higher priority tasks
in a given interval is considerably higher than that implied by
their utilization [27]. With longer, arbitrary deadlines or with
a larger range of task periods, this excess interference reduces
and so schedulability improves.

Finally, Figure 12 shows the results of varying the range
of task deadlines from [0.25, 0.25]Ti to [0.25, 5.66]Ti (each
step on the x-axis increases the upper limit of the range by
a factor of

4
√
2, and hence every 4 steps it increases by a

factor of 2). Note in each case the deadlines are chosen at
random according to a log-uniform distribution. As expected,
in all cases schedulability improves as the range of possible
deadlines is expanded. Observe that while the range is no
greater than [0.25, 1.0]Ti, then each of the arbitrary-deadline
methods provides exactly the same results as its constrained-
deadline (Suff.) counterpart (i.e. the solid and the dotted lines
precisely overlap). Beyond that point, the arbitrary-deadline
analysis confers increasingly superior performance. We note
that the relative performance of the various schemes (AMC-
semi, AMC-max, SMC, and FPPS) remains broadly similar to
that shown in the baseline experiment (Figure 7).

X. CONCLUSIONS

In this paper, we considered the problem of scheduling mixed-
criticality systems on a single processor. We studied the Adap-
tive Mixed Criticality (AMC) fixed-priority scheduling scheme
that provides a flexible platform on which to build analysis for
a range of application needs. Two significant new application
requirements were addressed: tasks that have arbitrary (i.e un-
constrained) deadlines; and tasks that have semi-clairvoyant
behavior, where limited performance information is revealed
at the time each job of a task arrives. Arbitrary deadlines are
useful in increasing the schedulability of systems that are able
to cope with transient overloads by employing buffers. Semi-
clairvoyant behavior is a realistic option for a class of tasks that
have more than one mode of operation, and where the mode
of operation is dependent on the state of the system at the
time at which each job of the task is released. Schedulability
analysis was provided that deals with each of these use-cases,
and for systems that have both arbitrary deadlines and semi-
clairvoyant behavior. Comprehensive evaluations demonstrated
that the new analyses out-perform existing general-purpose
analyses for AMC that can be used to provide sufficient test
for these two task characteristics.



Acknowledgments
The research in this paper is partially funded by the ESPRC grants,
MCCps (EP/K011626/1) and STRATA (EP/N023641/1). EPSRC Re-
search Data Management: No new primary data was created during
this study.

REFERENCES

[1] K. Agrawal and S. Baruah. Intractability issues in mixed-criticality
scheduling. In Proc. Euromicro Conference on Real-Time Systems

(ECRTS), pages 11:1–11:21, 2018.

[2] K. Agrawal, S. Baruah, and A. Burns. Semi-clairvoyance in mixed-
criticality scheduling. In Proc. IEEE Real-Time Systems Symposium

(RTSS), pages 458–468, 2019.

[3] S. Asyaban and M. Kargahi. An exact schedulability test for fixed-
priority preemptive mixed-criticality real-time systems. Real-Time

Systems Journal, 54:32–90, 2018.

[4] N. Audsley. On priority assignment in fixed priority scheduling.
Information Processing Letters, 79(1):39–44, 2001.

[5] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings. Ap-
plying new scheduling theory to static priority preemptive scheduling.
Software Engineering Journal, 8(5):284–292, 1993.

[6] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie. Scheduling real-time mixed-criticality jobs.
IEEE Transactions on Computers, 61(8):1140–1152, 2012.

[7] S. Baruah and A. Burns. Implementing mixed criticality systems in
Ada. In Proc. of Reliable Software Technologies - Ada-Europe, pages
174–188, 2011.

[8] S. Baruah, A. Burns, and R. I. Davis. Response-time analysis for
mixed criticality systems. In Proc. IEEE Real-Time Systems Symposium

(RTSS), pages 34–43, 2011.

[9] S. Baruah and B. Chattopadhyay. Response-time analysis of mixed
criticality systems with pessimistic frequency specification. In Proc.

IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA), 2013.

[10] A. Bastoni, B. Brandenburg, and J. Anderson. Cache-related preemption
and migration delays: Empirical approximation and impact on schedula-
bility. In Proc. International Workshop on Operating Systems Platforms

for Embedded Real-Time Applications, pages 33–44, 2010.

[11] I. Bate, A. Burns, and R. I. Davis. An enhanced bailout protocol for
mixed criticality embedded software. IEEE Transactions on Software

Engineering, 43(4):298–320, 2016.

[12] E. Bini and G. Buttazzo. Measuring the performance of schedulability
tests. Journal of Real-Time Systems, 30(1-2):129–154, 2005.

[13] R. Bril, J. Lukkien, and W. Verhaegh. Worst-case response time
analysis of real-time tasks under fixed-priority scheduling with deferred
preemption. Real-Time Systems, 42(1-3):63–119, 2009.

[14] A. Burns and R. I. Davis. Adaptive mixed criticality scheduling with
deferred preemption. In Proc. IEEE Real-Time Systems Symposium

(RTSS), pages 21–30, 2014.

[15] A. Burns and R. I. Davis. Response-time analysis for mixed-criticality
systems with arbitrary deadlines. In Proc. Workshop on Mixed Criti-

cality Systems (WMC), pages 13–18, 2017.

[16] A. Burns and R. I. Davis. A survey of research into mixed criticality
systems. ACM Computer Surveys, 50(6):1–37, 2017.

[17] A. Burns and R. I. Davis. Mixed criticality systems: A review
(12th edition). Technical Report MCC-1(M), available at https://
www-users.cs.york.ac.uk/∼burns/review.pdf, Department of Computer
Science, University of York, 2019.

[18] R. I. Davis, S. Altmeyer, and A. Burns. Mixed criticality systems
with varying context switch costs. In Proc. Real-Time and Embedded

Technology and Applications Symposium (RTAS), 2018.

[19] R. I. Davis and A. Burns. Improved priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time systems. In
Real-Time Systems, Volume 47, Issue 1, pages 1–40, 2010.

[20] R. I. Davis, L. Cucu-Grosjean, M. Bertogna, and A. Burns. A
review of priority assignment in real-time systems. Journal of Systems

Architecture, 65:64–82, 2016.

[21] P. Emberson, R. Stafford, and R. I. Davis. Techniques for the synthesis
of multiprocessor tasksets. In International Workshop on Analysis Tools

and Methodologies for Embedded and Real-time Systems (WATERS),
pages 6–11, July 2010.

[22] T. Fleming and A. Burns. Extending mixed criticality scheduling.
In Proc. Workshop on Mixed Criticality Systems (WMC), pages 7–12,
2013.

[23] O. Gettings, S. Quinton, and R. I. Davis. Mixed criticality systems
with weakly-hard constraints. In Proc. International Conference on

Real-Time Networks and Systems (RTNS)), pages 237–246, 2015.

[24] H.-M. Huang, C. Gill, and C. Lu. Implementation and evaluation of
mixed criticality scheduling approaches for periodic tasks. In Proc.

Real-Time and Embedded Technology and Applications Symposium

(RTAS), pages 23–32, 2012.

[25] M. Joseph and P. Pandya. Finding response times in a real-time system.
BCS Computer Journal, 29(5):390–395, 1986.

[26] J. Lehoczky. Fixed priority scheduling of periodic task sets with
arbitrary deadlines. In Proc. IEEE Real-Time Systems Symposium

(RTSS), pages 201–209, 1990.

[27] C. Liu and J. Layland. Scheduling algorithms for multiprogramming
in a hard real-time environment. JACM, 20(1):46–61, 1973.

[28] D. Maxim, R. I. Davis, L. Cucu-Grosjean, and A. Easwaran. Probabilis-
tic analysis for mixed criticality systems using fixed priority preemptive
scheduling. In Proc International Conference on Real-Time Networks

and Systems (RTNS), pages 237–246, 2017.

[29] K. Tindell, A. Burns, and A. J. Wellings. An extendible approach
for analysing fixed priority hard real-time tasks. Journal of Real-Time

Systems, 6(2):133–151, 1994.

[30] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proc. Real-Time

Systems Symposium (RTSS), pages 239–243, 2007.

[31] N. Zhang, C. Xu, J. Li, and M. Peng. A sufficient response-time
analysis for mixed criticality systems with pessimistic period. Journal

of Computational Information Systems, 11(6):1955–1964, 2015.

[32] Q. Zhao, Z. Gu, and H. Zeng. PT-AMC: Integrating preemption thresh-
olds into mixed-criticality scheduling. In Proc. Design Automation and

Test in Europe (DATE), pages 141–146, 2013.

[33] Q. Zhao, Z. Gu, H. Zeng, and N. Zheng. Schedulability analysis
and stack size minimization with preemption thresholds and mixed-
criticality scheduling. Journal of Systems Architecture, 83:57–74, 2017.


