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Abstract. Two alternative routes are taken to derive, on the basis of the dynamics of a finite number of
dumbbells, viscoelasticity in terms of a conformation tensor with fluctuations. The first route is a direct
approach using stochastic calculus only, and it serves as a benchmark for the second route, which is guided
by thermodynamic principles. In the latter, the Helmholtz free energy and a generalized relaxation tensor
play a key role. It is shown that the results of the two routes agree only if a finite-size contribution to
the Helmholtz free energy of the conformation tensor is taken into account. Using statistical mechanics,
this finite-size contribution is derived explicitly in this paper for a large class of models; this contribution
is non-zero whenever the number of dumbbells in the volume of observation is finite. It is noted that the
generalized relaxation tensor for the conformation tensor does not need any finite-size correction.

1 Introduction

Fluctuations are particularly important when studying
small systems. This also holds for fluids, including com-
plex fluids, e.g., macromolecular and polymeric liquids.
Small scales are involved, e.g., in microrheology [1] and
micro- and nanofluidic devices [2, 3]. For Newtonian flu-
ids, i.e., fluids with a deformation-independent viscosity
and a lack of memory, the dynamics on small scales could
be described in terms of the fluctuating Newtonian fluid
dynamics developed by Landau and Lifshitz [4]. However,
this is not sufficient for complex fluids, and thus extensions
are needed. For example, the stress tensor has been related
to the rate-of-strain tensor by a memory kernel, and corre-
spondingly colored noise has been introduced on the stress
tensor [5, 6]. Another approach towards modeling fluctu-
ating effects in complex fluids has been taken by Vázquez-
Quesada, Ellero, and Español [7] and applied to microrhe-
ology [8], in which smoothed-particle hydrodynamics is ex-
tended by a conformation tensor that describes the confor-
mation of the small number of polymer chains per volume
element. The concept of fluctuating dynamics for the con-
formation tensor has been extended recently [9], to make
it applicable not only to the Maxwell model [10, 11], as
in [7, 8], but to a wider class of models, e.g. the FENE-P
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model [11, 12] and the Giesekus model [11, 13–15]. In the
approach taken in [9], the Helmholtz free energy in terms
of the conformation tensor plays an essential role.

The dynamics of the conformation tensor roots in a
finer description, in particular, it can be related to the
kinetic theory of dumbbells (e.g., see Chapt. 13 in [16]).
The question addressed in this paper is what lessons can
be learned from deriving the dynamics for the confor-
mation tensor with fluctuations from an underlying ki-
netic description for a finite number of dumbbells. It is
pointed out that the dumbbell description already con-
tains the relaxation and fluctuation effects that are rele-
vant also on the conformation-tensor level. This is in con-
trast to coarse graining from an atomistic description to
bead-spring chains or directly to the conformation ten-
sor, e.g., see the work of Underhill and Doyle [17] and of
Ilg et al. [18,19], respectively, without fluctuations on the
conformation-tensor level.

The paper is organized as follows. In sect. 2, a certain
class of kinetic dumbbell models is introduced, based on
which a description of fluctuating viscoelasticity in terms
of the conformation tensor is derived via a direct route,
for a finite number of dumbbells. This route is paralleled
in sect. 3, where a thermodynamic approach is taken to
arrive at fluctuating viscoelasticity. As part of that, the
finite-size correction to the Helmholtz free energy is cal-
culated, and this is found to be essential for finding agree-
ment between the two approaches. In the appendix, three
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different calculation methods for this free energy are de-
tailed, each of which arrives at the same result. In sect. 4,
the relation between the dumbbell models and the multi-
plicative decomposition of the conformation tensor, which
has been discussed recently in the literature [9, 20, 21], is
examined. The paper ends with conclusions and a discus-
sion in sect. 5.

Throughout this paper, the following notation will be
used. All summations are spelled out, i.e., no Einstein
summation-convention is used for repeated indices. While
the symbol · denotes a contraction of one pair of indices,
we use � for a double contraction: For an order-four
tensor A(4) and an order-two tensor B, [A(4) � B]ij =
∑

k,l A
(4)
ijklBkl. The Kronecker delta is given as δij , and

the Dirac delta-function as δ(x − y). The dyadic product
of two vectors v1 and v2 is written as v1v2.

2 Fluctuating viscoelasticity derived from
dumbbell models

2.1 Dumbbell models

Let us consider N dumbbells described by connector vec-
tors Qμ, μ = 1, . . . , N , in D-dimensional space. For the
purpose of this study, the following class of models is ex-
amined (see also [16,22–24]):

dQμ =
[

κ · Qμ − M · ∂Φ

∂Qμ
+ kBT

(
∂

∂Qμ
· M

)]

dt

+
√

2kBTB · dWμ, (1)

which is a set of coupled stochastic differential equations
(SDE) [22, 25]; the Itô interpretation of stochastic calcu-
lus will be used throughout this paper [22,25]. In eq. (1),
κ = ∂v/∂r is the gradient of the imposed velocity field,
Φ is the potential energy of all dumbbells, M is the mo-
bility tensor, with MT = M , T stands for the absolute
temperature, B must satisfy the fluctuation-dissipation
theorem [24,26–28],

B · BT = M , (2)

and the vectors dWμ are increments of independent
Wiener processes [22,25], satisfying

〈dWμ(t)〉 = 0, ∀μ, (3)
〈dWμ(t)dWν(t′)〉 = δμν δ(t − t′)dt dt′1, ∀μ, ν. (4)

It is noted that, in general, B has dimensions D×P with
P ≥ D, and therefore dWμ, for any dumbbell μ, has di-
mensions P × 1, i.e., is a P -dimensional vector for every
particle μ. For practical purposes, one may choose P = D,
although other choices may also be convenient [9].

It can be shown that the probability distribution for
the system (1) at equilibrium is given by the Boltzmann
distribution with energy Φ; to ensure that, the third term
in the square brackets in eq. (1) is essential —if this term
was absent, the equilibrium distribution would depend on

the mobility tensor, which is unphysical. Note that the
mobility M may depend on {Qμ}μ=1,...,N , however, it is
assumed in this study that it is the same mobility tensor
for all dumbbells μ, and thus it has no subscript μ.

For completeness, it is mentioned that all position vec-
tors are dimensionless, i.e., they are scaled with respect
to (w.r.t.) a characteristic constant length-scale, that is
omitted throughout this paper for convenience.

In the following, expressions for Φ and M are consid-
ered that will allow us to eventually derive a closed evolu-
tion equation for the instantaneous conformation tensor

ĉ =
1
N

N∑

μ=1

QμQμ ≡ QQ. (5)

Symmetry requires that the potential energy Φd of a sin-
gle dumbbell depends only on the (squared) length of the
dumbbell vector. If the dumbbells are not interacting, the
total potential energy of all dumbbells is given by the sum
of the individual dumbbell contributions, i.e., Φexact =
NΦd(tr (QQ)). However, in this paper, we consider mod-
els for which the total potential energy is obtained by in-
terchanging the operations (. . .) and Φd(tr (. . .)) in Φexact,
i.e., we use the relation

Φ = NΦd(tr ĉ), (6)

where eq. (5) was employed. This mean-field ansatz will
be beneficial for deriving closed dynamics for ĉ. Obviously,
eq. (6) is —for all but one case (see below)— only an ap-
proximation to the exact potential for all dumbbells. How-
ever, for the purpose of this paper (which is to examine
the effect of finite N on the counting of states, and rami-
fications thereof for the dynamics of ĉ), we employ eq. (6)
for defining the class of models we examine. Therefore,
we will not go into details about how accurately eq. (6)
approximates the exact potential.

The energy Φ given by eq. (6) equals the exact energy
Φexact only if the function Φd(tr (. . .)) is linear, in par-
ticular for linear-elastic Hookean springs, Φd(tr (QQ)) =
(H/2) tr (QQ), with H the spring constant of the dumb-
bell. However, other cases are of interest as well. The
dumbbell force generally has the form −HfQμ. For ex-
ample, for a linear-elastic Hookean spring, f = 1, while
for a finitely extensible nonlinear elastic spring one can
use1 (see also [12]),

f =
(

β1 −
H

β2kBT
tr ĉ

)−1

, (7)

with two constants β1 and β2, and which accounts for the
finite extensibility in a mean-field sense. Typically, in the
FENE-P approximation [12] (see also [29]), ĉ in eq. (7)
is used for infinitely many dumbbells. However, since in
this paper the focus is on studying systems with a finite
number N of dumbbells, we generalize this by using eq. (7)

1 Sometimes a different parametrization is used, e.g. β1 =
(b + 3)/b and β2 = bH/kBT , with dimensionless parameter
b [9].
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for finite N . The potential that corresponds to the desired
expression for the force is given by

Φ =
Nβ2kBT

2
ln f, (8)

of which the limit β1 = 1 and β2 → ∞ results in the poten-
tial for the linear-elastic Hookean spring. Therefore, using
the approximation Φ, given by eq. (8) with eq. (7), instead
of the exact energy Φexact is safe for small deformations.
For other deformations, it is noted that the potential Φ
does include finite extensibility, albeit in a different way
than if applied to each dumbbell individually. It is a topic
of future research to examine the foundations of the mean-
field approximation Φ for finite N thoroughly. In this pa-
per, this approximate expression for the energy forms part
of defining the kinetic models that are examined in the fol-
lowing, and it is suitable for deriving closed dynamics for
c, in the same spirit as the FENE-P approximation has
been introduced earlier for infinite N [12].

As far as the mobility tensor M is concerned, its
dependence on the dumbbell vectors {Qμ}μ=1,...,N is
restricted to a dependence on the instantaneous confor-
mation tensor

M = M(ĉ). (9)

A particular realization of that is

M =
2
ζ

((1 − α)1 + αĉ) , (10)

with friction coefficient ζ, and the parameter α is used to
adjust the amount of ĉ-dependence. In case of imposed de-
formation, a non-zero value for α thus results in anisotropy
of the friction tensor, where the anisotropy is introduced
in a mean-field sense. The form (10) corresponds to the
widely used Giesekus model for anisotropic drag [13–15].
For the Giesekus model, one typically uses eq. (10) for in-
finitely many chains, i.e., N → ∞, to render the model
solvable. However, the mobility of a dumbbell is affected
primarily by the other dumbbells in its vicinity, and there-
fore the finite-N generalization (10) is reasonable.

Allowing for the dumbbell potential energy Φd(tr (. . .))
in eq. (6) to be nonlinear and/or the dumbbell mobility
tensor M to depend on the conformation tensor effec-
tively introduces mean-field–type couplings of the indi-
vidual dumbbells. In practice this implies that either (a)
the N dumbbells must be in the vicinity of each other so
they can interact, or (b) they diffuse rapidly enough in
space to effect such interactions. In the case of the mo-
bility tensor, the implied physics is reasonably clear: the
assumption is that the average orientation of surrounding
dumbbells affects the mobility of any given test dumbbell.
Having this rationale in mind suggests that this mean-field
mobility makes more sense for a finite number N of dumb-
bells, than it does for infinitely many. In the case of the
potential energy, the microscopic physics of the implied
coupling between dumbbells is less clear. Still, we find it
worthy of note that a potential energy function exists from
which the FENE-P model can be derived exactly.

In order to highlight the overall structure of the mod-
eling in the remainder of this paper, the general forms

Table 1. Overview of the parameters in the potential Φ given
by eq. (7) and eq. (8), and the mobility tensor M , eq. (10), for
the three models.

Dumbbell Parameters:

model Φ M

Hookean β1 = 1, β2 → ∞ (f = 1) α = 0

FENE-P β1 = 1, β2 finite (f �= 1) α = 0

Giesekus β1 = 1, β2 → ∞ (f = 1) α > 0

eq. (6) for the potential Φ and eq. (9) for the mobility
tensor M will be used. These general results can then
be reduced to the Hookean dumbbell model, the FENE-P
model, and the Giesekus model, respectively, by appropri-
ate choices for the forms and parameters for the potential
Φ and the mobility tensor M , see table 1.

2.2 Transition from dumbbells to the conformation
tensor

Given the definition of the instantaneous conformation
tensor ĉ, eq. (5), and using the Itô interpretation of stoch-
astic calculus [22,30], one has in general

dĉ =
1
N

N∑

μ=1

(
(dQμ)Qμ + Qμ(dQμ) + 〈(dQμ)(dQμ)〉Itôdt

)
,

(11)
where 〈. . .〉Itôdt implies that in dQμ only terms involving
the Wiener increments are kept and subsequently reduced
according to the rule (see table 3.1 in [22])

dWμdWμ → dt1. (12)

Applied to the above class of models, the SDEs (1) for the
dumbbell vectors {Qμ}μ=1,...,N can be transformed into
an SDE for the conformation tensor,

dĉ =
[

κ · ĉ + ĉ · κT − 2M ·
(

2
∂Φd

∂(tr ĉ)
ĉ − kBT1

)]

dt

+
2kBT

N

[

ĉ · ∂

∂ĉ
· M +

(

ĉ · ∂

∂ĉ
· M

)T
]

dt + dĉf ,

(13)

in terms of the dumbbell potential energy Φd and the
dumbbell mobility tensor M , where it has been assumed
that M · ĉ = ĉ · M . It is pointed out that the symmetry
of ĉ must be taken into account explicitly when calculat-
ing the partial derivatives of M (see [9] for details). The
quantity dĉf denotes the thermal fluctuations,

dĉf =
√

2kBT

N

N∑

μ=1

((B · dWμ) Qμ + Qμ (B · dWμ)) ,

(14)
with B given by eq. (2) for a general mobility tensor M ,
eq. (9). It can be shown that the fluctuations have the
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properties

〈dĉf
ij〉 = 0, (15)

〈dĉf
ijdĉf

kl〉 =
2kBT

N

(
ĉikMjl + ĉilMjk

+ĉjkMil + ĉjlMik

)
dt. (16)

The SDE (13) for the conformation tensor with fluctu-
ations obeying the statistical properties given by eq. (15)
and eq. (16) is the benchmark to which the thermody-
namic treatment further below will be compared, for the
general class of models described by energy Φ, eq. (6),
and mobility tensor M , eq. (9). If the potential Φ and
the mobility tensor M are of forms more general than
eq. (6) and eq. (9), respectively, the dynamics for the con-
formation tensor would not close automatically, in which
case one would have to employ procedures of coarse grain-
ing [24, 31–33]. The procedure presented in this sect. 2.2
has also been followed in [7] for deriving the ĉ-dynamics
for the Hookean and FENE-P models.

It is noted that, in the limit of many dumbbells, i.e.,
N → ∞, not only do the fluctuations dĉf become insignifi-
cant. In addition, also the “thermal drift”, i.e., the second-
last contribution on the right-hand side (r.h.s.) of eq. (13)
vanishes as well, and thus the conventional deterministic
dynamics for the conformation tensor is recovered.

The Hookean dumbbell model —which results in the
Maxwell model for the conformation tensor—, the FENE-
P model, and the Giesekus model are sub-cases of the
SDE (13) with noise (14) when choosing the parameters
β1, β2, and α appropriately, see table 1.

3 Fluctuating viscoelasticity derived using
thermodynamics

The main idea in taking a thermodynamic approach to
modeling dynamical systems is that one can concentrate
on key ingredients for the static and dynamic properties,
and the thermodynamic approach makes sure that these
ingredients are processed towards the final model in a con-
sistent way. For the dumbbell dynamics (1), the key in-
gredients are the potential Φ and the mobility tensor M .
In contrast, for the dynamics of c, the key ingredients are
the Helmholtz free energy density ψ and the generalized
relaxation tensor Λ(4) (see [9] for details). In particular,
the dynamics for the fluctuating conformation-tensor c is
given by the SDE

dc =
(

κ · c + c · κT − Λ(4) � ∂ψ

∂c

)

dt

+
kBT

V
divcΛ

(4)dt +

√
2kBT

V
B(4) � dW̃ , (17)

where divcΛ
(4) denotes the divergence of Λ(4) in c-space,

the order-four tensor B(4) satisfies

B(4) � B(4),T = Λ(4), (18)

and dW̃ is a tensor with increments of independent
Wiener processes (see [9] for further details). The struc-
ture of the SDE (17) with eq. (18) is completely analogous
to the one for the dumbbell models, eq. (1) with eq. (2).

In the following, we derive expressions for ψ and Λ(4),
based on those for Φ and M , respectively.

3.1 Free energy density ψ(c) for finite N

The Helmholtz free energy Ψ = Ψ(c) for the symmetric
conformation-tensor c for a finite number N of dumbbells
is given by Ψ = −kBT ln Z, with the canonical partition-
function

Z(c) =
∫

e−Φ(ĉ)/(kBT ) δ(K) (ĉ − c) dDNQ, (19)

where D is the number of spatial dimensions. The K-
dimensional Dirac δ-function makes sure that only those
states in {Qμ}-space are accounted for that are compati-
ble with the conformation tensor c. Since ĉ is symmetric
by definition, see eq. (5), only K = D(D + 1)/2 inde-
pendent conditions are needed (instead of D2); no more
conditions are required for properly restricting the inte-
gration in {Qμ}-space.

It is pointed out that δ(K) is actually a δ-function in
c-space in the sense that

∫
δ(K)(ĉ−c)dKc = 1. Using this

latter relation, the integral of Z(c) over all (symmetric)
conformation tensors c reduces to

Ξ =
∫

Z(c)dKc =
∫

e−Φ(ĉ)/(kBT )dDNQ, (20)

which is the conventional canonical partition function in
the absence of the constraint ĉ = c.

As we restrict our attention to energy functions Φ
which depend on {Qμ}μ=1,...,N only by way of ĉ, see
eq. (6), the canonical partition-function Z is related to
the microcanonical partition-function Γ by way of

Z(c) = e−Φ(c)/(kBT ) Γ (c), (21)

with
Γ (c) =

∫

δ(K) (ĉ − c) dDNQ. (22)

Different procedures for calculating the dependence of Γ
on c explicitly are discussed in appendix B, one based on
deriving a differential equation for Γ , another one with a
more geometrical interpretation, and a third one using a
scaling argument. Following any of these procedures, the
result for finite N is

Γ = Γ0 (det c)(N−D−1)/2
, (23)

with a c-independent prefactor Γ0.
Based on eq. (21) with eq. (23), the Helmholtz free

energy density ψ = Ψ/V per volume V becomes

ψ =
Φ

V
− nkBT

2
ln (det c) + Δψ, (24)
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with

Δψ =
kBT

2V
(D + 1) ln (det c) , (25)

and number density n = N/V , and where we have omitted
a c-independent additive constant, which is irrelevant for
the formulation of the dynamics of c according to eq. (17).
Since Φ is proportional to N , it is evident that the first
two contributions on the r.h.s. of eq. (24) are independent
of the size of the system, for given number density n. In
contrast, the third contribution, Δψ, does depend on the
size of the system, in particular it becomes more relevant
the smaller the system. To the best of our knowledge, this
finite-size correction to the Helmholtz free energy (den-
sity) has not been derived earlier.

Using H = kBT and G = nkBT , the Helmholtz free
energy density (24) with eq. (25) for the three models
discussed in table 1 agrees with standard literature (e.g.,
see [10, 11, 16]), and with what has been used in the
fluctuating-viscoelasticity approach in [9], with the im-
portant difference of the finite-size correction Δψ. Using,
in contrast to our procedure, a continuous (representative
of N → ∞) distribution for the dumbbell vector Q (e.g.,
see [16]), the thereby-derived Helmholtz free energy den-
sity corresponds to eq. (24) where the finite-size correction
Δψ is absent.

3.2 Relaxation tensor Λ(4)

In the dumbbell dynamics (1), structural relaxation is ex-
pressed as −M · (∂Φ/∂Qμ) dt. In the c-dynamics (17),
structural relaxation is expressed as −Λ(4) � (∂ψ/∂c) dt,
with an order-four relaxation tensor Λ(4) [9]. In the trans-
lation from M to Λ(4), a reduction of variables and the
volume of the system V are involved, the latter being nec-
essary since Φ is an energy while ψ is an energy density.
The relation between M and Λ(4) is given by (see also [31],
and sect. 6.4 in [24])

Λ(4) = V

〈
N∑

μ=1

∂ĉ

∂Qμ
· M · ∂ĉ

∂Qμ

〉

, (26)

where the contractions run over the components of Qμ and
M , and 〈. . .〉 is the average over {Qμ}-space for given c.
Using ∂ĉij/∂Qμ,m = (δimQμ,j + δjmQμ,i)/N , one finds

Λ
(4)
ijkl =

V

N
〈ĉjlMik + ĉjkMil + ĉilMjk + ĉikMjl〉 . (27)

Since M depends on the positions {Qμ}μ=1,...,N only by
way of ĉ, taking the average is thus equivalent to replacing
ĉ by c everywhere in eq. (27). It is to be noted that there
is no finite-size correction in Λ(4).

Using again G = nkBT and with ζ = 4kBTλ, the relax-
ation tensor Λ(4) given by eq. (27) for the three models in
table 1 turns out to agree with the standard expressions in
the literature (e.g., see [10,11,16]), and with what has been
used in [9] in the context of fluctuating viscoelasticity.

3.3 Application to fluctuating viscoelasticity

According to the general procedure in [9], represented in
eq. (17), and using the Helmholtz free energy density (24)
with eq. (25) and the relaxation tensor (27) with ĉ → c,
one observes that the results in [9] need to be amended by
including the finite-N contribution

dc
∣
∣
Δψ

= −Λ(4) � ∂(Δψ)
∂c

dt (28a)

= −2kBT ((D + 1)/N)M dt. (28b)

In particular, one obtains for the complete fluctuating dy-
namics

dc =
[

κ · c + c · κT − 2M ·
(

2
∂Φd

∂(tr c)
c − kBT1

)]

dt

+
2kBT

N

[

c · ∂

∂c
· M +

(

c · ∂

∂c
· M

)T
]

dt + dcf ,

(29)

where the symmetry of c has been taken into account when
calculating divcΛ

(4) (see [9] for details). See appendix A
for explicit exemplary applications of this equation. The
symbol dcf denotes the fluctuating contribution given by

dcf =

√
2kBT

N

(
b · dW̃ · BT + B · dW̃ T · bT

)
, (30)

where b satisfies the condition

c = b · bT. (31)

In general, B in eq. (30) has dimensions D×P with P ≥ D
(as described in sect. 2.1), b has dimensions D × P ′ with
P ′ ≥ D, and therefore dW̃ has dimensions P ′ × P ; for
practical purposes, one may choose P = P ′ = D. The
tensor dW̃ consists of increments of statistically indepen-
dent Wiener processes, with the properties

〈dW̃ij(t)〉 = 0, (32)

〈dW̃ij(t)dW̃kl(t′)〉 = δik δjl δ(t − t′)dt dt′. (33)

When using component notation, eq. (33) implies that any
two of the components of dW̃ are independent from each
other.

A direct comparison shows that the SDE (13) derived
directly from the dumbbell model and the SDE (29) de-
rived via the thermodynamic route, respectively, agree. It
is noted that the expressions for the fluctuations, dĉf in
eq. (14) and dcf in eq. (30), respectively, have a different
form. However, it can be shown that they have the same
statistical properties. First, both representations are lin-
ear superpositions of increments of Wiener processes, and
second, for both representations the average is given by
eq. (15) and the covariance by (16). The difference in the
expressions for the fluctuations is not a short-coming of
the approach; it rather reflects the non-uniqueness of the
decompositions (18) and (31). The non-uniqueness of the
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decomposition (31) can actually be utilized for relating
the expressions (14) and (30) for the noise in even more
explicit terms. Specifically, choosing b to be D × N with
the column vectors of b equal to Qμ/

√
N (μ = 1, . . . , N)

(see sect. 4 for a further elaboration), and setting the row
vectors of dW̃ equal to dWμ (μ = 1, . . . , N), one finds
that the expressions (14) and (30) are identical.

In deriving the relaxation term in eq. (29), i.e. the first
term on the r.h.s. that is proportional to M , from the gen-
eral form eq. (17), one notices the following: The prefactor
1/N in Λ(4) given by eq. (27) is cancelled by the prefactor
N in the derivative ∂(ψ−Δψ)/∂c, for ψ given by eq. (24)
with Φ according to eq. (6). If one chose to not cancel
these factors, one would observe that (1/N)M (with fac-
tor 1/N) is the relevant mobility on the conformation-
tensor level not only for the thermal drift and the fluctu-
ations (by way of the covariances (16)), but also for the
relaxation.

The importance of the finite-size correction Δψ in
the free energy density, eq. (25), for the evolution equa-
tion (29) is pointed out. In particular, dc|Δψ exactly can-
cels those contributions from divcΛ

(4) that are related to
the derivative of the explicit factors ĉ in Λ(4), eq. (27).
If Δψ was neglected, agreement between the SDEs (13)
and (29) could not be achieved.

In appendix A, the dynamics for the conformation
tensor with fluctuations, eq. (29) with eq. (30), is pre-
sented explicitly for three models, namely for the Hookean
dumbbell/Maxwell model, the FENE-P model, and the
Giesekus model.

4 Comments on the multiplicative
decomposition of c

4.1 Eliminating degrees of freedom

Above, the relation has been established between the dy-
namics formulated in terms of dumbbell vectors, on the
one hand, and in terms of the conformation tensor, on the
other hand. In this section, the relation of the dumbbell-
vector description to the multiplicative decomposition of
the conformation tensor (e.g., see [9, 21]),

ĉ = b̂P ′ · b̂T
P ′ , (34)

is examined, where b̂ has dimensions D × P ′ with P ′ an
arbitrary dimension. This decomposition can be written
in the form

ĉ =
P ′
∑

ν=1

b̂P ′,ν b̂P ′,ν , (35)

with b̂P ′,ν the ν-th column vector of b̂P ′ (see also [20]).
In general, one obviously must require P ′ ≥ D for this
decomposition to be complete for arbitrary conformation
tensor ĉ.

In view of the expression (5) for the conformation ten-
sor, a natural choice is P ′ = N with b̂N,μ = Qμ/

√
N , re-

lating the dynamics of b̂N directly to that of the dumbbell

vectors Qμ. In the following, we focus on Hookean dumb-
bells, i.e., the Maxwell model, for illustrative purposes.
The evolution equations (1) for Hookean dumbbells, us-
ing the potential (8) and mobility tensor (10) with the
parameters given in table 1, become

dQμ =
[

κ · Qμ − 1
2λ

Qμ

]

dt +
1√
λ

dWμ, (36)

where the identifications λ = ζ/(4H) and H = kBT have
been made. Equation (36) translates directly into the dy-
namics of b̂N ,

db̂N =
[

κ · b̂N − 1
2λ

b̂N

]

dt +
1√
Nλ

dW̌N , (37)

where dW̌N has dimensions D × N with its μ-th column
vector given by dWμ. Let us now compare this result with
the dynamics for the “square root” bD of the conformation
tensor c, i.e. c = bD ·bT

D where bD has dimensions D×D,
as derived in [9] and amended in [21],

dbD =
[

κ · bD − 1
2λ

(bD − b−1,T
D ) − D

2Nλ
b−1,T

D

]

dt

+
1√
Nλ

dW̌D. (38)

The close relation between bD and the elastic, i.e.,
recoverable, part of the deformation gradient in solid
mechanics has been discussed in [9]. For N → ∞, the
dynamics of the column vectors of b3 agree with the
treatment proposed in [34].

Two major differences between eq. (37) and eq. (38)
are apparent. First, the relaxation in eq. (37) drives the
column vectors of b̂N to zero, while, considering e.g. D =
3, according to eq. (38) b3,1 relaxes to b3,2 × b3,3/det b3,
b3,2 to b3,3 × b3,1/det b3, and b3,3 to b3,1 × b3,2/det b3,
respectively, i.e., the column vectors of b3 become or-
thonormal in the course of relaxation. The second major
difference between eq. (37) and eq. (38) relates to the ab-
sence of the thermal drift (the third term on the r.h.s. of
eq. (38)) in eq. (37). Both differences, in relaxation and
thermal drift, are a hallmark of eliminating degrees of free-
dom when going to a reduced description of the dynamics.
More specifically, both of these contributions are tightly
related to the entropy, i.e., to the counting of states in
configuration space, see sect. 3.1. It is pointed out that
the difference in relaxation does not depend on the value
of N , while the thermal drift clearly is a finite-N effect,
i.e., it is related to the fluctuations. However, despite these
differences between eq. (37) and eq. (38), one should keep
in mind that they both result in the same dynamics for
the conformation tensor.

4.2 Rotational dynamics

In [21], it has been discussed that, due to the non-unique-
ness of the decomposition c = bD · bT

D, there is on-going
rotational dynamics in eq. (38) even at equilibrium, with
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a relaxation time that depends approximately linearly on
N . In the following, an attempt is made to rationalize this
N -dependence of the rotational relaxation time in terms
of the dynamics for the dumbbell vectors Qμ, eq. (36).
Consider the linear combination

R =
N∑

μ=1

γμQμ. (39)

Based on eq. (36), its dynamics is given by

dR =
[

κ · R − 1
2λ

R

]

dt +
1√
λ

dW̄ , (40)

where the Wiener process increments defined by dW̄ =
∑N

μ=1 γμdWμ satisfy

〈dW̄ 〉 = 0, (41)

〈dW̄dW̄ 〉 = γ2dt1, (42)

with γ2 ≡
∑N

μ=1 γ2
μ. Let us consider equilibrium, κ = 0.

In order to study the orientation dynamics, we write R =
Rn, with R and n the length and the orientation vector
of R, respectively. By using Itô calculus [22,25], it can be
shown that the SDEs for R and n are given by

dR =

(
γ2

2Rλ
(D − 1) − 1

2λ
R

)

dt +
1√
λ

n · dW̄ , (43)

dn = − γ2

2R2λ
(D − 1)ndt +

1
R
√

λ
(1 − nn) · dW̄ . (44)

The contributions proportional to γ2 originate from the
second-order term in the Itô calculus2. In particular, one
observes in the orientation dynamics (44) that the relax-
ation time for the orientation vector n is given by

λn =
2R2

γ2(D − 1)
λ. (45)

As an example, consider the case D = 3. To get an idea
about the rotational dynamics of the column vectors b3,μ

of b3, which satisfy c =
∑3

μ=1 b3,μb3,μ, we make a par-
ticular choice for R, i.e., for the linear combination (39).
To that end, think of a Voronoi tessellation on the sphere,
generated by the six “poles” that themselves are gener-
ated as intersections of three orthogonal axes with the
sphere. Let us now consider two of these Voronoi sectors,
Vi and Vī, which are on opposite sides of the sphere. It
is reasonable to assume that the number of vectors Qμ

which have their orientation in these two Voronoi sectors
together can be written as ϕN , where ϕ is independent
of N . After mapping all vectors Qμ with orientation in
Vī into Vi by way of Qμ → −Qμ, which is just making
use of the symmetry of dumbbell description, all ϕN vec-
tors with orientation in Vi are averaged to obtain R, i.e.,

2 Note: it can be shown, again by using Itô calculus [22,25],
that indeed d|n| = 0.

γμ = 1/(ϕN) for these vectors and γμ = 0 for all others.
In this case, one finds γ2 = 1/(ϕN), and thus the relax-
ation time for rotation (45) is increased w.r.t. λ, namely
as λn ∝ Nλ, in agreement with the observation in [21].

For the construction of a suitable vector R, the
Voronoi sectors have been used, instead of, e.g., consid-
ering a random selection of vectors Qμ, for two reasons:
First, the construction with Voronoi sectors allows to con-
struct three such vectors (representative of the column
vectors of b3) that are clearly linearly independent of each
other. And second, the length of R is proportional to the
length of the dumbbell vectors Qμ with a prefactor that
is of order O(1/2), i.e. independent of N .

5 Discussion and conclusions

The focus of this paper has been on deriving viscoelastic-
ity in terms of a conformation tensor with fluctuations,
based on the kinetic theory of dumbbells. This has been
achieved by identifying the conformation tensor with the
arithmetic average over a finite number N of dumbbells,
eq. (5), and using two alternative routes for deriving the
dynamics: a direct approach using stochastic calculus, and
a thermodynamic approach, in which the Helmholtz free
energy plays a key role. It has been shown that these two
approaches agree only if a finite-size contribution to the
Helmholtz free energy of the conformation tensor is taken
into account. The main messages of this paper are there-
fore the following:

– If the number N of dumbbells is finite, the commonly
employed expressions for the thermodynamic poten-
tials need to be corrected: Using statistical mechanics
(see appendix B), one finds that the conformational en-
tropy must be corrected by replacing N by N −D− 1
(with D the number of spatial dimensions), which in
turn modifes the Helmholtz free energy, see eq. (24)
with correction term eq. (25).

– The thereby obtained finite-size correction in the free
energy is crucial for guaranteeing compatibility be-
tween the dynamics of the conformation tensor and
of the underlying dumbbells.

While these general conclusions have been established in
general terms for a large class of models, they have also
been exemplified for the Hookean (Maxwell) model, the
FENE-P model, and the Giesekus model (see appendix A);
the dynamics for the conformation tensor with fluctua-
tions for these three models is summarized in table 2.

When discussing a model with fluctuations, the deter-
ministic counterpart serves as a benchmark. For all mod-
els discussed in this paper, one recovers the known de-
terministic models in the thermodynamic limit N → ∞,
i.e., if the number of dumbbells in the volume of interest
V diverges, keeping the number density n = N/V con-
stant. Beyond that thermodynamic limit, however, there
is also an interest in the behavior of the average confor-
mation tensor 〈ĉ〉 for finite N , i.e., in the presence of
fluctuations. For most models studied in this paper, the
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Table 2. Dynamics for the conformation tensor c with fluctuations; see appendix A for the derivation. Symbols are explained
in the text. Note that the square root of a tensor is most conveniently taken to be symmetric. The increments dW̃ of Wiener
processes satisfy 〈dW̃ij(t)〉 = 0 and 〈dW̃ij(t)dW̃kl(t

′)〉 = δik δjl δ(t − t′)dt dt′ (see eq. (32) and eq. (33)).

Model Conformation dynamics Noise

Maxwell dc =

»

κ · c + c · κT − 4H

ζ

„

c − kBT

H
1

«–

dt + dcf dcf =

s

4kBT

Nζ

“√
c · dW̃ + dW̃ T ·

√
c
”

FENE-P dc =

»

κ · c + c · κT − 4H

ζ

„

f c − kBT

H
1

«–

dt + dcf dcf =

s

4kBT

Nζ

“√
c · dW̃ + dW̃ T ·

√
c
”

Giesekus dc =

»

κ · c + c · κT − 4H

ζ
((1 − α)1 + αc) ·

„

c − kBT

H
1

«–

dt dcf =

s

4kBT

Nζ

“√
c · dW̃ · B̄ + B̄ · dW̃ T ·

√
c
”

+
4α(D + 1)kBT

Nζ
c dt + dcf where B̄ =

p

(1 − α)1 + αc

nonlinearities do not allow to obtain a closed form equa-
tion for 〈ĉ〉 based on the stochastic differential equation
(SDE), eq. (13) and eq. (29), for the fluctuating confor-
mation tensor ĉ. The notable exception to this rule is the
Hookean dumbbell (Maxwell) model, with potential en-
ergy Φd(tr (QQ)) = (H/2) tr (QQ) and mobility tensor
M = (2/ζ)1. Taking the average of the SDE (A.1) over
different realizations of the fluctuations, one observes that
the average conformation tensor 〈ĉ〉 obeys the same dif-
ferential equation as its deterministic (N → ∞) counter-
part — an observation that generally does not hold for
nonlinear models. In particular, one finds for the Hookean
dumbbell model at equilibrium 〈ĉ〉eq = 1, where H = kBT
has been used. As a word of caution, it is pointed out that
the conformation tensor ĉ that minimizes the Helmholtz
free energy density, eq. (24) with eq. (25), is given by
ĉmin = (1 − (D + 1)/N)1, i.e., it does depend on the fi-
nite size (N) of the system. The fact that ĉmin �= 〈ĉ〉eq is
not a contradiction; it merely points out that the distri-
bution of thermal fluctuations around the minimum is not
symmetric.

The relevance of the finite-size correction of the Helm-
holtz free energy, Δψ given by eq. (25), has been discussed
primarily in the context of formulating dynamics with
fluctuations for the conformation tensor c. However, it is
also of immediate consequence for the formulation of fluc-
tuating viscoelasticity in terms of the “square root” b3,
where c = b3 · bT

3 . In [9], a thermodynamic approach has
been taken towards deriving the dynamics of b3, based on
the dynamics of c. Therefore, if the thermodynamic poten-
tial for the c-dynamics contains a finite-size contribution,
the same holds true also for the thermodynamic poten-
tial for the b3-dynamics, see sect. 4.3 in [9] for details.
Beyond these implications for the thermodynamics of a
b3-formulation, the kinetic models for N dumbbells have
also been employed in this paper to give an explanation
for the existence of a rotational relaxation time propor-
tional to N in the fluctuating dynamics of b3, which has
been observed earlier [21].
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Appendix A. Dynamics of conformation
tensor for three exemplary models

For completeness, three concrete realizations of the gen-
eral dynamics for the conformation tensor, eq. (29) with
eq. (30), are provided in this section.

Appendix A.1. Hookean, i.e., Maxwell, model

Using the potential Φ in eq. (8) with eq. (7) in the limit
β1 = 1 and β2 → ∞, and with the mobility tensor M
given by eq. (10) for α = 0 for Hookean dumbbells, the
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general equation (29) turns into the Maxwell model with
fluctuations (see also [9, 21]),

dĉ =
[

κ · ĉ + ĉ · κT − 4H

ζ

(

ĉ − kBT

H
1
)]

dt + dĉf ,

(A.1)
where the fluctuations are determined by eq. (30) with
eq. (2). In particular, one may choose both b and B to
have dimensions D×D and to be symmetric, i.e., b =

√
c

and B =
√

M =
√

2/ζ 1. This result for the stochastic
dynamics of the conformation tensor is identical to what
has been derived in [7].

Appendix A.2. FENE-P model

Using the potential Φ in eq. (8) with eq. (7), and with
the mobility tensor M given by eq. (10) for α = 0, the
general equation (29) turns into the FENE-P model with
fluctuations (see also [9, 21]),

dĉ =
[

κ · ĉ + ĉ · κT − 4H

ζ

(

f ĉ − kBT

H
1
)]

dt + dĉf .

(A.2)
The fluctuations are determined by eq. (30) and eq. (2)
where, as for the Maxwell model, one may choose both b
and B to have dimensions D × D and to be symmetric,
i.e., b =

√
c and B =

√
M =

√
2/ζ 1.

Appendix A.3. Giesekus model

Using the potential Φ in eq. (8) with eq. (7) in the limit
β1 = 1 and β2 → ∞, and with the mobility tensor M
given by eq. (10), the general equation (29) turns into the
Giesekus model with fluctuations (see also [9, 21]),

dĉ =
[

κ · ĉ + ĉ · κT − 4H

ζ
((1 − α)1 + αĉ) ·

(

ĉ − kBT

H
1
)]

dt

+
4α(D + 1)kBT

Nζ
ĉdt + dĉf , (A.3)

where the fluctuations are determined by eq. (30) with
eq. (2). One may choose both b and B to have dimensions
D × D and to be symmetric, i.e., b =

√
c and B =

√
M ,

where M is given by eq. (10) for α �= 0. The thereby-
obtained expression for the fluctuations differs from that
used in [9], while sharing the same statistical properties.
The difference in the expressions for the fluctuations re-
flects the non-uniqueness of the decomposition (18).

Of the three models discussed explicitly in this ap-
pendix A, the Giesekus model is the only one for which
there is a thermal drift in the dynamics of ĉ, i.e., the
second-last contribution on the r.h.s. of eq. (A.3). It is
present only if the mobility of the dumbbells is anisotropic,
α �= 0. Beyond the N -dependence of the noise dĉf , the
thermal drift is the second explicit consequence of the fi-
nite size of the system.

Appendix B. Calculation of partition function Γ

In this appendix, three procedures are presented for cal-
culating the microcanonical partition function Γ , eq. (22),
for a finite number N of dumbbells.

Appendix B.1. Procedure 1: Differential equation

We start by noting that the microcanonical partition func-
tion Γ , eq. (22), contains only K = D(D + 1)/2 (rather
than D2) Dirac δ-functions, representative of the con-
straints related to the independent components cij with
1 ≤ i ≤ j ≤ D. The following notation is introduced:

Δij = δ (ĉij − cij) , i ≤ j, (B.1)

Δ[K] =
D∏

k,l=1;k≤l

Δkl, (B.2)

Δ
[K−1]
ij =

D∏

k,l=1;k≤l;k �=i;l �=j

Δkl, i ≤ j, (B.3)

so that Δ
[K−1]
ij Δij = Δ[K]. With eq. (B.2), the micro-

canonical partition function can be written in the form

Γ =
∫

Δ[K]dDNQ. (B.4)

One can show that

∂Γ

∂cij
= −

∫

Δ
[K−1]
ij Δ′

ijd
DNQ, i ≤ j, (B.5)

where Δ′
ij denotes the derivative of Δij w.r.t. its argu-

ment. Furthermore, one can derive the following relations,
where Qμ,k is the k-th component of the μ-th dumbbell,

N∑

μ=1

Qμ,k
∂Δij

∂Qμ,k
= (δik ĉjk + δjk ĉik) Δ′

ij , i ≤ j, (B.6)

of which there are three non-zero cases:

i = j = k :
N∑

μ=1

Qμ,i
∂Δii

∂Qμ,i
= 2 (Δ′

iicii − Δii) , (B.7)

i < j, k = i :
N∑

μ=1

Qμ,i
∂Δij

∂Qμ,i
= Δ′

ijcij − Δij , (B.8)

i < j, k = j :
N∑

μ=1

Qμ,j
∂Δij

∂Qμ,j
= Δ′

ijcij − Δij . (B.9)

In calculating eqs. (B.7)–(B.9), we have made use of the
identity xδ′(x) = −δ(x), with x = ĉij − cij , which im-
plies (ĉij − cij)δ′(ĉij − cij) = −δ(ĉij − cij), from which
it follows ĉijΔ

′
ij = cijΔ

′
ij − Δij . To proceed, we use



Page 10 of 14 Eur. Phys. J. E (2020) 43: 71

eq. (B.5) for i = j and eq. (B.7) to derive an expression
for 2cii(∂Γ/∂cii),

2cii
∂Γ

∂cii
= −

∫

Δ
[K−1]
ii

[
N∑

μ=1

Qμ,i
∂Δii

∂Qμ,i
+ 2Δii

]

dDNQ

= −2Γ −
∫

Δ
[K−1]
ii

[
N∑

μ=1

Qμ,i
∂Δii

∂Qμ,i

]

dDNQ,

(B.10)

where we have used Δ
[K−1]
ii Δii = Δ[K]. The remaining

integral is then re-written by performing an integration
by parts w.r.t. Qμ,i; the corresponding boundary-terms
can be neglected if the values of the components of c are
finite. This leads to

2cii
∂Γ

∂cii
= (N − 2)Γ +

∫

Δii

N∑

μ=1

Qμ,i
∂Δ

[K−1]
ii

∂Qμ,i
dDNQ,

(B.11)
where, again, we have used Δ

[K−1]
ii Δii = Δ[K]. Using the

product rule for calculating the derivative ∂Δ
[K−1]
ii /∂Qμ,i

and rearranging terms results in

2cii
∂Γ

∂cii
= (N − 2)Γ +

i−1∑

j=1

Gji +
D∑

j=i+1

G�
ij , (B.12)

where the quantities Gji and G�
ijare given by

Gji ≡
∫

Δ
[K−1]
ji

N∑

μ=1

Qμ,i
∂Δji

∂Qμ,i
dDNQ

= −cji
∂Γ

∂cji
− Γ, j < i, (B.13)

G�
ij ≡

∫

Δ
[K−1]
ij

N∑

μ=1

Qμ,i
∂Δij

∂Qμ,i
dDNQ

= −cij
∂Γ

∂cij
− Γ, i < j, (B.14)

where we have used eq. (B.8) and eq. (B.9) (with i and j
interchanged), and then eq. (B.4) and eq. (B.5). Combin-
ing eq. (B.12) with eq. (B.14) and eq. (B.13), one obtains

i−1∑

j=1

cji
∂Γ

∂cji
+ 2cii

∂Γ

∂cii
+

D∑

j=i+1

cij
∂Γ

∂cij
= (N − D − 1)Γ,

(B.15)
which is a differential equation for Γ . To solve this equa-
tion, consider the ansatz

Γ = Γ0 (det c)ν
. (B.16)

For calculating the partial derivatives of this ansatz w.r.t.
cij , the following needs to be kept in mind. On the one
hand, since c is symmetric, there are only K indepen-
dent variables, rather than D2, which is in line with

the strategy adopted, e.g., in eq. (B.2) and eq. (B.3).
This implies that there are only K partial derivatives
to be calculated in eq. (B.15), namely w.r.t. cij with
1 ≤ i ≤ j ≤ D. On the other hand, the tensor c contains
elements cij and cji = cij . Hence, for i �= j, one finds
for any function f(c): ∂f(c)/∂cij = [∂f(c)/∂cij ]no-sym +
[∂f(c)/∂cji]no-sym, where “no-sym” emphasizes that the
corresponding derivative is taken without enforcing the
symmetry of c, i.e., considering all D2 components of c as
independent variables. For the derivative of ansatz (B.16)
one thus obtains

∂Γ

∂ckl
= (2 − δkl)νΓ

(
c−1

)
kl

, k ≤ l, (B.17)

where the factor (2 − δkl) originates from the fact that
there are only K independent components in c, ckl with
k ≤ l; particularly, for k < l, the variable ckl appears at
two off-diagonal positions in the full, symmetric matrix
c. With this, it can be shown that the ansatz (B.16) is
indeed a solution of the differential equation (B.15) if

ν =
N − D − 1

2
. (B.18)

The c-independent prefactor Γ0 can not be determined
with this approach. However, since Γ0 results only in an
additive contribution to the Helmholtz free energy Ψ , it
turns out to be irrelevant for the dynamics of the confor-
mation tensor c.

Appendix B.2. Procedure 2: Geometry

We begin with a geometrical interpretation of the mi-
crocanonical partition-function Γ (c) defined via eqs. (21)
and (22). Substituting from eq. (21) back into the full
partition function eq. (20) we find

Ξ =
∫

e−Φ(c)/(kBT ) Γ (c)dKc

=
∫

e−Φ(ĉ)/(kBT )dDNQ. (B.19)

Comparing the two lines of this equation we recognise that
we may interpret the differential quantity Γ (c)dKc as be-
ing the volume, within the DN -dimensional {Qμ}-space,
that is within an increment dKc of c (i.e., where the K
independent components of c are each varied within an
interval dcα of their base value). Evaluation of the depen-
dence of this volume on c yields Γ (c) up to a constant
prefactor. Since this derivation requires some visual imag-
ination, we first demonstrate how this may be reasoned in
the specific case D = 3 before indicating how the calcula-
tion may be generalised to arbitrary D.

Appendix B.2.1. Three dimensions

For D = 3, {Qμ}-space is a 3N -dimensional space
spanned by the vectors {Qμ}μ=1,...,N . For conve-
nience, we specify a location within this space via
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the 3N -dimensional vector (X,Y,Z), where X =
(x1, x2, x3 . . . , xN ) is the N -dimensional vector of the x-
components of {Qμ}μ=1,...,N (and similarly for Y and Z).

We also note that, for D = 3, there are K = 6 inde-
pendent components of the symmetric c tensor: cxx, cyy,
czz, cxy, cxz and cyz.

We proceed by evaluating the dependence on c of two
separate volumes. We first evaluate Vconst, which is the
(3N − 6)-dimensional subvolume of {Qμ}-space within
which ĉ (given in terms of {Qμ} by eq. (5)) is held ex-
actly equal to c. Then, for each point within Vconst, we
find the volume dV6 which is the 6-dimensional subvolume
swept out by varying cxx by dcxx, cyy by dcyy, etc. Such
excursions must all be perpendicular to the subvolume
Vconst (in the {Qμ}-space), because contours of fixed cxx

are perpendicular to the gradient direction of cxx (etc.).
So, we can evaluate Γ (c)d6c as the product of Vconst and
dV6:

Γ (c)d6c = Vconst dV6.

Evaluation of these volumes is most straightforward in
the co-ordinate frame in which c is diagonalised (which
can always be done since c is symmetric). In the diagonal
frame, c takes values λx, λy and λz along the diagonal,
but is zero in the off diagonal components. In terms of the
N -dimensional vectors X, Y and Z these constraints can
be expressed as:

|X|2 = Λx, |Y|2 = Λy, |Z|2 = Λz,

X · Y = 0, Y · Z = 0, X · Z = 0,

where Λi = Nλi, i.e. the vectors X, Y and Z are re-
stricted to the surfaces of N -dimensional hyperspheres of
radii

√
Λx,

√
Λy, and

√
Λz respectively, whilst simultane-

ously being held to be mutually perpendicular.
The volume Vconst is the (3N − 6)-dimensional volume

swept out by rotating the X, Y and Z vectors subject to
the above constraints, the rotations being within the N -
dimensional space of these vectors. A brief analogy may
help at this stage: the surface of a sphere of radius r is
found by summing up small tiles formed by varying the
polar co-ordinate angles θ and φ by small increments dθ
and dφ. The distance along the sphere surface moved dur-
ing such increments is rdθ and rdφ (multiplied by a geo-
metric factor sin θ which is irrelevant to the scaling with
r). So, the scaling of surface area with r can be found
from the product of these lengths, r2dθdφ. Likewise, the
volume Vconst is the sum over a tiling of small incremen-
tal volumes, made by rotating the vectors X, Y and Z by
small angles dθk in each available direction, whilst keeping
their length fixed and retaining their mutually perpendic-
ular orientation. Since X has N dimensions, there are in
total (N−1) directions in which X could be rotated whilst
keeping the length of X fixed. One such rotation will ro-
tate the X vector towards the Y vector. In this case, the
Y vector must also rotate by the same angle, so as to
maintain the perpendicular condition X · Y = 0. Hence,
for rotation angle dθ1, X rotates so that its end sweeps
out a length dlX =

√
Λxdθ1 perpendicular to X (in the

direction of Y). Likewise Y also rotates so that its end

sweeps out a length dlY =
√

Λydθ1 perpendicular to Y
(in the direction of −X). These changes in X and Y result
in a total length moved in {Qμ}-space which is

dl1 =
√

dl2X + dl2Y

=
√

Λx + Λydθ1.

Similarly a second rotation direction of the X vector is
available, towards the Z vector (in which case Z must
also rotate). Likewise, a third rotation carries Y towards
Z without rotating X. By similar arguments, the total
length moved in {Qμ}-space for these is:

dl2 =
√

Λx + Λzdθ2,

dl3 =
√

Λy + Λzdθ3.

These three rotation directions having been dealt with,
there remain (N − 3) further rotation directions available
for the X vector, all of which allow X to remain perpen-
dicular to both Y and Z. For each of these rotations of
X, the length moved in {Qμ}-space is

dlk =
√

Λxdθk, k = 4 . . . N.

Similarly, there are (N−3) rotations available to each of Y
and Z, each of which leaves the other vectors unchanged,
giving lengths:

dlk =
√

Λydθk, k = (N + 1) . . . (2N − 3),

dlk =
√

Λzdθk, k = (2N − 2) . . . (3N − 6).

A single “tile” in the volume Vconst is obtained by sweeping
through each of the above (3N −6) incremental rotations.
The total volume Vconst is obtained by adding together all
such tiles as the vectors are rotated. We require only the
dependence of Vconst on c (ignoring prefactors). Hence, by
taking the product of the lengths swept out by a set of
incremental rotations, we obtain

3N−6∏

k=1

dlk ∼ Vconst

3N−6∏

k=1

dθk,

where

Vconst∼
(√

ΛxΛyΛz

)(N−3)√
Λx+Λy

√
Λx+Λz

√
Λy+Λz.

(B.20)
We now turn to the volume dV6, the 6-dimensional

subvolume swept out by incrementing cxx by dcxx, cyy

by dcyy, etc. away from a single point within Vconst. We
first calculate the length in {Qμ}-space traversed by in-
crementing cxx by dcxx in a direction perpendicular to the
contour of constant cxx. We note that

cxx = X · X/N,

so the direction perpendicular to the contour of constant
cxx is

∇cxx = (2X/N,0,0).
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Moving a distance dlxx in this direction changes cxx by

dcxx = |∇cxx| dlxx

= (2 |X| /N)dlxx

= (2
√

Λx/N)dlxx.

Inverting this, the distance moved in {Qμ}-space when
incrementing cxx by dcxx is

dlxx =
N

2
√

Λx

dcxx

and similarly for dcyy and dczz.
We next note that

cxy = X · Y/N,

so the direction perpendicular to the contour of constant
cxy is

∇cxy = (Y/N,X/N,0)

Moving a distance dlxy in this direction changes cxy by

dcxy = |∇cxy| dlxy

=
(√

|X|2 + |Y|2/N
)

dlxy

= (
√

Λx + Λy/N)dlxy.

Inverting this, the distance moved in {Qμ}-space when
incrementing cxy by dcxy is

dlxy =
N

√
Λx + Λy

dcxy

and similarly for dcxz and dcyz.
Hence, multiplying these six lengths together,

dV6 ∼ N6d6c
√

ΛxΛyΛz

√
Λx + Λy

√
Λx + Λz

√
Λy + Λz

.

(B.21)
Evaluating Γ (c)d6c = VconstdV6, and hence Γ (c), we find
that all factors of form

√
Λx + Λy cancel, and we are

left with

Γ (c) ∼ N6 (ΛxΛyΛz)
(N−4)/2

∼ N3N/2 (λxλyλz)
(N−4)/2

. (B.22)

But detc = λxλyλz, and so:

Γ (c) ∼ N3N/2 (det c)(N−4)/2 (B.23)

with dependence on det c as required.

Appendix B.2.2. Generalisation to D dimensions

Most of the above formalism carries directly over to D
dimensions. In calculating Vconst, each vector of type X
has a total number of (N − 1) rotations available (whilst
preserving length), but (D − 1) of these rotate the vector

towards one of the others. So, the total number of rota-
tions available for each vector, which do not also require
rotating one of the other vectors, is (N − D). The num-
ber of rotations requiring two vectors to rotate (i.e. of the
form X to Y, Y to Z etc., but avoiding double counting)
is M = D(D − 1)/2. So, Vconst is of form:

Vconst ∼ (ΛxΛyΛz . . .)(N−D)/2

×
√

Λx + Λy

√
Λx + Λz

√
Λy + Λz . . . ,

where there are M terms of form
√

Λx + Λy.
In calculating dVK , there are D diagonal constraints

and M = D(D−1)/2 off-diagonal constraints in c (a total
of K = D(D + 1)/2). Each diagonal constraint gives a
factor of form

√
Λx in the denominator of dVK , whilst each

off diagonal constraint gives a factor of form
√

Λx + Λy.
Hence:

dVK ∼ NKdKc
√

ΛxΛyΛz . . .
√

Λx + Λy

√
Λx + Λz

√
Λy + Λz . . .

.

In the product Γ (c)dKc = VconstdVK , all M factors of
form

√
Λx + Λy are present once in the numerator, and

once in the denominator, and so cancel. Hence:

Γ (c)dKc = Vconst · dVK

∼ NK (ΛxΛyΛz . . .)(N−D−1)/2 dKc

∼ NDN/2 (λxλyλz . . .)(N−D−1)/2 dKc

∼ NDN/2(det c)(N−D−1)/2dKc. (B.24)

Appendix B.3. Procedure 3: Scaling

In this procedure, scaling arguments are employed for the
calculation of the microcanonical partition function Γ ,
eq. (22), in real space and in reciprocal space, respectively.

Appendix B.3.1. Scaling in real space

Similar to the procedure described in sect. B.2, it is again
chosen to describe the {Qμ}-space in terms of the N -
dimensional vectors Xi, 1 ≤ i ≤ D, where the μ-th com-
ponent of Xi equals the i-th component of Qμ.

In what follows, we consider the coordinate system in
which the conformation tensor c is diagonal, with eigen-
values λi (1 ≤ i ≤ D). The microcanonical partition func-
tion Γ , eq. (22) with instantaneous conformation tensor
ĉ = ĉ(Q), can be written in the {Xi}-representation as

Γ (c) =
∫

δ(K) (ĉ(X) − c)
D∏

i=1

N∏

μ=1

dXi,μ, (B.25)

with ĉ = ĉ(X) given by ĉij = Xi · Xj/N . In view of the
conditions ĉii = cii = λi, the integral (B.25) is re-written
by introducing Xi =

√
λiX̃i. Making use of the property

δ(ax) = (1/a)δ(x) for a > 0, one obtains from eq. (B.25),

Γ (c) = Γ1(c)Γ2(c)Γ3, (B.26)
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with

Γ1(c) =
D∏

i=1

N∏

μ=1

√
λi = (det c)N/2, (B.27)

Γ2(c) =
∏

1≤i≤j≤D

1
√

λiλj

=

√
√
√
√
√

⎛

⎝
∏

1≤i,j≤D

1
√

λiλj

⎞

⎠

⎛

⎝
∏

1≤i≤D

1
λi

⎞

⎠

=
√

(det c)−D(det c)−1

= (det c)(−D−1)/2, (B.28)

Γ3 =
∫

δ(K)
(
ĉ(X̃) − 1

) D∏

i=1

N∏

μ=1

dX̃i,μ, (B.29)

where Γ1 comes from the substitution of variables in the
volume element, and Γ2 comes from the substitution of
variables in δ(K). It is to be noted that the integral Γ3 does
not depend on c. Rather, we find Γ3 = Γ (1). Therefore,
one obtains for the c-dependence of the microcanonical
partition function

Γ (c) = (det c)(N−D−1)/2Γ (1). (B.30)

Appendix B.3.2. Scaling in reciprocal space

An alternative derivation for Γ (c) follows by explicitly en-
forcing the constraints using Fourier transforms, and then
performing a rescaling. We begin with the microcanonical
partition-function Γ defined in eq. (22),

Γ (c) =
∫

dDNQδ(K) (c − ĉ) , (B.31)

where ĉ is the symmetric number-averaged conformation
tensor given by eq. (5). The δ-function ensures that only
configurations {Qμ} that satisfy c = ĉ are included in
Γ (c). To evaluate Γ (c) we choose a coordinate system for
the Qμ comprising the eigenvectors {êa} and eigenvalues
λa of c. The constraints in the Dirac δ-function then re-
duce to

λa = êa · ĉ · êa (a = 1, . . . D) D constraints, (B.32)
0 = êb · ĉ · êc (b < c) L constraints, (B.33)

where there are L = D(D − 1)/2 zero off-diagonal el-
ements. Hence we introduce D Dirac δ-functions for the
diagonal constraints, and L δ-functions for the off-diagonal
constraints. We enforce these with Fourier transforms,
leading to

Γ (c) =
∫

dDu

(2π)D

∫
dLv

(2π)L

∫

dDNQ

× exp

⎡

⎢
⎣i

D∑

a=1

ua (λa − êa · ĉ · êa) − i
D∑

b,c=1
b<c

vαêb · ĉ · êc

⎤

⎥
⎦ ,

(B.34)

where the second sum is over all L distinct pairs of eigen-
vectors (b < c). Inserting the definition for ĉ (eq. (5)) and
interchanging

∑
μ and

∑
a in the exponential, Γ (c) can

be written as

Γ (c) =
2L

(2π)K

∫

dDu eiu·λ
∫

dLv

∫

dDNQ

× exp

[

− i

N

N∑

μ=1

Qμ · {U + V} · Qμ

]

, (B.35)

where the matrices U and V are constructed from the con-
straint fields ua and vα as follows (represented in the basis
{êa}) for D = 3:

U =

⎛

⎝
u1 0 0
0 u2 0
0 0 u3

⎞

⎠ , V =

⎛

⎝
0 v1 v2

v1 0 v3

v2 v3 0

⎞

⎠ ,

(B.36)
and we have rescaled v by a factor of 2. Next, we scale
the u and v integrals according to

ua =
ūa

λa
, dDu =

dDū

(det c)
, a = 1 . . . D (B.37)

vα =
v̄α√
λaλb

, dLv =
dLv̄

(det c)(D−1)/2

α=1...L
a<b∈(1,D)

(B.38)

where we recognize det c =
∏D

a=1 λa. The scale factors for
the vα correspond to the ua in its row and column. To see
the scaling in the measure for v̄, note that each v picks up
a factor in the denominator proportional to λ. Hence the
denominator scales as λL ∼ λD(D−1)/2 ∼ (det c)(D−1)/2,
leading to the denominator above in eq. (B.38). Hence,

Γ (c) =
2L

(2π)K(det c)(D+1)/2

∫

dDū eiū·1
∫

dLv̄

∫

dDN Q

× exp

[

− i

N

N∑

μ=1

Qμ · {U + V} · Qμ,

]

, (B.39)

where 1 = (1, 1, . . .) and now, for (D = 3), U + V is ex-
pressed in the form

U + V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ū1√
λ2

1

v̄1√
λ1λ2

v̄2√
λ1λ3

v̄1√
λ1λ2

ū2√
λ2

2

v̄3√
λ2λ3

v̄2√
λ1λ3

v̄3√
λ2λ3

ū3√
λ2

3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (B.40)
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We finally rescale Qμ = Q̄μ · Λ, where Λ is the diagonal
matrix Λaa =

√
λa, Λab = 0(a �= b). Hence, we find

Γ (c) =
2L

(2π)K
(det c)(N−D−1)/2

×
∫

dDū eiū·1
∫

dLv̄

∫

dDN Q̄

× exp

[

− i

N

N∑

μ=1

Q̄μ ·
{
Ū + V̄

}
· Q̄μ

]

, (B.41)

≡ (det c)(N−D−1)/2 I, (B.42)

where the integral I is independent of the conformation
tensor c, and Ū + V̄ is equal to (B.40) without the factors
1/
√

λaλb.
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